
1

Efficient and robust adaptive
consensus services based on oracles

Optimistic Replication in Pharos,Optimistic Replication in Pharos,

a Collaborative Application on the Web

Esther Pacitti,Esther Pacitti,

Olivier Dedieu

Lívia Sampaio* and
Francisco Brasileiro**

*Coordenação de Pós-Graduação
em Engenharia Elétrica

**Coordenação de Pós-Graduação
em Informática

Universidade Federal de Campina Grande
58109-970 - Campina Grande - PB - Brazil

{livia — fubica}@dsc.ufcg.edu.br

Abstract
Due to their fundamental role in the design of fault-

tolerant distributed systems, consensus protocols have
been widely studied. Most of the research in this area has
focused on providing ways for circumventing the impossi-
bility of reaching consensus on a purely asynchronous
system subject to failures. Of particular interest are the
indulgent consensus protocols based upon weak failure
detection oracles. Following the first works that were more
concerned with the correctness of such protocols, perfor-
mance issues related to them are now a topic that has
gained considerable attention. In particular, a few studies
have been conducted to analyze the impact that the qual-
ity of service of the underlying failure detection oracle has
on the performance of consensus protocols. To achieve
better performance, adaptive failure detectors have been
proposed. Also, slowness oracles have been proposed to
allow consensus protocols to adapt themselves to the
changing conditions of the environment, enhancing their
performance when there are substantial changes on the
load to which the system is exposed. In this paper we fur-
ther investigate the use of these oracles to design efficient
consensus services. In particular, we provide efficient and
robust implementations of slowness oracles based on tech-
niques that have been previously used to implement adap-
tive failure detection oracles. Our experiments on a wide-
area distributed system show that by using a slowness
oracle that is well matched with a failure detection oracle,
one can achieve performance as much as 53.5% better
than the alternative that does not use a slowness oracle.

Keywords: consensus protocols; asynchronous dis-
tributed systems; adaptive protocols; slowness oracles;
unreliable failure detectors; predictors.

1 INTRODUCTION
Consensus protocols play a key role in the design

of fault-tolerant distributed systems, as they form the ba-
sis for several important distributed services, such as
atomic broadcast, group membership, atomic commitment,
among others [20, 1, 8]. Informally, a consensus protocol
allows a set of n processes (among which up to f may
crash) to reach agreement on a common value (eg. the
total order for message delivery, the set of members to
exclude or include in a group, whether a transaction should
be committed or not).

Despite its apparent simplicity, it has been shown
that this problem is impossible to be solved in a purely
asynchronous system, even if as little as a single process
may crash [6]. In fact, most of the work that has been devel-
oped in this area has attempted to provide ways for circum-
venting this impossibility result. One possible approach
consists in considering that the distributed system pos-
sesses some extra level of synchrony sufficient to allow
deterministic solutions to the problem. The most popular
representative of this approach is based on equipping the
(otherwise) purely asynchronous system with unreliable
failure detection oracles [1]. Such oracles output the set of
processes that they currently suspect to have crashed (or,
alternatively, a set of processes that are currently trusted to
be correct).

Different classes of failure detectors have been de-
fined. They differ in the set of properties that the members
of the class must provide. It has been shown that the ◊S◊◊
class is the weakest class of failure detectors that allows a
deterministic solution to the consensus problem in asyn-
chronous systems subject to failures [2]. Thus, it is not
surprising that most of the consensus protocols based on

Raul Ceretta Nunes

Departamento de Eletrônica
e Computação

Universidade Federal
de Santa maria

97105-900 - Santa Maria
RS - Brazil

ceretta@inf.ufsm.br

Ingrid Jansch-Pôrto

Instituto de Informática
Universade Federal

do Rio Grande do Sul
91501-970 - Porto Alegre

RS - Brazil

ingrid@inf.ufrgs.br

2

failure detectors that have been proposed so far use a 1

failure detector [1, 18, 12, 13, 7].

Most consensus protocols based on a failure
detector are asymmetric, in the sense that different partici-
pants can assume different roles during the execution of
the protocol [1, 18, 12, 13, 7]. Such protocols are structured
as a sequence of asynchronous communication rounds. In
a given round, processes may normally assume one of two
possible roles: a ‘special’ role, in which the process be-
haves as a coordinator2 of the round, and a ‘normal’ role, in
which the process simply cooperates with the round coor-
dinator. These protocols must guarantee liveness and safety,
i.e., the protocol eventually terminates and processes en-
gaged in the consensus never decide different values.
Liveness is achieved by using a failure detector to prevent
processes from blocking forever, waiting for an action from
a crashed coordinator. In this case, another coordinator is
chosen. To guarantee safety, i.e., that a decision taken by a
process in the earliest round that yields a decision is the
same that will be taken by another process which, for some
reason, is only able to decide in a future round, these proto-
cols require a majority of correct processes, i.e., n > 2f2 +1,ff
as well as some kind of locking mechanism. This fact pro-
vides these protocols with a very important characteristic:
they are indulgent [7] in relation to the failure detector that
they use, i.e., even if the failure detector misbehaves, the
safety properties of consensus are still preserved.

On the other hand, the asymmetric structure of these
protocols has a performance pitfall, specially when pro-
cesses and communication channels are subject to consid-
erable variability in load. For instance, this is the case when
the protocol is executed over an open system whose com-
munication is supported by wide-area channels. This is a
common scenario for many applications, including the
emerging grid middleware infra-structure (see for example
the scheduler service of the PARADIS system [10]). In this
scenario, if the coordinator of the first round is correct but
runs slow (because either its processor or its communica-
tion channels - or both - are overloaded), the performance
of the protocol may suffer [17]. Sampaio et al. [17] have
proposed the use of slowness oracles to tackle this prob-
lem.

