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Efficient and interpretable graph network representation for
angle-dependent properties applied to optical spectroscopy
Tim Hsu 1✉, Tuan Anh Pham2✉, Nathan Keilbart2, Stephen Weitzner2, James Chapman 2, Penghao Xiao3, S. Roger Qiu2,
Xiao Chen1 and Brandon C. Wood 2✉

Graph neural networks are attractive for learning properties of atomic structures thanks to their intuitive graph encoding of atoms
and bonds. However, conventional encoding does not include angular information, which is critical for describing atomic
arrangements in disordered systems. In this work, we extend the recently proposed ALIGNN (Atomistic Line Graph Neural Network)
encoding, which incorporates bond angles, to also include dihedral angles (ALIGNN-d). This simple extension leads to a memory-
efficient graph representation that captures the complete geometry of atomic structures. ALIGNN-d is applied to predict the
infrared optical response of dynamically disordered Cu(II) aqua complexes, leveraging the intrinsic interpretability to elucidate the
relative contributions of individual structural components. Bond and dihedral angles are found to be critical contributors to the fine
structure of the absorption response, with distortions that represent transitions between more common geometries exhibiting the
strongest absorption intensity. Future directions for further development of ALIGNN-d are discussed.
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INTRODUCTION
In materials science, graph neural networks (GNNs) have gained
popularity as a surrogate model for learning properties of materials
and molecular systems1–6. This popularity is partly due to the
intuitive, physically informed graph encoding that represents
atoms with nodes and associated bonds with edges. However,
beyond atom and bond features, encoding more sophisticated
structural information can be helpful or even required for accurate
prediction of certain properties. For example, the bond angle
information is necessary for correctly capturing electronic structure
and bond hybridization7–10. Likewise, for the development of
machine learning potentials where accurate energy prediction is
needed, three-body (bond angle) and higher-order terms are often
required to be included in the descriptor11–13.
One practical scenario in which three- (bond angle) and four-

body (dihedral angle) interactions can be critical is spectroscopy
prediction. These interactions alter the local electronic structure in
ways that are often detectable in X-ray and optical absorption
experiments, as well as in local chemical probes, such as nuclear
magnetic resonance. The power of these experimental techniques
draws in part from their sensitivity to local geometric and
electronic environments; however, spectral features are often
convoluted and not always straightforward to interpret or predict.
This is particularly true for disordered and distorted atomic
environments, which are common to interfaces and glassy
systems, where slight perturbations in geometry can greatly
impact resulting properties14–17.
Unfortunately, conventional GNNs for atomic systems do not

encode angular information. Recently, several approaches have
been proposed to explicitly encode bond angles18–20, or bond
directions from which bond angles can be implicitly retrieved21,22.
Many of these were designed for non-periodic molecular
structures. Alternatively, the ALIGNN approach20, which explicitly
represents bond angles as edges of line graphs, provides a general

formulation that is applicable to both non-periodic molecular and
periodic crystal graphs4,23. However, despite its advantages, the
ALIGNN encoding may not capture the full structural information
of a local geometric environment. This limitation is demonstrated
by the example shown in Fig. 1.
In this work, we expand the ALIGNN encoding to include the

dihedral angle information. This enhanced graph representation,
named ALIGNN-d, provides not only more complete structural
information and but also greater interpretability. To demonstrate
these advantages, we train GNN models based on ALIGNN-d
alongside competing graph representations to predict infrared
optical absorption spectral signatures of Cu(II) aqua complexes.
These complexes are optically active and known to have high
absorption sensitivity to local geometry. Utilizing configurations
derived from first-principles molecular dynamics simulations, we
specifically probe the role of local distortion in the GNN encoding
and resulting spectroscopic signatures. Based on the results, we
identify two primary advantages of the ALIGNN-d representation: (1)
ALIGNN-d is a compact description that leads to the same predictive
accuracy as the maximally connected graph, in which all pairwise
bonds are encoded, but with greater efficiency; and (2) ALIGNN-d
enables an intuitive approach to model interpretability, thanks to
the explicit graph representation of bond and dihedral angles.

RESULTS
Optical response of Cu(II) aqua complexes
The capabilities of ALIGNN-d were demonstrated by predicting
infrared optical absorption spectral signatures of Cu(II) aqua
complexes. These systems are broadly representative of transition
metal molecular complexes that absorb optically due to d-d
transitions, which are leveraged in a variety of materials applications
and biological processes24. Configurations were obtained from ab-
initio molecular dynamics simulations (AIMD), and optical transitions
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were calculated using time-dependent density functional theory
(TDDFT), as described in the Methods section.
Beyond the practical implications, the high sensitivity of optical

properties to the local geometry of the Cu(II) aqua complexes
provides an appropriate test for ALIGNN-d. This can be seen in Fig.
2, which presents the optical transitions in the infrared regime
computed from TDDFT for complexes with different instantaneous

