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Abstract
In this paper, a new and efficient algorithm is developed for attitude determination from Global

Positioning System signals.  The new algorithm is derived from a generalized nonlinear predictive filter

for nonlinear systems.  This uses a one time-step ahead approach to propagate a simple kinematics

model for attitude determination.  The advantages of the new algorithm over previously developed

methods include: it provides optimal attitudes even for coplanar baseline configurations; it guarantees

convergence even for poor initial conditions; it is a non-iterative algorithm; and it is computationally

efficient.  These advantages clearly make the new algorithm well suited to on-board applications.  The

performance of the new algorithm is tested on a dynamic hardware simulator.  Results indicate that the

new algorithm accurately estimates the attitude of a moving vehicle, and provides robust attitude

estimates even when other methods, such as a linearized least-squares approach, fail due to poor initial

starting conditions.
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Introduction
Phase difference measurements from Global Positioning System (GPS) signals provide a novel

approach to determine the attitude of a vehicle.  This approach has been successfully applied to air,1 sea,2

and space3-4 based vehicles.  The problem of finding the attitude of a vehicle using GPS signals

essentially involves a two-step process.  First, since phase differences are used, the correct number of

integer wavelengths between a given pair of antennas must be found.  This problem can generally be

solved using static integer searches or using motion based techniques.  Much attention has been placed

on resolving the integer ambiguity problem over many years (e.g., see Refs. [5-7]).  Once the integer

ambiguities are resolved, then the attitude problem must be solved.  The solution to this problem poses a

difficult task, and has just recently gained attention in the research community.

The most widely used techniques for attitude determination involve methods that solve Wahba’s

problem.8  This problem involves finding a proper orthogonal matrix that minimizes the scalar weighted

norm-squared residual between sets of 3 1×  body vector observations and 3 1×  inertial observations

mapped into the body frame.  Many methods have been developed that solve this problem accurately and

efficiently (e.g., see Refs. [9-10]).  However, the GPS observation is not in the form of a vector

observation, so finding the attitude using GPS signals is inherently more difficult.11

Minimizing the GPS loss function can be accomplished by using nonlinear least-squares or gradient-

based search techniques.  However, these methods may require a large number of iterations to converge,

and are not efficient.12  Cohen’s linearized approach13 involves finding a small angle rotation which

maps an initial attitude estimate to the desired attitude matrix.  This approach works well for a good

initial guess, but is not guaranteed to converge to the correct solution for large initial errors.  Other

methods convert the GPS loss function into Wahba’s form.11,14  The transformation has been shown to

be exact only when the baselines or sightlines are proportional to an orthonormal basis.  Significant

errors may arise if this condition is not true.  An extreme example of this scenario is when three

baselines are coplanar.

In this paper, a new and efficient algorithm is derived which determines the attitude using GPS

observations.  The new algorithm is based on a predictive filter scheme for nonlinear systems first

introduced by Crassidis and Markley.15  This scheme uses a recursive (one time-step ahead) method to

“predict” the required model error so that the propagated model produces optimal estimates.  The filter

developed in this paper is essentially reduced to a deterministic approach, since the corrections required
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to update the model are not weighted in the loss function.  The specific name of the new algorithm using

GPS signals is ALLEGRO (Attitude-Lean-Loping-Estimator using GPS Recursive Operations).  The

main advantages of the ALLEGRO algorithm over previously developed methods are:

1) The algorithm is not iterative.

2) It always converges to the correct solution provided that there is a minimum number of baselines

and sightlines.

3) The algorithm is easy to implement.

An attitude error covariance expression from the general GPS loss function has been developed by

Crassidis and Markley.11  It will be shown that the ALLEGRO algorithm produces estimates that have

exactly the same error covariance provided that the observation sampling is fairly frequent.  Therefore,

the ALLEGRO algorithm minimizes the general GPS loss function.

