
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009 4299

Efficient and Robust Compressed Sensing Using
Optimized Expander Graphs

Sina Jafarpour, Weiyu Xu, Babak Hassibi, Member, IEEE, and Robert Calderbank, Fellow, IEEE

Abstract—Expander graphs have been recently proposed to
construct efficient compressed sensing algorithms. In particular,
it has been shown that any �-dimensional vector that is �-sparse
can be fully recovered using ��� ����� measurements and only
��� ����� simple recovery iterations. In this paper, we improve
upon this result by considering expander graphs with expansion
coefficient beyond �

�
and show that, with the same number of

measurements, only ���� recovery iterations are required, which
is a significant improvement when � is large. In fact, full recovery
can be accomplished by at most �� very simple iterations. The
number of iterations can be reduced arbitrarily close to �, and
the recovery algorithm can be implemented very efficiently using
a simple priority queue with total recovery time ��� �����

�
���.

We also show that by tolerating a small penalty on the number
of measurements, and not on the number of recovery iterations,
one can use the efficient construction of a family of expander
graphs to come up with explicit measurement matrices for this
method. We compare our result with other recently developed
expander-graph-based methods and argue that it compares favor-
ably both in terms of the number of required measurements and
in terms of the time complexity and the simplicity of recovery.
Finally, we will show how our analysis extends to give a robust
algorithm that finds the position and sign of the � significant
elements of an almost �-sparse signal and then, using very simple
optimization techniques, finds a �-sparse signal which is close to
the best �-term approximation of the original signal.

Index Terms—Compressive sensing, expander graphs, sparse re-
covery, sparse sensing matrices, unique neighborhood property.

I. INTRODUCTION

T HE goal of compressive sampling or compressed sensing
is to replace the conventional sampling and reconstruction

operations with a more general combination of linear measure-
ment and optimization in order to acquire certain kinds of sig-
nals at a rate significantly below Nyquist. Formally, suppose we
have a signal which is sparse. We can model as an -dimen-
sional vector that has at most nonzero components. We aim
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to find an matrix such that , the number of mea-
surements, becomes as small as possible (and can be efficiently
stored), and can be recovered efficiently from .

The original approach employed dense random matrices
and random projections. It has been shown that if the matrix

has a certain Restricted Isometry Property (RIP-2), that
is, it almost preserves the Euclidean norm of all -sparse
vectors, then can be used in compressed sensing and the
decoding can be accomplished using linear programming and
convex programming methods [1]. This is a geometric approach
based on linear and quadratic optimization, and Baraniuk et
al. [2] showed that the RIP-2 property is a direct consequence
of the Johnson–Linderstrauss lemma [3] so that many dense
random matrices satisfy this property. However, the problem
in practice is that the linear and quadratic programming al-
gorithms have cubic complexity in , which has difficulties
as becomes very large; furthermore, in order to store the
whole matrix in memory we still need which is
inefficient too. Another family of random matrices satisfying
Restricted Isometry Propert (RIP) property, which do not come
from the Johnson–Lindenstrauss family, are random Fourier
matrices, obtained by randomly sampling rows of the Fourier
matrix. These matrices require units of storage;
however, there are two main issues with these matrices. The
first is that the number of required measurements is suboptimal

. The second is that while these
matrices do require less storage than less structured random
matrices, the computational cost of matrix–vector products
required in many streaming and sensor network applications
is significantly greater than that of the expander-based sensing
matrices.

Following [4]–[8], we will show how random dense matrices
can be replaced by the adjacency matrices of an optimized
family of expander graphs, thereby reducing the space com-
plexity of matrix storage and, more important, the time
complexity of recovery to a few very simple iterations. The
main idea is that we study expander graphs with expansion
coefficient beyond the that was considered in [4], [5]. Fur-
thermore, our results have interesting connection with the belief
propagation decoding of the low-density parity-check (LDPC)
codes, and the sequential decoding of the expander codes [9].

