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Abstract As semiconductor devices scale to new dimen-
sions, the materials and designs become more dependent on
atomic details. NEMO5 is a nanoelectronics modeling pack-
age designed for comprehending the critical multi-scale,
multi-physics phenomena through efficient computational
approaches and quantitatively modeling new generations of
nanoelectronic devices as well as predicting novel device
architectures and phenomena. This article seeks to provide
updates on the current status of the tool and new function-
ality, including advances in quantum transport simulations
and with materials such as metals, topological insulators,
and piezoelectrics.

Keywords Nanoelectronics · Greens function formalism
(NEGF) · NEMO · Tight-binding · Quantum dot · Strain ·
Transport and phonons · Poisson · Parallel computing

1 Introduction

Relentless downscaling of transistor size has continued ac-
cording to Moore’s law for the past 40 years. Transistor size
will continue to decrease in the next ten years, but founda-
tional issues with currently unknown technology approaches
must be pursued [1]. This downscaling has reached the range
where the number of atoms in critical dimensions is count-
able, geometries are formed in three dimensions and new
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materials are being introduced. Under these conditions we
argue that the overall geometry constitutes a new material
that cannot be found as such in nature [2]. Quantum effects
such as tunneling, state quantization, and atomistic disorder
dominate the characteristics of these nano-scale devices.

The interactions of electrons, photons, and phonons are
now governed by these new material properties and long-
range interactions such as strain and gate fields. The end-
game of the transistor size down-scaling as we know it is
now fundamentally in sight. The end-game transistor is ex-
pected to be about 5 nm long and 1 nm in its critical active
region corresponding to about 5 atoms in width. The phys-
ical atomistic down-scaling limit will be reached in about
8–10 years. The overall agenda is to bridge ab initio ma-
terials science into TCAD simulations of realistically large
scaled devices and get macroscopic quantities like current,
voltages, absorption, etc., by mapping ab initio into basis
sets of lower order and include them in a formalism that
allows for transport. The NEMO5 nanoelectronics model-
ing software is aimed at comprehending the critical multi-
scale, multi-physics phenomena and delivering results to en-
gineers, scientists, and students through efficient computa-
tional approaches and quantitatively modelling new gener-
ations of nanoelectronic devices in industry, as well as pre-
dicting novel device architectures and phenomena.

The basic functionality and history of the NEMO tool
suite has been discussed previously [3, 4]. NEMO5’s gen-
eral software framework can easily include any kind of
atomistic model and even semi-classical models if neces-
sary. The scalable software implements models such as the
Schrödinger equation and non-equilibrium Green’s function
method (NEGF) in tight-binding formalism, for electronic
structure and transport calculations, respectively. It also is
able to take into account important effects such as atom-
istic strain, using valence force field (VFF) strain models.

mailto:jfonseca@purdue.edu
mailto:gekco@purdue.edu
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It then allows the calculation of electronic band structures,
charge density, current and potential, eigen-energies and
wave-functions, phonon spectra, etc., for a large variety of
semiconductor materials and devices.

This manuscript seeks to provide interested readers
with an overview of the recent developments surrounding
NEMO5. This paper discusses (a) approaches to quantum
transport solutions (b) a newly-implemented approaches to
achieve faster convergence in the self-consistent Poisson-
transport solution, (c) strain (d) phonons (e) semi-automated
material parameterization (f) metals (g) piezoelectric mate-
rials such as SmSe (h) topological insulators and (i) band
structure unfolding.

2 Transport

At the heart of NEMO5’s quantum transport approach is the
non-equilibrium Green’s function method (NEGF) which
is a computational approach to handle quantum transport
in nanoelectronic devices [5]. NEGF is numerically expen-
sive when applied on atomistic tight-binding representa-
tions. NEGF requires storage, inversion and multiplication
of matrices of the order of the number of electronic de-
grees of freedom. A well known method to ease the numer-
ical burden is the recursive Green’s function method (RGF)
that allows for limiting the calculation and storage of the re-
tarded Green’s function to specific matrix blocks (such as
only block diagonals and a single block column). Until re-
cently, the RGF algorithm was limited to quasi 1D transport
regimes, i.e. devices with 2 leads only. Generalizing work
of Cauley et al., however, shows that RGF can be applied on
virtually any transport problem, if the device Hamiltonian
matrix is partitioned in a proper way [6]. NEMO5 allows
partitioning the device ideally for 1D and quasi 1D transport
problems according to the transport coordinate, but it also
allows for the partition of complex, multi terminal devices
and the application of RGF on them.

