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Abstract—This paper deals with the problem of taking random samples over the surface of a 3D mesh describing and evaluating

efficient algorithms for generating different distributions. We discuss first the problem of generating a Monte Carlo distribution in

a efficient and practical way avoiding common pitfalls. Then, we propose Constrained Poisson-disk sampling, a new Poisson-disk

sampling scheme for polygonal meshes which can be easily tweaked in order to generate customized set of points such as importance

sampling or distributions with generic geometric constraints. In particular, two algorithms based on this approach are presented. An

in-depth analysis of the frequency characterization and performance of the proposed algorithms are also presented and discussed.

Index Terms—Geometry Processing, Computational Geometry, Three-Dimensional Graphics and Realism, Sampling, Poisson-disk

sampling, Monte Carlo methods

✦

1 INTRODUCTION

Sampling is a fundamental operation in many areas, in
particular in Computer Graphics, where several render-
ing and geometry processing algorithms use different
sampling schemes depending on the specific purpose.
In these last years a lot of research effort has been
envisaged to develop new and efficient sampling algo-
rithms, especially to produce sampling with blue noise
characteristics, that best fit the needs of several geometric
modeling and graphics applications [1], [2], [3]. Despite
these efforts not so much attention has been paid to
the development of algorithms that generate samples
directly on a 3D surface, in particular on a generic trian-
gular mesh. Research on remeshing implicitly account
for surface mesh sampling, but most of the proposed
techniques focus on the specific task of remeshing and
are not general. Our aim is to investigate the issue of
sampling meshes in an efficient and flexible way ranging
from uniform sampling, to Poisson-disk sampling, pass-
ing to scheme with blue noise properties with geometric
constraints. In this context, we discuss efficient uniform
sampling of triangular meshes and propose two algo-
rithms based on a novel method for the fast generation
of Poisson-disk distributions on meshes.

The rationale behind discussing Monte Carlo sampling
algorithms, that could be considered as a trivial problem,
is the sake of highlighting common pitfalls, for example
how to avoid biased distributions. For this purpose we
describe the risk of a straightforward implementation
and we illustrate two approaches for the two different
needs of a triangle-by-triangle sampling or of a contin-
uous stream of samples all over the mesh. Moreover,
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our Poisson-disk sampling algorithms are based on this
generation.

Poisson-disk sampling is one of the most common
sampling schemes in the context of Computer Graphics
due to its blue noise properties. It consists of generating
a uniformly random distribution where the minimum
distance between each sample is 2r; therefore a disk of
radius r centered on each sample does not overlap any
other disk. This guarantees that objects of a certain size
can be distributed according to this sampling scheme
without overlapping. Moreover, this type of sampling
has been demonstrated to be particularly suitable in ray
tracing and other rendering algorithms for its blue noise
characteristics [4], [5]. For these reasons several algo-
rithms for Poisson-disk sampling of the planar domain
have been developed in the last years. Concerning the
case of 3D surface represented as meshes, according to
our knowledge the only works of this kind are the ones
of Li et al. [1], Fu et al. [6] and Cline et al. [3] and the
recent [7]. Here, we propose to sample the mesh surface
by means of an extension of the hierarchical approach
of White et al. [8]. Additionally, we will show that
our Poisson-disk method is able to generate importance
sampling with trivial modifications and, more important,
it can be easily tweaked to generate constrained Poisson-
disk distributions, i.e. Poisson-disk like distributions with
geometric constraints on sample placement. This makes
the proposed sampling scheme very flexible and effec-
tive in different application contexts.

The effectiveness of the proposed algorithms has been
tested using the de-facto standard frequency analysis of
sampling patterns, i.e. the radial average power and the
radial anisotropy. The relative radius coefficient (ρ) has been
also evaluated [2]. With these sets of experimental results
we will show also that the proposed sampling algo-
rithms are completely independent of the mesh connec-
tivity like any good sampling algorithm for polygonal
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meshes should be.
The contribution of this paper can be summarized as

follows:

• A discussion of some implementation issues related
to Monte Carlo sampling of triangular meshes.

• A novel approach for the generation of what we call
constrained Poisson-disk distribution, i.e. a Poisson-
disk like distribution that could include also addi-
tional constraints.

• Two Poisson-disk sampling algorithms for 3D
meshes, based on this novel approach, that are
independent of the number of mesh elements, mesh
connectivity and mesh triangles’ shape.

Moreover, we already made publicly available a ro-
bust implementation of all the presented algorithms; we
have integrated, since 2009, all the discussed techniques
within the open source mesh processing system Mesh-
Lab [9].

2 RELATED WORK

The literature on sampling is huge and extensive. Here,
we discuss the works closer to our aims; in particular
we focus on Poisson-disk sampling.

2.1 Poisson-Disk Sampling on Planar Domain

One of the first algorithms for the generation of Poisson-
disk sampling is Dart-Throwing [4]. This very simple
algorithm randomly generates a sample and discards it
if the minimum distance constraint is not respected.

A class of algorithms for Poisson-disk distribution
generation is based on tiling. The basic idea is to pre-
generate samples inside tiles (e.g. using dart-throwing)
and to fill the sampling domain with the pregenerated
tiles in order to produce the desired distribution. Wang
Tiles are often employed [10], [11] to obtain non-periodic
tiling. Lagae and Dutrè [12] derived a variant of Wang
Tiles more suitable for Poisson sampling called dual
tiling. They extend this idea also to generate Poisson
spheres distributions in the 3D space [13]. Even if this
method works in 3D space it is not directly applicable to
sample 3D meshes. In order to control the density of the
sampling Ostromoukhov et al. [14] employed Penrose
tiling of the plane; a subdivision rule for Penrose tiling
is proposed to refine the sampling where high density is
required.