The remainder of the paper is organized as follows. In Sec-
tion II, we review the previous results from [4], [5]. In Sec-
tion III, following the geometric approach of [6], we establish
that the adjacency matrix of the expander graphs satisfies a cer-
tain RIP for the Manhattan distance between the sparse signals.
Using this property, or via a more direct alternative approach, we
show how the recovery task becomes much easier. In Section IV,
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we generalize the algorithm of [4], [5] to expander graphs with
expansion coefficient beyond . The key difference is that now
the progress in each iteration is proportional to , as opposed
to a constant in [4], [5], and so the time complexity is reduced
from to . We then describe how the algorithm
can be implemented using simple data structures very efficiently
and show that explicit constructions of the expander graphs im-
pose only a small penalty in terms of the number of measure-
ments, and not the number of iterations, the recovery algorithm
requires. We also compare our result to previous results based
on random projections and to other approaches using the adja-
cency matrices of expander graphs. In Section V, we generalize
the analysis to a family of almost -sparse signals; (after a few
very simple iterations) the robust recovery algorithm proposed
in [4] empowered with optimized expander graphs finds the po-
sition and the sign of the significant elements of an almost

-sparse signal. Given this information, we then show how the
restricted isometry property of the expander graphs lets us use
very efficient optimization methods with analytical solution to
find a -sparse signal that approximates the original signal very
efficiently. Section VI concludes the paper.

II. PRIOR RESULT: RECOVERY
A. Basic Definitions

Xu and Hassibi [4] proposed a new scheme for compressed
sensing with deterministic recovery guarantees based on com-
binatorial structures called unbalanced expander graphs:

Definition 1 (Bipartite Expander Graph, Informally): An ex-
pander graph [10] is a regular graph with
vertices, such that

1) is sparse (ideally is much smaller than );
2) is “well connected”.

Various formal definitions of the second property define the
various types of the expander graphs. The expander graph used
in [4], [5] which has suitable properties for compressed sensing
is the “ -vertex expander graph.”

Definition 2 (Bipartite -Expander Graph): A bipartite left
regular graph with variable nodes, parity-check nodes, and
left degree will be expander graph, for , if
for every subset of variable nodes with cardinality ,
the number of neighbors connected to , denoted by is
strictly larger than , i.e., .

Using the probabilistic method, Pinsker and Bassylago [11]
showed the existence of expander graphs and they showed
that any random left-regular bipartite graph, with very high
probability, is an expander graph. Then Capalbo et al. [12] gave
an explicit construction for these expander graphs.

Theorem 1: Let be a fixed constant. Then for
large enough there exists an expander graph with

variable nodes and parity-check nodes with constant left
degree (not growing with ), or sublinearly grows with and
some . Furthermore, the explicit zig-zag construction
can deterministically construct the expander graph.

Using Hoeffding’s inequality and Chernoff bounds, Xu and
Hassibi [5] showed the following theorem.

Theorem 2: For any , if is large enough, there exists a left
regular bipartite graph with left degree for some number ,
which is expander graph with parity-
check nodes.

B. Recovery Algorithm

Suppose is the original -dimensional -sparse signal, and
the adjacency matrix of an expander graph is used as
the measurement matrix for the compressed sensing. We are
given and we want to recover . Xu and Hassibi [4]
proposed the following algorithm.

Algorithm 1 Left Degree Dependent Signal Recovery
algorithm

1: Initialize .
2: if then
3: output and exit.
4: else
5: find a variable node say such that more than half of

the measurements it participate in, have identical gap .
6: set , and go to 2.
7: end if

In the above algorithm the gap is defined as follows.

Definition 3 (Gap): Let be the original signal and .
Furthermore, let be our estimate for . For each value , we
define a gap as

Xu and Hassibi [4] proved the following theorem that bounds
the number of steps required by the algorithm to recover .