A slowness oracle collects system wide information
about the responsiveness of processes and outputs the
(unique) identity of the process that it judges to be the
most responsive at the moment. The consensus protocol
that uses a slowness oracle chooses the coordinator of the
first round by querying the oracle, instead of relying on an
a priori agreement (that could result in choosing a slow

coordinator). To guarantee agreement, it takes advantage
of the fact that, in many practical systems, consensus is
provided as a service that is invoked by its clients many
times in succession (for instance, in a replicated server, con-
sensus is invoked every time a new request arrives, while
in the replicated scheduler of PARADIS it is invoked when-
ever a new job/task submission is received). In this way, the
process identity to be output in the kthkk invocation of the
slowness oracle (k > 1) is agreed upon during the execution
of the (k - 1)th consensus3.

In the very simple implementation of a slowness oracle
presented in [17], processes are classified as slow or fast
based on the round trip delays of the messages they ex-
change during the past executions of consensus. There is a
fixed threshold that is used to identify slow/fast processes.
The most responsive process is the one that is seen as fast
by the largest number of processes (with the ordered identi-
ties of the processes being used to break ties). Moreover, to
better account the impact of adaptation due to the use of the
slowness oracle, it is assumed that the failure detector makes
no mistake. In fact, in the simulations conducted, the failure
detector module was replaced by a mock implementation that
always returned an empty set of suspected processes, obvi-
ating the need for exchanging failure detection messages.
Nevertheless, the simulation results presented in [17] show
that even this very naive implementation of a slowness oracle
is able to increase the performance of consensus in as much
as 17% for a lightly loaded system.

CONTRIBUTIONS
In this paper we further investigate the use of slow-

ness oracles in the design of adaptive consensus services.
In particular, we study more elaborated implementations of
such mechanism. Firstly, we address the issue of better es-
timating the process that is the most responsive. The imple-
mentation discussed above relies on a fixed threshold to
identify slow/fast processes. Thus, setting this threshold
is a key deployment decision. Too small thresholds will mask
fast processes and trigger unnecessary adaptation, while
too large thresholds will mask slow ones and prevent a
required adaptation. This problem is closely related to that
of dynamically tuning timeouts of failure detectors. In this
paper we apply techniques used to implement adaptive fail-
ure detectors to achieve efficient and robust implementa-
tions of slowness oracles, in the sense that they allow ad-
aptation to occur without requiring any difficult deploy-
ment decisions to be taken. Secondly, we tackle the issue of
efficiently accommodating failure detection and slowness
oracles in the design of a consensus service. In particular,
we propose an architecture for the design of oracle-based
consensus services. Finally, we analyse the performance of
adaptive and non-adaptive implementations of consensus
services, using both simulations and experiments on a real

1 Or a failure detector that is equivalent to a failure detector
such as W or Ω [2].Ω

2 We will use the term coordinator to refer to the process that plays
this special role; we note, however, that sometimes it has been
referred by other terms in the literature (eg. leader).

3 Obviously, agreement on the first invocation of the slowness oracle
(k = 1) must be achieved a priori.

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

3

system. Our experiments on a real system show that by
using a slowness oracle that is well matched with a failure
detection oracle, one can achieve performance as much as
53.5% better than the corresponding alternative that does
not use a slowness oracle.

ROAD MAP
The rest of the paper is structured in the following

way. Related work is discussed in Section2. Section 3 pre-
sents the system model and some definitions. Then, in Sec-
tion 4 we present the design of slowness oracles to support
adaptive consensus protocols. In Section 5 we investigate,
through simulation, the performance of a consensus ser-
vice based on the protocols presented in Section 4. Section
6 discusses how to better integrate failure detection and
slowness oracles when designing a consensus service.
Performance analysis of the non-adaptive and adaptive
versions of the service within a real system is conducted in
Section 7. Finally, Section 8 concludes the paper.

2 RELATED WORK
Following the first theoretical results that aimed at

proving the correctness of consensus protocols based on
unreliable failure detectors, performance analysis of such
protocols is now a research topic that has gained consider-
able attention [19, 4, 11, 23].

In [23], Urbán et al. compare the performance of two
indulgent consensus protocols based on distinct oracles.
The results show that the protocol that uses a leader oracle
only outperforms the other protocol based on a failure
detector in scenarios where either the failure detector often
makes mistakes or correlated crashes occur. In the other
scenarios, both protocols have a similar performance. Since
in a wide area setting correlated crashes are very unlikely,
and failure detection oracles can be designed to provide
very good quality of service (QoS), in practice, both types
of oracles lead to similar performance results. In this paper
we only consider protocols based on failure detectors.

When considering performance of consensus pro-
tocols that use a failure detector, the majority of the
published research analyze how the QoS of the failure de-
tection service, or the extra communication load generated
by its implementation, impact the performance of the proto-
col [19, 4]. failure detectors are usually implemented by
using timeouts to identify faulty processes. Therefore, the
issue of tuning these timeouts is a crucial point in the de-
sign of an efficient failure detector. Too small timeouts in-
crease wrong suspicions, which, may harm the performance
of the higher level consensus protocol [17]. On the other
hand, too large timeouts increase the detection latency of
the service, imposing heavy overheads to those runs on
which failures occur [4, 23]. Thus, difficult trade-off issues
have to be analyzed in order to accommodate the conflict-
ing requirements of avoiding wrong suspicions and, at the

same time, minimizing detection latency. A large part of the
work on failure detectors developed so far has been dedi-
cated to address this dilemma. As such, different adaptive
failure detectors have been proposed [3, 16]. Nunes and
Jansch-Pôrto [14, 15, 16] compare different ways for pre-
dicting the round trip delays of messages on a wide area
network. When combined with appropriate safety margins,
these predictors can be used to implement efficient adap-
tive pull-style failure detection oracles [16]. In this work we
study adaptation at the consensus protocol level. In par-
ticular, we study the use of predictors to implement efficient
slowness oracles and how to conveniently combine them
with predictor-based adaptive failure detection oracles.

3 SYSTEM MODEL AND DEFINITIONS
The system model is patterned after the one de-

scribed in [6, 1]. It consists of a finite ordered set II of n, n >
1, processes, namely, II = {p1, . . . , pn}n . A process can fail by
crashing, i.e., by prematurely halting, and a crashed pro-
cess does not recover. A process behaves correctly (i.e.,
according to its specification) until it (possibly) crashes.
By definition, a correct process is a process that does not
crash. A faulty process is a process that is not correct. At
most f, ff f < ⎡(n + 1)/2// ⎤, processes may crash.