Despite the RGF method, the computational burden in
memory and CPU time is still limiting the maximum de-
vice size solvable with NEGF. To overcome this obsta-
cle, NEMO5 offers incomplete spectral transformations of
NEGF equations into a Hilbert space of smaller rank than
the original tight-binding representation [7]. Special cases of
this low rank approximation are known as CBR method (all
ballistic NEGF) [8] and the mode space approach [9]. This
method allows approximating NEGF transport problems in
electronic tight-binding representations within a fraction of
the numerical load of exact NEGF solutions. The loss of
the NEGF accuracy and predictive power is thereby negli-
gible as shown in Fig. 1. This figure compares the conduc-
tion band electron density of a homogeneous 5 × 5 nm Si

Fig. 1 Comparison of the electron density of the exact NEGF calcula-
tion (circle) and of NEGF calculations with 10 % of the original matrix
rank

nanowire in equilibrium calculated in an exact and a LRA-
approximate NEGF calculation where the rank has been re-
duced down to 10 % of the original problem size. Negligible
discrepancies are magnified in the figure’s inset.

Purely ballistic charge transport can be well described
within the quantum transmitting boundary method (QTBM)
[10]. Since this method solves the quantum transport in the
space of propagating lead modes, the numerical load is typ-
ically much smaller than in ballistic NEGF or RGF calcula-
tions which in general consider all modes. NEMO5 is able
to solve the QTBM equations spatially distributed over large
numbers of CPUs. For a given energy and transverse mo-
mentum, the boundary equations of the source and the drain
are solved each on individual CPUs, whereas those sections
of the device that are not in direct contact with the leads are
solved on the remaining CPUs.

3 Self-consistent calculation

The many-body problem is treated in the Hartree approxi-
mation by self-consistently solving the Poisson and trans-
port equations (e.g. QTBM, as explained above). The self-
consistent solution is a nonlinear problem and any efficient
solution of this problem must take into account at least three
components: the energy grid, the initial guess, and the self-
consistent algorithm. The energy grid should resolve the fea-
tures in the energy dependent device charge density, deter-
mined by the lead density of states and device transmis-
sion properties. A good energy grid should be inhomoge-
neous, so that it is able to resolve sharp features, yet have as
few energy points as possible to facilitate efficient computa-
tions. Since the self-consistent process is necessarily itera-
tive in nature, the initial guess is the first step in the solution.
A good initial guess, close to the final solution, can prevent
convergence problems. The self-consistent algorithm pro-
vides the next potential guess in each iteration. Ideally, the
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algorithm should prevent divergence and arrive at the solu-
tion with as few as possible iterations. Via PETSc, NEMO5
employs several kinds of Newton–Raphson algorithms [11],
that rely on an efficient and approximate Jacobian imple-
mentation [12, 13] and have protection against divergence
by being able to control the potential update, or step size,
between two iterations. The Newton–Broyden method and
trust region methods [14] are also used. While robust, these
methods do not always guarantee efficient solutions. We
achieve the most efficient solutions by constructing an ac-
curate and time-efficient initial guess, based on the semi-
classical charge and locally constant Fermi level with the
effective mass corrected for confinement effects, followed
by the Newton–Raphson method with full step size.

