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Abstract— This paper presents a new on-line planner for penetrate the velocity obstacle, which is generated fore:ca
dynamic environments that is based on the concept of Velocity fylly selected time horizon. This time horizon ensures that
Obstacles (VO). It addresses the issue of motion safety, i.e. yha poundary of the velocity obstacle overlaps the boundary

avoiding states of inevitable collision, by selecting a proper L . -
time horizon for the velocity obstacle. The proper choice of the of the set of inevitable collision states. Repelling theatsh

time horizon ensures that the boundary of the velocity obstacle Velocity from entering the inevitable collision states @mes
coincides with the boundary of the set of inevitable collision (if a solution exists) that the robot does not crash into any

states. This time horizon is determined by the minimum time static or moving obstacle. The safe time horizon, which is
it would take the robot to avoid coliision, either by stopping  ghsiacle specific, is determined by computing the minimum
or by passing the respective obstacle. The planner generates at. it d t k th bot t id collisi ither b
near-time optimal trajectory to the goal by selecting at each ime '_ would taxe ; e robot to a\{OI collision, either . y
time step the velocity that minimizes the time-to-go and is out Stopping or by passing the respective obstacle. Deterginin
of the velocity obstacle. The planner takes into account the the safe time horizon is computationally efficient and itsloe
shape, velocity, and path curvature of the obstacle’s trajecty.  not require a prior mapping of inevitable collision states.
It is demonstrated for on-line motion planning in very crowded  gjnce the time horizon is obstacle specific, motion safety is
static and dynamic environments. . - Lo .
guaranteed if obstacles can be avoided individually oref th
. INTRODUCTION state-space between the current position and the goal state

Most of the work on motion planning over the past twentystays connected.
years has focused on static obstacles, with a few exceptions!n addition to addressing the safety issue, our planner
We distinguish between local and global planners. The locfenerates near-time optimal trajectories by selectingeh e
planner generates one, or a few steps at every time Sté'ﬁ]e step a safe velocity that minimizes the time-to-go. The
whereas the global planner uses a global search to tRENner is demonstrated for on-line motion planning in very
goal over a time spanned tree. Examples of local (reactivéjowded static and dynamic environments.
planners are [3], [17], [8], [11], but most do not guarantee
safety as they are too slow and hence their ability to look-
ahead and avoid states of inevitable collision is very kaiit ~ The velocity obstacle represents the set of all colliding
Recently, iterative planners [5], [7], [1], [12], [10], [L&/ere velocities of the robot with each of the neighboring obstacl
developed that compute several steps at a time, subject/tdnaps static and moving obstacles into the robot's vejocit
the available computation time. The trajectory is generateSPace. The velocity obstaclé¢@) of a planar circular obsta-
incrementally by exploring a search-tree and choosing ttde: B, that is moving at a constant velocity, is a cone in
best branch. These planners too do not address the issudtt velocity space of roba, reduced to a point by enlarging
safety. respectively obstaclB, as shown in Figure 1. Each point in

Only a few works have addressed the safety issue MO represents a velocity vector that originatesAatAny
dynamic environments, which is crucial for partial (local)velocity of A that penetrate¥ O is a colliding velocity that
planning. One approach is to use braking policies [18pvould result in collision betweer and B at some future
another is to ensure local avoidance for a limited time [10fime. Figure 1 shows two velocities & one that penetrates
However, neither considers the dynamics of the moviny©O. and is hence a colliding velocity, and one that does not.
robot. A promising approach to safe motion planning irf\ll velocities of Athat are outside of O are safe as long 4
dynamic environment is the consideration of "regions oftays on its current course. The velocity obstacle thusvallo
inevitable collision,” first introduced in [9] and later extded ~determining if a given velocity is potentially dangerousda
in [6], [14], [4], [2]. suggesting possible changes to this velocity to avertsiofii