Processes communicate with each other by message
passing through reliable communication channels: there are
no message creation, alteration, duplication or loss. Processes
are completely connected via unidirectional communication
channels, i.e., pi sends messages to pjpp through the communi-
cation channel ci,j, while pjpp sends messages to pi via cj,ic . Thus,
a process pi may: 1) send a message to another process pjpp
through ci,j ; 2) receive a message sent by another process pjpp
through cj,i c ; 3) perform some local computation; or 4) crash.
There are no assumptions on the relative speed of processes
nor on message transfer delays.

THE CONSENSUS PROBLEM

In the consensus problem, every process pi pro-
poses a value vi and all correct processes have to decide on
some value v, in relation to the set of proposed values.
More precisely, the uniform consensus problem is defined
by the following three properties [6, 1]:

• Termination: every correct process eventually de-
cides some value;

• Validity: if a process decides v, then v was proposed
by some process; and

• Uniform agreement: no two processes (correct or
not) decide differently.

To allow a deterministic solution to the consensus
problem, we enhance the system with an unreliable failure
detector [1]. In particular, we consider consensus protocols
that are supported by a failure detection oracle of the class

. A failure detection oracle is formally defined by
the following completeness and accuracy properties [1]:

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

4

• Strong completeness: eventually every process that
crashes is permanently suspected by the oracle of
every correct process; and

• Eventual weak accuracy: there is a time after which
some correct process is never suspected by the
oracle of any correct process.

4 EFFICIENT AND ROBUST SLOWNESS ORACLE
Our goal is to build a distributed consensus service

that can be concurrently used by several distributed appli-
cations. To use the service each process running the appli-
cation must propose a value to its local consensus module.
Thus, over time, a sequence of consensus protocols is ex-
ecuted. It is possible to optimize the service by allowing a
single execution of the consensus protocol to carry propo-
sitions from several distinct applications [9].

This section is structured in the following way. We
start by sketching the structure of a classical non-adaptive
consensus protocol and showing how this protocol can be
made adaptive by enhancing it with a very simple slowness
oracle. Then, we present the design of an efficient and ro-
bust slowness oracle. Note that, the consensus protocol
described below is used as an example of adaptive distrib-
uted protocol based on slowness oracle. We believe that
such an oracle can be applied to many other asymmetric
distributed protocol.

4.1 A CLASSICAL NON-ADAPTIVE CONSENSUS PROTOCOL

Several protocols to solve the consensus problem
have been proposed. We focus our work on the classical
consensus protocol presented by Chandra and Toueg [1]
(for the sake of brevity, we will name this protocol CT-con-
sensus). CT-consensus uses a failure detection service of
the class, and is based on the rotating coordinator
paradigm.

The protocol is executed in asynchronous rounds.
It is assumed that all processes have an a priori knowledge
of the identity of the process that plays the role of the
coordinator of each round (for instance, by using a round-
robin sequence on the ordered identities of processes, start-
ing from the p1). Within each round of the protocol, pro-
cesses execute the following phases. In the first phase, ev-
ery process sends its current estimation of the decision
value to the round coordinator. In the second phase, the
round coordinator gathers ⎡(n + 1)/2// ⎤ estimations, chooses
one of them, and sends it to all processes as its new propo-
sition value. This choice must respect a locking mechanism
that guarantees the agreement property of the consensus.
It is based on the value of a time-stamp associated with
every estimation message received. When different from 0,
this time-stamp indicates the largest round on which a pro-
cess has acknowledged a proposition. Upon receiving a
majority of estimations, a coordinator must choose an esti-
mation from those carrying the highest time-stamp. It also
uses this value to update its current estimation value. In

phase three processes wait for the proposition from the
round coordinator. To avoid the possibility of blocking for-
ever due to a faulty coordinator, a process constantly que-
ries its failure detection service to assess the round coordi-
nator status. If the round coordinator is suspected, the pro-
cess sends a nack message to the round coordinator (no-
tice that a suspicion does not mean that the round coordi-
nator has indeed failed, thus nacks are sent to prevent a
wrongly suspected coordinator from blocking forever). On
the other hand, if it receives the proposition value from the
round coordinator, it adopts the proposition (by updating its
current estimation with this value), updates its logical clock
(used to generate time-stamps) with the number of the cur-
rent round, and sends an ack message to the round coordi-
nator. In the last phase the round coordinator collects
⎡(n+1)/2// ⎤ replies (acks and nacks), and if all replies are acks
it initiates the reliable broadcast [1] of the decision value it
had proposed. A process finishes the execution of the proto-
col when it reliably delivers the decision value that has been
reliably broadcast by a successful coordinator. Until a deci-
sion is not reached, a process that has finished its execution
of round k, proceeds to execute round kk k + 1.

4.2 ADAPTATION VIA SA LOWNESS ORACLES

Slowness oracles were defined in [17] as an abstrac-
tion to construct adaptive distributed protocols. A slow-
ness oracle is able to identify the particular situations in
which the environment conditions are not favorable to the
execution of the protocol, and then, trigger an adaptation.
For the consensus protocol presented in the previous sec-
tion, a slowness oracle SO must provide the following prop-
erties [17]:

• Termination: when a correct process queries SO for
the identity of the coordinator of the first round of
the kthkk execution of the consensus, k > 0, eventually
SO returns a process identity;

• Validity: SO always returns the identity of a process
that belongs to the set II;

• Agreement: no two correct processes receive a dif-
ferent identity when they query SO for the same
execution of the consensus.

In this case, the slowness oracle is an atomic coor-
dinator selector which guarantees that every correct pro-
cess will choose the same coordinator for the first round
(and, therefore, for any subsequent round) of every execu-
tion of the protocol [17]. Note that, in order to allow con-
sensus protocols to adapt itself to the changing conditions
of the execution environment, SO must use new knowledge
(system feedback) gathered during its execution to choose
a suitable round coordinator.

