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Abstract—The proliferation and ever-increasing capabilities of mobile devices such as smart phones give rise to a variety of mobile

sensing applications. This paper studies how an untrusted aggregator in mobile sensing can periodically obtain desired statistics over

the data contributed by multiple mobile users, without compromising the privacy of each user. Although there are some existing works

in this area, they either require bidirectional communications between the aggregator and mobile users in every aggregation period, or

have high-computation overhead and cannot support large plaintext spaces. Also, they do not consider the Min aggregate, which is

quite useful in mobile sensing. To address these problems, we propose an efficient protocol to obtain the Sum aggregate, which

employs an additive homomorphic encryption and a novel key management technique to support large plaintext space. We also extend

the sum aggregation protocol to obtain the Min aggregate of time-series data. To deal with dynamic joins and leaves of mobile users,

we propose a scheme that utilizes the redundancy in security to reduce the communication cost for each join and leave. Evaluations

show that our protocols are orders of magnitude faster than existing solutions, and it has much lower communication overhead.

Index Terms—Mobile sensing, privacy, data aggregation
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1 INTRODUCTION

MOBILE devices such as smart phones are gaining an
ever-increasing popularity. Most smart phones are

equipped with a rich set of embedded sensors such as
camera, microphone, GPS, accelerometer, ambient light
sensor, gyroscope, and so on. The data generated by these
sensors provide opportunities to make sophisticated infer-
ences about not only people (e.g., human activity, health,
location, social event) but also their surrounding (e.g.,
pollution, noise, weather, oxygen level), and thus can help
improve people’s health as well as life. This enables various
mobile sensing applications such as environmental monitor-
ing [1], traffic monitoring [2], healthcare [3], and so on.

In many scenarios, aggregation statistics need to be
periodically computed from a stream of data contributed
by mobile users [4], to identify some phenomena or track
some important patterns. For example, the average amount
of daily exercise (which can be measured by motion
sensors [5]) that people do can be used to infer public
health conditions. The average or maximum level of air
pollution and pollen concentration in an area may be
useful for people to plan their outdoor activities. Other
statistics of interests include the lowest gasoline price in a
city, the highest moving speed of road traffic during rush
hour, and so on.

Although aggregation statistics computed from time-
series data are very useful, in many scenarios, the data from
users are privacy-sensitive, and users do not trust any single

third-party aggregator to see their data values. For instance,
to monitor the propagation of a new flu, the aggregator will
count the number of users infected by this flu. However,
a user may not want to directly provide her true status
(“1” if being infected and “0” otherwise) if she is not sure
whether the information will be abused by the aggregator.
Accordingly, systems that collect users’ true data values and
compute aggregate statistics over them may not meet users’
privacy requirement [4]. Thus, an important challenge is
how to protect the users’ privacy in mobile sensing,
especially when the aggregator is untrusted.

Most previous works on sensor data aggregation assume
a trusted aggregator, and hence cannot protect user privacy
against an untrusted aggregator in mobile sensing applica-
tions. Several recent works [6], [7], [8], [9] consider the
aggregation of time-series data in the presence of an
untrusted aggregator. To protect user privacy, they design
encryption schemes in which the aggregator can only
decrypt the sum of all users’ data but nothing else. Rastogi
and Nath [6] use threshold Paillier cryptosystem [10] to
build such an encryption scheme. To decrypt the sum, their
scheme needs an extra round of interaction between the
aggregator and all users in every aggregation period, which
means high communication cost and long delay. Moreover,
it requires all users to be online until decryption is
completed, which may not be practical in many mobile
sensing scenarios due to user mobility and the hetero-
geneity of user connectivity. Rieffel et al. [9] propose a
construction that does not require bidirectional commu-
nications between the aggregator and the users, but it has
high computation and storage cost to deal with collusions in
a large system.

Shi et al. [7], [8] also propose a construction for sum
aggregation, which does not need the extra round of
interaction. However, the decryption in their construction
needs to traverse the possible plaintext space of the
aggregated value, which is very expensive for a large system
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with large plaintext space. In mobile sensing, the plaintext
space of some application can be large. For example, carbon
dioxide levels can range from 350 ppm outdoors to over
10,000 ppm in industrial workplaces [11]. Hence, in
applications that continuously monitor the carbon dioxide
levels that people are exposed to in their daily life [12], [13],
the plaintext space can reach 104. Under this plaintext space,
for a large system with one million users, the construction
in [7] requires 30 seconds to decrypt the sum on a modern
64-bit desktop PC. Its computation overhead is too high for
an aggregator to run real-time monitoring applications with
short aggregation intervals and to collect multiple aggregate
statistics simultaneously. Moreover, none of these existing
schemes considers the Min aggregate (i.e., the minimum
value) of time-series data, which is also important in many
mobile sensing applications.

In this paper, we propose a new protocol for mobile
sensing to obtain the sum aggregate of time-series data in
the presence of an untrusted aggregator. Our protocol
employs an additive homomorphic encryption and a novel
key management scheme based on efficient HMAC to
ensure that the aggregator can only obtain the sum of all
users’ data, without knowing individual user’s data or
intermediate result. In our protocol, each user (the
aggregator) only needs to compute a very small number
of HMACs to encrypt her data (decrypt the sum). Hence,
the computation cost is very low, and the protocol can scale
to large systems with large plaintext spaces, resource-
constrained devices, and high aggregation loads. Another
nice property of our protocol is that it only requires a single
round of user-to-aggregator communication.

Based on the sum aggregation protocol, we propose a
protocol to obtain the Min aggregate. To our best knowl-
edge, this is the first privacy-preserving solution to obtain
the Min of time-series data in mobile sensing with just one
round of user-to-aggregator communication. Our protocols
for Sum and Min can be easily adapted to derive many
other aggregate statistics such as Count, Average, and Max.

Since users may frequently join and leave in mobile
sensing, we also propose a scheme that employs the
redundancy in security to reduce the communication cost
of dealing with dynamic joins and leaves.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 presents system
models and assumptions. Sections 4 and 5 present our
protocols for Sum and Min, respectively. Section 6 presents
our scheme to deal with dynamic joins and leaves. Section 7
evaluates the practical performance and cost of our solutions.
The last two sections present discussions and conclusions.

2 RELATED WORK

Many works have addressed various security and privacy
issues in mobile sensing networks and systems (e.g., [14],
[15], [16], [17], [18], [32]), but they do not consider data
aggregation. There are a lot of existing works (e.g., [19], [20],
[21], [22]) on security and privacy-preserving data aggrega-
tion, but most of them assume a trusted aggregator and
cannot protect user privacy against untrusted aggregators.
Yang et al. [23] proposed an encryption scheme that allows
an untrusted aggregator to obtain the sum of multiple

users’s data without knowing any specific user’s data.

However, their scheme requires expensive rekeying opera-

tions to support multiple time steps, and thus may not work

for time-series data.
Shi et al. [24] proposed a privacy-preserving data

aggregation scheme based on data slicing and mixing
techniques. However, their scheme is not designed for
time-series data. It may not work well for time-series data,
since each user may need to select a new set of peers in
each aggregation interval due to mobility. Besides, their
scheme for nonadditive aggregates (e.g., Max/Min) re-
quires multiple rounds of bidirectional communications
between the aggregator and mobile users which means
long delays. In contrast, our scheme obtains those
aggregates with just one round of unidirectional commu-
nication from users to the aggregator.