We address the issue of safety for an on-line local planndf B is known to move along a curved trajectory or at varying
in dynamic environments using velocity obstacles. Safety SP€eds, it would be best represented by the nonlinear weloci

guaranteed by ensuring that the robot's velocity does néPstacle diS_CUSSEd next.
The nonlinear velocity obstacle (NLVO) accounts for a
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Il. THE VELOCITY OBSTACLE
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Fig. 1. A linear velocity obstacle
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Fig. 2. A non-linear velocity obstacle

the obstacle at any time> tg. Selecting a single velocity,

Vy, at timet =ty outside theNLVO thus guarantees that
avoids collision at all times. It is constructed as a uniort®f

temporal elementLVO(t), which is the set of all absolute
velocities ofA, v,, that would result in collision at a specific

timet.
Referring to Figure 2y, that would result in collision with

The non-linear v-obstacle is a warped cone.c[t) is
bounded ovet = (tp,»), then the apex of this cone is at
A(to). The boundaries of thBILVO represent velocities that
would result inA grazingB. The smallest safe time horizon is
the one that allows sufficient time to avoid or escape colisi
as discussed next.

Ill. TIME HORIZON

The time horizon plays an important role in selecting
feasible avoidance maneuvers. It allows considering only
those maneuvers that would result in a collision within a
specified time interval. Setting the time horizon too high
would be too prohibitive, as it would mark as dangerous
maneuvers resulting in collision at a distant time; setect
too small time horizon would permit dangerous maneuvers
that are too close and at too high speeds to avoid the obstacle
It is essential that the proper time horizon be selected to
ensure that a safe maneuver, even if temporarily pointing
toward the obstacle, is selected. We defineafe state as
a state at which the robot can avoid the obstacle either by
stopping or by passing. Obviously from any safe state there
exists at least onesafe maneuver (leading to another safe
state). The smallest safe time horizon is the one that allows
sufficient time for the robot to avoid the obstacle either by
stopping or by passing. It depends on the size of the obstacle
its velocity, and the robot’s dynamic constraints.

point p in B at timet > tp, expressed in a frame centered at

A(tp), is simply
c(t)+r

Vqa =
a t*t() ’

1)

wherer is the vector to poinp in the obstacle’s fixed frame.

The set,NLVO(t) of all absolute velocities of that would
result in collision with any point inB at timet >ty is

obtained by replacing with the set of all points irB: Voh
, Vi "
nLvo(t) = WEZ @ A ——
t—to
whereZ represents the set of all points in the grown obstacle de

B, defined relative to some center that follows the cuotte,
and & represents the Minkowski sum. ClearNLVO(t) is
a scaled4, located at a distance from that is inversely
proportional to the collision timé. The entireNLVO is the
union of its temporal subsets frotg, the current time, to
some set time horizoty:

Nvoh = ) SWEF 3)

th>t>tg t—1o

Fig. 4. Stopping and passing maneuvers

Consider a robof and an obstaclB, each moving at some
constant velocity. The time horizon is relevant only if the
two are on a collision course, i.e. the velocity penetrates
the velocity obstacle oB. To determine the proper time
horizon for this case, we first transform the problem into
the avoidance of a static obstacle by considering the velati



velocity v, /b, as shown in Figure 3. The relative velocity
Va/p IS then projected into two components, and v; that
are parallel and normal to the line connectiAgand the
center ofB, as shown in Figure 3.

B. Passing time
The minimum time for passingdp, is the solution to the

minimum time problem of traversing the distandg given
an initial velocity vy and an unspecified final velocity. The

“The robot can avoid collision by either stopping beforgqytion to this problem is an extremal control that either
hitting the obstacle, or by passing it on either side. To StORcelerates or decelerates, depending on the sigdsafd

the robot’s longitudinal velocity, must decelerate to zero
before traversing the distanah, as shown in Figure 4; to
pass, the robot must traverse the lateral distaghctaster
than it would traverse the longitudinal distard;e We select
the time horizon such that when the robot’s velocity firs
penetrates the velocity obstacle, it still has sufficiemtetito
avoid collision either by stoppingr by passing. To this end,

Vi.
The velocity vs developed by accelerating at over tp
until traversingd; satisfies:

C)
(10)

t \%i

vt

Vi + Uttp
VE + 2u k.

we wish to determine the minimum time required for eact "€ minimum timefp, to traverse the distanak is thus the
maneuver (stopping and passing) to select the smallest s&fgallest positive solution:

time horizon. For simplicity, we decouple the two maneuyers
assuming that each is executed by a single control effort.
The minimum times for the stopping and passing maneuvers

thus depend on the initial velocity, distance, and the abntr

—Vt £ /W + 2uch
Ut

Note that there are two such solutions, one for passing on

tp =min (1D

constraint in each direction. The smallest safe time harizdhe right and one on the left. Obviously, the smallest of the

is then the smallest of the minimum times for stopping an
passing.