Dunbar and Humphreys [15] proposed a very effi-
cient algorithm with O(N logN) complexity where N
is the number of samples to generate. The main idea
is to compute and encode the remaining portion of the
domain that still does not violate the distance constraint
each time a sample is generated, and to use only this
valid domain for the successive sample generation. The
available domain is represented with a set of scalloped
sectors for efficiency. The work of Jones [16] exploits
Voronoi diagrams to improve the generation of Poisson-
disk distributions through Lloyd’s relaxation and also

has O(N logN) complexity. In 2007 White et al. [8] pro-
posed a hierarchical approach named Hierarchical Dart
Throwing (HDT) based on a quadtree subdivision of the
sampling domain. In the following we will analyze in
depth this algorithm since our Poisson-disk solution for
meshes takes inspiration from this approach. A parallel
algorithm for the generation of this kind of sampling
designed to be efficiently implemented in GPU has been
recently proposed by Wei et al. [17]. This algorithm is
able to generate samples in n dimensions at the cost of
higher computational time.

2.2 Poisson-Disk Sampling on Mesh Domain

The first work for the direct sampling of triangular
meshes is the Dual-tiling scheme of Li et al. [1]. Despite
the similar name this tiling approach is different to the
one proposed by Lagae et al. [13]. This algorithm is
based on Wang Tiling and it requires a parameterization
of the mesh. The main idea is to build a dual surface
on the mesh (hence the name of the method) in order
to limit the possible kinds of tiles and to simplify the
construction of the tile set used for the tiling. A dual
surface is such that every vertex is shared exactly by four
tiles. The Poisson-disk samples are generated on the tiles
and then such tiles are applied to the dual surfaces. The
isotropy of the samples generated in this way can be
improved at the end of the process by applying Lloyd’s
relaxation. The authors stated that 10-20 iterations are
sufficient to obtain a distribution with good blue noise
characteristics.

Fu et al. [6] extended the algorithm of Humphreys
et al. [15] to meshes. The geodesic distance is used to
find the available boundary sampling. More specifically,
they compute geodesic equidistant curves over the mesh
surface and use them to handle the boundary where
new samples should be placed. They also employed
this algorithm for remeshing; after sampling directly the
surface a slight variant of the algorithm of Turk [18] is
used to retile the mesh. The sharp features are preserved
separately by extracting them with the algorithm of Jiao
and Heath [19] before the surface sampling. Also in this
case some iterations of the Lloyd’s relaxation are used
to improve the final point distribution.

Cline et al. [3] generalize the HDT by White et al. [8]
to generic surfaces including triangular meshes, Bézier
patches and implicit surfaces. Since our algorithm is
also based on an extension of the approach of White et
al. we provide a detailed description and comparative
discussion about it in Section 4.

Finally, another work based on the same main idea
as ours is the one proposed by Bowers et al. [7]. This
algorithm can be considered as concurrent to ours. In
order to assess well the scientific contribution of our
technique with respect to the algorithm of Bowers et al.
we discuss it in a specific Section (5).
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FOREACH TRIANGLE ti
{

/ / P o i s s o n ( . ) i s a f u n c t i o n which r e t u r n s an
/ / i n t e g e r random v a l u e with a p r o b a b i l i t y
/ / t h a t f o l l o w s a P o i s s o n d i s t r i b u t i o n
SAMPLEPERTRI = POISSON ( ns · (A(ti)/Am ) ) ;
REPEAT SAMPLEPERTRI TIMES

COMPUTEUNIFORMSAMPLE ( ti ) ;
}

Fig. 1. Per-Triangle Monte Carlo sampling using Poisson

distribution. This algorithm relies on a robust implementa-

tion of Poisson(.).

Fig. 2. (Left) Per-Triangle Monte Carlo sampling done us-

ing a method for sampling a Poisson distribution designed

for small means. (Right) The result when using a method

appropriate also for large means.

3 MONTE CARLO SAMPLING

Monte Carlo sampling is one of the most classic sam-
pling scheme employed in several problems such as
evaluation of integrals, physical simulation, optimization
and so on. While some of the considerations here re-
ported could be considered trivial from a statistic point
of view, we found it useful to report them because we
did not find any specific treatise about the issues here
discussed. In particular, the implementation of an algo-
rithm to compute a set of points on a surface according
to an uniform distribution requires a bit of care to avoid
biased Monte Carlo distributions.

In the following, we indicate with ns the number of
samples to generate, with nt the number of triangles of
the mesh, with A(ti) the area of triangle ti, and with
Am =

∑

A(ti) the area of the whole mesh. We can model
the number of samples which fall into a given triangle
t as a random variable with a Poisson distribution with
mean ns

A(t)
Am

, as shown by the algorithm in Figure 1. This
approach has a few possible drawbacks.