To achieve privacy-preserving sum aggregation of time-
series data, Rastogi and Nath [6] designed an encryption
scheme based on threshold Paillier cryptosystem [10],
where the decryption key is divided into portions and
distributed to the users. The aggregator collects the
ciphertexts of users, multiplies them together, and sends
the aggregate ciphertext to all users. Each user decrypts a
share of the sum aggregate. The aggregator collects all
the shares and gets the final sum. However, their scheme
requires an extra round of interaction between the
aggregator and users in every aggregation period. Erkin
and Tsudik [25] also proposed an aggregation scheme based
on Paillier cryptosystem, but it requires communications
between every pair of users in every aggregation period.

Based on an efficient additive homomorphic encryption
scheme, Rieffel et al. [9] proposed a construction that does
not require an extra round of interaction between the
aggregator and the users. In their scheme, the computation
and storage cost is roughly equal to the number of
colluding users that the system can tolerate. Thus, their
scheme has high overhead to achieve good resistance to
collusion, especially when the system is large and a large
number of users collude. In contrast, our scheme tolerates a
high fraction of colluding users (e.g., 30 percent) with very
small cost even when the system is large. �Acs and
Castelluccia [26] also proposed a scheme based on additive
homomorphic encryption, but in their scheme each node
shares a pairwise key with any other node.

Shi et al. [7] proposed a construction for sum aggregation
based on the assumption that the Decisional Diffie-Hellman
problem is hard over finite cyclic groups. In their construc-
tion, each user sends her ciphertext to the aggregator and no
communication is needed from the aggregator to the users.
To decrypt the sum, their construction needs to traverse the
possible plaintext space of sum, and thus, it is not efficient for
a large system with large plaintext spaces. Chan et al. [8]
extended the construction in [7] with a binary interval tree
technique, but their scheme still has the limitation in
plaintext spaces. Jawurek and Kerschbaum [27] proposed a
scheme that provides differential privacy for sum. Our
aggregation protocol for sum can be used as a building block
of their scheme to improve the computational efficiency.
Also, existing works [33] do not consider the Min of time-
series data.
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3 PRELIMINARIES

3.1 Models and Assumptions

Fig. 1 shows our systemmodel, which is similar to themodel
in [7]. An aggregator wishes to get the aggregate statistics of
n mobile users periodically, for example, in every hour. The
time periods are numbered as 1, 2, 3, . . . , and so on. In every
time period, each user i encrypts her data xi with key ki and
sends the derived ciphertext to the aggregator. From the
ciphertexts, the aggregator decrypts the needed aggregate
statistics using her aggregator capability k0. The value of
each user’s data is an integer within range ½0;��. Two types
of aggregate statistics are considered in this work, which are
Sum and Min. Sum is defined as the sum of all users’ data
and Min is defined as the minimum value of the users’ data.
From Sum and Min, many other aggregate statistics can be
easily derived, such as Count (i.e., the number of users
that satisfy certain predicate), Average (which is derivable
from Sum and Count), and Max (which can be obtained
from the Min of �� x).

In each time period, a mobile user sends her encrypted
data to the aggregator via WiFi, 3G or other available access
networks. No peer-to-peer communication is required
among mobile users, since such communication is non-
trivial in mobile sensing scenarios due to the high mobility
of users and users may not be aware of each other for
privacy reasons.

We consider an untrusted aggregator that is curious
about each individual user’s data. The aggregator may
eavesdrop all the messages sent from/to every user.
A number of users may collude with the aggregator, and
reveal their data to the aggregator. A number of users may
also collude to obtain the aggregate. Similar to [7], we
assume that the fraction of users that collude is at most
� ð0 � � < 1Þ, and the system has a priori estimate over the
upper bound of � that can be used in practice. For now, we
assume that � is the maximum accumulated fraction of users
that collude during the lifetime of the system, and we relax
this assumption in Section 8. In addition, the aggregator and
users have limited computation capability. Note that this
paper focuses on thwarting attacks against users’ privacy.
Other important issues such as data pollution attacks
(in which malicious users provide false data values to sway
the final aggregate statistics) are not considered.

We assume a key dealer that issues proper keys to the
aggregator and users via a secure channel. For now, the key
dealer is assumed to be trusted, and this assumption is
relaxed in Section 8.

Our goal is to guarantee the privacy of each user’s data
against the untrusted aggregator, i.e., the aggregator obtains

the aggregate statistics without knowing any individual
user’s data. We achieve this goal through protecting each
user’s data content with an encryption scheme, but not
through providing source anonymity [28]. Also, we
guarantee that any party without an appropriate aggregator
capability obtains nothing.

3.2 Underlying Encryption Scheme

One building block of our solution is the additive
homomorphic encryption scheme proposed by Castelluccia
et al. [21], [29]. This scheme works as follows:

Encryption:

1. Represent message m as an integer within range
½0;M � 1�, where M is a large integer.

2. Let k be a randomly generated key, k 2 f0; 1g�,
where � is a security parameter.

3. Output ciphertext c ¼ ðmþ hðfkðrÞÞÞ mod M, where
fk is a pseudorandom function (PRF) that uses k as a
parameter, h is a length-matching hash function (see
details below), and r is a nonce for this message.

Decryption:

1. Output plaintext m ¼ ðc� hðfkðrÞÞÞ mod M.

The PRF fk is a function of the PRF family IF� ¼
ffk : f0; 1g� ! f0; 1g�g

k2f0;1g� indexed by k. Since prova-
bly secure PRFs are usually computationally expensive,
Castelluccia et al. [21] advocate using keyed hash
functions (e.g., HMAC) as PRFs. HMAC is a PRF if
the underlying compression function of the hash func-
tion in use is a PRF [30]. When HMAC is used, fkðrÞ is
the HMAC of r with k as the key.

The purpose of h is to shorten a long bit string. It maps
the output of fk to a shorter bit string of length �, where � is
the modulus size of M (i.e., � ¼ jMj). h is not required to be
collision-consistent, but its output should be uniformly
distributed over f0; 1g�. An example construction for h is to
truncate the output of fk into shorter bit strings of length �,
take exclusive-OR on all these strings, and use it as the
output of h. This scheme is proved to be semantically
secure [21].

This scheme allows additive homomorphic encryption.
Given two ciphertexts c1 ¼ ðm1 þ hðfkðrÞÞÞ mod M and
c2 ¼ ðm2 þ hðfk0ðrÞÞÞ mod M, an individual that knows k

and k0 can compute the sum of m1 and m2 directly from the
aggregate ciphertext c ¼ c1 þ c2:

m ¼ m1 þm2 ¼ ðc� hðfkðrÞÞ � hðfk0ðrÞÞÞ mod M:

To correctly compute the sum of nmessagesm1;m2; . . . ;mn,
M must be larger than

Pn
i¼1 mi. In practice, M should be

selected as M ¼ 2dlog2 ðmaxðmiÞ�nÞe.
Table 1 shows the notations used in this paper.

4 AGGREGATION PROTOCOL FOR SUM

4.1 Protocol Overview

Setup. The key dealer assigns a set of secret values (secrets
for short) to each user and the aggregator.

Enc. In each time period, user iði 2 ½1; n�Þ generates
encryption key ki using the secrets that it is assigned.
It encrypts its data xi by computing
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ci ¼ ðki þ xiÞ mod M; ð1Þ

where M ¼ 2dlog2 ðn�Þe. Then, it sends the ciphertext ci to
the aggregator.