Theorem 3: Suppose is the adjacency matrix of an ex-
pander graph satisfying Definition 2, and is an -dimensional

sparse signal (with ), and . Then Algorithm
1 will always find a signal which is sparse and for which

. Furthermore, the algorithm requires at most it-
erations, where is the sparsity level of the signal and is the
left side degree of the expander graph.

Let us now consider the consequences of the above theorem
for the expander graphs in Theorems 1 and 2. In Theorem 1,
the sparsity can grow proportional to (since ) and the
algorithm will be fast; the algorithm requires iterations
and since is a constant independent of , the number of iter-
ations is . We also clearly need measurements. In
Theorem 2, the sparsity level is fixed (does not grow with

) and the number of measurements needs to be ,
which is desired. Once more the number of required iterations
is . However, in this case, Xu and Hassibi showed the fol-
lowing negative result for expander graphs.

Theorem 4: Consider a bipartite graph with variable nodes
and measurement nodes, and assume that the graph is a

expander graph with regular left degree . Then if
we have .
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This theorem implies that for a expander graph, the
recovery algorithm needs iterations. The main con-
tribution of the current paper is that the number of iterations can
be reduced to . The key idea is to use expanders with ex-
pander coefficient beyond .

Remark: Theorem 3 does not imply the full recovery of the
sparse signal. It only states that the output of the recovery algo-
rithm will be a sparse signal such that where is
the original signal. However, in the next section we show how
an interesting property of the expander graphs called the RIP-1
property, implies full recovery. We also give a direct proof by
showing that the null-space of the adjacency matrix of an ex-
pander graph cannot be “too sparse.”

III. EXPANDER CODES, RIP-1 PROPERTY, AND

FULL-RECOVERY PRINCIPLE

A. Expander Codes

Compressed sensing has many properties in common with
coding theory. The recovery algorithm is similar to the decoding
algorithms of error correcting codes but over instead of
a finite field. As a result, several methods from coding theory
have been generalized to derive compressed sensing algorithms.
Among these methods are the generalization of Reed–Solomon
codes by Akcakaya and Tarokh [13], recent results by Calder-
bank et al. [14]–[17], based the group properties of the algebraic
codes, and Parvaresh et al. [18], based on list decoding.

In 1996, Sipser and Spielman [9] used expander graphs to
build a family of linear error-correcting codes with linear de-
coding time complexity. These codes belong to class of error
correcting codes called low-density parity-check (LDPC) codes.
The work of Xu and Hassibi is a generalization of these ex-
pander codes to compressed sensing.

B. Norm One Restricted Isometry Property

The standard RIP is an important sufficient condition that en-
ables compressed sensing using random projections. Intuitively,
it says that the measurement almost preserves the Euclidean dis-
tance between any two sufficiently sparse vectors. This prop-
erty implies that recovery using minimization is possible if
a random projection is used for measurement. Berinde et al. in
[7] showed that expander graphs satisfy a very similar property
called “RIP-1” which states that if the adjacency matrix of an ex-
pander graph is used for measurement, then the Manhattan
distance between two sufficiently sparse signals is preserved by
measurement. They used this property to prove that -mini-
mization is still possible in this case. However, we will show
in this section how RIP-1 can guarantee that the algorithm de-
scribed above will have full recovery.

Following [6], [7], we show that the RIP-1 property can be
derived from the expansion property and will guarantee the
uniqueness of sparse representation.

We begin with the definition of the “unbalanced lossless
vertex expander graphs” with expansion coefficient ,
bearing in mind that we will be interested in .

Fig. 1. ��� �� vertex expander graph.

Definition 4 (Unbalanced Lossless Expander Graphs): An
-unbalanced bipartite expander graph (see Fig. 1) is

a bipartite graph , where is
the set of variable nodes and is the set of parity nodes, with
regular left degree such that for any , if then
the set of neighbors of has size .