Note that we require an accurate method for sampling
the Poisson distribution (i.e., one that works for both
small and large means). Knuth’s method [20] is a popular
choice but, in this specific case, it is not appropriate, since
it is designed for small means. However, there are plenty
of methods (including [21]) that are able to accurately
sample a Poisson distribution for both large and small
means. Figure 2 shows the bias generated when the
Poisson distribution is not sampled appropriately. The
mesh sampled is one of the stress meshes used in our

/∗ Streaming Monte C a r l o Sampling ( v e r s i o n 1) ∗ /
VECTOR<FLOAT> INTERVALS (nt + 1 ) .
FLOAT SUM =0 ;
FOREACH TRIANGLE ti
{

INTERVALS [ I ] = SUM ;
SUM += A(ti) ;

}
FOR I = 0 TO ns

{
VAL = UNIFORMRANDOM ( 0 . . . SUM ) ;
INDEX = FIND ( INTERVALS , VAL ) ;
COMPUTEUNIFORMSAMPLE ( tINDEX ) ;

}

/∗ Streaming Monte C a r l o Sampling ( v e r s i o n 2) ∗ /
GENERATE SINGLE SAMPLE

{
/ / AreaMax = maxi A(ti)
WHILE ( TRUE )
{

INDEX = UNIFORMRANDOM ( 0 . . . nt ) ;
VAL = UNIFORMRANDOM ( 0 . . . 1 ) ;
I F ( VAL > A(tINDEX)/AREAMAX)
{

COMPUTEUNIFORMSAMPLE ( tindex ) ;
RETURN ;

}
}

}

Fig. 3. Two versions of the Streaming Monte Carlo

sampling algorithm. Version 1 shows the basic idea of

bijectively mapping triangle areas onto the real segment,

uniformly sampling this segment and getting points into

the corresponding triangles. The bottom code fragment

(version 2) shows the core procedure for getting rid of the

log search in the algorithm above. Assuming the ratios of

the triangle areas are bounded, the modulo search can

be used to jump to a specific triangle and discard it or not

in a probabilistic way.

experiments (see Figure 12).
The second issue is related to the fact that such an

approach does not guarantee that the exact number
of samples ns is generated; therefore applications that
require exactly ns samples have to perform a second pass
over the generated set of samples to prune them or to
add further samples. The last issue is that, because of this
two-pass approach, this technique cannot easily generate
a continuous stream of uniformly random points over
the whole mesh, but the samples are generated in a
triangle by triangle manner.

To override these problems we can follow a different
strategy based on the idea of just simulating the actual
sampling process by unfolding all the triangle areas
over consecutive segments of the real line, uniformly
sampling that portion of the real line and finding to
what triangle each sample belongs (Figure 3 (Top)).
From a computational complexity viewpoint, searching
the triangle corresponding to a given point onto the
line has a logarithmic cost, but it is interesting to note
that it is possible to write probabilistic approaches with
expected constant per-sample complexity. In fact, if all
the triangles would have the same size the search for
the triangle containing a sample could be resolved in
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constant time with a modulo search operation. Moreover,
even if the triangles are not equiareal, but a bound like
1
2a < A(t) < a is valid, we can expect constant time
search by performing a modulo search and then eventu-
ally discard samples according to the actual size of the
chosen triangle. More precisely, in order to comply with
the varying triangle size, we discard triangles with a
probability proportional to the size of the approximation
(see Figure 3 (Bottom)). For example, if the smallest
triangle is just one half of the largest one (e.g. we map
each triangle into a fixed size interval that is at most
twice the correct length), we can expect that, on the
average, the procedure GENERATE SINGLE SAMPLE runs
the inner loop less than two times.

For the general case, in which we cannot do any re-
strictive assumption on the triangle areas, we can resort
to logarithmic binning: we partition all the triangles
according to their size into separate bins of exponentially
growing size. In this case the first step is to choose one
of the bins with a probability proportional to the sum
of the areas of the contained triangles. For any practical
instance the number of bins can be reasonably bounded
by a small constant, hence we can expect a constant time
for getting a single sample.

Summarizing, if we do not need an exact number of
samples, the triangle by triangle approach of Figure 1 is
a simple solution, assuming a correct choice of the imple-
mentation of the random number generation Poisson(.).
If we need a continuous stream or an exact number
of samples to generate, the two algorithms of Figure 3
provide a still efficient and easy to implement solution.

4 POISSON-DISK SAMPLING

The two algorithms we propose take inspiration from the
same 2D method, the Hierarchical Dart Throwing (HDT)
by White et al. [8]. This algorithm is particularly interest-
ing for two reasons. First, its computational complexity
is very low; the authors argue that the complexity of
HDT is O(N) where N is the number of samples. This
statement is not formally demonstrated but statistical
considerations based on their experimental results are
consistent with it. The second reason is that it can be
extended to the domain of polygonal meshes without too
much effort. In fact, this approach has just been extended
in a recent work of Cline et al. [3] to deal with different
types of surfaces such as meshes, Bézier patches and
implicit surfaces. Before describing the proposed algo-
rithms we recall the HDT approach and the method of
Cline et al. in order to make more clear our contribution
and underline the main differences of our approach.

4.1 HDT and its 3D Extensions

Like other recent algorithms, the idea of White et al. [8]
is to reduce the 2D sampling domain during the sample
generation in order to make the insertion of new samples
more efficient. To achieve this a quadtree subdivision
of the (planar) sampling domain is used. Initially, the

sampling domain (a square of edge length w) is subdi-
vided in cells of size of r√

2
, where r is the disk radius

of the distribution. In this way, approximately 1/4 of
the cells should contain a sample at the end. These
cells are added to an active list of cells. Then, at each
step a cell c is extracted from the active list with a
probability proportional to its area, and a new sample
p with uniform probability is generated within cell c. If
the new sample p violates the radius constraint for some
other points the cell is further subdivided and four sub-
cells are added to the active list. Otherwise, the cell is
discarded. In order to optimize the number of cells in the
active list, only the cells that are not completely covered
by current samples are added to the list. Experimental
results confirm that at each step the number of active
cells reduces exponentially, motivating the conjecture of
a linear complexity.