AggrDec. In each time period, the aggregator generates
decryption key k0 using the secrets that it is assigned, and
decrypts the sum aggregate S ¼Pn

i¼1 xi by computing

S ¼
X

n

i¼1

ci � k0

 !

mod M: ð2Þ

The keys are generated using a PRF family and a length-
matching hash function (see later). According to [29], the
aggregator can get the correct sum so long as the following
equation holds:

k0 ¼
X

n

i¼1

ki

 !

mod M: ð3Þ

In our protocol, the setup phase only runs once. After the
setup phase, the key dealer does not need to distribute
secrets to the users and the aggregator again. In addition,
the users and the aggregator do not have to synchronize
their key generations with communications in every time
period. These restrictions make it challenging for the users
and the aggregator to generate their keys such that (3) holds
in every time period and the encryption (decryption) key used
by each user (the aggregator) cannot be learned by any
other party besides the key dealer.

We propose a construction for key generations that
preserves the privacy of each user and the Sum aggregate
efficiently. Before presenting our construction, we first
discuss a straw-man construction which is very efficient for
the users but not efficient for the aggregator. Then, we
extend this straw-man scheme to derive our construction.

Both constructions include three processes, which are
secret setup, encryption key generation, and decryption key
generation. They proceed in the Setup phase, Enc phase, and
AggrDec phase of the aggregation protocol, respectively.

4.2 A Straw-Man Construction for Key Generation

4.2.1 Intuition

Fig. 2 shows the intuition of the straw-man construction.
Suppose there are nc random numbers. The aggregator has
access to all the numbers, and it computes the sum of these
numbers as the decryption key k0. These numbers are
divided into n random disjoint subsets, each of size c. These

n subsets are assigned to the n users, where each user has
access to one subset of numbers. User i computes the sum
of the numbers assigned to it as the encryption key ki.

Clearly, (3) holds. The aggregator cannot know any user’s
encryption key because it does not know the mapping
between the random numbers and the users. When c is large
enough, it is infeasible for the aggregator to guess the
numbers assigned to a particular user with a brute-force
method. The aggregator’s decryption key cannot be re-
vealed by any user because no user knows all the numbers.

4.2.2 Construction

The construction is as follows:
Secret Setup. The key dealer generates nc random and

different secrets s1; . . . ; snc. It divides these secrets into
n random disjoint subsets, with c secrets in each subset. Let
S denote the set of all secrets, and let Si denote the
ith subset. Clearly, S ¼ Sn

i¼1 Si and 8i 6¼ j;Si

TSj ¼ �. The
key dealer sends the secrets in subset Si to user i and sends
all the secrets in S to the aggregator.

Encryption Key Generation. In time period t 2 IN, user i

generates its encryption key as follows:

ki ¼
X

s02Si

hðfs0ðtÞÞ
 !

mod M: ð4Þ

Decryption Key Generation. In time period t 2 IN, the
aggregator generates the decryption key as follows:

k0 ¼
X

s02S
hðfs0ðtÞÞ

 !

mod M: ð5Þ

In (4), since each hðfs0ðtÞÞ is uniformly distributed over
f0; 1g�, ki is also uniformly distributed over f0; 1g�. Thus,
the encryption keys satisfy the security requirement of the
underlying cryptosystem. Equation (3) also holds because

X

n

i¼1

ki ¼
X

n

i¼1

X

s02Si

hðfs0ðtÞÞ
 !

mod M

¼
X

s02S
hðfs0ðtÞÞ

 !

mod M

¼ k0 mod M:
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Fig. 2. The intuition behind the straw-man construction. The aggregator
computes the sum of a set of random numbers as the decryption key.
These numbers are secretly allocated to the users, and each user
computes the sum of its allocated numbers as the encryption key. The
aggregator does not know which random numbers are allocated to each
user, and thus does not know any user’s key.



4.2.3 Security Level

If the aggregator knows the c secrets used by a user, it can
obtain the encryption key of the user. We can derive the
probability that the aggregator finds the c secrets used by a
user. Let pb denote the probability that in a single trial the
aggregator can successfully guess the secrets assigned to the
user. Recall that � is the maximal fraction of users that
collude with the aggregator. In the worst case, the
aggregator knows the �nc secrets assigned to the colluding
users, but it does not know how the remaining ð1� �Þnc
secrets are assigned to other users. There are ðð1��Þnc

c
Þ

possible secret assignments for each user. Hence, we have

pb ¼
1

� ð1��Þnc
c

� : ð6Þ

With a smaller pb, better security can be achieved. Table 2
shows the values of pb for varying parameters n and c. As c
increases, the security level increases quickly.

Given the number of users n and an estimate of �, we
can derive the minimum value of c to achieve a certain
required security level. (c is minimized to minimize the
cost.) For l-bit security (e.g., l ¼ 80), c should be selected as
the minimum value that satisfies pb � 2�l. Table 3 shows
the values of c for 80-bit security.

A fraction of users may collude against the aggregator to
reveal the aggregate. To achieve this goal, they need to
obtain all the secrets that the aggregator has. However, each
user only knows a subset of the secrets. So long as not all
users collude, they cannot obtain all the secrets.

4.2.4 Cost

In each time period, each user computes c PRFs and the
aggregator computes nc PRFs. Since c is small as shown in
Table 3, the computation cost at each user is very low.
However, when the number of users n is very large, the
computation cost at the aggregator is high.

4.3 Our Construction for Key Generation

Our construction extends the straw-man construction to
reduce the computation overhead at the aggregator.

4.3.1 Intuition

Consider an equation:

a1 þ a2 þ � � � þ anc ¼ a1 þ a2 þ � � � þ anc: ð7Þ

If we remove nc� q summands from the right side and
subtract them from the left side, the derived equation

a1 þ � � � þ anc þ ð�a1Þ þ � � � þ ð�anc�qÞ ¼ anc�qþ1 þ � � � þ anc

ð8Þ

is equivalent to the original equation.
To meet the requirement of (3), the straw-man construc-

tion essentially mimics (7), i.e., the users collectively
generate the summands on the left side and add them to
the aggregate, while the aggregator alone generates the
summands on the right side and subtracts them from the
perturbed aggregate (see Fig. 3a). Each summand is
generated from a secret. Since (7) and (8) are equivalent,
we can remove some summands from the aggregator side
and subtract them from the user side without violating (3).
Now the aggregator has less computation overhead because
it needs to generate less summands. The reduced computa-
tion does not come for free, as it is amortized among the
users such that each user generates more summands (see
Fig. 3b). A nice property is that it is now more difficult to
guess the summands generated by each user and, thus, each
user has better security.

4.3.2 Construction

The construction is as follows:
Secret distribution. The key dealer generates nc random

and different secrets s1; . . . ; snc. Let S denote the set
composed of all the secrets. The key dealer divides these
secrets into n random disjoint subsets, with c secrets in each
subset. For convenience, we call these subsets additive
subsets. Let Si denote the ith additive subset. Clearly,
S ¼ Sn

i¼1 Si.
Out of the nc secrets, the key dealer randomly selects

q secrets and assigns them to the aggregator. Let Ŝ denote the
set of secrets assigned to the aggregator. The key dealer
divides the remaining nc� q secrets evenly into n random
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Security in the Straw-Man Construction

Fig. 3. The intuition behind our construction in comparison with the
straw-man construction.



disjoint subsets. Among them, ðnc� qÞ � nbnc�q
n
c subsets

have bnc�q
n
c þ 1 secrets each, and the other nð1þ bnc�q

n
cÞ �

ncþ q subsets have bnc�q
n
c secrets each. For convenience, we

call these subsets subtractive subsets. Let �Si denote the
ith subtractive subset. Clearly, S ¼ ðSn

i¼1
�SiÞ
S Ŝ. The key

dealer assigns the secrets in the additive subset Si and
subtractive subset �Si to user i.