A very simple implementation of a slowness oracle
has been proposed in [17] (let us name the resulting adap-
tive consensus protocol by ACT-consensus). This imple-
mentation aimed to prove the concept of slowness oracles.
To reduce overheads to a minimum, it is tightly coupled to

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

5

the implementation of the CT-consensus protocol. The slow-
ness information collected is the round trip delays in the
communication steps of the consensus executions. Thus, a
round coordinator is able to collect delays with respect to
at least a majority of processes, while the other processes
are able to collect delays with respect to the round coordi-
nator (see Section 4.1). A fixed predefined threshold is used
to classify a process in either fast or slow. Local slowness
knowledge is disseminated without extra messages with the
aid of the consensus protocol messages (by piggybacking
the required information). Each process pi consolidates the
(local and remote) slowness information gathered in a local
slowness matrix in which entry [j, k[[] is set to ‘fast’ if kk pjpp
thinks that pk is running fast, and to ‘slow’ otherwise. A
common global slowness matrix (named global matrix) is
attained by using the consensus protocol itself to achieve
agreement, i.e., the global matrix stored at the beginning of
the kthkk execution of consensus protocol is provided together
with the decision value of the (k - 1)th execution of the con-
sensus protocol (all processes start with the same global
matrix that they use to chose the coordinator of the first
execution of the consensus protocol). An a priori agreed
deterministic function is then applied to the common global
matrix to chose the appropriate coordinator. The following
algorithm can be used to choose a coordinator. First, a pro-
cess pi constructs, for all processes pjpp , pjpp ∈ II, the ordered
sets fast(j(() containing the identity of the processes that
believe pjpp is ‘fast’ at the moment. The ordered sets fast(j(() are
given by:

Then, pi builds the following two subsets of II:

The coordinator is the process pc with the smallest
identity from the first non-empty set in the sequence Class1,
Class2, and II. In other words, the algorithm tries to find a
process that is believed to be fast by all other processes.
When the set Class1 is empty, it tries to find a process that
is believed to be fast by a majority of processes (a process
in the set Class2). If there is no such process, it chooses
one from II. In all cases, the identities of processes are used
to break ties.

The termination, validity and unifrom agreement
properties of consensus guarantee that all correct processes
will apply the above described deterministic function to the
same global matrix, and therefore, will reach the termination,
validity and agreement properties of the slowness oracle.
Adaptability is guaranteed by using round trip delays col-
lected during run time to update the global matrix [17].

4.3 ROBUST DESIGN OF SLOWNESS ORACLES

The implementation of the slowness oracle presented
in the previous section has two drawbacks. First, it requires

the definition of a threshold to classify fast and slow pro-
cesses. As will be shown shortly in Section 5, the optimal
threshold may vary among different scenarios. Secondly, it
uses only the last round trip delay measured to classify a pro-
cess, which for some scenarios may result in poor adaptation.
We show in this section a novel design for a slowness oracle
that tackles these issues in an effective way.

As previously discussed, the problem of identify-
ing a threshold to differentiate fast processes from slow
ones is closely related to that of setting the timeouts of a
failure detection oracle. However, in the case of a slowness
oracle, there is no need to use such a threshold. In fact, the
very round trip delays measured can be used to identify the
most appropriate process to be used as a coordinator. In
particular, for the CT-consensus protocol, extra performance
penalty can be incurred whenever the coordinator blocks
waiting for messages. However, as soon as the coordinator
receives messages from a majority of processes, it is able to
proceed in the execution of the protocol. Thus, the most
suitable coordinator is the process with which at least a
majority of processes are able to communicate the fastest.

Regarding the second issue, considering only the
last known round trip delay to select the coordinator may
be inadequate, specially when the round trip delays distri-
bution may oscillate widely within a relatively short time
period. Again, this is an issue that has been studied in the
context of designing adaptive failure detection oracles [3,
16]. In particular, the approach based on predictors studied
by Nunes and Jansch-Pôrto [16] can be used to implement
both adaptive failure detection oracles as well as slowness
oracles.

Following this approach, it is possible to design a
more decoupled version of an adaptive CT-consensus ser-
vice. In this case, the consensus module is completely sepa-
rated from the slowness oracle module. Further, a predictor
element is introduced. The predictor module is associated
to a probe generator that is responsible for gathering peri-
odic information about round trip delays. Instead of using
round trip information computed within the consensus
module, the slowness oracle uses the predictor to periodi-
cally compose its local slowness information. Let us name
this predictor-based adaptive consensus service P-ACT
consensus.

Whenever the consensus module wants to start an
execution of the consensus protocol it queries the slow-
ness oracle for the identity of the coordinator of the first
round. The slowness oracle module keeps a global slow-
ness matrix that stores round trip delays, i.e., entry [j, k[[] is
the current predicted value for the round trip delay between
processes pjpp and pk. Each entry of this matrix is initially set
to 0. The slowness oracle applies an a priori agreed func-
tion over the consensual global slowness matrix to choose
the coordinator of the first round and returns its identity to
the consensus module. Moreover, the consensus module
queries its local slowness oracle module to obtain the local
slowness matrix that it wants to propose in the current con-
sensus execution. Upon reaching a decision, the consen-

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

6

sus module instructs its local slowness oracle module to
update its global slowness matrix with the slowness matrix
value that has been agreed. Figure 1 illustrates this design
(arrows indicate the direction of the communication flow
among the consensus modules).

A possible procedure to extract the common iden-
tity of the coordinator from the global slowness matrix is
the following: let majority_rtti be the ⎡(n+1)/2// ⎤th smallest
round trip delay expected for the communication between
any process and pi (including pi); the slowness oracle mod-
ule calculates majority_rttk for every process pk, 1 < k < n
and outputs the identity of the process that has the small-
est value for majority_rtt (with the ordered identities being
used to break ties).