The following claim follows from the Chernoff bounds [6].1

Claim 1: for any there exists an
expander with left degree

and right set size

Lemma 1 (RIP-1 Property of the Expander Graphs: Let
be the adjacency matrix of a expander graph

, then for any -sparse vector we have:

(1)

Proof: The upper bound is trivial using the triangle in-
equality, so we only prove the lower bound.

The left side inequality is not influenced by changing the po-
sition of the coordinates of , so we can assume that they are in
a nonincreasing order: . Let be the
set of edges of and be the edge that connects

to . Define

s.th.

Intuitively, is the set of the collision edges. Let

s.th.

and .
Clearly, ; moreover, by the expansion property of the

graph for any less than or equal to is less than or equal to
. Finally, since the graph is -sparse we know that for each

greater than is zero. Therefore

1This claim is also used in the expander codes construction.
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Now the triangle inequality, and the definition of imply

C. Full Recovery

The full recovery property now follows immediately from
Lemma 1.

Theorem 2 (Full Recovery): Suppose is the adjacency
matrix of a expander graph, and suppose is a

-sparse and is a -sparse vector, such that .
Then .

Proof: Let . Since is -sparse and is
-sparse, is -sparse.2 By Lemma 1 we have

hence .

Note that the proof of the above theorem essentially says that
the adjacency matrix of a expander graph does not
have a null vector that is sparse. We will also give a direct
proof of this result (which does not appeal to RIP-1) since it
gives a flavor of the arguments to come.

Lemma 2 (Null Space of : Suppose is the adjacency
matrix of a expander graph with . Then any
nonzero vector in the null space of , i.e., any such that

, has more than nonzero entries.
Proof: Define to be the support set of . Suppose that

has at most nonzero entries, i.e., that . Then from
the expansion property we have that .
Partitioning the set into the two disjoint sets , con-
sisting of those nodes in that are connected to a single
node in , and , consisting of those nodes in that
are connected to more than a single node in , we may write

. Furthermore, counting the
edges connecting and , we have

. Combining these latter two inequalities yields

2��� � �� � � �� � � ��

. This implies that there is at least one nonzero
element in that participates in only one equation of .
However, this contradicts the fact that and so must
have more than nonzero entries.

IV. OUR RESULTS: EFFICIENT FULL RECOVERY

A. Efficient Sensing With Recovery
Time Algorithm

In this section, we show the general unbalanced bipartite ex-
pander graphs introduced in Definition 4 work much better than

-expanders, in the sense that they give the measurement size
which is up to a constant the optimum measure-

ment size, and simultaneously yields a simple recovery algo-
rithm which needs only simple iterations and a total run-
ning time of .

Before proving the result, we introduce some notations used
in the recovery algorithm and in the proof.

Definition 5 (Gap): Recall the definition of the gap from Def-
inition 3. At each iteration , let be the support3 of the gaps
vector at that iteration

Definition 6: At each iteration , we define an indicator of
the difference between the estimate and

Now we are ready to state the main result.

Theorem 6 (Expander Recovery Algorithm): Let be
the adjacency matrix of a expander graph, where

, and . Then, for any -sparse signal
, given , the expander recovery algorithm (Algorithm 2

below) recovers successfully in at most iterations.

Algorithm 2 Expander Recovery Algorithm

1: Initialize .
2: if then
3: output and exit.
4: else
5: find a variable node say such that at least

of the measurements it participate in, have identical
gap .

6: set , and go to 2.
7: end if

The proof is virtually identical to that of [4], except that we
consider a general expander, rather than a -expander,
and consists of the following lemmas.

• The algorithm never gets stuck, and one can always find a
coordinate such that is connected to at least
parity nodes with identical gaps.

3set of nonzero elements
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Fig. 2. Progress Lemma.

• With certainty, the algorithm will stop after at most
rounds. Furthermore, by choosing small enough, the
number of iterations can be made arbitrarily close to .

Lemma 3 (Progress): Suppose at each iteration
. If then always there exists a variable node

such that at least of its neighbor check nodes have
the same gap .