coordination numbers. In these complexes, the coordination
number is found to fluctuate between four and six, with fivefold
and sixfold coordination as the most and least common,
respectively24,25. The results clearly indicate that the infrared
optical absorption is highly sensitive to the water coordination
number, with little similarity between the spectral response of the
sampled configurations. Moreover, complexes with the same
coordination number and visibly similar atomic configurations
shown in Fig. 2a, b can generate infrared absorption profiles with
noticeably different peak locations and intensities, confirming that
absorption in this frequency regime is also sensitive to subtle
differences in the local bonding character. The physical origin of
this behavior is connected to the fundamental nature of the d-d
transitions, which are nominally symmetry forbidden in ideal
structures but are activated by thermal distortions. We utilize
these distortions and their spectral responses as our basis to test
the benefits of ALIGNN-d. Further analysis of the correlation
between geometry/shape information and spectral response can
be found in Supplementary Information (Supplementary Fig. 1).

Graph representations and prediction accuracy
We first introduce our workflow for encoding the molecular features
and predicting the spectroscopic signatures. Summarised in Fig. 3,
this involves converting the atomic structure of the Cu(II) aqua
complexes into a graph representation, followed by predicting the
key spectral features from GNNs. The specific outputs of this
procedure are unnormalized Gaussian functions that approximate
the absorption spectra of the complexes, parameterized by the
mean peak position μG, spectral width σG, and intensity AG.

Fig. 1 The line graphs, shown as blue and red nodes and edges,
encode angular information absent in the original atomic graph
(black). Red edges capture bond angles α, and blue edges capture
dihedral angles α0 (defined as the clockwise angle in the Newman
projection between two bonds sharing a common bond). Distin-
guishing these two configurations requires inclusion of the dihedral
angle in the graph encoding.

Fig. 2 Structures of the Cu(II) aqua complex from AIMD (figure insets) and their corresponding simulated optical transitions. The central
copper ion is surrounded by either (a, b) four, (c) five, or (d) six water molecules, with fivefold coordination being the most common. Slight
structural perturbations (a, b) and changes in coordination (c, d) result in noticeably different shifts of the energies and intensities. The
discrete spectral peaks were computed from time-dependent density functional theory (TDDFT) simulations.
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As a key component of the workflow, we compare different
graph representations for encoding the molecular structures. First,
we consider the minimally connected graph Gmin that encodes
only the minimal number of edges representing the nearest-
neighbor atomic bonds. This graph contains the least structural
information, as the bond angles and dihedral angles are not
implicitly included. It can also be considered as the minimal
spanning tree of the Cu(II) aqua complexes.
Second, at the opposite extreme, we consider the maximally

connected graph Gmax, which represents the brute-force approach
that encodes all the pairwise bonds, thereby yielding complete
geometric information19. Graph representations that lie between
these two extremes are also considered. They are constructed
using graphs defined by a specific cutoff radius, in which any pair
of atoms within the cutoff distance are considered to be
connected. Three values of the cutoff radius of 3, 4, and 5 Å are
used, with corresponding graph representations denoted as Gc3,
Gc4, and Gc5, respectively. Lastly, following the ALIGNN formula-
tion, we incorporate angle information to Gmin by adding the
corresponding line graph L(G), and we extend the ALIGNN
formulation to explicitly represent both bond and dihedral angles
in the line graph encoding, which is denoted as L0ðGÞ. Since L0ðGÞ

is no longer technically a line graph, it is alternatively called the
dihedral graph.
ALIGNN and ALIGNN-d, alternatively expressed as Gmin ∪ LðGminÞ

and Gmin ∪ L0ðGminÞ, are expected to have improved representation
power with respect to Gmin. In fact, it is known that atomic numbers,
bond lengths, bond angles, and dihedral angles together can fully
describe the complete structure of a molecular system. This follows
the principle of the Z-matrix26, which has been shown to uniquely
convert this set of quantities back to the exact atomic Cartesian
coordinates. Whereas ALIGNN encodes atom, bond, and bond angle
features, the addition of dihedral angle information (i.e., four-body
terms) in ALIGNN-d completes the Z-matrix and is therefore capable
of fully describing the atomic structure. As a result, any complex
geometric feature, such as distortions, chirality, and disordered
configurations, can be exactly represented without explicitly
including higher-order terms. In other words, ALIGNN-d implicitly
has the same representation power as Gmax, despite its considerably
smaller basis.
We proceed to compare the validation performance, inference

speed, and storage memory requirement based on these graph
representations. It is necessary to emphasize that model memory
usage during training or at inference time depends on multiple

