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Abstract— This paper presents a new on-line planner for
dynamic environments that is based on the concept of Velocity
Obstacles (VO). It addresses the issue of motion safety, i.e.
avoiding states of inevitable collision, by selecting a proper
time horizon for the velocity obstacle. The proper choice of the
time horizon ensures that the boundary of the velocity obstacle
coincides with the boundary of the set of inevitable collision
states. This time horizon is determined by the minimum time
it would take the robot to avoid collision, either by stopping
or by passing the respective obstacle. The planner generates a
near-time optimal trajectory to the goal by selecting at each
time step the velocity that minimizes the time-to-go and is out
of the velocity obstacle. The planner takes into account the
shape, velocity, and path curvature of the obstacle’s trajectory.
It is demonstrated for on-line motion planning in very crowded
static and dynamic environments.

I. I NTRODUCTION

Most of the work on motion planning over the past twenty
years has focused on static obstacles, with a few exceptions.
We distinguish between local and global planners. The local
planner generates one, or a few steps at every time step,
whereas the global planner uses a global search to the
goal over a time spanned tree. Examples of local (reactive)
planners are [3], [17], [8], [11], but most do not guarantee
safety as they are too slow and hence their ability to look-
ahead and avoid states of inevitable collision is very limited.
Recently, iterative planners [5], [7], [1], [12], [10], [15] were
developed that compute several steps at a time, subject to
the available computation time. The trajectory is generated
incrementally by exploring a search-tree and choosing the
best branch. These planners too do not address the issue of
safety.

Only a few works have addressed the safety issue in
dynamic environments, which is crucial for partial (local)
planning. One approach is to use braking policies [18];
another is to ensure local avoidance for a limited time [10].
However, neither considers the dynamics of the moving
robot. A promising approach to safe motion planning in
dynamic environment is the consideration of ”regions of
inevitable collision,” first introduced in [9] and later extended
in [6], [14], [4], [2].

We address the issue of safety for an on-line local planner
in dynamic environments using velocity obstacles. Safety is
guaranteed by ensuring that the robot’s velocity does not
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penetrate the velocity obstacle, which is generated for a care-
fully selected time horizon. This time horizon ensures that
the boundary of the velocity obstacle overlaps the boundary
of the set of inevitable collision states. Repelling the robot’s
velocity from entering the inevitable collision states ensures
(if a solution exists) that the robot does not crash into any
static or moving obstacle. The safe time horizon, which is
obstacle specific, is determined by computing the minimum
time it would take the robot to avoid collision, either by
stopping or by passing the respective obstacle. Determining
the safe time horizon is computationally efficient and it does
not require a prior mapping of inevitable collision states.
Since the time horizon is obstacle specific, motion safety is
guaranteed if obstacles can be avoided individually or if the
state-space between the current position and the goal state
stays connected.

In addition to addressing the safety issue, our planner
generates near-time optimal trajectories by selecting at each
time step a safe velocity that minimizes the time-to-go. The
planner is demonstrated for on-line motion planning in very
crowded static and dynamic environments.

II. T HE VELOCITY OBSTACLE

The velocity obstacle represents the set of all colliding
velocities of the robot with each of the neighboring obstacles.
It maps static and moving obstacles into the robot’s velocity
space. The velocity obstacle (VO) of a planar circular obsta-
cle, B, that is moving at a constant velocityvb, is a cone in
the velocity space of robotA, reduced to a point by enlarging
respectively obstacleB, as shown in Figure 1. Each point in
VO represents a velocity vector that originates atA. Any
velocity of A that penetratesVO is a colliding velocity that
would result in collision betweenA and B at some future
time. Figure 1 shows two velocities ofA: one that penetrates
VO, and is hence a colliding velocity, and one that does not.
All velocities ofA that are outside ofVO are safe as long asB
stays on its current course. The velocity obstacle thus allows
determining if a given velocity is potentially dangerous, and
suggesting possible changes to this velocity to avert collision.
If B is known to move along a curved trajectory or at varying
speeds, it would be best represented by the nonlinear velocity
obstacle discussed next.