Proof: We will prove that there exists a coordinate , such
that is uniquely connected to at least check nodes,
in other words, no other nonzero variable node is connected to
these nodes. This immediately implies the lemma.

Since by the expansion property of the graph it
follows that . Now we are going to count
the neighbors of in two ways. Fig. 2 shows the notations in
the progress lemma.

We partition the set into two disjoint sets.
• : The vertices in that are connected only to

one vertex in .
• : The other vertices (that are connected to more

than one vertex in ).

By double counting the number of edges between variable
nodes and check nodes we have

edges between

This gives

hence

(5)

so by the pigeonhole principle, at least one of the variable nodes
in must be connected uniquely to at least check
nodes.

Lemma 4 (Gap Elimination): At each step if then
.

Proof: By the previous lemma, if , there always
exists a node that is connected to at least nodes with
identical nonzero gap, and hence to at most nodes possibly
with zero gaps. Setting the value of this variable node to zero sets
the gaps on these uniquely connected neighbors of to zero,

Fig. 3. Gap Elimination Lemma.

but it may make some zero gaps on the remaining neighbors
nonzero. So at least coordinates of will become
zero, and at most its zero coordinates may become nonzero.
Hence

(6)

Fig. 3 shows the gap elimination.

Remark: The key to accelerating the algorithm is the pre-
ceding lemma. For a expander, and so

, which only guarantees that is reduced by a con-
stant number. However, when , we have

, which means that is guaranteed to decrease
proportionally to . Since , we save a factor of

.

The following lemma provides a direct connection between
the size of and the size of .

Lemma 5 (Connection): If at iteration , then
.

Proof: By (5), , also each node
in has nonzero gap and so is a member of .

Lemma 6 (Preservation): At each step if , after
running the algorithm, we have .

Proof: Since at each step we are only changing one coor-
dinate of , we have , so we only need to prove
that .

Suppose for a contradiction that , and partition
into two disjoint sets.

1) : The vertices in that are connected
only to one vertex in .

2) : The other vertices (that are connected to more
than one vertex in ).

The argument is similar to that given above; by double
counting the number of vertices in one
can show that

Now we have the following facts.
• : Coordinates in are con-

nected uniquely to coordinates in , hence each coor-
dinate in has nonzero gap.
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• : gap elimination from Lemma 4.
• differ in at most coordinates, so

can differ in at most coordinates.
As a result we have

(8)

This implies which contradicts the assumption .

Proof of the Theorem 6: Preservation (Lemma 6) and
progress (Lemma 3) together immediately imply that the algo-
rithm will never get stuck. Also, by Lemma 4 we had shown
that and . Hence, after at
most steps we will have and this together
with the connection lemma implies that , which is the
exact recovery of the original signal.

Note that we have to choose , and as an example, by
setting the recovery needs at most iterations.

Remark: The condition in the theorem is necessary.
Even leads to a expander graph (Definition 2), which
needs iterations.

B. Explicit Construction of Expander Graphs

In the definition of the expander graphs (Definition 4), we
noted that probabilistic methods prove that such expander
graphs exist and furthermore, that any random graph, with high
probability, is an expander graph. Hence, in practice it may be
sufficient to use random graphs instead of expander graphs.

Although there is no efficient explicit construction for the ex-
pander graphs of Definition 4, there exists explicit construction
for a class of expander graphs which are very close to the op-
timum expanders of Definition 4. Recently, Guruswami et al.
[19], based on the Parvaresh–Vardy codes [20], proved the fol-
lowing theorem.

Theorem 7 (Explicit Construction of Expander Graphs): For
any constant , and any , there exists a
expander graph with left degree

and number of right side vertices

which has an efficient deterministic explicit construction.

Since our previous analysis was only based on the expansion
property, which does not change in this case, a similar result
holds if we use these expanders.