Fig. 3 The structure-to-spectrum flow consists of conversion to graph representation, followed by spectroscopy prediction from GNN
layers. The different graph representations discussed in this work are shown schematically. Note that the edge distances in these
visualizations do not reflect actual real space distances. The final output is a Gaussian curve parameterized by mean μG, standard deviation σG,
and amplitude AG, approximating the TDDFT-calculated discrete spectral peaks. This single-peak approximation is detailed in Supplementary
Information (Supplementary Fig. 2).
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factors, such as hardware implementation, choice of graph
convolution, and hyperparameters (e.g., number of channels and
convolution layers). Determining such memory usage would
require an individual in-depth benchmark analysis; we instead
choose to compare the number of edges that fundamentally
characterizes the storage memory requirement of the graphs. We
also note that inclusion of line/dihedral graphs does not
technically introduce additional nodes, since the nodes of line/
dihedral graphs are identical to the edges of the original graph.
As expected, the inclusion of auxiliary line/dihedral graphs

improves the model performance. Shown in Fig. 4, this leads to
significantly improved accuracy, i.e., lower loss, over the minimum
baseline Gmin. Importantly, the validation loss of ALIGNN and
ALIGNN-d lie below the curve formed by the base graphs (Fig. 4a, b),
suggesting that they are more expressive relative to normal graphs
when constrained to the same compute speed or memory usage. In
addition, ALIGNN-d performance is noticeably better than ALIGNN,
yielding a similar accuracy as Gmax but with significantly lower
inference time (27% less) and number of edges (33% fewer), which
translates to more efficient memory usage. These comparisons
collectively indicate that ALIGNN-d is capable of fully describing the
atomic structure with significantly faster inference speed and less
memory requirement compared to Gmax. The in-training validation
losses of Gmax, ALIGNN, and ALIGNN-d are also shown in Fig. 4c,
further confirming that ALIGNN-d yields similar performance as
Gmax, and is significantly better than ALIGNN.
Aside from the minimal ALIGNN graph built on Gmin, it is also

informative to investigate ALIGNN representations on top of Gc3, Gc4,
and Gc5 in comparison with ALIGNN-d. As expected, performance of
ALIGNN generally improves when it is built on denser base graphs
(Supplementary Figs. 3 and 4). However, the computational cost
drastically increases to the extent that the inference compute speed

is orders of magnitude higher than the original base graphs,
rendering the “dense” versions of ALIGNN impractical. The same
conclusion of course applies to ALIGNN-d. Nevertheless, we posit
that there is no strong incentive to apply ALIGNN/ALIGNN-d to
dense base graphs, as the “minimal” version of ALIGNN yields a
significant performance improvement over Gmin, and ALIGNN-d built
on a minimal graph approaches the accuracy of Gmax while being
much faster and more memory-efficient.
Finally, we validate the accuracy of the ALIGNN-d approach in

predicting the infrared optical absorption spectra of the Cu(II)
aqua complexes. Results presented in Fig. 5 show that our model
provides accurate prediction of the mean μG and amplitude AG of
the optical spectra, while yielding reasonable results for the
standard deviation σG. In addition, we include in Supplementary
Information a set of randomly sampled predicted peaks versus
their target peaks (Supplementary Fig. 3), from which it is clear
that ALIGNN-d is capable of accurately predicting a wide variety of
optical absorption spectral signatures.

DISCUSSION
Beyond efficiency and performance, ALIGNN-d can be utilized for
model interpretability. Specifically, the final model output can be
expressed as the sum of contributions from the individual graph
components. In this way, relative contributions from the atoms,
bonds, bond angles, and dihedral angles can be independently
assessed. This is done by transforming the final embedding
vectors (after the interaction layers shown in Fig. 3) of the atoms,
bonds, and angles into non-negative scalars, which are then
summed to a positive scalar final output.
We trained this interpretable variant of ALIGNN-d to predict the

peak intensity AG of the infrared optical absorption spectral

Fig. 4 Comparison of validation loss for the graph representations studied in this work. The validation loss, which is averaged over 8
repeated training sessions each with random initialization, is plotted with respect to a inference time, b average number of graph edges, and
(c) in-training epochs. In a, the inference time is averaged over mini-batches of 64 random samples. In c, the ± 1 standard deviation of the
validation loss from the repeated training sessions is shown as the semitransparent regions.

Fig. 5 Parity plots of the ALIGNN-d predictions versus the explicitly computed optical absorption responses of different instantaneous
configurations of the Cu(II) aqua complex. The predicted and target Gaussian functions are parameterized by mean μG, amplitude AG, and
standard deviation σG. The R2 score (coefficient of determination) is provided in each plot.
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response of Cu(II) aqua complexes. The component-wise decom-
position allows the contributions of the atomic, bond, and angular
features from the model output to be directly visualized in graph
format. This is illustrated in Fig. 6 for a specific aqua complex
configuration, where we find that the peak intensity of optical
response is primarily attributed to the central copper atom and O-
Cu-O bond angles, followed by certain dihedral angles and Cu-O
bonds. Other components have negligible contributions to peak
intensity (note the logarithmic scale of the colorbar). As the
instantaneous configurations of the aqua complex deviate from
the ideal symmetry due to thermal perturbations, the individual
contributions, even within the same component type, are not
always equivalent. For example, some Cu-O bonds have a higher
contribution than others when analyzed for a single configuration
prior to thermal averaging. This also applies to the bond angles
and the dihedral angles, as shown for the instantaneous complex
selected in Fig. 6.
This same component decomposition procedure was then