Results of one self-consistent simulation using the tight-
binding formalism in NEMO5 are shown in Fig. 2. The sim-
ulated device is n-type Si nanowire with 3 × 3 nm cross sec-
tion (approximately 3 nm). The wire has 1 nm thick gate all-
around and three doping regions: the channel under the gate
is doped to 1015 cm−3, while the source and drain regions to
1020 cm−3. The length of the simulated device is 20 nm, of
which 10 nm is the channel and 5 nm the source and drain
regions each. The source and drain region length is chosen
so that the potential becomes flat near the lead-device in-
terface. Results are shown in Fig. 2. The simulation is per-
formed up to 0.6 V gate bias, to avoid unphysical effects at
higher bias produced by ballistic transport in the absence of
the transport barrier and subsequent Poisson/transport equa-
tion convergence issues. The convergence scheme consists
of the Newton–Raphson method with full step size and the
following initial guesses: for the first bias point the semi-
classical initial guess is used; for the second bias point the
previous solution is used as the initial guess; and for the third
bias point upward the prediction/extrapolation based on the
previous two solutions. This convergence scheme takes a to-
tal of 27 iterations for the 7 bias points simulated. The ma-
jority of inner bias points took only 3 iterations, while the
first and the last bias point resulted in a slightly higher num-
ber of iterations. Even though the semi-classical initial guess
with the effective mass corrected for confinement effects is
very close to the final solution, the fact that the spatial ef-
fects of the confinement (i.e. quantum wave function) are
not taken into account results in slightly more iterations. On
the other hand, the quality of the semi-classical guess pro-
tects the simulation from divergence, as the full step size is
used. The last bias point takes slightly more iterations, due
to the fact that it is more difficult to achieve convergence for
diminishing transport barrier at high gate bias.

4 Strain

In the last decade, strain was a major performance booster
in ultra-scaled transistors [15] and it is of fundamental

Fig. 2 NEMO5 self-consistent simulation results for n-type all-around
gate Si nanowire. The gate length is 10 nm, while the doping in the
channel below the gate is 1015 cm−3. The source and drain regions are
taken to be 5 nm with 1020 cm−3 doping. Panel (a) shows the current–
voltage characteristic, (b) is the bulk band edge interpolated along the
center of the nanowire, and (c) is the same for electron density. The
charge density is nonuniform in the cross section due to lateral quan-
tum confinement and significantly larger than the converged average
charge which equals the doping. The simulation had 7 voltage points
and took in total 27 Poisson/transport equation iterations, thanks to an
efficient convergence scheme

importance to consider the effect of strain on the band-
structure and transport properties of novel devices. Het-
erostructures composed of lattice mismatched materials ex-
hibit strain intrinsically. As shown in Fig. 3, NEMO5 is
able to compute strain and relax the atomistic heterostruc-
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Fig. 3 Strain simulation in a Nitride Hetero-structure Nanowire us-
ing NEMO5. (a) Physical structure and dimensions, (b) plot of strain
component ezz which shows long range diffusion of strain

tures using the Enhanced Valence Force Field (EVFF) [16–
18]. The energy functional contains not only Keating terms
such as bond-stretching and bond-bending interactions, but
also cross-stretching, stretch-bending, and second-nearest-
neighbor angle-angle interactions. For polar materials, the
long-range Coulomb interaction can be added in the case of
0-D (bulk) and 3-D (confined) simulations. NEMO5 con-
tains two strategies for elastic energy minimization. One
uses Jacobian and Hessian matrices and can be used only
for small structures. The second method is approximate and
is based only on the Jacobian.

5 Phonons

Nanowires show excellent thermo-electric properties which
make them favorable for thermo-electric devices. For ex-
ample silicon nanowires exhibit 100 times better ZT com-
pared to bulk silicon and can achieve maximum ZT around 1
[19], creating a strong motivation for accurate phonon mod-
eling in nanoscale devices. It is well known that the Keat-
ing model overestimates phonon energies of both optical and
acoustic branches [18]. NEMO5 is able to calculate phonon
dispersion using the EVFF model which provides a reason-
able match with experimental phonon dispersion (Fig. 4).

Fig. 4 Phonon dispersion of Si calculated by EVFF model using
NEMO5 vs. experiment

The dynamical matrix has been calculated by the following:

D
i,j
λ,μ = 1

√
MiMj

∂2U

∂rλ
i ∂r

μ
j

e−iq·rij (1)

in which i and j are atom indexes, λ and μ can be one of x,
y or z directions, q is the phonon wave vector, Mi and Mj

are atom masses for atom i and j respectively and U is the
total elastic energy of the system.

6 Metal insulator transition—SmSe

With shrinking physical dimensions, the total transistor
number in a single chip has been increasing exponentially
for each generation. However, the scaling of the supply volt-
age in Silicon based MOSFET is limited by the 60 mV/dec
subthreshold swing (SS). The desire to reduce heat dissi-
pation drives research for devices with different switching
mechanisms [20].