A. Sopping time

jvo is selected.
Selecting the time horizon as the smallest of the two times

th = min{ts,tp} (12)

The minimum stopping time is the time it would take thegngyres that when the robot's velocity touches the boundary

robot to decelerate to a stop from its current normal vejocit
Vp, using the maximum deceleration. Assuming a consta
longitudinal decelerationy, < 0, the stopping time is
A

7un '

tsop = 4)

of the velocity obstacle, there remains sufficient time toiév
e obstacle either by stoppig by passing. Penetrating the
velocity obstacle would leave no time for a safe avoidance
maneuver, which implies that the boundary of the velocity
obstacle, generated foK t,, represents states on the bound-

Since theVO assumes collision at a constant speedary of thelCS. The time horizon is computed individually for

whereastgop, assumes a constant deceleration, usigg

each obstacle, using the relative velocity between thetrobo

as the time horizon would alert the robot too early oftind obstacle.

a potential collision. Taking into account the deceleigtin

We can summarize these results in the following state-

velocity allows us to use a shorter time horizon. To deteeminments:

how short, we compare the distance traveled dygy at a
constant speed and at a constant deceleration.

The distance traveled at a constant veloaityover the
stopping timetgop is:

®)

The distance traveled at a constant deceleratjpfrom the
initial velocity v, to a stop is:

Jeongt = Vintsop-

Odec = Vnlsiop + Euntsztop' (6)
Substitutingvn = —Untgop iNto (6) yields:
1
ddec = Vntstop — EVntstop = EVntstop = Edconst- (7

Since the distance traveled at a constant deceleratiorifis h
the distance traveled at a constaptover the stopping time
tsop, the moving robot should start decelerating when th
time to collision at a constant speed drops to half the stappi
time (4). The smallest time horizoty for the stopping
maneuver is therefore half the stopping titggy:

1
tS:*

2
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—2un’
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tstop =

Statement T Assume a roboA that is modeled by a point
mass, and is moving at some velocity in the vicinity of
obstacleB. B is moving at a constant known velocity, and is
represented by its velocity obstade.VOEQ for t € (to,tn),
wherety, is the minimum of the stopping and passing times.
If va NLVOEE, then 1)A will not collide with B within the
timet € (to,th); 2) A has sufficient time and control effort to
avoid colliding with B either by stopping or by passing.
Statement 2 For the scenario in Statement lyife NLVO{Q,
then A cannot escape collision witB.

Statement 3 The boundary ofNLVO%Q represents states
that overlap with the boundary of thikCS. This follows
from Statements 1 and 2 since every point insﬁdﬁ/O{g is

%Iso inICS, and every point outside (NLVO{Q is not inICS.

e Figure 5 shows a static obstacle and the trajectory gener-
ated by the on-line planner discussed later. The robotsstart
from rest at point0, —4) at the bottom, and moves in near-
minimum time to the goal &0, 2). The stopping and passing
times along this path are shown in Figure 6, of which the
smallest is used in determining the safe maneuver at each
time step. As the stopping time depends only on the current



longitudinal velocity, it grows from zero, then decreases aother hand, is complete, i.e. capable of finding a solution if
the robot moves tangentially to the obstacle. The stoppimgne exists. Our planner is local as it generates one move at
time is zero at the tangency point since the longitudinadvery time step.
velocity that is pointing toward the obstacle is zero at this The proper choice of the time horizon ensures survival of
point. The stopping time is set to zero when the longitudinahe robot, i.e. not entering inevitable collision stat&sSs).
velocity is negative, as is the case when the robot mové®r one obstacle, this guarantees convergence to the gwal. F
away from the obstacle. many obstacles, a solution cannot be guaranteed due to the
changing nature of the environment: it is possible thatrdyri
the local search, the state space around the robot becomes
disconnected from the goal even though the global search
Z A might escape such a trap. Consequently, the success of the
1 on-line planner should be measured by its ability to achieve
Q a hierarchical set of goals, with survival being the first,
reaching the goal being second, and other objectives béing o
. lower priority. The off-line planner computes a solution by
5 exploring a tree of attainable states from the start nodi¢ unt
” i the goal node is reached. The tree can be expanded using any
5 ‘ efficient heuristics, such as a depth-first search or A*. This
’ ' ’ search can be drastically reduced by considering only "safe
Fig. 5. Dynamic avoidance of a static obstacle attainable states that satisfy system dynamics and arefout o
the ICS. This planner is new in its on-line minimization of
the time-to-go, combined with the use of velocity obstacles
and the proper time horizon to guide the tree search.