Encryption key generation. In time period t 2 IN, user i

generates its encryption key by computing

ki ¼
X

s02Si

hðfs0ðtÞÞ �
X

s02�Si

hðfs0ðtÞÞ

0

@

1

A mod M: ð9Þ

Decryption key generation. In time period t 2 IN, the
aggregator generates the decryption key by computing

k0 ¼
X

s02Ŝ
hðfs0ðtÞÞ

0

@

1

A mod M: ð10Þ

The requirement in (3) is satisfied because

X

n

i¼1

ki ¼
X

n

i¼1

X

s02Si

hðfs0ðtÞÞ �
X

s02�Si

hðfs0ðtÞÞ

0

@

1

A

0

@

1

A mod M

¼
X

s02S
hðfs0ðtÞÞ �

X

s02[n
i¼1

�Si

hðfs0ðtÞÞ

0

@

1

A mod M

¼
X

s02Ŝ
hðfs0ðtÞÞ

0

@

1

A mod M

¼ k0:

4.3.3 Security Level

The aggregator cannot learn any user’s encryption key

because it does not know the additive secrets (i.e., secrets in

the additive subset) and the subtractive secrets (i.e., secrets

in the subtractive subset) assigned to this user. Each user

has c additive secrets and at least bnc�q
n
c subtractive secrets.

The aggregator may know the secrets assigned to itself and

those to its �n colluders, but there are still ð1� �Þnc additive
secrets and at least ð1� �Þnbnc�q

n
c subtractive secrets that

the aggregator does not know how they are assigned to the

good users. There are at least ðð1��Þnc
c

Þ � ðð1��Þnbnc�q
n

c
bnc�q

n
c Þ possible

secret assignments for each good user. Thus,

pb �
1

� ð1��Þnc
c

�

�
� ð1��Þnbnc�q

n
c

bnc�q
n

c
�
: ð11Þ

pb decreases (i.e., the security for the users is better) when n

and c increase, but pb increases when � increases.
Under the same total computation cost, the smaller q is,

the more subtractive secrets the users are assigned and the
better security the users have. However, if q is too small,
the secrets (and hence the decryption key) used by the
aggregator may be learned by a number of colluding users in
the brute-force way. We can derive the minimum value of q
to make it infeasible for � fraction of users to collusively
obtain the decryption key. These colluders know at most

�nc subtractive secrets, but they do not know which q of
the remaining ð1� �Þnc secrets the aggregator has. There are
ðð1��Þnc

q
Þ possible secret assignments for the aggregator. Let pc

denote the probability that the q secrets assigned to the
aggregator can be guessed in a single trial. We have

pc �
1

� ð1��Þnc
q

� : ð12Þ

When q increases, pc decreases, which means better security
for the aggregator.

4.3.4 Practical Considerations

To achieve l-bit security for each user and the aggregator, it
is required that pb � 2�l and pc � 2�l, respectively. Given
parameters n and �, large-enough values should be set for c
and q to meet these requirements.

Since the values of c and q depend on each other, which
can be seen from (11) and (12), they can be set as follows:
First, we assume q 2 ð0; n�. Under this assumption, (11) can
be rewritten as

pb �
1

� ð1��Þnc
c

�

�
� ð1��Þnðc�1Þ

c�1

� : ð13Þ

We can derive the minimum value of c that makes the right-
hand side of (13) smaller than 2�l. Then, we apply the
derived value of c to (12), and obtain the minimum value of
q that makes the right-hand side of (12) smaller than 2�l. If
the obtained value of q falls into the assumed range ð0; n�,
the values of c and q are accepted. Otherwise, we can
increase the value of c, until the minimum value of q that
makes the right-hand side of (12) smaller than 2�l is not
larger than n.

This method of setting c and q ensures that q � n, and
thus, pb is given in (13). Table 4 shows the values of pb when
n and c change. Tables 5 and 6 show the values of c and q,
respectively, for 80-bit security. It can be seen that both c

and q are very small.

4.3.5 Cost

Since the setup phase is run only once, we analyze the cost
of our construction in each aggregation period. The
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TABLE 4
The Security Level of Our Construction When � ¼ 0:1

TABLE 5
The Values of c for 80-bit Security in Our Construction



computation cost is measured by the number of PRFs
computed, since the length-matching hash function (which
mainly consists of exclusive-OR operations) and arithmetic
addition are much less expensive in computation.

In each time period, each user computes 2c� q
n
PRFs on

average, while the aggregator computes q PRFs. As for the
storage cost, the key dealer stores nc secrets as well as 2nc

mappings between the secrets and the users/aggregator.
Each user stores 2c� q

n
secrets on average, while the

aggregator stores q secrets. Besides sending the encrypted
data to the aggregator, each user does not make any extra
communications.

4.3.6 Comparisons with the Straw-Man Construction

Table 7 compares our construction to the straw-man
construction in security and cost. When the total
computation cost (for users and the aggregator) is the
same, our construction achieves better security. Also, it
has smaller computation cost at the aggregator. Upon
initial inspection, our construction may seem to double
the computation cost at each user (i.e., from c to roughly
2c). In practice, however, it can use a smaller c to achieve
the same security level. Table 8 shows the computation
cost of the two constructions at the same security level.
For a wide range of nð102 � 106Þ, the computation cost at
each user is slightly higher (i.e., one or two PRFs) in our
construction, but the computation cost at the aggregator is
orders of magnitude smaller.

5 AGGREGATION PROTOCOL FOR MIN

The Min aggregate is defined as the minimum value of the
users’ data. This section presents a protocol that employs
the Sum aggregate to get Min.

5.1 The Basic Scheme

This scheme gets the Min aggregate of each time period
using �þ 1 parallel Sum aggregates in the same time
period. The sums used to obtain Min are based on a number

of 1-bit derivative data (denoted by d) derived from the users’
raw data x. Without loss of generality, we assume � is a
power of two.

The scheme works as follows: In each time period, each
user generates �þ 1 derivative data d½0�; d½1�; . . . ; d½��,
where each derivative data correspond to one possible data
value in the plaintext space. For each j 2 ½0;��, the user
assigns 1 to d½j� if its raw data value is equal to j and assigns
0 otherwise. For each j 2 ½0;��, the aggregator can obtain
the Sum aggregate of d½j� using the sum aggregation
protocol presented in Section 4. Then, Min is the smallest
j that returns a positive sum.

In each time period, each user involves in �þ 1 sum
aggregates over �þ 1 derivative data. Note that in the sum
aggregation protocol each user computes 2c PRFs to encrypt
her data. It is inefficient to compute 2c PRFs for each
derivative data. Since these data are independent, we use a
more efficient technique that concatenates multiple data
together and encrypts them as a whole.

This technique extends each derivative data from 1 bit to
dlog ðnþ 1Þe bits by adding dlog ðnþ 1Þe � 1 0’s on the left,
and then concatenates all extended derivative data into a
single bit string. The sum of the concatenated string
(interpreted as an integer) is obtained using the sum
aggregation protocol. The obtained sum is considered as a
bit string, and split into substrings of dlog ðnþ 1Þe bits each.
Each substring, when interpreted as an integer, represents
the sum of one derivative data. Note that these substrings
do not affect each other (i.e., no carries among them), since
the sum of each derivative data does not exceed n. Fig. 4
shows an example of this process.