The organization of this paper proceeds as follows.  First, the concept of the GPS phase difference

observation is introduced.  Then, the general loss function used for GPS-attitude determination is

reviewed.  Next, for completeness the optimal attitude error covariance derivation is shown.  Then, the

generalized predictive filter for nonlinear systems is reviewed, followed by an application of this scheme

to the GPS loss function.  Also, an attitude error covariance expression is derived for the ALLEGRO

algorithm.  Finally, the algorithm is tested using a GPS hardware simulator.

Background
In this section, a brief background of the GPS phase difference measurement is shown.  The main

measurement used for attitude determination is the phase difference of the GPS signal received from two

antennae separated by a baseline.  The wavefront angle and wavelength are used to develop a phase

difference, as shown in Figure 1.  The phase difference is obtained by

b nl cosθ λ φ= −∆� � (1)

where bl  is the baseline length (in cm), �  is the angle between the baseline and the line of sight to the

GPS spacecraft, n  is the integer part of the phase difference between two antennae, ��  is the fractional

phase difference (in cycles), and �  is the wavelength (in cm) of the GPS signal.  The two GPS

frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz.  As of this writing, non-military
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applications generally use the L1 frequency.  Then, assuming that the integer offset is known and

compensated, the measured fractional phase difference (�
~
� ) can be expressed by

�
~
� � �b A s vT (2)

where s∈ℜ3 is the normalized line of sight vector to the GPS spacecraft in an inertial frame, b ∈ℜ3 is

the baseline vector in wavelengths, which is the relative position vector from one antenna to another,

A��
�3 3 is the attitude matrix, an orthogonal matrix with determinant 1 representing the

transformation between the two frames, and v  is the measurement error, which is assumed to be a zero-

mean stationary Gaussian process with standard deviation given by � .

Attitude determination using GPS signals involves finding the proper orthogonal matrix A that

minimizes the following generalized loss function

J A b Asij

j

n

i

m

ij i
T

j� � � �= −−

==
∑∑1

2
2

11

2
σ φ∆~

(3)

where m represents the number of baselines, n now represents the number of observed GPS spacecraft,

and σ ij  denotes the standard deviation of the ij th measurement error.  The standard deviation is

0 5 0 026. .cm λ =  wavelengths for typical phase noise.13

An attitude error covariance can be derived from the GPS loss function in Equation (3).  This is

accomplished by using results from maximum likelihood estimation.11,16  The Fisher information matrix

for a parameter vector x is given by

F E
x x

J xxx T
x

=
���

�	

∂

∂ ∂
� �

true

(4)

where E� � denotes expectation, and J x� � is the negative log likelihood function, which is the loss

function in this case.  If the measurements are Gaussian and linear in the parameter vector, then the error

covariance is given by

P Fxx xx= −1 (5)

Now, the attitude matrix is approximated by
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A e A I A= ≈ − × + ×
�

�
�

− ×
×

δα δα δαtrue true3 3
21

2
(6)

where δα  represents a small angle error, and I3 3×  is a 3 3×  identity matrix.  The 3 3×  matrix �� �  is

referred to as cross product matrix since a b a b× = × , with
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(7)

Equation (6) is next substituted into Equation (3) to determine the Fisher information matrix.  First-order

terms vanish in the partials, and third-order terms are small because we assume the probability

distribution to be approximately symmetric about the mean.  Also, assuming that the quartic terms are

negligible (see [17] for a Gaussian approximation to fourth-order terms) leads to the following form for

the optimal covariance

P As b b Asij

j
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m

j i i
T

j
T
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��
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��
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==

−

∑∑ σ 2

11

1

(8)

Note that the optimal covariance requires knowledge of the attitude matrix.  However, if the baselines

are non-coplanar then the optimal covariance can be determined without the attitude knowledge.11

There are a number of methods available to minimize the GPS loss function shown in Equation (3),

including the standard parameter optimization techniques, such as the gradient method.18  However,

these methods are usually computationally inefficient.  A more practical approach uses a linearized least-

squares method.13  This begins by performing a first-order linearization about a nominal attitude, so that