The Piezoelectronic Transistor (PET) [21, 22] is a promis-
ing approach to achieve a high ON/OFF ratio with very
small voltage swing. In PET, the gate voltage is transduced
to acoustic waves through a buffer layer made with piezo-
electric (PE) materials. The channel layer of piezoresistive
(PR) materials, e.g. Samarium monochalcogenides, is ca-
pable of modifying the conductance by several orders of
magnitude subjected to moderate strain [23] which is gen-
erated by deformation of PE. When the dimensions of PET
are reduced to the nanometer scale, the device performance
will be dominated by quantum effects. Quantum confine-
ment will change band structure and minimum leakage is
determined by tunneling. To simulate devices of realistic di-
mensions, computationally efficient models like Empirical
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Fig. 5 Band structure of SmSe calculated with ETB. (a) bulk band
structure of SmSe. (b) modification of bandgap under hydrostatic and
uniaxial strain

Tight-Binding (ETB) are necessary. To obtain accurate pa-
rameterization, the SmSe band structure was first calculated
in density functional theory (DFT) within the generalized
gradient approximation with Hubbard-type U (GGA+U).
A tight-binding band model including spdfs* orbitals is im-
plemented based on analysis of the DFT angular momen-
tum decomposition at the band minima [24, 25]. The inclu-
sion of enhanced spin-orbit coupling for f -orbit is critical
to account for the large 4f5/2–4f7/2 splitting due to a strong
electron-electron interaction of localized f electrons. This
model captures the band structure features and the variations
of the bandgap in response to the strain predicted by DFT
calculations (Fig. 5). The obtained TB parameters are then
used in quantum transport simulations with (NEGF).

7 Material parameterization

The ETB method is widely used in atomistic device sim-
ulations. The reliability of such simulations depends very
strongly on the choice of basis sets and the ETB parameters.
The traditional way of obtaining the ETB parameters is by
fitting to experiment data, or critical theoretical bandedges
and symmetries rather than a foundational mapping. A fur-
ther shortcoming of traditional ETB is the lack of an explicit
basis.

The more profound mapping method was developed with
the process shown in Fig. 6. The first step is to perform ab-
initio calculations of the band structure of a material. In gen-
eral, any method that is capable to calculate electronic band
structures and wave functions is suitable here. In the sec-
ond step, the ETB basis functions for each type of atom are
defined as

Ψn,l,m(r) ≡ Ψn,l,m(r, θ,φ) = Rn,l(r)Yl,m(θ,φ), (2)

where the functions Yl,m are the complex spherical harmon-
ics with angular quantum numbers l and m; and the func-

Fig. 6 The process of tight-binding (TB) parameters construction
from DFT calculations

tions Rn,l are exponentially damped plane waves

Rn,l(r) =
N∑

i=1

[
ai sin(λir)+bi cos(λir)

]
rn−1

× exp(−αir). (3)

The parameters ai, bi, αi, λi are the fitting parameters. With
a given set of ETB basis functions Ψ k

TB, the DFT Hamilto-
nian is transformed to the tight-binding representation. Any
non-zero off-diagonal element of the overlap matrix is ne-
glected. The ETB Hamilton matrix elements are approxi-
mated by two center integrals according to the Slater–Koster
table [27, 28]. ETB Hamilton matrix elements beyond ei-
ther 1st or 2nd nearest neighbor coupling are neglected. In
Step 4, the band edges, effective masses and eigen functions
of the Hamiltonian at high symmetry points are calculated
and compared to the corresponding DFT results. The over-
laps of the ETB basis functions are also determined. In the
fifth step, all fitting parameters are adjusted to improve the
agreement of the ETB results with the DFT results and also
to reduce the overlap matrix of the ETB basis functions to
the unity matrix. Steps 2–5 are repeated until the conver-
gence criterion is met. Step 6 requires to extract the con-
verged ETB basis functions and the ETB two center inte-
grals.