5 PERFORMANCE EVALUATION
We used a simulation model to evaluate the perfor-

mance of the consensus protocols previously discussed.
This evaluation was conducted with the support of the
NEKO framework [22]. The use of the NEKO framework
allows sharing the same Java source code for both simula-
tion and executions in a real environment. Since crash fail-
ures are rare, we focused our study on failure free runs.
Moreover, we considered configuration scenarios with n =
3 and n = 5 processes. The mean of the minimal execution
time of the protocols was used as the performance metric.
In simulations we measured time with the support of the
clock of an external observer. All processes started the ex-
ecution of a given consensus instance at the same time.
Thus, the minimal execution time of each consensus in-
stance is given by the time that the first process decides
minus the time that the consensus execution has been
started. The mean was calculated over the k consensus
executions that comprised a given simulation experiment.

A key characteristic of the communication model pro-
vided by the NEKO framework is that it accounts for resource
contention (see [21] for more details). We implemented a net-
work model, based on NEKO, for a wide area network (WAN),
in which only network contention is considered4. In this case,
if a particular network channel ci,j is busy when pi sends a
message m to pjpp , then m is put into a waiting queue, remain-
ing there until ci,j is available for m to be transmitted. Com-
munication delays are based on real workloads which de-
scribe the behavior of machines connected via a WAN. The
workloads were obtained with the support of the Network
Weather Service Tool (nws tool, available at http://
nws.cs.ucsb.edu/). The experiments using the nws tool were
run on five machines distributed among the following do-
mains: USA (planetlab1.ucsd.edu), CANADA
(cloudburst.uwaterloo.ca), JAPAN (planetlab1.
koganei.wide.ad.jp), BRAZIL (planetlab1.pop.mg. rnp.br) and
HAWAII (dsi.i2.hawaii.edu). We have monitored the latency
(network transmission delay) between every pair of machines
in the WAN, at every 5 minutes, during about 24 hours.

By using the workload traces for these machines, 3
network configurations were constructed, they are: i) CF1 -
JAPAN, USA, CANADA; ii) CF2 - BRAZIL, CANADA,
JAPAN; and iii) CF3 - CANADA, USA, JAPAN, BRAZIL,
HAWAII. Each network configuration describes 8 hours of
workload. For each experiment, we simulated 8 hours of
consensus executions, considering one consensus per sec-
ond, which resulted in 28, 800 consensus per experiment.

5.1 MEASURING THE IMPACT OF ADAPTATION

In the first experiment we investigated the perfor-
mance of the slowness oracles. To eliminate any possible

Consensus SO
Informs consensus slowness
information agreed upon consensus (k−1);

to propose in consensus k

asks for the 1st coordinator of
consensus k and slowness information

Informs 1st coordinator and
slowness informantion proposal

Predictor

Round trip delay
prediction

Periodically,
asks for
slowness
information

Probe
Generator

Periodically, updates
the predictor with new
round trip samples

by a predictor-based slowness oracle

There are several possibilities for implement-
ing the predictor module [16]. In this work we use an
implementation of the predictor BROWN. This predic-
tor assumes a linear trend model and works as a double
low-pass filter. By extrapolation its prediction follows,

, where

 is the simple exponential smoothing,

computed as , , and
is the double exponential smoothing, computed as

As discussed above, a slowness oracle can be de-
signed as an independent service that provides a specific
functionality and can be accessed by a well defined inter-
face. Such a design contributes to the separation of con-
cerns when developing distributed systems. From a theo-
retical point of view, separation of concerns contributes in
the sense of facilitating the proof of correctness of the sys-
tem. On the other hand, it also allows more portable imple-
mentations of distributed protocols.

4 A real distributed system can be subject to heterogeneous communica-
tion and processing loads. From the application point of view (eg.
consensus services) such a load is perceived as the end-to-end delay
in message exchanges. Thus, in a simulated environment, it does not
make much difference whether it is the communication or the pro-
cessing that contributes the most for the total end-to-end delay.

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

7

collateral effect caused by the failure detection oracle, we
considered runs in which the failure detector made no mis-
take. In fact, similar to [17], we used a mock implementation
of the failure detection oracle that always returned an empty
set of suspected processes and generated no overhead.

In CT-consensus, the coordinator of each consen-
sus round is chosen a priori. Thus, with perfect failure de-
tection and no failures, the performance of this protocol is
influenced by the responsiveness of the machine on which
the coordinator of the first round (1st coord) is running. We
simulated CT-consensus under different configuration sce-
narios for 1st coord. The scenarios depended on the net-
work configuration used. For instance, for CF1 three sce-
narios were possible: i) 1st coord running in JAPAN, ii) 1st
coord running in USA, and iii) 1st_coord running in
CANADA. On the other hand, the performance of ACT-
consensus is influenced by the threshold (thd) that indi-
cates if a process is fast or slow. We simulated ACT-consen-
sus with 4 different values for this threshold, namely: 50ms,
100ms, 150ms, and 200ms. Finally, the performance of P-
ACT-consensus is influenced by the configuration of the
predictor module used in the implementation of the slow-
ness oracle. More precisely, it is possible to configure the
frequency with which the probe generator calculates new
round trip delays and informs the predictor of them. Five
periods were used: 1 second, 10 seconds, 30 seconds, 1
minute, and 5 minutes. Note that better prediction is achieved
with the lowest granularity, because it will cause the predic-
tor and, consequently, the slowness oracle to be updated
more often. On the other hand, the lower the granularity the
higher the overhead introduced in the network due to the
transmission of probe messages. We simulated one experi-
ment for each of the scenarios described above. The results
for all the experiments are presented in Figure 2.

Comparing CT-consensus and ACT-consensus, there
is an optimal threshold for ACT-consensus in which its per-
formance is as good as the performance of CT-consensus in
the best configuration scenario (when 1st coord is running
in the fastest machine). When considering the worst sce-
nario for CT-consensus, the adaptive consensus service is
as much as 59.3% better (see CF3). Moreover, comparing
the best result for ACT-consensus with the mean value of all
possible scenarios for CT-consensus, the adaptive consen-
sus service outperforms the non-adaptive in as much as
29.7% (see CF3). Even when the workload is more homoge-
neous (see CF2), ACT-consensus performs as good as pos-
sible. However, as previously pointed out, ACT-consensus
requires the definition of a threshold to classify fast and
slow processes. From the results presented, we can ob-
serve that the optimal threshold varies among the different
workloads (CF1 = 100ms, CF2 = 200ms, CF3 = 150ms). On
the other hand, except for the case in which the frequency
of the probe generator is the lowest (1s), the results of P-
ACT-consensus are very close to those obtained for ACT-
consensus, considering the optimal threshold. We argue
that configuring the sample rate of the probe generator is
much easier than configuring the threshold of ACT-consen-
sus. This is because this rate is application dependent, in-

stead of environment dependent. Thus, it is possible to
choose good values for it without considering the environ-
ment in which it executes. For example, in the case of the
experiments performed with the consensus protocols stud-
ied, any rate around 1 minute is likely to achieve good per-
formance.