Cline et al. [3] extended the aforementioned algorithm
by generalizing the cell subdivision of the sampling
domain with a subdivision of the surface into surface
fragments. Their algorithm makes the same steps: a frag-
ment f is extracted from the active list of fragments, a
new sample p is generated inside it, and if p violates
the radius constraint, a rule of subdivision is used to
subdivided it into sub-fragments. The sub-fragments are
added to the active list. Cline et al. proposed different
fragments, rules of subdivision, and fast indexing, for
different types of surfaces included triangular meshes.
The basic fragment for a triangular mesh is the triangle
itself. The triangles of the mesh are indexed by a loga-
rithmic binning based on their area.

In the next section, we propose a simpler way to
extend the HDT approach. The two main ideas of our
approach are the following:

• We do not rely on elements which depend on the
mesh but we directly subdivide the 3D space in
order to make the algorithm independent of the
mesh complexity and topological correctness.

• We generate the samples in a very non-standard
way, i.e. we pre-generate a suitable set of samples
on the mesh surface (sample pool) and we build
the Poisson-disk distribution by removing samples
from the pre-generated pool. We call this approach
Constrained Poisson-disk sampling since the initial
sample pool drives the final sampling distribution.

In the experimental results we will show that this ap-
proach is able to efficiently produce Poisson-disk dis-
tribution with good properties. Following this approach
we propose two algorithms; the Constrained Hierarchical
Cell-based Poisson-disk and the Constrained Sample-based
Poisson-disk. These algorithms differ basically in how
they manage the sample pool during the sample removal
phase.
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Fig. 4. The closest-point projection operation significantly

affects the distribution of the samples. A set of uniform

samples close to the surface is no more uniform once

projected.

Fig. 5. Sample generation. (Left) Samples are chosen

from a pre-generated uniform sampling of the surface.

(Right) Samples violating the minimum distance con-

straint are removed, eliminating all the samples of cells

within a sphere of radius r.

4.2 Constrained Hierarchical Cell-Based Poisson-
Disk Sampling

The main differences between our approach and the one
of Cline et al. concerns the fragment selection and the
generation of samples. The use of the mesh triangles as
base fragments of the surfaces makes the Cline et al.
algorithm dependent on the size and on the connectivity
of the mesh to sample. Since we want to make the al-
gorithm independent of the mesh complexity and mesh
quality (i.e. triangles’ shape) we use a space-subdivision
to update the available sampling domain. The 3D space
surrounding the mesh is subdivided in cubic cells.

Assuming this, the problem is the generation of a
sample on the surface inside each cubic cell. Different
solutions are possible to achieve this. A first one is to
generate a sample inside the cube with uniform prob-
ability, and then to project it on the mesh, discarding
the sample if the radius constraint is violated. This
way of proceeding may cause two problems: the blue
noise characterization could not be respected due to
the projection operation, and with high probability the
distribution of the final samples would be biased by the
geometric features of the mesh (see Figure 4). To avoid
such problems we follow an inverse approach: we pre-
generate uniformly many samples on the mesh surface,
building a sample pool (S), and we select randomly one
of this pre-generate samples in the cell (see Figure 5).
In this way, by construction, the sample lies on the
mesh surface. After a sample is selected all the samples
of cells within a sphere of radius r are removed from
S in order to optimize the check of violation of the
radius constraint. In order to pre-generate an uniform
distribution of points on the mesh surface we use the

previously discussed Monte Carlo unbiased algorithm
(the implemented one is the version 2 of Figure 3). An
oversampling factor oV ∈ N controls the number of
samples in the sample pool, in other words if N samples
have to be generated, NoV samples are distributed over
the mesh surface. Note that only if the Monte Carlo
distribution is perfectly uniform from a statistical point
of view this approach produces a Poisson-disk sampling
on the triangular mesh with good properties in terms
of blue noise and sample packing. In the Experimen-
tal Results Section we will show that the quality of
the distribution so generated is high even if no other
additional relaxation steps, such as Lloyd’s iterations,
are employed. This is a very important characteristic
since many methods for Poisson-disk sampling need to
apply a few Lloyd’s relaxation iterations to improve the
final quality of the distribution generated. While this
is usually not so computationally expensive, it requires
strong assumptions on the quality of the underlying
mesh. We would like to remark that our approach, once
the sample pool has been generated, is mesh-less and for
that reason it can be employed also for other purposes,
for example to process point clouds as shown in Section
4.6.

The pseudo-code of the algorithm is summarized
in Figure 6. The EXTRACTCELL(.) procedure chooses
randomly one of the non-empty cells of the hierarchy
with a probability proportional to the number of pre-
generated samples inside it. The ISVALID(.) function
controls that the selected sample does not violate the
disk radius constraint. From an implementation point
of view the hierarchy is handled using a spatial hash
method [22] to augment the efficiency of the search of
the cell a sample belongs to. The cell size is chosen such
that 8 cells are contained in the sphere of radius r in
an analogous way of White et al. Anyway, our tests
demonstrate that slightly different choices of the cell size
do not influence too much the overall performances. An
example of sampling distribution generated with this
method is shown in Figure 8.

4.3 Constrained Sample-Based Poisson-Disk Sam-

pling

This algorithm is a variant of the constrained cell-based
Poisson-disk just described. In practice, the idea is to
remove the need of a hierarchical space subdivision and
to work only with samples. Every time a sample is
generated by extracting it from S , all the samples in
a radius of r are removed from the sample pool. This
prevents, by construction, any possible violation of the
minimum radius constraint. The samples are indexed by
a spatial hashing to improve the performances of the
sample removal operations. The algorithm ends when
no more samples are available in the sample pool. The
pseudo-code is given in Figure 7.