Clearly, the concatenated data have ð�þ 1Þdlog ðnþ 1Þe
bits. The ciphertext generated by each user has � ¼
ð�þ 1Þdlog ðnþ 1Þe bits. If � is larger than H, which is the

size of the output generated by the PRF (i.e., an HMAC), we

can divide the derivative data into ð�þ1Þdlog ðnþ1Þe
H

groups and

apply the above technique to each group in parallel. Thus,
ð�þ1Þdlog ðnþ1Þe

H
parallel instances of the sum aggregation

protocol are needed in each time period. For example, when

n ¼ 1;000, � ¼ 10;000 and SHA-512 is used as the hash

function of HMAC, 196 instances of the sum aggregation

protocol are needed.
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TABLE 6
The Values of q for 80-bit Security in Our Construction

TABLE 7
The Security and Cost of Our Construction

and the Straw-Man Construction

For computation cost, the value is the cost per time period.

TABLE 8
The Computation Cost of Our Construction and the

Straw-Man Construction for 80-bit Security When � ¼ 0:1

Fig. 4. An example of sum based on derivative data.



Each user uses just one set of secrets for all instances of
the sum aggregation protocol. For instance j, it uses
hðfs0ðjjtÞÞ to generate the encryption key instead of using
hðfs0ðtÞÞ in the original protocol (see (9)). Similarly, the
aggregator also uses just one set of secrets.

Since the sum aggregation protocol does not expose
the derivative data of any user, the aggregator cannot know
the data value of any specific user.

5.2 Low-Cost Min Aggregation

When the plaintext space is large, the cost of the basic scheme
is high. In some application scenarios, it may not be
necessary to get the exact Min, but an approximate answer
is good enough. For such scenarios, the basic scheme can be
extended to get an approximateMin withmuch smaller cost.

Specifically, we wish to obtain an approximate Min

where the relative error (defined as jExact Min�Approximate Minj
maxfExact Min;1g )

is required to be lower than 1
2�
ð� � 0Þ. To meet this

requirement, the exact value of Min should be obtained if

Min is smaller than or equal to 2�, and the �-bit segment of

Min (when Min is interpreted as a bit string) that starts

from the first “1” bit should be obtained if Min is larger

than 2�. For example, suppose Min is 42 (00101010) out of

8-bit data. To make the relative error smaller than 1
23
, it is

sufficient to know that Min has the bit pattern 00101xxx.

Then, we can set the bit that follows the known bits as 1

and set other bits as 0. The obtained approximate Min is

00101100, which is 44. The relative error is 1
21
, which is

smaller than the required 1
23
.

To obtain the approximate Min, each user appends �þ 1

padding bits to its raw data. If the data value is zero, the
first padding bit is 1 and the others are 0; otherwise, all the
padding bits are 0. The padded data have log�þ �þ 2 bits
and at least one bit is 1. The first “1” bit of Min may appear
in any of the first log�þ 2 bits of the padded data. In the
case, it appears at the first padding bit, Min is zero.

Suppose in the binary representation of data value, the
weight of bit decreases from the left to the right. Let � ð� 2
½1; log�þ 2�Þ denote the location (indexed from the left) of
the first “1” bit of Min. Smaller � means larger Min. Let �
denote the value of the ð�� 1Þ-bit segment of Min that
follows �. When � is the same, a larger � means larger Min.
Clearly, there are 2��1ðlog�þ 2Þ possible combinations of
h�; �i. We map these combinations to an auxiliary plaintext
space 0; 1; . . . ; 2��1ðlog�þ 2Þ � 1, such that if one combina-
tion means smaller Min than another combination, it is

mapped to a smaller value in the auxiliary plaintext space
than that combination. Let v½�; �� denote the value that
combination h�; �i maps to.

In each time period, each user converts its padded raw
data to a value x0 in the auxiliary plaintext space as follows:
if in its padded raw data the first “1” bit appears at �0 and
the value of the ð�� 1Þ-bit segment that follows the first “1”
bit is �0, it sets x0 ¼ v½�0; �0�. The aggregator can get the Min
of x0 using the basic scheme, and reversely map the Min of
x0 to a pair of h�; �i. It knows that the first “1” bit of the Min
aggregate over padded raw data appears at location �, and
the ð�� 1Þ-bit segment that follows the first “1” bit is �.
Then, it sets the bit that follows the ð�� 1Þ-bit segment as 1,
and sets the remaining bits as 0. This derives the Min
aggregate over padded raw data, which has the form
f0g��1f1g1f0; 1g��1f1g1f0glog�þ2��. From this bit string, the
last �þ 1 padding bits are removed and then the approx-
imate Min of users’ raw data is obtained. Fig. 5 shows a
running example of this process.

In total, this scheme uses 2��1ðlog�þ 2Þ parallel Sum
aggregates of 1-bit derivative data. Thus, in each time
period, 2

��1ðlog�þ2Þ
H

parallel instances of the sum aggregation
protocol are needed, and each user sends 2��1ðlog�þ 2Þ
bits of encrypted data (which can be encapsulated into
one message) to the aggregator. For example, when
� ¼ 104, SHA-512 is used as the hash function of HMAC
and it is required to limit the relative error to 1 percent
(i.e., � ¼ 7), only two instances are needed and each user
only sends 128 bytes of ciphertexts to the aggregator in
each time period.

Table 9 summarizes the relative error and cost of the
basic scheme and the low-cost scheme.

6 DEALING WITH DYNAMIC JOINS AND LEAVES

In mobile sensing applications, users may join and leave.
When a user joins, it should be assigned some secrets for
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Fig. 5. An example of the process that obtains an approximate Min, where � ¼ 4 and � ¼ 3. The four users’ auxiliary data values are x01 ¼ 12,
x02 ¼ 12, x03 ¼ 10, and x04 ¼ 4. The Min of the auxiliary data is 4, and it is reversely mapped to h�; �i ¼ h3; 00i. Thus, the approximate Min of padded
raw data is 0010010. After the last four padding bits are removed, the output is 001.

TABLE 9
The Relative Error and Cost of the Basic

Scheme and the Low-Cost Scheme

H is the size of the output generated by the PRF.



encryption key generation. When a user leaves, its secrets
should be reclaimed such that the aggregator can still get
the aggregate statistics of the remaining users. Dynamic
joins and leaves should be properly dealt with to protect
each user’s privacy and ensure the secrecy of the
aggregate statistics.

When the number of users is not large and the churn
rate is low, the key dealer can rerun the secret setup phase
for all the users whenever a user joins or leaves. However,
for the applications with a large number of users and/or a
high churn rate, the communication overhead may be too
high to redistribute secrets to all users. In this section, we
propose efficient techniques to deal with dynamic joins and
leaves for a large-scale system. Basically, we use redun-
dancy in security to reduce the communication overhead of
joins and leaves.

For simplicity, we evaluate the communication overhead
of dealing with a user’s join and leave by the number of
users that the key dealer should redistribute secrets to (or
the number of updated users for short). Since the number of
secrets redistributed to each user is not large, if we assume
that these secrets can be included in one message, the
number of updated users is equivalent to the number of
messages that should be transmitted from the key dealer to
the users.

For simplicity, we only consider the Sum protocol
when describing our scheme to deal with dynamic joins
and leaves, but the scheme applies to the protocol for Min
as well.

6.1 Challenges and Basic Idea

Note that we consider a strong adversary who can monitor
the communications between all entities including the key
dealer and users. Through eavesdropping the message
sending and receiving activities, the adversary can know
which user joins or leaves and to which users secrets are
redistributed to.