applied to all configurations of the aqua complexes. The results,
presented in Fig. 7, provide intuitive understanding of the
physicochemical origins of the optical absorption response. As
expected, the copper atoms feature high contribution relative to
the oxygen and hydrogen atoms, consistent with the fact that
changes in the copper’s d-shell electronic properties are largely
responsible for the optical response. Nearby components that
involve Cu atoms, including Cu-O bonds and O-Cu-O angles, also
yield relatively higher contributions compared to others, such as
water H-O-H angles. Overall, the O-Cu-O bond angles contribute

significantly to the model output, consistent with physical
intuition that the angular information is critical for informing
electronic properties in transition metal complexes. This points to
the need for explicitly incorporating angular features in the graph
representation.
It is shown that contributions from dihedral angles are generally

less significant than the O-Cu-O bond angles, which is expected as
they represent higher-order interactions. However, they remain
relatively significant when compared to features such as the
hydrogen atoms, the H-O bonds, and the H-O-H angles. We
therefore conclude that contributions from dihedral angles are
important for resolving subtle structural differences, including
those that result from weak geometric perturbations. In the
spectral response, the dihedral contributions can be critical for
interpreting and reproducing the fine structure.
Additional information regarding the specific coupling between

geometrical distortion and the infrared optical response can be
obtained from further examination of the individual distributions
in Fig. 7. Specifically, the Cu-O distance, the Cu-O-H angle, and the
O-Cu-O angle distributions display some degree of multimodality,
suggesting that there are classes of geometries that contribute
much more significantly to the optical response. To illustrate this
further, we show in Fig. 8a the relationship between peak intensity
contribution and bond angle for the specific case of the O-Cu-O
bond angle distribution. The Cu(II) aqua complex is known to
prefer octahedrally derived geometries, which is also common
behavior across a range of other transition metal coordination
complexes. Ideally, such geometries should exhibit angles of 90∘

Fig. 6 Graph visualization of the relative contributions of atomic, bond, bond angle, and dihedral angle components to spectral peak
intensity for one fourfold-coordinated Cu(II) aqua configuration. The largest contributions are derived from O-Cu-O bond angles and the
central copper, followed by Cu-O bonds and certain dihedral angles. Color and line thickness indicate the magnitude of the relative
contributions. For the visualizations of the bond and angle components, the atoms are faintly outlined.

Fig. 7 Normalized contributions to the peak intensity from individual graph components (atoms, bonds, bond angles, and dihedral
angles). These contributions were obtained from the interpretable variant of ALIGNN-d.
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and 180∘. From Fig. 8a, we determine that configurations featuring
these angles are minimal contributors to peak intensity. However,
as the angles are even slightly perturbed (>90∘ or <180∘), the peak
intensity rapidly climbs several orders of magnitude. This is
consistent with the physical understanding of the nominally
symmetry-forbidden d-to-d transitions that comprise the infrared
optical response of the Cu(II) aqua complex, which require thermal
distortion to remove the transition constraints.
Interestingly, it can be seen that high contributions to peak

intensity occur for bond angles in the 120∘–140∘ range. These
angles are not merely minor distortions, but rather represent new
symmetries that are not octahedrally derived and have a much
lower overall probability. To obtain further insight, we examined
the symmetries explored during the AIMD simulations using the
continuous shape measure (CSM) metric. Briefly, CSM provides a
mathematically rigorous way to quantify similarity to reference
geometric structures, from which closest matches to ideal
symmetries can be assessed. Fig. 8b shows the breakdown of
instantaneous closest-matching CSM-derived geometries exhib-
ited during our simulation trajectories, focusing on the fivefold-
and fourfold-coordinated complexes that together represent the
majority of all configurations. The CSM analysis confirms that the
aqua complexes prefer to adopt the square- and pyramid-like
configurations, which are octahedrally derived and dominated by
90∘ and 180∘ bond angles. The fourfold-coordinated complexes
also feature the seesaw configuration, which is likewise octahed-
rally derived. However, a significant fraction of fivefold-
coordinated complexes have the closest match to a trigonal
bipyramid, which is geometrically distinct and features bond
angles of 120∘. These configurations are broadly reflective of the
new symmetries in the 120∘–140∘ region that contribute strongly,
with high certainty, to the optical response according to Fig. 8a.
We therefore propose that aqua complexes that temporarily adopt
new symmetries while actively transitioning from their most
common geometries are critical contributors to the optical
absorption in the infrared regime. In aqua complexes, such
distortions occur occasionally due to thermal/solvent-induced
fluctuations. However, one may imagine engineering local
environments in frozen or glassy systems to bias these
preferences and artificially enhance the frequency of optically
responsive configurations.
In summary, our proposed graph representation ALIGNN-d

represents a principled approach that efficiently captures the full
geometric information of atomic structures. While the original
ALIGNN paper20 focuses on predictions of general properties for
crystalline materials and small-scale molecules, the center of our
work is instead on disordered and distorted systems. We also