Time Horizon along the path

—" A. System Dynamics

. ] For simplicity, the robot is assumed a planar point mass.
This is necessary for computational reasons, and is in no way
a limitation of this approach.

] We consider the following point mass model:

Time Horizon [sec]

X=up;jup| <1 (13)
e y=uz;uz| <1 (14)

Motion time [sec]

where (x,y)" € R? represents the robot’s position in a
Fig. 6. The stopping and passing time horizons along the path  Cartesian coordinate frame aM7uz)T cR? represents the
robot’s controls.

The passing time stays constant while the robot moves Given the robot's dynamics, we wish to compute the set
toward the center of the obstacle (the passing distance staf attainable Cartesian velocitieAQV) of the maneuvering
constant and the lateral velocity is zero all this time). Theobot that can be reached over a given time intervdl,
passing time decreases as the lateral velogitpcreases. In [13]. This set contains the avoidance maneuvers that are
this case, the passing time is higher than the stopping tinggnamically feasible from a given state. The attainable
along the entire path because of the relatively large sitleeof Cartesan velocities, ACV(t + At) are integrated from the

obstacle. The time horizon along the entire path is theeefokurrent state(x,v) = (x,y,x,y) by applying all admissible
the stopping time. Using the minimum time horizon betweegontrolsu = (uy,uz) € U:

the stopping and passing ensures that at no time the robot
enters inevitable collision states. ACV(t+At) = {vlv=v(t) + Atu,uc U}. (15)

The geometric shape @CV (t +At) depends on the specific
o . ) ) system dynamics. For a point mass model, with constant
The efficient representation of static and moving obstaclegntrol constraints, it is a rectangle, similar in shapehie t

by velocity obstacles allows us to efficiently plan safeset of admissible controls, as shown in Figure 7.
trajectories in dynamic environments. We assume knowledge

of the positions and velocities of the neighboring obstacleB- Tree Search

We distinguish between local and global planners. The The planner uses a depth first A* search over a tree
local planner generates one, or a few steps at every tinleat expands over time to the goal. Each node contains the
step, whereas the global planner uses a global searchdarrent position and velocity of the robot at the current
the goal over a time spanned tree. The local planner canrtohe step. At each state, the planner computes the set of
ensure convergence to the goal and in some cases may |aalinissible velocitiesACV, which is then tessellated by a
to inevitable collision states [14]. The global planner,tba uniform grid, as shown in Figure 7. To test the safety of

IV. THE PLANNER



both axes [19]. This cost function produces time-optima tr
NLVO(tr) jectories with no obstacles, and near-time optimal trajees
with obstacles.

V. EXAMPLES
ACV

© The on-line planner was implemented and tested for
Va obstacle-free, and crowded static and dynamic environsnent
In the first example, shown in Figure 8, the robot, repregknte

by a point, starts near poin{0.25,—1) at zero speed,

A attempting to reach the goal at poif@.25,2) (marked by
a red triangle) at zero speed, while avoiding two obstacles,
one static and one moving (to the right). The trajectory
is shown in six snapshots, starting from the top left, and

ending at the bottom right of Figure 8. In each snapshot,

the nodes on the grid, a set of temporal velocity ObStaC|?ﬁe two obstacles are shown in blue, together with their

NLVO(t), t € (,th) are computed at specified t'me.mtervalstemporal velocity obstaclesILVO(t,), shown each at the
(the temporal velocity obstacles are computed in reversé

e, saing fom - ) 0 Fiue 7, OyNLYO()  eoiecon UTE PrEcn, A shour, s e bt vsectry
is shown, where nodes insiddLVO(ty), marked red, are P P ’ y