We use leave as an example to show the challenges of
addressing user dynamics. When a user leaves, the key
dealer needs to redistribute the user’s secrets to other users
and/or the aggregator, such that the aggregator can
correctly decrypt the aggregate statistic of the remaining
users in the future. Some of these secrets may be exposed to
the adversary if they are redistributed to a user that
colludes with the adversary. Then, the adversary knows
that these secrets belonged to the leaving user. As a result,
there is less uncertainty about the secrets that the leaving
user used before, and hence, it is easier for the adversary to
guess the user’s past encryption key and infer her past data.
Also, the adversary knows that these secrets do not belong
to other users. This reduces the uncertainty about the
secrets that the other users used before. Hence, it is easier to
guess the encryption key of other users as well. Instead of
only redistributing the leaving user’s secrets, the key dealer
may consider redistributing the secrets of the leaving user
and a subset of other users, but the consequence will be
similar. In both cases, the security level of past user data
decreases.1 Thus, if each user maintains the minimum

number of secrets needed for the required security level,
which is case in the Sum aggregation protocol presented in
Section 4, when a user leaves, the security of itself and other
users will drop below the required level, unless a new set of
secrets are distributed to all remaining users.

To address this problem, our idea is to let each user
maintain higher than l-bit security by using more secrets
than required by l-bit security. When a user’s joins and
leaves, although some secrets may be exposed to the
aggregator in the process of redistributing secrets, each
user still maintains sufficient secrets for l-bit security, i.e.,
the required security level.

6.2 Scheme Overview

For convenience, we define the following three terms.

Definition 1 (Affiliation). The affiliation of a secret is the user
that it is assigned to.

Definition 2 (Forward Security). After the join (leave)
operation, the key that an entity will use in the future is
secure, i.e., the probability that the adversary can successfully
guess the key in a single trial is not higher than 2�l.

Definition 3 (Backward Security). After the join (leave)
operation, the key that an entity used in the past is still secure,
i.e., the probability that the adversary can successfully guess
the key in a single trial is not higher than 2�l.

Let D denote the set of secrets which have been
distributed to the users. These secrets are classified into
two categories:

. Black secrets. A secret is black if its affiliation is not
exposed to the adversary. That is, the adversary does
not know the user that the secret belongs to. Let B
denote the set of black secrets, Ba denote the set of
black additive secrets, and Bs denote the set of black
subtractive secrets. (See the definitions of additive
and subtractive secrets in Section 4.3.2.) Clearly,
B ¼ Ba [ Bs.

. White secrets. A secret is white if its affiliation is
exposed to the adversary. Let W denote the set of
white secrets.

Obviously, B \W ¼ � and B [W ¼ D.

The security of a user depends on the number of black

secrets it has and the total number of black secrets. Let na (ns)

denote the number of black additive (subtractive) secrets that

the user has. Then, the probability that the adversary can

guess theuser’s secrets ina single trial isgivenbypb ¼ 1

ðjBa j
na

ÞðjBs j
ns

Þ .

To maintain l-bit security, it is sufficient to ensure

that pb � 2�l. That is,

jBaj
na

� � jBsj
ns

� �

� 2l: ð14Þ

Similarly, to maintain l-bit security for the aggregator, it is
sufficient to ensure that

jBaj
q

� �

� 2l; ð15Þ

where q is the number of black additive secrets that the
aggregator has.
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1. Security can be maintained if all secrets are redistributed among all
remaining users, but this is equivalent to rerunning the setup phase, a case
that we want to avoid.



Due to user dynamics and the lack of knowledge on
which users are colluding with the adversary, it is difficult
to track the accurate values of jBaj, jBsj, na, and ns. For
simplicity, we address this problem by maintaining a lower
bound for these parameters. Specifically, we ensure that:

. Requirement 1. The total number of black additive
(subtractive) secrets is at least b.

. Requirement 2. The number of black additive (sub-
tractive) secrets that each user has is at least x.

Here, parameters b and x satisfy the following conditions:

b

x

� �

b

x

� �

� 2l; ð16Þ

b

q

� �

� 2l: ð17Þ

Equation (16) guarantees the secrecy of each user’s data and
(17) guarantees the secrecy of the aggregate statistic.

In the following, we describe the detailed scheme to deal
with dynamic joins and leaves which can meet Requirement
1 and Requirement 2. Besides the notations in Table 1, other
notations used in our scheme are summarized in Table 10.

6.3 The Detailed Scheme

In this scheme, when a user joins, some secrets are moved
from a random subset of existing users to the joining user.
When a user leaves, the secrets of the leaving user are
redistributed to a random subset of remaining users. In
these operations, the random subset of existing and
remaining users are called helper users for convenience.

6.3.1 Setup

The key dealer assigns secrets to each user and the
aggregator as done in the construction presented in
Section 4.3. Each user receives c additive secrets and c or
c� 1 subtractive secrets, and the aggregator receives
q additive secrets. Here, c > x, nc� q > b, and ðb

q
Þ � 2l. All

the secrets are tagged as black.

6.3.2 Join

When a user joins, the key dealer runs the following
procedure:

. It randomly selects ’ helper users from the set of
users that participated in the previous setup phase,
where ’ is large enough to ensure that, given � (i.e.,
the maximum possible fraction of users colluding
with the adversary), at least one helper user is good
(i.e., not colluding with the adversary). If any helper
user has less than 2x black additive (subtractive)
secrets, the key dealer runs the setup phase again.

. It removes x black additive (subtractive) secrets from
each helper user and assigns them to the new user.

. It tags the new user’s secrets as white. Note that the
new user will not be used as a helper user to deal
with future joins and leaves.

. It checks that Requirement 1 is still satisfied. Note
that there are at most �n users colluding with the
adversary (where n is the number of users in the
system). The key dealer finds the ð1� �Þn users that
have the minimum number of black additive secrets,
and counts the number of additive secrets held by
these users. If this number is smaller than b, it reruns
the setup phase. Similarly, the key dealer can count
the minimum possible number of black subtractive
secrets. If this number is smaller than b, it also reruns
the setup phase.

Forward security analysis. The last step ensures that
Requirement 1 is satisfied after the join operation. Clearly,
each helper user still has no less than x black additive
(subtractive) secrets after the join operation. Since at least
one helper user is good, the new user also has at least x
black additive (subtractive) secrets. Requirement 2 is also
satisfied. Thus, forward security is guaranteed for all users.

Backward security analysis. Since the total number of black
additive (subtractive) secrets is larger before the join
operation, Requirement 1 is satisfied before the join opera-
tion. Obviously, Requirement 2 is also satisfied. Hence,
backward security is also guaranteed.

6.3.3 Leave

Let S1ðS2Þ denote the set of additive (subtractive) secrets the
leaving user has. Let n1ðn2Þ denote the number of black
additive (subtractive) secrets that the leaving user has. It is
likely that n1 6¼ jS1jðn2 6¼ jS2jÞ. The key dealer runs the
following procedure:

. It finds the smallest x0 such that ðn1þx0

x0 Þðn2þx0

x0 Þ � 2l.
. It randomly selects ’ existing users as helper users,

where ’ is large enough to ensure that, given �, at
least one helper user is good. If any helper user has
less than x0 þ x black additive (subtractive) secrets,
the key dealer runs the setup phase again.

. It removes x0 black additive (subtractive) secrets
from each helper user and these secrets form a set
S3 (S4).