C. Efficient Implementation of the Algorithm and a Comparison
With an Alternative Integrated Geometric–Combinatorial
Approach

We now compare our approach with recent analysis by
Berinde et al. [7]. This paper integrates Indyk’s previous
work which was based on randomness extractors [8] and a
combinatorial algorithm (employing an alternative approach

to the RIP-1 results of Berinde–Indyk [6]) based on geometric
convex optimization methods and suggests a recursive recovery
algorithm which takes sketch measurements
and needs a recovery time . The recovery algo-
rithm exploits the hashing properties of the expander graphs,
and is sublinear. However, it has difficulties for practical
implementation.

By comparison, our recovery algorithm is a simple iterative
algorithm, that needs sketch measurements, and our
decoding algorithm consists of at most very simple itera-
tions. Each iteration can be implemented very efficiently (see
[4]) since the adjacency matrix of the expander graph is sparse
with all entries or . Even the very naive implementation of the
algorithm as suggested in this paper works efficiently in prac-
tice. The reason is that the unique neighborhood property of the
expander graphs is much stronger than what we needed to prove
the accuracy of our algorithm. Indeed, it can be shown [21], [22]
that most of the variable nodes have unique neigh-
bors, and hence at each of the iterations, the algorithm can
find one desired node efficiently. The efficiency of the algorithm
can also be improved by using a priority queue data structure.
The idea is to use preprocessing as follows: For each variable
node compute the median of its neighbors
and also compute the number of neighbors with the same
value (Note that if a node has unique neighbors,
their median should also be among them.) Then construct the
priority queue based on the values , and at each iteration ex-
tract the root node from the queue, perform the gap elimina-
tion on it, and then, if required, make the correction on corre-
sponding variable nodes. The main computational cost of
this variation of the algorithm will be the cost of building the
priority queue which is ; finding the median of
elements can be done in and building a priority queue
requires linear computational time.

V. ALMOST SPARSE SIGNALS AND ROBUST RECOVERY

In this section, we show how the analysis using optimized ex-
pander graphs that we proposed in the previous section can be
used to illustrate that the robust recovery algorithm in [4] can be
done more efficiently in terms of the sketch size and recovery
time for a family of almost -sparse signals. With this analysis
we will show that the algorithm will only need mea-
surements. Explicit constructions for the sketch matrix exist and
the recovery consists of two simple steps. First, the combinato-
rial iterative algorithm in [4], which is now empowered with
the optimized expander sketches, can be used to find the po-
sition and the sign of the largest elements of the signal .
Using an analysis similar to the analysis in Section IV we will
show that the algorithm needs only iterations, and similar
to the previous section, each iteration can be done efficiently
using a priority queue. Then restricting to the position of the

largest elements, we will use a robust theorem in expander
graphs to show that simple optimization methods that are now
restricted on -dimensional vectors can be used to recover a

sparse signal that approximates the original signal with very
high precision.

Before presenting the algorithm we will define precisely what
we mean for a signal to be almost sparse.
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Definition 7 (Almost -Sparse Signal: A signal is
said to be almost -sparse iff it has at most large elements
and the remaining elements are very close to zero and have very
small magnitude. In other words, the entries of the “near-zero”
level in the signal take values from the set while the
“significant” levels of entries take values from the set

. By the definition of the almost sparsity
we have . The general assumption for almost sparsity is
intuitively the fact that the total magnitude of the almost sparse
terms should be small enough such that it does not disturb the
overall structure of the signal which may make the recovery
impossible or very erroneous. Since and the
total contribution of the “near-zero” elements is small we can
assume that is small enough. We will use this assumption
throughout this section.

In order to make the analysis for almost -sparse signals sim-
pler we will use a optimized expander graph which is right-reg-
ular as well.4 The following lemma which appears as Lemma
2.3 in [23] gives us a way to construct right-regular expanders
from any expander graph without disturbing its characteristics.