The DFT mapping method has been validated in NEMO5
using Si and GaAs [24]. It is also applied successfully to An-
timonides and new materials such as MgO [24], SmSe [25].
MgO cyrstalizes in rock salt structure. Each oxygen atom
has six magnesium atoms as 1st nearest neighbors and
twelve oxygen atoms as 2nd nearest neighbors. MgO is pa-
rameterized for a 2nd nearest neighbor sp3d5s∗ ETB model.
Within this model, the interaction between two oxygen
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Fig. 7 Band structure and density of states of MgO by DFT and TB

atoms is required to produce the correct valence bands. It
can be seen from Fig. 7 that the ETB band structure matches
the DFT result well within the energies −5 to 15 eV.

8 Tight-binding parameterization of metals

Metals play a significant role in microprocessor operation.
Besides connecting individual transistors, metal vias and in-
terconnects deliver bias current, clock signals and metal-
stacks are used for gate metallization. In the existing quan-
tum mechanical atomistic device-modeling paradigm, metal
contacts are used to set the Fermi levels in the source and
drain of the transistor. Once this is done, the metals are es-
sentially abstracted out of the usual Schrödinger–Poisson or
NEGF-Poisson solution. Owing to decreasing device dimen-
sions, the resistance drop across the metal-semiconductor
contact is becoming an increasingly important issue. Addi-
tionally, from an overall power dissipation perspective, the
increase in metal resistivity with decreasing via dimension-
ality is an extremely important unsolved problem [1]. Atom-
istic modeling of metal grain boundary interfaces, metal
interconnect-liner interfaces and metal-semiconductor inter-
faces can provide significant guidance in the design of low-
resistivity metal interconnects, liner materials and metal-
semiconductor interfaces with low Schottky-barrier heights.
With these objectives in mind, we have created accurate and
computationally efficient Semi-Empirical Tight-Binding
(SETB) models of Metals and Metal-Semiconductor inter-
faces suitable for studying electron transport in the afore-
mentioned, technologically important systems.

NEMO5 contains tight-binding models that have been
formulated specifically to study the phenomenon of resistiv-
ity increase in metals with decreasing interconnect dimen-
sions and electron transport across metal-semiconductor in-
terfaces. As an example of the capabilities NEMO5 has in
this regard, Fig. 8 shows the bulk band structure of Cu ob-
tained using an efficient 1st Nearest-Neighbor SETB rep-
resentation of its FCC phase. This band structure is ob-
tained by fitting to LCAO Density Functional Theory (DFT)

Fig. 8 Bulk band structure of Cu in FCC phase calculated using the
SETB (dots) formalism and DFT (solid lines). Notice that our SETB
model accurately captures DFT band structure features in all energies
of interest in electronic transport

Fig. 9 Transmission for a 1 nm cell along the [001] direction in Cu
computed using SETB and DFT

band-structure for Cu using the exchange-correlation func-
tional of Perdew and Zunger within the Generalized Gra-
dient Approximation (GGA) [26]. It can be seen that the
tight-binding model reproduces the DFT band structure ac-
curately. In Fig. 9, the transmission in bulk Cu along the
[001] direction is computed using SETB and DFT and the
results are compared to each other. It is evident that our
SETB model reproduces the DFT results extremely accu-
rately in the energy range of interest—a few kT’s below and
above the Fermi level.

9 Topological insulators—Bi2Te3

Topological Insulators (TIs) are a new state of matter with
a bulk insulating gap and metal-like states on the surface or
edge. The surface or edge states which are described by a
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Fig. 10 The bandstructure of a [100] grown Bi2Te3 quantum well. The
conduction and valence bands are connected by a linear dispersion also
known as a Dirac cone, depicted within the box. The color bar denotes
the strength of spin-polarization

linear Dirac Hamiltonian are robust and protected by time
reversal symmetry [29, 30]. Topological insulators have ac-
quired prominence because they offer a rich collection of
fundamentally new phenomena along with a wide array of
applications including optoelectronic THz detectors, spin-
polarized contacts, ultra-fast switches, etc. [31]. Several TI
materials are known to exist at room temperature. Bi2Te3

and Bi2Se3 which possess bound surface states (Fig. 10) are
well-known examples.