In summary, when conveniently configured, the
adaptive protocols are able to adapt themselves to the best
execution scenario (the one in which the most suitable co-
ordinator is always chosen). Moreover, P-ACT-consensus
is more robust against configuration mistakes than ACT-
consensus.

Figure 2: CT-consensus, ACT-consensus and P-ACT-consensus in
different network configuration scenarios

(a) CF1

(b) CF2

(c) CF3

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

8

5.2 MEASURING THE IMPACT OF UNRELIABLE

FAILURE DETECTION

In this section, we analyze what is the impact of
introducing a failure detector module in the consensus ser-
vices presented. We aim at measuring the overhead intro-
duced by the failure detector implementation and how it
impacts the different consensus services.

We used two implementations of failure detectors,
one based on a push-style (FD-Push) and another based
on a pull-style (FD-Pull(() [5]. Both implementations are non-ll
adaptive but use dynamic timeouts. FD-Push uses timeouts
that are increased by 1ms whenever a wrong suspicion is
discovered. On the other hand, the timeouts of FD-Pull are
also adjusted upon the detection of a wrong suspicion, but
following a different approach. When a reply (“I_am_alive!”
message) is received from a process pjpp that is currently
considered suspected, the round trip delay corresponding
to the “I_am_alive!” message is calculated and used as the
new timeout for pjpp .

We ran the same simulation experiments described
in Section 5.1 using CT-consensus, ACT-consensus and P-
ACT-consensus with FD-Push and FD-Pull. The failure de-
tectors were configured to send one message per second
(“Are_you_alive?” query messages for FD-Pull and “I_am_
alive!” heartbeat messages for FD-Push). The timeouts for
FD-Push and FD-Pull were initially set to 50ms and 100ms,
respectively (such values were defined considering the typi-
cal latencies of the workload used in the simulations).

For both CT-consensus and P-ACT-consensus the
performance loss due to the introduction of the failure de-
tector implementation was around 25%, when using FD-
Push, and 27% when using FD-Pull. However, for ACT-
consensus this impact varied from a 49% decrease to a 10%
increase in performance. This is because the overhead in-
troduced by the failure detector has an impact on the con-
figuration of the threshold parameter. Thus, a good value
for the threshold in an execution of the protocol without
using a failure detector can become inadequate when intro-
ducing the failure detector and vice-versa. This is yet an-
other indication that P-ACT-consensus is more robust than
ACT-consensus.

6 AN ARCHITECTURE FOR ER FFICIENT AND ROBUST

ADAPTIVEAA CONSENSUS SERVICES BASED ON ORACLES
The simulation results presented in the previous sec-

tion indicate that consensus protocols designed for asyn-
chronous systems augmented with unreliable failure detec-
tors can achieve better performance when using slowness
oracles. Such oracles allow the protocols to adapt them-
selves to the changing conditions of the environment in
which they execute. Further, the oracle based on a predictor
was more robust with respect to changes in the environ-
ment than the simpler adaptive protocols that used a fixed
threshold to control adaptation. However, depending on
the frequency used to probe for round trip samples, the

overhead introduced by the predictor may be significant
and impact negatively the performance of the adaptive con-
sensus protocols that use it. In this section we propose an
optimization for P-ACT-consensus that tackles this prob-
lem.

We advocate that P-ACT-consensus should prefer-
ably use a pull-style failure detector. These failure detec-
tors periodically send “Are_you_alive?” query messages
and wait for corresponding “I_am_alive!” heartbeat mes-
sages to decide whether a process has crashed or not. These
messages can also be used to calculate round trip delays
among processes. Since the failure detection oracle moni-
tors all processes engaged in the execution of the consen-
sus protocol, the round trip delays collected by the failure
detection oracle can be used to update the predictor of the
slowness oracle. Following this approach, the failure detec-
tor behaves as a probe generator, greatly reducing the over-
head traffic generated by the predictor. Furthermore, ac-
cording to the study by Nunes and Jansch-Pôrto [16], pre-
dictors can also be used to implement efficient adaptive
(pull-style) failure detection oracles. In this case, by using
P-ACT-consensus with an adaptive implementation of FD-
Pull based on predictors, it is possible to obtain even bet-
ter performance results. This improved implementation of
P-ACT-consensus can be generalized in an architecture for
efficient and robust consensus services based on oracles,
as illustrated in Figure 3.

Figure 3: Architecture for a consensus service that uses
predictors to support pull-style failure detection and slowness

oracles implementations

Consensus SO
Informs consensus slowness
information agreed upon consensus (k−1);

to propose in consensus k

asks for the 1st coordinator of
consensus k and slowness information

Informs 1st coordinator and
slowness informantion proposal

Predictor

Round trip delay
prediction

FD

Probe
generator

Periodically, updates
the predictor with new
round trip samples

Periodically,
asks for
slowness
information

Informs
suspected
list

Asks to be
notified
whenever a
status change
occur

Round trip delay prediction

We simulated P-ACT-consensus with an adaptive ver-
sion of FD-Pull based on predictors (let us call it by AFD-
Pull). The design of ll AFD-Pull follows the work by Nunes
and Jansch-Pôrto [16] on adaptive failure detectors. In this
case, the failure detection oracle uses a predictor to define its
timeouts (estimated round trips plus a safety margin). The
configuration scenarios are the same described in Section 5.
AFD-Pull is configured to send one “Are_you_ alive?” mes-

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

9

sage per second, causing the predictor to be updated with
the same frequency. Further, the predictor uses a safety
margin based on a confidence interval of the round trip
delay estimator (cib5) [16]. CT-consensus and ACT-consen-
sus were also simulated using AFD- Pull. However, consid-
ering the results for simulations presented in the previous
section, the performance of the protocols using FD-Push
were better. Thus, the performance of P-ACT-consensus us-
ing AFD-Pull is compared with the performance of CT-con-
sensus and ACT-consensus using FD-Push (the best sce-
nario). The results for all protocols are illustrated in Figure 4.