Lemma 7 (Right-Regular Expanders): From any left-regular
unbalanced expander graph with left size , right

size , and left degree it is possible to efficiently construct a
left-right-regular unbalanced expander graph with
left size , right size , left side degree , and
right side degree

Corollary 1: There exists a left-right unbalanced
expander graph with left side size , right side size

, left side degree , and right side
degree

Also based on the explicit constructions of expander graphs,
explicit construction for right-regular expander graphs exists.

We will use the above right-regular optimized expander
graphs in order to perform robust signal recovery efficiently.
The following algorithm generalizes the -sparse recovery
algorithm and can be used to find the position and sign of the
largest elements of an almost -sparse signal from .
At each iteration in the algorithm, let

and

where is the right side degree of the expander graph.
Throughout the algorithm we will assume that

. Hence, the algorithm is appropriate for a family of almost
-sparse signals for which the magnitude of the significant ele-

ments is large enough. We will assume that is a small constant;
when is large with respect to , the con-
stant degree expander sketch proposed in [4] works well.

Expander Recovery Algorithm for Almost -sparse Signals

1: Initialize .
2: if then

4The right-regularity assumption is just for the simplicity of the analysis and
as we will show it is not mandatory.

3: determine the positions and signs of the significant
components in as the positions and signs of the
nonzero signal components in ; go to 8.

4: else
5: find a variable node say such that at least

of the measurements it participate in are in either of the
following categories:

a) They have gaps which are of the same sign and
have absolute values between and

. Moreover, there exists a number
such that are

all over these measurements if we
change to .

b) They have gaps which are of the same sign and
have absolute values between and

. Moreover, there exists a number
such that are

all over these measurements if we
change to .

6: set , and go to 2 for next iteration.
7: end if
8: pick the set of significant elements of the candidate

signal . Let be the sensing matrix restricted to
these entries, output .

In order to prove the algorithm we need the following defi-
nitions which are the generalization of the similar definitions in
the exactly -sparse case.

Definition 8: At each iteration , we define an indicator of
the difference between and the estimate :

and in different levels

or large with different signs

Definition 9 (Gap): At each iteration , let be the set of
measurement elements in which at least one “significant” ele-
ments from contributes

Theorem 8 (Validity of the Algorithm 3): The first part of the
algorithm will find the position and sign of the significant
elements of the signal (for more discussion see [4]).

Proof: This is very similar to the proof of the validity of
the exactly -sparse recovery algorithm. We will exploit the fol-
lowing facts.

• is almost -sparse so it has at most significant elements.
Initially and .

• Since at each iteration only one element is selected, at
each iteration there are at most elements such that
both and are in the significant level with the same
sign.

• If then (Preservation Lemma), and
by the neighborhood theorem at each round

.
• If by the Neighborhood Theorem there exists a

node which is the unique node in that is con-
nected to at least parity-check nodes. This node
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is in . It differs from its actual value in the significance
level or at sign. In the first case, part a) of the recovery al-
gorithm will detect and fix it and in the second case, part
b) of the algorithm will detect and fix it. For further discus-
sion please refer to [4].

• As a direct result, . So after
iterations we have . Consequently,

after at most iterations.
This means that after at most iterations, the set

in different levels or with different signs. will
be empty and hence the position of the largest elements in
will be the position of the largest elements in .

Knowing the position of the largest elements of it is easier
to recover a good -sparse approximation. If is large, a parallel
version of Algorithm 2 may be applicable. If is small, analyt-
ical solutions are achievable. Based on the RIP-1 property of the
expander graph, we propose a way to recover a good approxi-
mation for efficiently and analytically. We need the following
lemma which is a direct result of the RIP-1 property of the ex-
pander graphs and is proved in [6], [7]

Lemma 8: Consider any such that , and
let be any set of coordinates of . Then we have

and

Using Lemma 8, we prove that the following minimization
recovers a -sparse signal very close to the original signal.