A A I= + ××0 3 3 δθ� � (9)

where A0 represents some nominal attitude, and δθ  represents a small angle correction.  Then, defining

a perturbation equation for the phase difference measurement leads to

δφ φ φ δθ δθ= − = × + ≡ +∆ ∆~
0 0s A b v h vT T T (10)

Equation (10) represents a linearized sensitivity equation between the measured differential carrier phase

and the perturbation to the initial attitude guess.  All available differential phase measurements can be

stacked into a single linearized vector equation, given by
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�

11

� (11a)

δφ δθ= +H v (11b)

Therefore, Equation (11b) can be used to find a least-squares estimate of the attitude from the nominal

attitude.  In practice, the solution is usually obtained iteratively by using the previous epoch as an initial

guess.  Also, it is easy to see that H R HT − −1 1
� �  is equivalent to the attitude error covariance expression

in Equation (8), where R is the diagonal covariance matrix of the measurement error process v.  The

linearized approach provides an efficient method for attitude determination; however, it is sensitive to

the initial attitude guess, which may cause divergence problems (as will be shown).

Predictive Attitude Determination
In this section, the ALLEGRO algorithm is derived using a nonlinear predictive approach.  First, a

brief review of the nonlinear predictive filter is shown (see Ref. [15] for more details).  Then, the filter

algorithm is reduced to a deterministic-type approach for attitude determination.  Finally, a covariance

expression for the attitude errors using the ALLEGRO algorithm is derived.

Predictive Filtering

In the nonlinear predictive filter it is assumed that the state and output estimates are given by a

preliminary model and a to-be-determined model error vector, given by

�� � ,x t f x t t G t d t� � � �� � � � � �= + (12a)

� � ,y t c x t t� � � �� �= (12b)

where f p
��  is the model vector, �x t p� � ∈ℜ  is the state estimate vector, d t l� � ∈ℜ  is the model error

vector, G t p l� � ∈ℜ ×  is the model-error distribution matrix, c m
��  is the measurement vector, and

�y t m� � ∈ℜ  is the estimated output vector.  State-observable discrete measurements are assumed for

Equation (12b) in the following form

~ ,y t c x t t v tk k k k� � � �� � � �= + (13)
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where ~y tk
m� � ∈ℜ  is the measurement vector at time tk , x tk

p� � ∈ℜ  is the true state vector, and

v tk
m� � ∈ℜ  is the measurement noise vector which is assumed to be a zero-mean, stationary, Gaussian

white-noise distributed process with

E v tk� �� � = 0 (14a)

E v t v t Rk
T

k kk� � � �� �' '= δ (14b)

where R m m∈ℜ ×  is a positive-definite covariance matrix.

A loss function consisting of the weighted sum square of the measurement-minus-estimate residuals

plus the weighted sum square of the model correction term is minimized, given by

J y t y t R y t y t d t W d tk k
T

k k
T

k k= − − ++ +
−

+ +
1

2

1

21 1
1

1 1
~ � ~ �� � � �� � � � � �� � � � � � (15)

where W l l∈ℜ ×  is weighting matrix.  The necessary conditions for the minimization of Equation (15)

lead to the following model error solution

d t t S x R t S x W t S x R z x t y t y tk k
T

k k
T

k k k� � � � � � � � � ��  � � � � � � � � � �= − + − +−
−

−
+Λ ∆ Λ ∆ Λ ∆ ∆� � � � , ~ �

1
1

1
1 (16)

where � �x x tk k≡ � � , ∆t  is the measurement sampling interval, S x m l�� �∈ℜ ×  is a generalized sensitivity

matrix, and Λ ∆t m m� � ∈ℜ ×  is diagonal matrix with elements given by

λ ii

p

i

t

p
i m

i

= =∆
!