The unique properties of TIs are attributed to the linear
dispersion of surface states that connect the conduction and
valence band together. Further, these states have their spin
locked perpendicular to momentum in-plane. NEMO5 of-
fers the capability to compute the atomistic band structure
of bulk and confined Bi2Te3 devices. The undoped Bi2Te3

is a narrow band-gap quintuple-layered semi-conductor with
a rhombohedral crystal structure. The quintuple layer crys-
tal structure is used in a twenty band tight-binding model.
All parameters for these calculations were obtained from
a orthogonal tight-binding model with sp3d5s∗ orbitals,
nearest-neighbor interactions, and spin-orbit coupling [32].
Additionally, the dispersion is spin-resolved and conforms
exactly to experimentally observed spin-polarization (see
Fig. 10).

The corresponding Fermi-surface of the surface states ex-
hibit a peculiar snow-flake structure. NEMO5 predicts this
(Fig. 11), in agreement with experiments [33].

When conduction band and valence bands are connected
(as in the case of TIs) conduction and valence bands can-
not be unambiguously separated. Since an accurate predic-
tion of device characteristics and material properties needs
charge self-consistent calculations, it is imperative to devise
electronic structure calculation models for materials where

Fig. 11 The Fermi-surface of the surface states of Bi2Te3 with the
distinctive snow-flake structure

an explicit differentiation between electrons and holes is not
possible. NEMO5 introduces the concept of a novel charge
self-consistent full-band atomistic tight-binding method that
avoids usage of holes. Hereby, the model of Andlauer and
Vogl has been extended to atomistic tight-binding [34].

10 Bandstructure unfolding

Semiconductor alloys do not possess translational symme-
try, owing to a random distribution of atoms. For exam-
ple, the cationic sites in AlxGa1−xAs can either accommo-
date an Al or a Ga atom. Thus semiconductor alloys can-
not, in principle, have an associated bandstructure. Never-
theless, it is common to measure and use quantities associ-
ated with bandstructure (for example, energy bandgap and
effective mass) to design and analyze devices in these ma-
terials. A compromise between the above two positions is
to allow for an approximate bandstructure of alloys, where
each energy band is broadened as a result of randomness.
The supercell method [35, 36] provides a computational
framework to perform such a calculation. The essential idea
is to construct a very large supercell which is randomly pop-
ulated with atoms. A supercell of say Si0.4Ge0.6 would have
roughly 40 % of atoms being Si, while the rest being Ge.
Periodic boundary conditions are imposed on this large su-
percell, and its energy spectrum determined (typically at a
single K point). The supercell is viewed as being made up
of fictitious primitive cells called small-cells. The supercell
energy spectrum is finally unfolded onto the small-cell Bril-
louin zone and approximate small-cell energy bands deter-
mined.

In order to obtain adequate points along a particular di-
rection n in the small-cell Brillouin zone (say [100], [110],
[111] etc.), it is convenient to work with specially chosen su-
percells. Reference [37] describes special rectangular, non-
primitive unitcells that are used as building blocks to con-
struct such supercells in NEMO3D [38, 39]. This approach
has two drawbacks—(i) the non-primitive unit cell is it-
self made up of a number of small cells, requiring an ad-
ditional unfolding step that is dependent on n; (ii) it cannot
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Fig. 12 Energy bands of Si0.5Ge0.5 alloy obtained using the supercell
method compared with those obtained with the VCA method

be used for materials (like GaN) which do not have rect-
angular unit cells. NEMO5 implements a more general ap-
proach, based on [40, 41] where the supercell is built by
cascading specially chosen primitive cells (which could be
non-rectangular).

Figure 12 shows the approximate energy bands of
Si0.5Ge0.5 along the [110] direction obtained by unfolding
from a supercell containing 248 atoms. The atomic positions
have been relaxed using a Keating model. Also shown are re-
sults of a virtual-crystal-approximation (VCA) [42], which
computes energy bands using a primitive cell consisting of
virtual atoms, whose properties are obtained by interpolat-
ing those of Si and Ge. It is interesting to note that the VCA
approach provides a good estimate of the energy bands of
bulk SiGe; nevertheless, the VCA approach has been known
to be erroneous for SiGe wires [39].

11 Conclusion

An overview of the NEMO5 nanoelectronics modeling tool
has been given with updates regarding recent advances in
physical models and associated code. With focus on effi-
cient, scalable quantum transport algorithms, combined with
flexibility to handle a wide variety of device structure and
materials, NEMO5 seeks to be a cohesive package to pro-
vide accurate modeling of nanoscale devices.
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