Again, the adaptive consensus services outperforms
the non-adaptive service. We note that P-ACT-consensus
uses only the predictor configuration that yields the great-
est overhead (when compared to those presented in the
previous section) and still reaches very good performance.
For instance, in CF3, when CT-consensus presents the worst
result, P-ACT-consensus presents a performance that is
58.7% better. Also, comparing with the mean execution time
for all CT-consensus configurations, the adaptive protocol
with predictor is 28.7% better. Note that ACT-consensus
can be slightly better than P-ACT-consensus in some sce-
narios (see CF1 for the threshold set to either 150ms or
200ms, and CF3 for the threshold set to 200ms), but it is
normally much worse than P-ACT-consensus, confirming
the robustness of the latter.

7 A CASE STUDY
As earlier mentioned, a possible consensus applica-

tion is a distributed scheduler for grid environments, as the
one proposed for the PARADIS system [10]. In this system
a distributed scheduler is built with the support of local
scheduler modules at each site of the grid. Each local sched-
uler receives jobs and uses a consensus protocol to decide
in which site the jobs will run. We implemented an applica-
tion (AppScheduler) that mimics such a service. The dis-
tributed application is composed by local modules respon-
sible for generating jobs following a particular distribution
function. The jobs are stored by the corresponding local
scheduler module in a job queue. Consensus is started by
the local schedulers, in a sequential manner, whenever the
job queue is not empty, using as proposition the content of
the queue. Thus, the kthkk consensus is executed after the (k-1)th

consensus has finished. A decision proposal for the con-
sensus protocol is formed as the union of the set of pro-

posed jobs with the highest time-stamp value. In order to
avoid that the jobs generated by slow processes are never
included in the consensus decision, every time a new con-
sensus is started the scheduler diffuses its job queue to all
other processes. Processes merge job queues received
through these messages with their local job queue. Each
process pi uses the decision of the consensus to identify
the jobs that need to be dispatched. Dispatched jobs are
removed from the job queue. Moreover, pi calculates the
queuing time for all locally generated jobs. The mean queu-
ing time is used as performance metric.

5The safety margin cib assumes that the predictor appropriately
models the round trip delay (rtt), making the prediction error to be
considered a white noise. Further, by considering that the estima-
tor could behave as a linear function, at time t, the margin cib is

computed by cibt+1 = , in

which the constant 2.58 corresponds to the 99% of confidence in
the standard Normal distribution function, is the estimator of
the standard deviation of the rtt, and r is the number of samples
considered in its computation.

Figure 4: CT-consensus, ACT-consensus and P-ACT-consensus in
different network configuration scenarios and considering the best

matching between the consensus protocol and its oracles
(failure detector and/or slowness oracle)

(a) CF1

(b) CF2

(c) CF3

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

10

We analyzed the performance of AppScheduler by
running the application over the best configurations for
CT-consensus and P-ACT-consensus, considering the re-
sults presented in Section 6. Further, we considered an ex-
tra scenario for CT-consensus, in which the 1st_coord of
each instance of consensus execution was allocated in a
round-robin manner during the experiment. The experiment
consisted in executing a number of consensus for each ser-
vice and for one configuration of 5 machines (CF3). Note
that, in a grid environment, AppScheduler would execute in
as much as possible machines, thus, CF3 is the more appro-
priated configuration for our analysis. To limit the impact of
variations in the system load, the consensus instances were
divided in batches of 100 consensus each. For each batch,
the services with the different consensus protocols were
executed one after the other. The results of the experiment
are illustrated in Figure 5 in terms of the cumulative average
of the mean queuing time over all batches executed. Batches
were executed until a convergence on the cumulative aver-
age was detected.

this objective in view, the adaptation to the network param-
eters was also explored. More precisely, we presented a
robust design for slowness oracles, in the sense that they
allow adaptation to occur without requiring any difficult
deployment decisions to be taken. Moreover, we showed
how to match failure detection and slowness oracles in a
more complete consensus architecture, in which both oracles
follow a predictorbased approach [14, 15, 16].

The proposed architecture was applied to a classi-
cal consensus protocol, defined by Chandra and Toueg in
[1] (CT-consensus). The performance of the resulting adap-
tive protocol, P-ACT-consensus, was analyzed by means of
simulation and experiments in a real system, in the latter
case, using a distributed scheduler application based on a
consensus service. The performance of this application was
compared with the performance of its corresponding non-
adaptive protocol and other implementations of adaptive
consensus protocols based on slowness oracles. The re-
sults we obtained show that P-ACT-consensus can be as
much as 53.5% better than CT-consensus. Moreover, the
proposed protocol is more robust, than the adaptive proto-
cols based on slowness oracles published so far [17].

ACKNOWLEDGEMENTS
We would like to thank André Luis Moreira for his

contribution on the implementation of the consensus pro-
tocols and the scheduler application presented in this pa-
per. Authors would also like to thank the valuable com-
ments from the anonymous referees and the financial sup-
port from CAPES/Brazil (grant 478.752/01) and CNPq/Brazil
(grant 300.646/96). This work was partially developed in
collaboration with HP Brazil R&D.

REFERENCESRR
[1] T. Chandra and S. Toueg. Unreliable failure detec-

tors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, March 1996.MM

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Jour-
nal of the ACM, 43(4):685–722, July 1996.MM

[3] W. Chen, S. Toueg, and M. K. Aguilera. On the qual-
ity of service of failure detectors. In International
Conference on Dependable Systems and Networks
(DSN’2000), pages 191–200, New York, USA, Jun
2000. IEEE Computer Society.