, , , ,1 2� (17)

where pi , i m= 1 2, , ,� , is the lowest order of the derivative of c x ti �� �� � in which any component of d t� �
first appears due to successive differentiation and substitution for ��x ti � � on the right side.  The i th

component of z x t�,∆� � is given by

z x t
t

k
L ci

k

f
k

i

k

pi

�,
!

∆ ∆� � � �=
=

∑
1

(18)

where L cf
k

i� �  is the kth Lie derivative, defined by
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L c c

L c
L c

x
f k

f i i

f
k

i
f
k

i

0

1

1

� �

� � � �
=

= ≥
−∂
∂ �

for
(19)

The i th  row of S x�� �  is given by

s L L c L L c i mi g f
p

i g f
p

i
i

l
i= =− −

1

1 1 1 2� � � ��  , , , , , ,� � (20)

where gj  is the j th  column of G t� �, and the Lie derivative is defined by

L L c
L c

x
g j lg f

p
i

f
p

i
jj

i

i
−

−

≡ =1
1

1 2� �
� �∂

∂ �
, , , ,� (21)

Equation (20) is in essence a generalized sensitivity matrix for nonlinear systems.  Therefore, given a

state estimate at time tk , then Equation (16) is used to process the measurement at time tk+1 to find the

d tk� �  to be used in t tk k, +1  to propagate the state estimate to time tk+1.  The weighting matrix W  serves

to weight the relative importance between the propagated model and measured quantities.  If this matrix

is set to zero, then no weight is placed on minimizing the model corrections so that a memoryless

estimator is given.

ALLEGRO Algorithm

In the ALLEGRO algorithm the attitude matrix is parameterized by the quaternion representation,

defined as19

q
q

q
≡ �
��

�
��

13

4
(22)

with

q

q

q

q

e
13

1

2

3

2≡
�

�

�
�
�

�

�

�
�
�

= �sin /θ� � (23a)

q4 2= cos /θ� � (23b)

where �e is a unit vector corresponding to the axis of rotation and �  is the angle of rotation.  The

quaternion satisfies a single constraint, given by
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q q q q qT T= + =
13 13 4

2 1 (24)

The attitude matrix is related to the quaternion by

A q q qT! " ! " ! "= −Ξ Ψ (25)

with

Ξ q
q I q

qT
! " ≡

+ ×

−

�

�

�
�
�

�

�

�
�
�

×4 3 3 13

13

(26a)

Ψ q
q I q

qT
! " ≡

− + ×�

�

�
�
�

�

�

�
�
�

×4 3 3 13

13

(26b)

From Equation (3) it is clear that the quaternion representation leads to a loss function that is quartic in

the quaternions.  This is not equivalent to the familiar attitude determination loss function posed by

Wahba.8  Therefore, in general, the GPS loss function poses a more difficult problem to solve than the

standard vector-observation loss function in Wahba’s problem.

In the ALLEGRO algorithm it is assumed that the model is given by the quaternion kinematics

model.19  This algorithm requires no dynamics model; it assumes that the attitude rate is adequately

modeled by a constant model error d  between measurements, so that

�� �q q d= 1

2
Ξ! " (27)

where �q denotes the determined quaternion.  Since the phase difference measurements are used as the

required tracking trajectories, the output vector in Equation (12b) is given by (dropping the subscript ij

for the moment)

c x b A q sT� �� � ! "= (28)

The lowest order time derivative of �q in Equation (28) in which any component of d  first appears in

Equation (27) is one, so that pi = 1.  To derive the S matrix in Equation (16), the following matrices are

first defined
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� b
b b

bT� � � 	 �

	

�
�
�
�

�
�
�
�0

(29a)


 s
s s

sT� � � 	 � 	�
�
�
�

�
�
�
�0

(29a)

Substituting Equation (25) into Equation (28) and using � �b q q b� � ! "�  and 
 �s q q s� � ! "�  leads to

c x q b s qT�� � � � � �� � 
 (30)