. It evenly and randomly redistributes the black
additive (subtractive) secrets in S1 [ S3ðS2 [ S4Þ to
the ’ helper users.

. It tags all the redistributed secrets as white.

. It counts the minimum possible total number of
black additive (subtractive) secrets, similarly as done
in the join operation. If the number is smaller than b,
it reruns the setup phase.

If the leaving user did not participate in the previous setup
phase (i.e., it joins the system after the previous setup
phase), the key dealer does not know the accurate values of
n1 and n2. However, it knows that n1 � x and n2 � x. To be
conservative, it sets n1 ¼ x and n2 ¼ x in this case.

Security analysis. In the worst case, the adversary may
identify the n1 þ x0 additive (subtractive) secrets that
belong to the leaving user and one good helper user.
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TABLE 10
Notations Used to Deal with Dynamic Joins and Leaves



However, since ðn1þx0

x0 Þðn2þx0

x0 Þ � 2l, the leaving user’s back-

ward security is guaranteed. Since each other user has at

least x black additive (subtractive) secrets and the total

number of black additive (subtractive) secrets is not smaller

than b after the leave operation, the forward security of

other users is satisfied. Each user’s backward security is

also guaranteed, since there are more black secrets before

the leave operation.

6.4 Practical Considerations

Given n and �, the values of parameters ’, b, x, and c can be

set as follows.

6.4.1 Setting ’

Given �, ’ should be large enough such that at least one

helper user is good. If we assume that the colluding users

are a random subset of the user set, the value of ’ should be

sufficiently large such that with a probability (denoted by

ps) not lower than 1� 2�l at least one helper user is good.

Under this random colluder model, we can derive that

ps ¼ 1� �’. Thus,

’ ¼ d�l log� 2e: ð18Þ

Table 11 shows the values of ’ when l ¼ 80.

6.4.2 Setting b, x, and c

For simplicity, we can set b ¼ nx, and then derive the value

of x, which is the minimum integer that satisfies (16). Then,

the value of b can also be obtained as the value of x

multiplied by n. From b, we can derive the value of q, which

is the minimum integer that satisfies (17). Table 12 shows

the parameter values obtained in this way.
Then, we can set c ¼ Kx (e.g., K ¼ 10). Parameter K is a

tuning factor that affects both the number of joins and

leaves supported without rerunning the setup phase and

the computation overhead of at each user. When K

increases, more joins and leaves can be supported without

rerunning the setup phase; however, since c is larger, the

communication overhead at user is also higher. We will

evaluate the effect of K in Section 7.

7 EVALUATIONS

This section evaluates the cost of our aggregation protocols
for Sum and Min. We compare our solution against three
existing privacy-preserving aggregation protocols for time-
series data: the protocol proposed in [7] (denoted by EXP),
CollaPSE [9], and the spatial aggregation protocol proposed
in [25] (denoted by Spatial).

7.1 The Cost of Sum and Min Aggregation

This section compares our Sum and Min aggregation
protocols (see Sections 4 and 5.2) against existing work.

7.1.1 Cost of Sum Aggregation

EXP is a Sum aggregation protocol based on the decisional
Diffie-Hellman assumption. In EXP, encryption (decryption)
requires two (

ffiffiffiffiffiffiffi

n�
p

) modular exponentiations (see [7] for
details). Similar to our protocol, CollaPSE also uses the
homomorphic encryption scheme in [21] to derive Sum, but
in a different way (see [9] for details). In CollaPSE, each user
(the aggregator) computes sþ 1 PRFs to encrypt her data
(decrypt the sum). Here, s denotes the number of colluding
users that the protocol can tolerate. Spatial is based on the
Paillier cryptosystem.

Table 13 shows the computation, storage, and commu-
nication cost of the four aggregation protocols for Sum,
where the cost is derived under the same condition that
they can tolerate �n colluding users. Compared with
CollaPSE, our protocol has much smaller computation and
storage cost at both the users and the aggregator, especially
for a large system with possibly many colluding users.
Compared with EXP and Spatial, our protocol has slightly
higher storage cost (i.e., around 10 secrets each with just
tens of bytes), but our computation overhead is much lower
because in practice PRF (when implemented with HMAC)
can run orders of magnitude faster than modular exponen-
tiation, Paillier encryption, and Paillier decryption. We
elaborate this point further in Section 7.1.3. Our protocol
also has much lower communication cost than Spatial.

7.1.2 Cost of Min Aggregation

The Min aggregation scheme presented in Section 5.2
derives Min from 2��1ðlog�þ 2Þ parallel Sum aggregates
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TABLE 11
The Values of ’ for 80-bit Security
under the Random Colluder Model

TABLE 12
The Values of b, x, and q Used for Dealing with Dynamic

Joins and Leaves When the Security Level Is 80-bit

TABLE 13
Comparisons between Our Sum Aggregation Protocol and Existing Protocols

Mod. Exp. (Mul.) stands for modular exponentiations (multiplications). In most practical settings, c < 7 and q < 13 (see Table 5 and 6).



of 1-bit data, where each sum is obtained using our Sum
aggregation protocol. Here, each sum can also be obtained
using EXP, and we refer to the Min aggregation scheme
that uses EXP as a building block as EXP-Min. In EXP-Min,
each user computes 2�ðlog�þ 2Þ modular exponentiations
to encrypt her data, and the aggregator computes
2��1

ffiffiffi

n
p ðlog�þ 2Þ modular exponentiations to decrypt the

Min. Similarly, CollaPSE can also be used as a building
block of Min aggregation, and the resulting scheme is
referred to as CollaPSE-Min. In CollaPSE-Min, the compu-
tation cost is 2��1ð�nþ1Þðlog�þ2Þ

H
PRFs for both encryption and

decryption, considering that the concatenation technique in
Section 5.1 also works for CollaPSE.

Compared with CollaPSE-Min, our Min aggregation
scheme improves the computation cost of encryption and
decryption by a factor of �nþ1

2c
and �nþ1

q
, respectively (see

Table 9 for the cost of our scheme). Our scheme is also much
more efficient than EXP-Min in computation, as shown in
Section 7.1.3.

7.1.3 Practical Performances

In Table 13, the computation costs of our Sum aggregation
protocol, EXP, and Spatial are measured by different units.
Here, we elaborate the comparison between them with
results in running time. For this purpose, we implemented

these protocols in Java. The function of mobile user is
implemented on Nexus S Smartphone with Android 4.0.4

OS, 1-GHz CPU, and 512-MB RAM. The function of
aggregator is implemented on a Windows Laptop with

64-bit Windows 7 OS, 2.6-GHz CPU, and 4-GB RAM. For
EXP, the elliptic curve “curve25519” is adopted for modular

exponentiation. For Spatial, the Paillier cryptosystem uses a
1,024-bit modulus, and random numbers are generated

using the standard function provided by Java. For our
protocol, PRF is implemented with HMAC-SHA256.

Table 14 shows the running time of our Sum aggregation

protocol, EXP, and Spatial. Our protocol is much faster than
EXP and Spatial in both encryption and decryption.

Specifically, encryption is at least one order of magnitude
faster. When the plaintext space � � 102, decryption is at

least three orders of magnitudes faster. In our protocol, the
computation cost decreases as the system scale increases,

and it does not change with the plaintext space (so long as
the size of plaintext data does not exceed the size of an

HMAC output). Thus, our protocol can support large
systems and large plaintext spaces.