show the interpretability of the ALIGNN-d approach, which was
applied to elucidate contributions of specific structural features of
the Cu(II) aqua complexes to their infrared optical absorption
spectral signatures.
It is worth mentioning that even though ALIGNN-d is memory-

efficient for capturing full structural information, requiring only
sparse base graphs, ALIGNN and ALIGNN-d yield less favorable
scaling as the base graph becomes dense (Supplementary Fig. 3
and 4). In this regard, ALIGNN-d performance might be less
superior for highly complex materials, where a large unit cell is
needed to represent the systems and therefore a dense base
graph is required. Future study is therefore needed to thoroughly
determine the computational cost and scalability of ALIGNN and
ALIGNN-d for other classes of material and molecular systems. We
also point out that in contrast to paiNN21, ALIGNN-d does not
incorporate directional information and therefore cannot be used
to predict tensorial properties or direction-specific properties.
However, ALIGNN-d and paiNN are not necessarily mutually
exclusive formulations. An interesting direction for future study is
to combine angular encoding (with line graphs) and equivariant
directional encoding.
Finally, we point out that our framework is general and

applicable to other materials systems and properties. For instance,
it could accelerate material design and selection of metal
complexation with controlled shift in optical absorption for
targeted optical and filtering properties. It could facilitate analysis
of other spectroscopic responses in complex, disordered materials,
which feature signatures that are often convoluted and difficult to
interpret. It could also reveal features in the fine structure of
spectra that might otherwise be overlooked. However, we caution
that not all physical properties can be manifested as a simple
summation of the graph components formulated in this work. In
this regard, more elaborate interpretation methods may elucidate
contributions of other specific structural or chemical features,
opening the door to a broader range of applications.

METHODS
Data preparation
Solvated Cu2+ ion was modeled using an ion in a cubic supercell with 48
water molecules at the experimental density of liquid water at ambient
conditions. We carried out Car-Parrinello molecular dynamics simulations
using the Quantum ESPRESSO package27, with interatomic forces derived
from density functional theory (DFT) and the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional28. The interaction between valence
electrons and ionic cores was represented by ultrasoft pseudopotentials29;
we used a plane-wave basis set with energy cutoffs of 30 Ry and 300 Ry for

Fig. 8 The Cu(II) aqua complexes that temporarily adopt new, uncommon symmetries may be critical contributors to the optical
absorption in the infrared region. This is supported by a the relationship between O-Cu-O bond angles explored by the aqua complex
during AIMD and their contributions to the peak intensity; and b the distribution of closest-matching reference geometries based on the
minimum CSM value, with AIMD snapshots illustrating the most commonly explored complexes. For this analysis, only fourfold- and fivefold-
coordinated complexes are considered.
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the electronic wavefunction and charge density, respectively. All dynamics
were run in the NVT ensemble at an elevated temperature of 380 K to
correct for the overstructuring of liquid water at ambient temperatures
with the PBE functional30. A time step of 8 a.u. were employed with an
effective mass of 500 a.u. with hydrogen substituted with deuterium. The
water was first equilibrated for 10 ps before the Cu2+ ion was inserted into
the system, after which the system was equilibrated for another 10 ps. This
was followed by a 40 ps production run to extract the time-averaged
properties of the system.
Time dependent density functional theory (TDDFT)31 within the Tamm-

Dancoff approximation32 was used to obtain the optical excitation
energies of the ion complexes. Specifically, 6,846 aqua complexes were
extracted roughly uniformly from the AIMD trajectory. Each complex
consists of the copper ion and the surrounding water molecules within a
radial cutoff of 2.92 Å, which corresponds to the first minimum of the Cu-O
partial radial distribution function for the Cu2+ oxidation state. All the
optical calculations were carried out using the NWChem software
package33. Here, an augmented cc-pVTZ basis was used for the copper
ion while an augmented cc-pVDZ basis was used for the water molecules.
Four examples of the aqua complexes and their corresponding TDDFT-
calculated peaks in roughly the visible-infrared range are shown in Fig. 2.
The aqua complexes data was randomly partitioned into a training set of
6,161 samples and a validation set of 685 samples.
To assist with the large number of copper complexes being studied, an

AiiDA34 workflow was employed to standardize and provide consistency for
all calculations. AiiDA records full provenance between all calculations and
ensures a robust framework for generating, storing, and analyzing results.
For GNN spectroscopy prediction, we focus on the TDDFT-calculated

spectral peaks roughly in the visible-infrared range. Since the peak positions
per complex tend to be close together, we approximated each complex’s
discrete peaks into a single unnormalized Gaussian curve. This approximation
helps simplify the output format for training a structure-to-spectrum GNN
model. For example, the original spectral peaks from TDDFT may be
described by a set of tuples (E1, I1), (E2, I2), . . . , where E is the peak energy, and
I is the peak intensity. After the approximation, we can simply describe the
spectral signature with an unnormalized Gaussian, parametrized by the mean
μG, the standard deviation σG, and the amplitude AG. The single-peak
approximation is further explained in Supplementary Information.
The continuous shape measure (CSM) provides a mathematically

rigorous, normalized measure of the deviation of a molecular fragment
geometry from an ideal reference polyhedron. As a similarity metric, CSM is
bounded between 0 and 100. Low CSM value indicates high similarity to
the reference shape symmetry, and thus to a highly symmetric
arrangement of water molecules around the copper ion. The CSM was
computed using the SHAPE code35 for the entire standard set of
polyhedral reference geometries for four- and five- coordination numbers.