The S matrix is formed by taking the partial of Equation (30) with respect to q  and right-multiplying

the result by 
1

2
� q! " .  Using � 
 �

T q s q A q s! " � � ! " ! "� 	 � , expanding for all available baselines and

sightlines, and using the sightlines at time tk+1 leads to

S

b A q s

b A q s

b A q s

b A q s

A q

T

m
T

n

T

m
T

n

T=
×

×

�

�

�
�
�

�

�

�
�
�

=
×

×

�

�

�
�
�

�

�

�
�
�

1 1 1 1�

�

�

�

�

! "

! "

! "

! "
! "

∆

∆

∆

∆
� � (31)

where the superscript ∆  denotes that the quantity is measured at time tk+1 (all other quantities are at

time tk).  The right side of Equation (31) will later be used in the covariance derivation.  For a

deterministic attitude solution (i.e., a memoryless approach) the weighting matrix W  is set to zero in

Equation (16).  The remaining quantities in Equation (16) can be shown to be given by

Λ ∆= ×t I3 3 (32a)

�

�

�

y

b A q s

b A q s

T

m
T

n

=

�

�

�
�
�

�

�

�
�
�

1 1! "

! "

∆

∆
� (32b)

~ ~
, ,

~
y tk mn

T
+ =1 11� � ∆ ∆∆ ∆φ φ� (32c)

R mn= diagσ σ11, ,� (32d)

z x tk� ,∆� � = 0 (32e)
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Therefore, the following model error equation is developed

     d t d
t

As b b As As b b Ask k ij

j

n

i

m

j i i
T

j
T

ij j i ij i
T

j
j

n

i

m

� � # $≡ = − × ×
�

�
�
��

�

�
�
��

× −−

==

−

−

==
∑∑ ∑∑1 2

11

1

2

11
∆

∆∆ ∆ ∆ ∆ ∆σ σ φ~ (33)

It should be noted that Equation (33) represents an exact linearization for an interval ∆t .20  However, for

practical applications the sampling interval should be well below Nyquist’s limit.21  The determined

quaternion can be found by integrating Equation (27) from time tk  to tk+1.  Since d  is assumed constant

over this interval, a discrete propagation for Equation (27) can be used, given by

� �q I q
k k k k k+ ×= +

1 4 4β γ ρΩ� � (34)

where

βk kd t≡ 
�

�
�cos

1

2
∆ (35a)

γ k kd t≡ 
�

�
�sin

1

2
∆ (35b)

ρ
k k kd d= (35c)

In order to derive an attitude error covariance from Equation (27), a propagated expression can be

derived using a similar approach found in Ref. [22].  The attitude error equation is given by

δα δα δ� = − × +d d (36)

where δd  is a model error perturbation (also, for the quaternion 2
13

δ δαq ≈ ).  The discrete propagation

is given by

δα δα δk k k k kd+ = +1 Φ Γ (37)

where

Φ ∆
k

d te= − × (38a)

Γ
∆

k
d t

t
e dt= − ×%0 (38b)
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Next, the true output is given by using a first-order expansion in the predictive filter output,15 so that

y y t S d v
k k k k k+ += + +

1 1∆ (39)

where S and d  correspond to true quantities of S from Equation (31) and d  from Equation (33),

respectively.  Therefore, the model error is given by

d
t

K y y v t S dk k k k k k k= − + ++
1

1∆
∆�� � (40)

where

K S R S S Rk k
T

k k
T≡ − − −1 1 1� � (41)

Next, using a small angle perturbation in the attitude matrix, similar to Equation (9), leads to

y y S
k k k k− ≈� δα (42)

Now if �� k  is small, using the right-hand side of Equation (31), the following approximation can be

used

S S Ik k k≈ + ××3 3 δα! " (43)

Therefore, since K S Ik k �
�3 3, the model error equation is now given by

d t K v t I dk k k k k k= + + + ×+ ×δα δα∆ ∆1 3 3! " (44)