The initial shuffle of the samples, which guarantees
uniform probability for the sample extraction, is made by
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POISSONDISKSAMPLING ( INT N)
{

/ / 1 . Pre−g e n e r a t e s a m p l e s on t h e mesh
SAMPLEPOOL POOL = GENERATESAMPLEPOOL (N) ;

/ / 2 . F i l l a s p a t i a l i n d e x f o r f a s t a c c e s s t o s a m p l e s
SPATIALHASHTABLE C ELLS = FILLSPATIALHASHTABLE ( POOL ) ;

/ / 3 . Random s h u f f l e o f t h e c e l l s
RANDOMSHUFFLE ( C ELLS ) ;

/ / 4 . Main Loop
SAMPLES SAMPLES ;
WHILE ( C ELLS . ISNOTEMPTY ( ) )
{

/ / c h o o s e a c e l l wi th a p r o b a b i l i t y p r o p o r t i o n a l
/ / t o t h e number o f s a m p l e s c o n t a i n e d in i t
CELL CELL = EXTRACTCELL ( C ELLS ) ;
/ / g e n e r a t e a v a l i d sample i n s i d e t h e c u r r e n t c e l l
/ / by e x t r a c t i n g i t from t h e pre−computed sample p o o l
SAMPLE P = EXTRACTFROMSAMPLEPOOL ( CELL , POOL ) ;
SAMPLES . ADD ( P ) ;

/ / s u b d i v i d e c e l l i f n e c e s s a r y and u pda t e a c t i v e c e l l s
I F ( I SVA L I D ( P ) )

REMOVECELL ( CELL , C ELLS ) ;
ELSE

SUBDIVIDECELL ( CELL , C ELLS ) ;
}

RETURN SAMPLES ;
}

Fig. 6. Constrained Hierarchical Cell-based Poisson-disk

sampling.

POISSONDISKSAMPLING ( INT N, FLOAT RADIUS )
{

/ / 1 . Pre−g e n e r a t e s a m p l e s on t h e mesh
SAMPLEPOOL POOL = GENERATESAMPLEPOOL (N) ;

/ / 2 . F i l l a s p a t i a l i n d e x f o r f a s t a c c e s s t o s a m p l e s
SPATIALHASHTABLE C ELLS = FILLSPATIALHASHTABLE ( POOL ) ;

/ / 3 . Main l o o p
SAMPLES SAMPLES ;
WHILE ( POOL . ISNOTEMPTY ( ) )
{

/ / g e n e r a t e a v a l i d sample i n s i d e t h e c u r r e n t c e l l
/ / by e x t r a c t i n g i t from t h e sample p o o l
SAMPLE P = EXTRACTFROMSAMPLEPOOL ( POOL ) ;
SAMPLES . ADD ( P ) ;

/ / remove s a m p l e s in t h e d i s k−r a d i u s
REMOVESAMPLES ( P , RADIUS , CELLS , POOL ) ;

}

RETURN SAMPLES ;
}

Fig. 7. Constrained Sample-based Poisson-disk Sam-

pling

exploiting cell partitions like in the previous algorithm.
Any other spatial indexing structure could be used to
efficiently remove from S the invalid samples (the ones
within distance r), but the use of hashed grid make easy
the initial shuffling process.

4.4 Euclidean vs Geodesic Distance

In the context of Poisson-disk sampling of meshes dif-
ferent metrics for computing distances between samples
can be used. Until now we have always intended the
Euclidean distance, but the geodesic one is another

Fig. 8. Poisson-disk sampling of the Bunny model.

The inter-distance between samples is visualized through

color gradient. This helps to visualize the selected disk

radius for each sample and the sample packing.

sound metric. The Geodesic distance can be considered
more suitable because it better reflects the features of
the sampling domain (the mesh surface), conversely the
Euclidean distance can cause unwanted effects: samples
on the two sides of thin surfaces can conflict. On the
other hand the Euclidean distance is by far simpler to
be computed, more efficient and much more robust w.r.t.
the underlying mesh. Moreover, the Euclidean distance
allows to solve the sampling problem with a meshless
approach that widens the application domain to point
clouds. Another possibility, available in our provided im-
plementation, is to use an approximation of the geodesic
distance, like the one of [7], that needs only position and
normal of the involved samples. This approximation is
sufficient in many cases to avoid most of the problems
caused by the use of the plain Euclidean distance.

4.5 Importance Sampling

Both the techniques here described can be modified in a
natural way to obtain importance sampling. In practice, it
is sufficient to assign for each sample of the sample pool
a different disk radius r, according to the criterion used
to determine the “importance”. The value of the disk
radius should be inversely correlated with the impor-
tance; in this way the important parts of the mesh will
have a sample density higher than the parts with low
importance. More control to the distribution generated
in this way can be achieved by assigning a minimum
and a maximum density factors, associated respectively
to the minimum and the maximum of the importance
values (vinf and vsup). In formula:

r(v) =
rk − r/k

vsup − vinf
(v − vinf ) +

r

k
, k > 1 (1)

where v is the value of the importance of a certain
sample, r(v) its disk radius, and k controls both the
density factors, the one associated with the maximum
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Fig. 9. Examples of importance sampling. (Top) The

model is sampled with an importance function propor-

tional to the distance from sphere center. (Bottom) The

Dragon model is sampled using the importance function

f(x, y, z) = x. In this case the contour of the radius is

visualized with alternating stripes.

value (rk), and the one associated with the minimum
value (r/k). Figure 9 shown two examples of importance
sampling.