[4] A. Coccoli, P. Urbán, A. Bondavalli, and A. Schiper.
Performance analysis of a consensus algorithm com-
bining stochastic activity networks and measurements.
In International Conference on Dependable Systems
and Networks (DSN’2002), pages 551–560, Washing-
ton, D.C., USA, June 2002. IEEE Computer Society.

[5] P. Felber, R. Guerraoui, X. Défago, and P. Oser. Fail-
ure detector as first class objects. In International
Symposium on Distributed Objects and Applica-
tions, pages 132–141, Edinburgh, Scotland, Septem-
ber 1999. IEEE Computer Society.

Figure 5: Performance results for AppScheduler
using CT-consensus with

In the worst scenario for CT-consensus,
AppScheduler using P-ACT-consensus was as much as
53.5% better. Considering the executions using CT-consen-
sus with rotating 1st_coord (this scenario is close to the
mean execution time for all other consensus configuration)
this gain is about 21.7%. The results are compatible with
those obtained by means of simulation, when running the
protocols separately.

8 CONCLUSION
Slowness oracles had been proposed as a possible

solution for the performance penalty that consensus proto-
cols based on an asymmetric structure can suffer when run-
ning over systems subject to variabilities in load. Although
only a very simple mechanism was used to define the oracle
operation, the results were promising [17].

In this paper, we studied techniques to implement
these slowness oracles aiming at an efficient operation; with

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

11

[6] M. J. Fischer, N. A. Lynch, and M. D. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of ACM, 32(2):374–382, April 1985.MM

[7] R. Guerraoui and M. Raynal. The information struc-
ture of indulgent consensus. IEEE Transactions on
Computers, 53(4):453–466, April 2004.

[8] R. Guerraoui and A. Schiper. The generic consensus
service. IEEE Transactions on Software Engineer-
ing, 27(1):29–41, January 2001.

[9] M. Hurfin, R. Macêdo, M. Raynal, and F. Tronel. A
generic framework to solve agreement problems. In
Proceedings of the 19th IEEE Symposium on Reli-
able Distributed Systems (SRDS’99), pages 56–65,
Lausanne, Switzerland, October 1999. IEEE Computer
Society.

[10] M. Hurfin, J.P. Le Narzul, J. Pley, and Ph. Raipin
Parvédy. A fault-tolerant protocol for resource allo-
cation in a grid dedicated to genomic applications.
In Proceedings of the 5th International Conference
on Parallel Processing and Applied Mathematics,
Special Session on Parallel and Distributed
Bioinformatic Applications (PPAM-03), volume
3019 of LNCS, pages 1154–1161, Czestochowa, Po-
land, September 2003. Springer.

[11] I. Keidar and S. Rajsbaum. Open questions on con-
sensus performance. In Future Directions in Dis-
tributed Computing, LNCS-2584, Springer, volume
2584 of LNCS, pages 35–39. Springer, 2003.

[12] L. Lamport. Paxos made simple. SIGACT News,
32(4):18–25, December 2001.

[13] A. Mostéfaoui and M. Raynal. Leader-based con-
sensus. Parallel Processing Letters, 11(1):95–107,
March 2001.

[14] R. C. Nunes and I. Jansch-Pôrto. Modelling commu-
nication delays in distributed systems using time
series. In Proceedings of the 21st IEEE Symposiumt

on Reliable Distributed Systems (SRDS’2002),
pages 268–273, Osaka, Japan, 2002.

[15] R. C. Nunes and I. Jansch-Pôrto. A lightweight inter-
face to predict communication delays. In Proceed-
ings of the First Latin American Symposium
(LADC’2003), volume 2847 of LNCS, pages 245–
263, S˜ao Paulo, Brazil, October 2003. Springer.

[16] R. C. Nunes and I. Jansch-Pôrto. Qos of timeout-
based self-tuned failure detectors: the effects of the
communication delay predictor and the safety mar-
gin. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’2004),
pages 753–761, Florence, Italy, June 2004. IEEE Com-
puter Society.

[17] L. M. R. Sampaio, F. V. Brasileiro, W. da C. Cirne, and
J. C. A. de Figueiredo. How bad are wrong suspi-
cions? towards adaptive distributed protocols. In
Proceedings of the International Conference on
Dependable Systems and Networks (DSN’2003),
pages 551–560, San Francisco, California, USA, June
2003. IEEE Computer Society.

[18] A. Schiper. Early consensus in an asynchronous
system with a weak failure detector. Distributed
Computing, 10(3):149–157, April 1997.

[19] N. Sergent, X. Défago, and A. Schiper. Impact of a
failure detection mechanism on the performance of
consensus. In Proceedings of the 2001 Pacific Rim
International Symposium on Dependable Comput-
ing (PRDC’2001), pages 137–145, Seoul, Korea,
December 2001. IEEE Computer Society.

[20] J. Turek and D. Shasha. The many faces of consen-
sus in distributed systems. IEEE Computer, 25(6):8–
17, June 1992.

[21] P. Urbán, X. Défago, and A. Schiper. Contention-
aware metrics for distributed algorithms: compari-
son of atomic broadcast algorithms. In Proceedings
of the 9th IEEE International Conference on Com-
puter Communications and Networks (IC3N’2000),
pages 80–92, Las Vegas, Nevada, USA, October
2000. IEEE Computer Society.

[22] P. Urbán, X. Défago, and A. Schiper. Neko: a single
environment to simulate and prototype distributed
algorithms. In Proceeding of the 15th International
Conference on Information Networking (ICOIN-
15), pages 503–511, Beppu City, Japan, February
2001. IEEE Computer Society.

[23] P. Urbán, N. Hayashibara, A. Schiper, and T.
Katayama. Performance comparison of a rotating co-
ordinator and a leader based consensus algorithm.
In Proceedings of the 23rd Symposium on Reliable
Distributed Systems (SRDS’2004), pages 4–17,
Florianópolis, Brazil, October 2004. IEEE Computer
Society.

Lívia Sampaio, Francisco Brasileiro,

Raul Ceretta Nunes and Ingrid Jansch-Pôrto

Efficient and robust adaptive

consensus services based on oracles