Table 15 shows the running time of our Min aggregation
protocol and EXP-Min. Here, the plaintext space is set as

� ¼ 104. The parameters of our protocol are set according to
Tables 5 and 6 when � ¼ 0:2. In all the shown cases, our

protocol is at least four (seven) orders of magnitude faster
than EXP-Min in encryption (decryption). Especially, as the

system scale increases, the running time of decryption in
EXP-Min increases quickly, which shows the poor scal-

ability of EXP-Min, but the running time of our protocol
decreases and is always very low, which shows that our

protocol is scalable.

7.2 The Cost of Dynamic Joins and Leaves

This section evaluates our scheme for dealing with joins and
leaves (see Section 6). Each data point is the average result

of ten simulation runs with different random seeds.
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TABLE 14
The Running Time of Our Sum Protocol, EXP, and Spatial

4 is the plaintext space. Each user’s data value is from f0; 1; . . . ;4g.

TABLE 15
The Running Time of Our Min Aggregation Protocol and EXP-Min Which Uses EXP As a Building Block

Fig. 6. The effects of parameters K (see Section 6.4.2), n, and � on the number of joins/leaves supported by each setup phase. By default, K ¼ 50,
� ¼ 0:2, and n ¼ 3;000 (i.e., the number of users at the beginning of simulation).



7.2.1 The Effect of K, n, and �

In our scheme, after the setup phase, a number of joins and

leaves can be processed before the setup phase has to be run

again. We first run simulations to evaluate the effect of

parameters K (see Section 6.4.2), n, and � on this number.
Fig. 6 shows the results. As can be seen from Fig. 6a,

when K increases, more joins and leaves can be supported
(where only ’ users are updated) without rerunning the
setup phase again. This is because when K is larger there is
more redundancy in security, and hence, the communica-
tion cost is lower. For similar reasons, when n increases,
more joins and leaves can also be supported (see Fig. 6b).
When � increases, the setup phase needs to be run again
sooner (see Fig. 6c). The reason is that when � is higher, ’ is
larger, which means more users are updated and more
secrets are transited from black to white in each join.

The computation and storage overhead at mobile user

linearly increases with K. Thus, in practice, the value of K

should be selected based on the estimated �, the expected

level of churn resilience, and the tolerable computation and

storage cost. In the following, we set K ¼ 50.

7.2.2 Cost

Then, we compare the communication cost of our scheme
against EXP in dealing with dynamic joins and leaves.
In the simulations for join (leave), initially there are 1,000
(5,000) users in the system and 4,000 users join (leave)
subsequently. We set K ¼ 50 and � ¼ 0:2. Fig. 7 shows the
average number of updated users per join and leave.
Clearly, our scheme has much lower communication cost.
This is because EXP redistributes secrets to all users upon
every join and leave, but most of the time our scheme
redistributes secrets to a small subset of users.

The computation cost of our scheme is increased when
dealing with dynamic joins and leaves. To evaluate the
computation cost, we measured the running time when
there is redundancy in security. Here, the parameters of
our scheme are set as discussed in Section 6.4 and K ¼ 50.
As shown in Table 16, the running time of encryption in
our scheme is comparable to that in EXP, but the running
time of decryption in our scheme is still orders of
magnitude faster.

The storage cost at each mobile user is also increased.
However, as shown in Table 17, each user only stores
hundreds of secrets. Considering that each secret has only
tens of bytes, the storage cost is low.

8 DISCUSSIONS

Relaxing the assumption of trusted key dealer. Instead of relying
on a trusted key dealer, our protocol can be easily adapted
to work with an honest-but-curious key dealer that does not
collude with the aggregator. An honest-but-curious key
dealer correctly follows our protocol steps, but wants to get
users’ data values from the transcript of messages in our
protocol. To provide privacy under this model, our protocol
adds one more encryption and decryption to the data that
each user submits to the aggregator. More specifically, each
user encrypts its data using the secrets assigned by the key
dealer to derive an intermediate result z, encrypts z with a
key preshared with the aggregator, and then sends the
obtained ciphertext to the aggregator. The aggregator first
uses the preshared key to decrypt each user’s intermediate
result z, and then decrypts the noisy sum with the secrets
received from the key dealer. The key dealer cannot obtain
the intermediate result z of any user, as long as it does not
collude with the aggregator. Hence, it cannot get any user’s
data value.

The honest-but-curious model is realistic because it can
be enforced with trusted hardware. In practice, certificate
authorities such as VeriSign (which already provides key
management services) may serve as the key dealer. Since
these authorities usually undergo extensive audits (e.g.,
WebTrust audit), collusion with the aggregator can be
mitigated.

More aggregate statistics. In the basic aggregation scheme
for Min presented in Section 5.1, the aggregator can actually
get the number of times that each possible data value
appears, and derive the accurate distribution of the users’
data in the plaintext space ½0;��. From the distribution,
other aggregate statistics such as Median, Percentile, and
Histogram can be obtained. In this process, the aggregator
knows nothing about each individual user’s data.

Differential privacy for Sum. Differential privacy [31]
provides strong privacy guarantee for users such that a
user’s participation in the system only leaks negligible
information about the user. Our protocol for Sum can be
adapted to provide computational differential privacy [8].
To achieve this goal, an appropriate noise is added to each
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Fig. 7. Comparisons with EXP in the average number of updated users
per join and leave. Please note the logarithmic scale.

TABLE 16
The Running Time of Our Protocol for Sum with

Redundancy in Security and the Running Time of EXP

TABLE 17
The Storage Cost of Our Protocol for
Sum with Redundancy in Security

K ¼ 50, � ¼ 0:2.



user’s data (e.g., using the data perturbation algorithms
proposed in [7]), and then the sum of noisy data is obtained
using our protocol.

Fault tolerance. Fault tolerance requires that when a
number of users fail (e.g., due to loss of power or network
connection), the aggregator can still get the aggregate
statistics of the remaining users. There is a collision between
aggregator obliviousness and fault tolerance. Data pertur-
bation [7] can be used to address such collision. With data
perturbation, the binary construction proposed in [8] can be
applied on top of our Sum aggregation protocol to achieve
fault tolerance.

Weaker assumption on colluders. In previous sections, we
assumed that � is the maximum accumulated fraction of
colluding users in the lifetime of the system. Since the
system lifetime may be very long, � may be large (i.e., close
to 1) that makes the value of parameter c large. However,
this assumption can be relaxed as follows: The key dealer
can rerun the setup phase in every time period T (e.g., one
month) and issue a new set of secrets. Then, � can be
the maximum accumulated fraction of colluding users in
time-period T .

9 CONCLUSIONS

To facilitate the collection of useful aggregate statistics in
mobile sensing without leaking mobile users’ privacy, we
proposed a new privacy-preserving protocol to obtain the
Sum aggregate of time-series data. The protocol utilizes
additive homomorphic encryption and a novel, HMAC-
based key management technique to perform extremely
efficient aggregation. Implementation-based measurements
show that operations at user and aggregator in our protocol
are orders of magnitude faster than existing work. Thus,
our protocol can be applied to a wide range of mobile
sensing systems with various scales, plaintext spaces,
aggregation loads, and resource constraints.

Based on the Sum aggregation protocol, we also
proposed two schemes to derive the Min aggregate of
time-series data. One scheme can obtain the accurate Min,
while the other one can obtain an approximate Min with
provable error guarantee at much lower cost.

To deal with dynamic joins and leaves, we proposed a
scheme that utilizes the redundancy in security to reduce
the communication cost for each join and leave. Simulation
results show that our scheme has much lower communica-
tion overhead than existing work.
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