4.6 Playing with the Sample Pool

One of the distinctive characteristic of the two proposed
Poisson-disk algorithms is that, at the end, the final set
of samples is a subset of a given one. While an initial
uniform distribution of samples is needed for getting
a sound Poisson-disk distribution, as shown in Section
6, it is important to highlight that we can exploit this
property in a variety of ways to tweak the distribution
generation according to the specific application’s needs.
Here, we present some applications to demonstrate the
flexibility of our method.

A first example is to use the proposed method for
subsampling point clouds, since the meshless nature of
our approach makes the mesh surface unnecessary for
the process of choosing a number of samples complying
with the Poisson empty disk property. See Figure 11 for
an example of such a subsampling. Note how the Monte
Carlo subsampling of the original point cloud (second
figure from the left) preserves the original density dif-
ferences resulting in a non-uniform sampling density of
the subsampled point cloud.

Another use of our approach is to constrain the sam-
pling picking process in a general way. For example, in
Figure 10 a Poisson-disk distribution is generated such
that it is guaranteed that feature edges are sampled in
a “preferred” way. The sample pool strategy allows to
tweak the sampling process as follows: start by random
sampling the edges of the mesh, then runs one of the two
proposed algorithms. At this point you have a sample
distribution over the surface that respect the Poisson
empty disk property but it is by far non-maximal. The
next step is simply to restart the sampling process using
as first points the one previously chosen (e.g. use them
to prune out unnecessary points from the sample pool).
It is possible to notice from the Figure 10 how the crease
edges have been prioritized in the sampling process
generating a Poisson-disk distribution with as much as
possible samples on the edges. A sample distribution of
this kind, which preserve the mesh features, can directly
be used for high quality remeshing purposes following,
for example, the approach described in Fu and Zhou [6].

5 CONSTRAINED VS PARALLEL POISSON-
DISK SAMPLING

While our approach takes inspiration from the HDT of
Cline et al., the algorithm of Bowers et al. [7] (we refer
to it with PPD in the following) is an extension of the
work of Li-Yi Wei [17] for the parallel generation of N-
dimensional Poisson-disk samples using the GPU. The
main idea is to regularly subdivide the sampling domain
and to arrange the space elements in subsets (called phase
groups) which can be processed independently. In this
way the sample generation can be parallelized efficiently.
The extension of this algorithm to surfaces consists in
subdividing the bounding box of the 3D object into grid
cells arranged in phase groups, and then generating
the samples on the surface by extracting them from
a pre-generated set, exactly as in our approach. The
main advantage of this algorithm with respect to our
is the parallelization of the algorithm (implemented in
GPU) thanks to the phase group subdivision of the grid
cells. Another important feature of the PPD algorithm is
that it works also considering an approximate geodesic
distance between samples and not only Euclidean dis-
tance. This geodesic approximation can be used in our
approach as well (and infact the provided reference
implementation supports it), but for a simpler discussion
in this paper we discuss just the case of the classic 3D
euclidean distance.

Another difference between the PPD and our algo-
rithms, regards the strategy to handle conflicts between
generated samples. In the PPD, each new sample is
checked against neighborhood samples to ensure that
the radius constraint is respected. In our case, for the
cell-based algorithm, the conflicts to check are greatly
reduced since we remove every cell within the sphere
of radius r; for the sample-based algorithm, we remove
every sample inside the sphere of radius r for each
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Fig. 10. Constrained Poisson-disk sampling can be used for generating very specific point distributions. We start (Left)

by using a sample pool containing points lying only onto the mesh sharp edges. In a second step (Middle) when we

are unable to add other points from this pool, we switch to a sample pool containing points uniformly sampled from the

whole surface. (Right) For comparison, a standard Poisson-disk sampling build using a uniform Monte Carlo sample

pool, where the probability that a sample falls exactly over the edges is zero.

Fig. 11. Our Poisson-disk sampling algorithm can be used to effectively subsample in a fair way a non uniform

dense point cloud. (From Left to Right) The original point cloud (a detail), a Monte Carlo subsampling, two different

Constrained Poisson-disk subsampling (with different disk radius).

new sample we add; hence, by construction, we do
not have to handle conflicts. This advantage is paid by
introducing a dependence on the oversampling factor
on the computational time. Despite this problem, our
implementation is efficient since the query to retrieve
the nearest samples (using the spatial hash table as
explained) introduces only a small overhead. Even if
more efficient from a computational time viewpoint, the
“dart throwing” strategy of the PPD requires a fixed
number of trials to bound the computational time. So,
theoretically, there is the possibility to leave some grid
cells without a sample, compromising the quality of
the sample packing. The probability that this happens
increases with the percentage of the cubic cell covered
by previously generated samples. We underline that this
probability is very low (e.g. around 0.1% assuming 6
trials and a cell covered at 60% which contains 20 sam-
ples), it should be noted that this problem is completely
avoided in our sample-based algorithm. This potential
missing of samples can worsen when the sample pool
is not generated in a random-uniform way like in the
example of geometrically-constrained blue noise distri-

bution shown in Figure 10.

Concerning importance sampling, our techniques can
be naturally extended by assigning a different r for each
sample. The same can be done also for the PPD algo-
rithm but this complicates the management of conflicts
causing a significant slowdown in the performance of
the PPD algorithm passing from a maximum of 200,000
samples/sec for complex models to 20,000 samples/sec
(according to the results presented in the paper by the
authors). In this case the speed is comparable with the
sample-based version of our algorithm, as shown in the
Experimental Results Section.