ALIGNN-d representation
With the ALIGNN and ALIGNN-d formulation, two graphs are used to
encode one atomic structure: an original atomic graph G and its
corresponding line graph L(G) or dihedral graph L0ðGÞ. The nodes and
edges in G represent atoms and bonds, respectively. The nodes and edges
in L(G) or L0ðGÞ, on the other hand, represent bonds and angles,
respectively. Note that the edges in G and the nodes in L(G) or L0ðGÞ are
identical entities and share the same embedding during GNN operation.
Different from the original ALIGNN paper, we encoded the atomic, bond,
and angular features with only the minimally required information, namely
the atom type z, the bond distance d, the bond angle α, and the dihedral
angle α0 . In other words, in G, each node corresponds to a value of z, and
each edge corresponds to a value of d. In L(G), each node also corresponds
to a value of d, and each edge corresponds to a value of α. Finally, in L0ðGÞ,
each edge representing a dihedral angle corresponds to a value of α0 .
Information such as electronegativity, group number, bond type, and so on
are not encoded.
We used Atomic Simulation Environment36 and PyTorch Geometric37 to

construct the graph representations, and to calculate bond and dihedral
angles.

Model architectures
Two different GNN model architectures were defined: one for the base
graphs (Gmin, Gc3, Gc4, Gc5, and Gmax); and one for ALIGNN and ALIGNN-d.
We kept the two architectures as identical as we could in order to fairly
evaluate and compare the model performances as a function of input

graph representation. Both architectures consist of three parts: the initial
encoding, the interaction operations, and the output layers (Fig. 3).
In the initial encoding, the atom type, the bond distance, and the angular

values are converted from scalars to feature vectors for subsequent neural
network operations. The atom type z is transformed by an Embedding layer
(see PyTorch documentation38). The bond distance d is expanded into the
Radial Bessel basis proposed by Klicpera et al.19. The angles α and α0 are
expanded into the Gaussian basis implemented by Schnet3. However, the
angular encoding treats bond angles α and dihedral angles α0 differently, and
encodes their values at different channels of the expanded feature vector.
Further details regarding the angular encoding are described in Supplemen-
tary Information.
The interaction operations are also known as graph convolution,

aggregation, or message-passing. Following the ALIGNN paper20, we also
adopted the edge-gated graph convolution39,40 for the interaction
operations. The node features hlþ1

i of node i at the (l+ 1)th layer is
updated as

hlþ1
i ¼ hl

i þ SiLU LayerNorm Wl
sh

l
i þ

X

j2NðiÞ
êlij �Wl

dh
l
j

0
@

1
A

0
@

1
A; (1)

where SiLU is the Sigmoid Linear Unit activation function41; LayerNorm is
the Layer Normalization operation42; Ws and Wd are weight matrices; the
index j denotes the neighbor node of node i; êij is the edge gate vector for
the edge from node i to node j; and⊙ denotes element-wise multi-
plication. The edge gate êlij at the lth layer is defined as

êlij ¼
σðelijÞP

j02NðiÞσðelij0 Þ þ ϵ
; (2)

where σ is the sigmoid function, elij is the edge feature at the lth layer, and
ϵ is a small constant for numerical stability. The edge features elij is updated
by

elþ1
ij ¼ elij þ SiLU LayerNorm Wl

gz
l
ij

� �� �
; (3)

where Wg is a weight matrix, and zij is the concatenated vector from the
node features hi, hj, and the edge features eij:

zij ¼ hi � hj � eij : (4)

We applied the same edge-gated convolution scheme (Eq. (1)–(3)) to
operate on both the atomic graph G and the line/dihedral graphs L(G),
L0ðGÞ. In the case of G, the edge-gated convolution updates nodes that
represent atoms, and edges that represent bonds, while exchanging
information between the two, hence the term atom-bond interaction shown
in Fig. 3. In the case of L(G) and L0ðGÞ, the convolution updates nodes that
represent bonds, and edges that represent angles, hence the term bond-
angle interaction shown in Fig. 3. Note that by iteratively applying the
convolution operation on both the original graph and the line/dihedral
graph, the angular information stored in L(G) or L0ðGÞ can propagate to G.
Due to the nature of the edge-gated convolution, all the feature/
embedding vectors for atoms, bonds, and angles during the interaction
layers have the same length, or the same number of channels D.
Lastly, the final output layers pool (by summation) the node features of G