Theorem 9 (Final Recovery): Suppose is an almost
-sparse signal and is given where and

. Also, suppose is the set of the largest
elements of . Now let be a submatrix of restricted to

. Hence, the following minimization problem can be solved
analytically with solution (where is the pseu-
doinverse of ), and recovers a -sparse signal with close
distance to the original in the metric:

Proof: Suppose is the recovered signal. Since is
-sparse we have and hence

(12)

The first two equations are only definitions. The third one is the
Cauchy–Schwartz inequality. The fourth is from the definition
of , and the last is due to the almost -sparsity of . Since

is -sparse and is almost -sparse with the same support, we
may set in Lemma 8 to obtain

As a result, since the signal is almost -sparse, the value of
is small, and hence the recovered -sparse signal is close to the
best -term approximation of the original signal.

Remark: Recall that the right-regularity assumption is just to
make the analysis simpler. As we mentioned before, it is not
necessary for the first part of the algorithm. For the second part,
it is used in the inequality .

However, denoting the th row of by , we have

where denotes the number of ones in the th row of . (In
the right-regular case, , for all .) Therefore

The only difference with the constant case is the extra
but this does not affect the end result.

VI. CONCLUSION

In this paper, we used a combinatorial structure called an
unbalanced lossless vertex expander graph, in order to perform
efficient deterministic compressed sensing and recovery. We
showed how using expander graphs one needs only
measurements and the recovery needs only iterations.
Also, we showed how the expansion property of the expander
graphs guarantees the full recovery of the original signal. Since
random graphs are with high probability expander graphs and it
is very easy to generate random graphs, in many cases we might
use random graphs instead. However, we showed that in cases
that recovery guarantees are needed, just with a little penalty
on the number of measurements and without affecting the
number of iterations needed for recovery, one can use another
family of expander graphs for which explicit constructions
exist. We also compared our result with a result by Berinde et
al.. [7], and showed that our algorithm has advantages in terms
of the number of required measurements, and the simplicity
of the algorithm for practical use. Finally, we showed how
the algorithm can be modified to be robust and handle almost

-sparse signals. In order to do this we slightly modified the
algorithm by using right-regular optimized expander graphs to
find the position of the largest elements of an almost -sparse
signal. Then exploiting the robustness of the RIP-1 property
of the expander graphs we showed how this information can
be combined with efficient optimization methods to find a

-sparse approximation for very efficiently. However, in the
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TABLE I
PROPERTIES OF �-SPARSE RECONSTRUCTION ALGORITHMS THAT EMPLOY EXPANDER MATRICES WITH � ROWS AND � COLUMNS TO RECONSTRUCT A

VECTOR � FROM ITS NOISY SKETCH �� � �

almost -sparsity model that we used nonsparse components
should have “almost equal” magnitudes. This is because of the
assumption that which restricts the degree of deviation
for significant components. As a result, one important future
work will be finding robust algorithms based on more general
assumptions, or investigating alternative noise models in which
the expander graphs are beneficial.

Table I compares our results with the other expander-based
algorithms.

Remark: After submission of this paper, Indyk and Ruzic
[22], and Berinde, Indyk, and Ruzic [24] proposed new com-
pressed sensing algorithms based on the properties of the ex-
pander graphs. those algorithms are similar to the CoSaMP al-
gorithm [25], from the orthogonal matching framework, and are
designed to be robust against more general noise and compress-
ible signals; however, this comes with a cost on complexity of
the algorithm and its analysis. The algorithm that we proposed
in this paper is much simpler, also the analysis why the algo-
rithm works is only based on the unique neighborhood proper-
ties of the expander graphs. In contrast, those algorithms require
a complicated preprocessing step, and their analysis uses com-
plex combinatorial statements and is based on more complicated
properties of ideal expander graphs. In practice, it will be harder
to get all the required expander properties from random graphs.
The explicit construction of the expander graphs satisfying those
properties are also suboptimal in the number of measurements
and the constants required. However, their algorithms have the
advantage of being more robust against the noisy measurements,
especially if the noise is also sparse.
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