Concluding, we can state that the PPD algorithm
outperforms the ours thanks to its parallel implemen-
tation, but our algorithms are more flexible and allow
easy tweaking for many purposes, such as importance
sampling or geometrically-constrained blue noise sam-
pling. Moreover, the sample-based version is trivial to
implement.
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6 RESULT ANALYSIS

Here we present some experimental results to demon-
strate that the proposed algorithms are efficient and able
to generate samples distribution with good properties.
First we present, a frequency analysis to show that
the two Constrained Poisson-disk Sampling algorithms
have blue noise characterization. Then we evaluate the
sample packing, i.e. the quality of the sampling, using
the relative radius [2]. Finally, the computational time of
the proposed algorithms are presented.

6.1 Frequency Characterization

Typically, the Poisson-disk sampling algorithms are eval-
uated using two mathematical tools, i.e. the periodogram
(P(f)) and the relative radius (ρ) [2].

The periodogram is defined as the Fourier Transform
of the auto-correlation function of a signal. For a real
signal this corresponds to the square of the magnitude
of the Fourier Transform:

P(f) = F(A(f(x)) = ‖F(f(x))‖2 (2)

where A(f) is the auto-correlation function of f . By
assuming to replace each sample of a given distribution
with a delta of Dirac function the distribution can be
rigorously characterized by its periodogram. For exam-
ple, an uniform distribution, like the one produced by a
Monte Carlo sampling algorithm, should exhibits a peri-
odogram close to white noise since there are no specific
pattern at any frequency that emerge. The periodogram
of a Poisson-disk distribution, instead, is close to a blue
noise spectrum. This effect is caused by the minimum
distance constraint between each samples.

This analysis can be easily computed for a planar
domain by applying the 2D Discrete Fourier Transform
(DFT) to the samples but it is not extendable to a mesh
domain. One possible solution to overcome this problem
could be to parameterize the surface and then to apply
this kind of frequency analysis on the parameterized
samples. Unfortunately, in this way, the parameteriza-
tion itself introduces distortions in the periodogram.
This could make the analysis not completely clear and
reliable. This problem can be alleviated by sampling
developable surfaces. Here we opt for an approach
often used in the Computer Graphics community when
mesh sampling is treated, which consists in generating
samples on a planar surface and then compute the
periodogram on this surface. In order to stress our
algorithms we employ planar meshes with an highly
irregular connectivity and density. These stress meshes
are shown in Figure 12. Three meshes are used: a quad-
grid, with equi-spaced vertices and regular connectivity,
another grid with decreasing space between its vertices
and almost regular connectivity, and a non-uniform grid
with highly irregular connectivity and density. The peri-
odograms of these meshes sampled with our algorithms
is evaluated. The results obtained are shown in the next
figures. The red graphs correspond to the average radial

Fig. 12. The stress meshes used in the sampling tests.

power (Rp(f)) of the periodogram while the blue graph
is the average radial anisotropy (Ra(f)). The average radial
power is the power of the signal computed by averaging
the periodogram on an anuli of a given radius (∆f ). This
is useful to characterize the spectrum of the distribution.
In formula:

Rp(f) =
1

2πf∆f

∫ f+∆f

f

∫ 2π

0

P(fcosθ, fsinθ)dθdf (3)

The average radial anisotropy is obtained considering
the variance of the power of the signal on an anuli of
given radius.

Ra(f) =
1

2πf∆f

∫ f+∆f

f

∫ 2π

0

(

P(fcosθ, fsinθ)− P̄
)2

dθdf

(4)
where P̄ is the mean of the power spectrum calculated
on the anuli of interest. This is a measure of the ra-
dial symmetry of the power spectrum and it is useful
to pose in evidence if there are preferred “directions”
in the spectrum, i.e. some bias or emerging pattern.
The periodogram and the graphs here presented are
generated using the Point Set Analysis (PSA) tool [23],
a software tool to evaluate frequency characteristic of
sampling patterns.

The frequency characterization of the Poisson-disk
sampling is particularly important. As possible to see
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Fig. 13. Frequency analysis of the two versions of the Constrained Poisson-disk sampling proposed. Radial Power

(Ra(f)) is shown in red and Radial Anisotropy (Ra(f)) in blue. About 5,000 samples are generated for each mesh.

in Figure 13 both the hierarchical cell-based and the
sample-based algorithm are able to produce distribu-
tions with good blue noise properties. Another impor-
tant issue to point out is that the frequency properties
are independent from the mesh connectivity as expected
by the design of our algorithms. Obviously, the sample
pool generation influences a lot the frequency properties
of the final distribution; Figure 15 depicts the behavior
of the periodogram varying the oversampling factor oV
of the pre-generated samples. The blue noise pattern
emerges while the Monte Carlo oversampling increases.
This happens because the higher is the oversampling
factor, the higher is the approximation of the initial
distribution in the sample pool of a perfectly uniform
distribution. We can note that even a small oversampling
factor is able to exhibit good blue noise properties,
this is an important aspect that makes the proposed
techniques particularly efficient in generating an approx-
imate Poisson-disk distribution very quickly. We can
conclude that by choosing an appropriate distribution to
initialize the sample pool we are able to generate sam-
ples distribution with the desired frequency properties.