. - the current point. Note that as the time horizon decreases
inadmissible. Nodes out dfILVO(t,) are further evaluated nt p . . '
. . the velocity obstacle increases. At first, the robot turftstée

by computing from each the unconstrained (no obstacles) . . . .
- : . . avoid penetrating the velocity obstacle. This turn to tHe le
minimum time-to-go, as discussed next. The node with the .
. . ; .occurs before the robot reaches the obstacle. After passing

lowest time is then explored to the next time step. Thi

: : ; e static obstacle on the left, it turns right, to avoid the
is repeated until reaching the goal. For one obstacle, this” . :

. : . moving obstacle. At some point, the robot grazes the olestacl
planner is guaranteed to reach the goal in the near minimu

m . L .
time. For many moving obstacles, it may not, and a glob;ﬂn the right, gfter which '.t |s_enclosed py . _secopd v_e}'ocn

) Obstacle. This does not indicate a collision since its vgtoc
search may be required.

points outside of the velocity obstacle. At that point, the
relative velocity of the robot relative to the obstacle isgant
to the obstacle, as it should for the two to be sliding retativ
Our search is guided by a minimum time-to-go costo each other. After avoiding the moving obstacle, the robot
function to produce near-time optimal trajectories to thalg turns to the left to reach the goal. The second example,
The time horizon selected in Section Il guarantees safety
by ensuring that the robot stays out of theS. Combining
minimum time with the safe time horizon produces high
speed, yet safe trajectories.

The cost function for each node is the minimum timetogo @,@
: 1

Fig. 7. Attainable Cartesian Velocities

C. Cost Function

to the goal from that node. It is determined by first computing
the minimum time to the goal(x, X, x¢,Xs ) from the current
state(x,X) to the goal(xs,Xs) for each axis [19], [16]:

0 55

W(Xa Xv Xf, Xf ) -

. %G
—X—Xf + 2 —X+Xf+5+§,|fX€R

- 2 % . : . ;éz
X+Xt  + 2/ X=X+ >+ Eothervvls:e (16) . Ll -
1 l

whereR is the region below and above the switching curve
in the state space:

2

X
RXX) =  {[—2(x—x;+ >0,

2 1

5
4
3
2
1
0
1
2

%) X% =) 0 ]
X +2(X—Xf—§<0} a7

5

. . L. . Fig. 8. Avoiding a static and a moving obstacle. Obstaclesshmvn in
Considering both axes, the minimum time to the goal useglue, and their respective velocity obstacles shown inoyellThe velocity

in the cost function is the largest of the times computed fofector is guided not to penetrate the velocity obstacles.



in Figure 9, shows the robot avoiding 70 static obstaclesre truncated at a carefully selected time horizon. This
starting from the bottom left and moving to three differentime horizon is selected for each obstacle, static or mqving
goals. For each goal, two trajectories are shown: the locak the smallest of the minimum stopping and minimum
trajectory in blue dots, and the global trajectory in redeThpassing times from the current state. Keeping the robot’s
dots are spaced at constant time intervals, thus indicéttimg velocity vector out of the velocity obstacle ensures that th
changing speeds as the robot accelerates and slows dowbot does not enter unsafe states from which avoidance
through narrow passages toward the goal. The local amdnnot be guaranteed. Recognizing unsafe states using the
global trajectories are quite similar for all three casdse T velocity obstacles is not only safe but also very efficient as
travel time along the local trajectories were about 10% éwng it drastically reduces the search tree. The planner geseerat
than the time along global solutions. The third example, imear time-optimal trajectories, using the minimum time-to

go to guide the tree search. The planner was demonstrated
for a point mass dynamic model. Other robot models can be
used with minor modifications. The planner was successfully
tested for crowded static and dynamic environments. It is
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Fig. 9. Local (blue) and global (red) trajectories avoidigstatic obstacles
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suitable for real time generation of high speed trajectoirie
crowded static and dynamic environments.
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(2]

(3]

(4]

Figure 10, shows four snapshots of the robot avoiding 70

moving obstacles. It starts from the bottom center and move

to the target at the top right. A video clip of the full run is [g]
available in www.ariel.ac.il/me/pf/shiller/oren.
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Fig. 10. Avoiding 70 moving obstacles

VI. CONCLUSIONS
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An on-line planner for dynamic environments was pre-
sented. It ensures safety by using velocity obstacles that
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