Using the fact that �d d dk k k� 	  leads to the following error angle equation

δα δα δα δαk k k k k k k k k k kt K v t d+ += − − + ×1 1Φ Γ ∆ Γ ∆ Γ (45)

If ∆t  is small, as assumed in this approach (i.e., the sampling interval is well within Nyquist’s limit,

d tk �  � 10 ),21 then the quantities in Equation (38) can be approximated adequately by

Φ ∆k kI t d≈ − ××3 3! " (46a)

Γ ∆k t I≈ ×3 3 (46b)

Substituting these quantities into Equation (45) leads to

δαk k kK v+ +≈ −1 1 (47)
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The cancellation of the terms in δα k reflects the fact that setting W = 0 in Equation (16) gives a

memoryless estimator.  Now the attitude error covariance is given by

P E K R Kk k k
T

k k
T

+ + +≡ =1 1 1δα δα# $ (48)

Therefore, from the definitions of Sk , Kk , and R, the attitude error covariance expression for the

ALLEGRO algorithm becomes

P A q s b b A q sk ij

j

n

i

m

k j i i
T

k j

T
+

−

==

−

= × ×
�

�
�
��

�

�
�
��

∑∑1
2

11

1

σ � �� � � �∆ ∆ (49)

Note that the attitude matrix in Equation (49) is evaluated at time tk  and that the sightlines are given at

time tk+1.  This may be simplified by using the following attitude propagation which is valid for small

∆t

A q I t d A q
k k k
� �

+ ×= − ×
1 3 3� � ! " � �∆ (50)

The inverse recursion for A q
k
�� � can be adequately approximated by

A q I t d A q
k k k
� �� � ! " � �≈ + ×× +3 3 1

∆ (51)

Substituting Equation (51) into Equation (49) leads to

Pk ij

j

n

i

m

ij ij

T

+
−

==

−

≈
�

�
�
��

�

�
�
��

∑∑1
2

11

1

σ ξ ξ∆ ∆�  �  (52)

where

ξ
ij i k k jb I t d A s∆ ∆∆≡ × + ×× +3 3 1! " (53)

The term in Equation (52) that involves dk ×  is typically three orders of magnitude less than the term

that doesn’t involve dk × , and the term that is quadratic in dk ×  is typically six orders of magnitude

less than the term that doesn’t involve dk × .  Thus, Equation (52) reduces down to
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P A q s b b A q sk ij
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==
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≈ × ×
�

�
�
��
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��

∑∑1
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11
1 1

1

σ � �� � � �∆ ∆ (54)

Therefore, the attitude error covariance at time tk  is given by

P As b b Asij

j

n

i

m

j i i
T

j
T

≈ × ×
�

�
�
��

�

�
�
��

−

==

−

∑∑ σ 2

11

1

(55)

This expression is equivalent to the optimal covariance shown by Equation (8).  Therefore, the

ALLEGRO algorithm is in essence equivalent to solving the generalized loss function in Equation (3).

Although the approximation in Equation (55) is valid only for small ∆t , this poses no problem for

typical on-board applications (e.g., for a typical vehicle in low-Earth orbit undergoing motion of one

revolution-per-orbit, a sampling interval of 100 seconds is more than sufficient for Equation (55) to be a

valid approximation).  Also, the inverse in Equation (33) is sufficient to determine Pk+1, as shown by

Equation (49)-(55).  Therefore, the ALLEGRO algorithm inherently computes the attitude error

covariance as part of its solution.  Finally, Ref. [23] shows an analysis of robustness with respect to

initial condition errors.  It is shown that the estimated error in predictive filter is always bounded for any

initial condition, which makes the ALLEGRO more robust than a linearized least-squares algorithm.

There are many advantages of the ALLEGRO algorithm over previous methods.  These advantages

include:

1) The ALLEGRO algorithm can provide estimates even when the baselines are coplanar, which is

an advantage over the methods shown in Refs. [11] and [14] that convert the GPS problem into a

form equivalent to Wahba’s problem.  Also, it has been shown in Ref. [11] that the attitude of a

vehicle can be determined with a minimum of two baselines and two sightlines (to within a sign

change).  This is also true for the ALLEGRO algorithm, for which the solution will converge to

the true attitude as long as the initial condition is in the correct hemisphere.