6.2 Radius Statistics

Concerning the quality of the sample packing of the
Poisson disk distribution generated we calculate, on the

stress mesh, the relative radius (ρ), i.e. a fraction of the
disk radius r defined as:

ρ =
r

rmax
(5)

where rmax is the radius to obtain the maximum packing
density of N disks distributed on a toroidal domain
(see [2] for further details). The relative radius has the
range between 0.65 and 0.85 to achieve a “good” packing
avoiding regular configurations. For good packing we
intend that almost all the available sampling domain
has received an uniform number of samples. ρ has been
calculated for each stress mesh averaging on different
number of samples. Both the cell-based and the sample-
based algorithm have been tested obtaining similar re-
sults. In summary, the ranges of values of ρ obtained
is between 0.595 and 0.695, but in the majority of the
cases it ranges between 0.64 and 0.68. Considering that
no further processing is done to improve the sample
packing quality, e.g. Lloyd’s relaxation, we can state that
our algorithms are able to generate sample distributions
with high quality.

6.3 Performances

As just stated, one of the objectives of this work is to
design efficient algorithms for triangular mesh sampling.
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Unbiased Monte Carlo Sampling
Model Samples Time Samples/s

FanDisk 1,000,000 718 1,392,757
Bunny 1,000,000 837 1,194,743
Dragon 1,000,000 1,391 718,907
FanDisk 10,000,000 7,171 1,394,505
Bunny 10,000,000 9,235 1,082,837
Dragon 10,000,000 13,297 752,049

Poisson-disk Sampling
Model Type oV Samples Time Samples/s

FanDisk Cell-bas. ×20 125,794 12,438 10,113
Bunny Cell-bas. ×20 126,664 14,438 8,772
Dragon Cell-bas. ×20 126,421 15,031 8,410
FanDisk Cell-bas. ×10 117,628 6,640 17,715
Bunny Cell-bas. ×10 118,062 7,313 16,144
Dragon Cell-bas. ×10 117,839 7,656 15,391
FanDisk Sample-bas. ×20 130,939 10,859 12,058
Bunny Sample-bas. ×20 131,126 11,407 11,495
Dragon Sample-bas. ×20 130,903 12,051 10,862
FanDisk Sample-bas. ×10 121,400 5,313 22,849
Bunny Sample-bas. ×10 121,632 5,640 21,565
Dragon Sample-bas. ×10 121,446 5,922 20,507

Fig. 14. Computational times to sample meshes of differ-

ent size. The models sampled are the FanDisk (≈ 12,000

faces), the Bunny (≈ 70,000 faces) and the Dragon

(≈ 1,000,000 faces). Timings of algorithms are almost

independent from the mesh size and quality. Times are

in milliseconds.

Hence, the computational time required to generate a
certain number of samples is an important factor to
evaluate. The proposed algorithms have been tested on
three different models in order to assess their respective
performances: the FanDisk model (≈ 12,000 triangles),
the Bunny model (≈ 70,000 triangles) and the Dragon
model (≈ 1,000,000 triangles). The machine used for the
tests is an Intel Core Duo 1.86GHz with 2GB RAM. Table
14 summarizes the algorithms’ performances.

We can easily notice that the overall performances
of the proposed algorithms are, in general, very good
and that the mesh complexity and triangle shape do
not influence them. The unbiased version of the Monte
Carlo distribution is able to generate about 1,000,000
points/sec on any model tested. We recall that the
version tested is the one used to generate the sample
pool, i.e. the version 2 of Figure 3. The other one
(version 1) has similar performance. Both our cell-based
and sample-based Poisson-disk sampling algorithms are
very fast with respect to other state-of-the-art algorithms
which generate Poisson-disk distribution on meshes. In
particular, considering the experimental results reported
in the corresponding papers, we can state that our
algorithms outperform the ones of Li et al. [1] and Fu
et al. [6] and, in some cases, is faster than the one of
Cline et al [3]. In fact, the algorithm of Cline et al. is
able to generate about 20,000 points/sec for models with
about 500K faces but since it decrease its performances
with the number of triangles of the model we can argue
that our method is considerably faster for models with
millions of triangles. The algorithm by Li et al. [1] takes
more or less 30 seconds to generate 20,000 samples on

the Bunny model, hence, our approach is more than one
order of magnitude faster. The algorithm by Fu et al. [6]
seems even more slow than the one of Li et al. but we
have to point out that also the remeshing operation time
is included in the experimental results reported in their
paper.

7 CONCLUDING REMARKS

In this paper we propose a new flexible and efficient
Poisson-disk sampling scheme for triangular meshes and
provide a discussion about efficient implementation of
Monte Carlo sampling for meshes.

The novel approach for Poisson-disk sampling of tri-
angular meshes has been proposed in two variants.
These two algorithms follow a new paradigm: the gen-
eration of the distribution by removing samples from an
initial uniform dense distribution. This paradigm allows
the generation of what we call Constrained Poisson-disk
distribution, i.e. a sampling scheme that approximates
very well a Poisson-disk distribution with blue noise
properties, but that can also include other geometric
constraints. This approach can be used also for other
purposes, such as subsampling of point clouds and
remeshing, and can be applied to any type of surface
for which an initial, dense and uniform sample pool can
be generated. Some aspects of the main idea have been
independently proposed also in the concurrent work of
Bowers et al. underlying that this idea is intriguing and
worthwhile further research.

The experimental results show that the proposed al-
gorithm is able to generate distributions with very good
properties in terms of frequency characterization and
Poisson-disk sample packing. The performances of the
proposed algorithms have been accurately evaluated
demonstrating their efficiency. A publicly available im-
plementation is also made available within the open
source mesh processing software MeshLab [9].
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