and transform the pooled embedding into an output vector, which is a
three-dimentional vector consisted of the parameters of an unnormalized
Gaussian curve μG, σG, and AG. The two Linear layers have the output
lengths of 64 and 3, respectively. For the interpretable variant of the model,
the final output layers are replaced by a Linear layer transforming the
input vectors into scalars, followed by the softplus activation logð1þ
expð�ÞÞ and global summation. This operation effectively transforms each
embedding vector into a non-negative scalar before summing all the
scalars into a positive scalar final output. Therefore, these component
scalars can be interpreted as the atomic, bond, and angular contributions to
the final output.
The model parameters for both architectures in Fig. 3 are the same, and

listed in Table 1.

Model training
We used PyTorch Geometric37 to develop the GNN models. Note that
although two model architectures were defined, a total of seven GNN
models were trained due to the seven different graph representations
studied in this work. Nonetheless, these models have the same parameters
(Table 1). Similar to the ALIGNN paper20, we trained each model using the
Adam optimizer43 and the 1cycle scheduler44. Each training was carried
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out in PyTorch38 and PyTorch Geometric37 on a NVIDIA V100 (Volta) GPU,
and repeated eight times with randomly initialized weights for statistical
robustness. The mean squared error (MSE) was used as the loss during
training. The training parameters are the same for each training session
(Table 2). All other parameters, if unspecified in this work, default to values
per PyTorch 1.8.1 and PyTorch Geometric 1.7.2.

DATA AVAILABILITY
All data required to reproduce this work is available at https://archive.materialscloud.org/
record/2022.66. It can also be requested by contacting the corresponding authors.

CODE AVAILABILITY
The source code for this work is available at https://github.com/LLNL/graphite.
Alternatively, it can be requested by contacting the corresponding authors.

Received: 2 December 2021; Accepted: 26 June 2022;

REFERENCES
1. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message

passing for quantum chemistry. PMLR. 70, 1263–1272 (2017).
2. Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S. & Jensen, K. F. Convolutional

embedding of attributed molecular graphs for physical property prediction. J.
Chem. Inf. Model 57, 1757–1772 (2017).

3. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R.
Schnet–a deep learning architecture for molecules and materials. J. Chem. Phys.
148, 241722 (2018).

4. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018).

5. Yang, K. et al. Analyzing learned molecular representations for property predic-
tion. J. Chem. Inf. Model. 59, 3370–3388 (2019).

6. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal
machine learning framework for molecules and crystals. Chem. Mater. 31,
3564–3572 (2019).

7. Linker, G.-J., van Duijnen, P. T. & Broer, R. Understanding trends in molecular
bond angles. J. Phys. Chem. A 124, 1306–1311 (2020).

8. Timoshenko, J. & Frenkel, A. I. "inverting” x-ray absorption spectra of catalysts
by machine learning in search for activity descriptors. ACS Catal. 9,
10192–10211 (2019).

9. Guda, A. et al. Machine learning approaches to xanes spectra for quantitative 3d
structural determination: The case of co2 adsorption on cpo-27-ni mof. Radiat.
Phys. Chem. 175, 108430 (2020).

10. Guda, A. A. et al. Quantitative structural determination of active sites from in situ
and operando xanes spectra: from standard ab initio simulations to chemometric
and machine learning approaches. Catal Today 336, 3–21 (2019).

11. Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett 98, 146401 (2007).

12. Samanta, A. Representing local atomic environment using descriptors based on
local correlations. J. Chem. Phys. 149, 244102 (2018).

13. Lindsey, R. K., Fried, L. E. & Goldman, N. Chimes: A force matched potential with
explicit three-body interactions for molten carbon. J. Chem. Theory Comput. 13,
6222–6229 (2017).

14. Pham, T. A. et al. Integrating ab initio simulations and x-ray photoelectron
spectroscopy: Toward a realistic description of oxidized solid/liquid interfaces. J.
Phys. Chem. Lett. 9, 194–203 (2018).

15. Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes
studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).

16. Pham, T. A. et al. Electronic structure of aqueous solutions: Bridging the gap
between theory and experiments. Sci. Adv. 3, e1603210 (2017).

17. Wan, L. F. & Prendergast, D. The solvation structure of mg ions in dichloro
complex solutions from first-principles molecular dynamics and simulated x-ray
absorption spectra. J. Am. Chem. Soc. 136, 14456–14464 (2014).

18. Park, C. W. & Wolverton, C. Developing an improved crystal graph convolutional
neural network framework for accelerated materials discovery. Phys. Rev. Mater. 4,
063801 (2020).

19. Klicpera, J., Groß, J. & Günnemann, S. Directional message passing for molecular
graphs. Preprint at https://arxiv.org/abs/2003.03123 (2020).

20. Choudhary, K. & DeCost, B. Atomistic line graph neural network for improved
materials property predictions. npj Comput Mater 7, 1–8 (2021).

21. Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the pre-
diction of tensorial properties and molecular spectra. PMLR 139, 9377–9388
(2021).

22. Chapman, J., Batra, R. & Ramprasad, R. Machine learning models for the predic-
tion of energy, forces, and stresses for platinum. Comput. Mater. Sci. 174, 109483
(2020).

23. Chapman, J., Goldman, N. & Wood, B. C. Efficient and universal characterization of
atomic structures through a topological graph order parameter. npj Comput.
Mater. 8, 37 (2022).

24. Qiu, S. R. et al. Origins of optical absorption characteristics of cu 2+ complexes in
aqueous solutions. Phys. Chem. Chem. Phys. 17, 18913–18923 (2015).

25. Pasquarello, A. et al. First solvation shell of the cu (ii) aqua ion: evidence for
fivefold coordination. Science 291, 856–859 (2001).

26. Parsons, J., Holmes, J. B., Rojas, J. M., Tsai, J. & Strauss, C. E. Practical conversion
from torsion space to cartesian space for in silico protein synthesis. J. Comput.
Chem. 26, 1063–1068 (2005).

27. Giannozzi, P. et al. Quantum espresso: a modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502
(2009).

28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865 (1996).

29. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism. Phys. Rev. B 41, 7892 (1990).

30. Grossman, J. C., Schwegler, E., Draeger, E. W., Gygi, F. & Galli, G. Towards an
assessment of the accuracy of density functional theory for first principles
simulations of water. J. Chem. Phys. 120, 300–311 (2004).

31. Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems.
Phys. Rev. Lett. 52, 997 (1984).

32. Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within
the tamm–dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999).

33. Apra, E. et al. Nwchem: Past, present, and future. J. Chem. Phys. 152, 184102
(2020).

34. Huber, S. P. et al. Aiida 1.0, a scalable computational infrastructure for automated
reproducible workflows and data provenance. Sci. Data 7, 1–18 (2020).

35. Casanova, D. et al. Minimal distortion pathways in polyhedral rearrangements. J.
Am. Chem. Soc. 126, 1755–1763 (2004).

36. Larsen, A. H. et al. The atomic simulation environment-a python library for
working with atoms. J. Phys. Condens. Matter. 29, 273002 (2017).

37. Fey, M. & Lenssen, J. E. Fast graph representation learning with pytorch geo-
metric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

38. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32, 8026–8037 (2019).

39. Bresson, X. & Laurent, T. Residual gated graph convnets. Preprint at https://
arxiv.org/abs/1711.07553 (2017) .

40. Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y. & Bresson, X. Benchmarking
graph neural networks. Preprint at https://arxiv.org/abs/2003.00982 (2020).

41. Elfwing, S., Uchibe, E. & Doya, K. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Netw 107, 3–11 (2018).

Table 1. Model parameters.

Name Notation Value

Number of interaction layers L 6

Radial Bessel basis cutoff (bond distance) cd 6.88 Å

Gaussian basis range (cosine and sine angles) cα (−1, 1)

Number of channels D 64

Table 2. Training parameters.

Name Notation Value

Batch size M 64

Number of epochs Nep 1000

Initial learning rate ηinit 0.0001

Maximum learning rate (1cycle) ηmax 0.001

First moment coefficient for Adam β1 0.9

Second moment coefficient for Adam β2 0.999

T. Hsu et al.

8

npj Computational Materials (2022)   151 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://archive.materialscloud.org/record/2022.66
https://archive.materialscloud.org/record/2022.66
https://github.com/LLNL/graphite
https://arxiv.org/abs/2003.03123
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/2003.00982


42. Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at https://
arxiv.org/abs/1607.06450 (2016).

43. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at
https://arxiv.org/abs/1412.6980 (2014).

44. Smith, L. N. & Topin, N. Super-convergence: Very fast training of neural networks
using large learning rates. Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications 11006, 1100612 (2019).

ACKNOWLEDGEMENTS
The authors are partially supported by the Laboratory Directed Research and
Development (LDRD) program (20-SI-004) at Lawrence Livermore National Labora-
tory. This work was performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344.

AUTHOR CONTRIBUTIONS
T.A.P., S.R.Q., X.C., and B.C.W. supervised the research. B.C.W. computed the MD
trajectory of the solvated copper ion. N.K. developed the automated Aiida workflow
for TDDFT calculations, with assistance from S.W. T.H. performed the TDDFT
calculations, developed the ALIGNN-d representation, and trained the GNN models.
T.H., T.A.P., and B.C.W. wrote the manuscript with inputs from all authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-022-00841-4.

Correspondence and requests for materials should be addressed to Tim Hsu, Tuan
Anh Pham or Brandon C. Wood.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

T. Hsu et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   151 

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41524-022-00841-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy
	Introduction
	Results
	Optical response of Cu(II) aqua complexes
	Graph representations and prediction accuracy

	Discussion
	Methods
	Data preparation
	ALIGNN-d representation
	Model architectures
	Model training

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