2) Unlike gradient based-methods the ALLEGRO algorithm is non-iterative, which provides a more

numerically stable algorithm.

3) The ALLEGRO algorithm is robust with respect to initial condition errors, which is an advantage

over the linearized least-squares algorithm.
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4) The computational burden of the ALLEGRO algorithm is low, since the algorithm is easily

programmable using Equations (33) and (34).

Hardware Simulation
A hardware simulation of a typical spacecraft attitude determination application was undertaken to

demonstrate the performance of the ALLEGRO algorithm.  For this simulation, a Northern Telecom 40

channel, 4 RF output STR 2760 unit was used to generate the GPS signals that would be received at a

user specified location and velocity.  The signals are then provided directly (i.e., they are not actually

radiated) to a GPS receiver that has been equipped with software tracking algorithms that allow it

operate in space (see Figure 2).

The receiver that was used was a Trimble TANS Vector; which is a 6 channel, 4 RF input

multiplexing receiver that performs 3-axis attitude determination using GPS carrier phase and line of

sight measurements.  This receiver was modified in software at Stanford University and NASA’s GSFC

to allow it to operate in space.  This receiver model has flown and operated successfully on several

spacecraft, including:  REX-II, OAST-Flyer, GANE, Orbcomm, Microlab, and others.

The simulated motion profile was for an actual spacecraft, the Small Satellite Technology Initiative

(SSTI) Lewis satellite, which was launched on August 22, 1997 (see Figure 3).  The orbit parameters

used for the simulation are given in Table 1.  This mission actually carried a GPS attitude determination

experiment to assess the performance of the GPS attitude measurements on-orbit.  Although the

spacecraft was lost due to a malfunction not related to the GPS experiment shortly after launch, this

motion profile is nonetheless very representative of the types of attitude determination applications that

are found on satellites.

Table 1.  SSTI Lewis Orbit parameters

Semimajor axis (a) 6901.137 km
Inclination (i) 97.45 deg
Right Ascension of Ascending Node (RAAN) -157.1 deg
Eccentricity (e) 0.0001
Pointing profile Earth pointed
Launch date August 22, 1997

The antenna separation distances are 0.61 m, 1.12 m, and 1.07 m, respectively.  One antenna (in

baseline 3) is located 0.23 m out of plane (below) the other three antennas.  On the spacecraft, the
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antennas are mounted on pedestals with ground planes to minimize signal reflections and multipath.  For

the simulation, the signal was provided to the GPS receiver without multipath noise.  The simulated

SSTI Lewis spacecraft has four GPS antennas that form three baselines.  The baseline vector

components in wavelengths are given by
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Quantities such as line biases and integer ambiguities are first determined before the attitude

determination algorithms are tested.  The GPS raw measurements are processed at 1 Hz over a 40 minute

simulation.  A plot of the number of available GPS spacecraft for the simulated run is shown in Figure 4.

During the beginning of the run there are 5 to 6 available spacecraft.  At the end of the simulation this

drops down to about 4, which means that a degraded performance is possible (this also depends on the

geometry of the spacecraft, see Ref. [13] for Geometric Dilution of Precision).

For the first simulation the sightlines and baselines are used to form simulated phase difference

measurements with Gaussian measurement errors.  This is not a totally realistic simulation; however, it

is useful to quantify the effectiveness of the ALLEGRO algorithm.  A plot of the (roll, pitch, yaw)

attitude errors with 3-sigma outliners using Equation (55) is shown in Figure 5.  Clearly, the ALLEGRO

algorithm provides estimates that agree with the optimal standard deviation predictions.

The remaining runs use the actual phase measurements from the receiver.  This provides a more

realistic scenario.  The linearized least-squares approach using Equations (9)-(11) is also used to

determine the attitude.  Plots of the determined attitude using both algorithms are shown in Figure 6; the

results of the two algorithms are indistinguishable in this figure.  The glitch between 10 and 15 minutes

is due to receiver outages.  In order to test the robustness of both algorithms, they were retested with a

poor initial attitude guess.  It should be noted that large initial attitude errors are not inconsistent with

resolved integer phase ambiguities (see Ref. [7]).  A plot of the attitude errors during the iteration stage

of the least-squares algorithm is shown in Figure 7.  Clearly, the least-squares algorithm does not

converge to the correct solution.  This is due to the small angle approximation in Equation (9).  The

same initial condition is applied to the ALLEGRO algorithm.  Since the ALLEGRO is sequential and

non-iterative, convergence is given over sampled intervals.  A plot of the attitude errors is shown in

Figure 8.  Clearly, the ALLEGRO algorithm converges to the correct solution (after 3 sampling intervals
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for this initial condition).  To further test the robustness of the ALLEGRO algorithm, a Monte Carlo

analysis has been performed using 1000 normalized random initial conditions.  A plot of the

convergence rates is shown in Figure 9.  In all cases, convergence is achieved within 19 sampling

intervals (most converge within about 10 sampling intervals).

Finally, a test has been performed on the computational efficiency of the ALLEGRO algorithm.  The

number of floating point operations (FLOPS) has been evaluated using MATLAB.  Both methods

calculate the attitude error covariance as part of their solutions.  A comparison with the least-squares

algorithm is slightly misleading, since ALLEGRO is non-iterative.  It has been determined that the only

major difference between them is the ALLEGRO algorithm propagates a quaternion model.  However,

the computational expense of this propagation is smaller than 75 FLOPS, which is almost an order of

magnitude less than doing a second iteration in the least-squares algorithm (even for only the two

baseline and two sightline case).  Therefore, the ALLEGRO algorithm is computationally comparable or

better than the least-squares algorithm.

Conclusions
In this paper, a new optimal and efficient algorithm has been developed for attitude determination

using Global Positioning System signals.  It has been shown that the standard GPS loss function is

inherently difficult to solve.  The new non-iterative algorithm provides sequential estimates using a

recursive one-time step ahead approach.  Attitude determination is accomplished by determining the

angular velocity components used to propagate a simple quaternion kinematics model.  An attitude error

covariance expression has been derived for the new algorithm.  This covariance has been shown to be

equivalent to the optimal covariance, derived from maximum likelihood, if the sample interval is small

enough (which poses no problem for most applications).  The algorithm was tested on a hardware

simulator using an actual receiver.  Results indicated that the new algorithm is computationally

comparable to a linearized least-squares approach, while providing robustness with respect to initial

conditions error.  Therefore, the algorithm is exceptionally suitable for on-board applications.

Appendix: Alternative Covariance Derivation
In this section another approach for the attitude error covariance in the ALLEGRO algorithm is

derived.  Linearizing Equation (34) in dk  gives
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Defining δq q q= −�  gives the following quaternion error covariance
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Therefore, using the same principles for the attitude error covariance derivation in Ref. [22] and from the

analogy in Equations (49) through (54) gives
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which is again the same expression as in Equations (8) and (55).
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Fig. 1  GPS Wavelength and Wave Front Angle

Fig. 2  Hardware Simulation Block Diagram

Fig. 3  SSTI Lewis On-Orbit Configuration (artist depiction)

Fig. 4  Number of Available GPS Spacecraft

Fig. 5  Attitude Errors and 3 Sigma Bounds for ALLEGRO

Fig. 6  Determined Attitude Using Both ALLEGRO and Linearized Least-Squares Algorithms

Fig. 7  Least-Squares Response to Poor Initial Condition

Fig. 8  ALLEGRO Response to Poor Initial Condition

Fig. 9  Monte Carlo Initial Condition Analysis Using ALLEGRO
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