The nonlinear velocity obstacle (NLVO) accounts for a
general trajectory of the obstacle, while assuming a constant
velocity of the robot. It applies to the scenario shown in
Figure 2, where, at timet0, a point A attempts to avoid an
obstacle,B, that is following a general known trajectory,c(t),
and at timet0 is located atc(t0). The NLVO consists of
all velocities of A at t0 that would result in collision with
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Fig. 1. A linear velocity obstacle

Fig. 2. A non-linear velocity obstacle

the obstacle at any timet > t0. Selecting a single velocity,
va, at time t = t0 outside theNLVO thus guarantees thatA
avoids collision at all times. It is constructed as a union ofits
temporal elements,NLVO(t), which is the set of all absolute
velocities ofA, va, that would result in collision at a specific
time t.

Referring to Figure 2,va that would result in collision with
point p in B at time t > t0, expressed in a frame centered at
A(t0), is simply

va =
c(t)+ r
t − t0

, (1)

wherer is the vector to pointp in the obstacle’s fixed frame.
The set,NLVO(t) of all absolute velocities ofA that would
result in collision with any point inB at time t > t0 is
obtained by replacingr with the set of all points inB:

NLVO(t) =
c(t)⊕B

t − t0
. (2)

whereB represents the set of all points in the grown obstacle
B, defined relative to some center that follows the curvec(t),
and⊕ represents the Minkowski sum. Clearly,NLVO(t) is
a scaledB, located at a distance fromA that is inversely
proportional to the collision timet. The entireNLVO is the
union of its temporal subsets fromt0, the current time, to
some set time horizonth:

NLVOth
t0 =

⋃

th>t>t0

c(t)⊕B

t − t0
. (3)

The non-linear v-obstacle is a warped cone. Ifc(t) is
bounded overt = (t0,∞), then the apex of this cone is at
A(t0). The boundaries of theNLVO represent velocities that
would result inA grazingB. The smallest safe time horizon is
the one that allows sufficient time to avoid or escape collision
as discussed next.

III. T IME HORIZON

The time horizon plays an important role in selecting
feasible avoidance maneuvers. It allows considering only
those maneuvers that would result in a collision within a
specified time interval. Setting the time horizon too high
would be too prohibitive, as it would mark as dangerous
maneuvers resulting in collision at a distant time; selecting a
too small time horizon would permit dangerous maneuvers
that are too close and at too high speeds to avoid the obstacle.
It is essential that the proper time horizon be selected to
ensure that a safe maneuver, even if temporarily pointing
toward the obstacle, is selected. We define asafe state as
a state at which the robot can avoid the obstacle either by
stopping or by passing. Obviously from any safe state there
exists at least onesafe maneuver (leading to another safe
state). The smallest safe time horizon is the one that allows
sufficient time for the robot to avoid the obstacle either by
stopping or by passing. It depends on the size of the obstacle,
its velocity, and the robot’s dynamic constraints.
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Fig. 3. The robot and obstacle on a collision course
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Fig. 4. Stopping and passing maneuvers

Consider a robotA and an obstacleB, each moving at some
constant velocity. The time horizon is relevant only if the
two are on a collision course, i.e. the velocityva penetrates
the velocity obstacle ofB. To determine the proper time
horizon for this case, we first transform the problem into
the avoidance of a static obstacle by considering the relative



velocity va/b, as shown in Figure 3. The relative velocity
va/b is then projected into two components,vn and vt that
are parallel and normal to the line connectingA and the
center ofB, as shown in Figure 3.

The robot can avoid collision by either stopping before
hitting the obstacle, or by passing it on either side. To stop,
the robot’s longitudinal velocityvn must decelerate to zero
before traversing the distancedn, as shown in Figure 4; to
pass, the robot must traverse the lateral distancedt faster
than it would traverse the longitudinal distancedn. We select
the time horizon such that when the robot’s velocity first
penetrates the velocity obstacle, it still has sufficient time to
avoid collision either by stoppingor by passing. To this end,
we wish to determine the minimum time required for each
maneuver (stopping and passing) to select the smallest safe
time horizon. For simplicity, we decouple the two maneuvers,
assuming that each is executed by a single control effort.
The minimum times for the stopping and passing maneuvers
thus depend on the initial velocity, distance, and the control
constraint in each direction. The smallest safe time horizon
is then the smallest of the minimum times for stopping and
passing.

A. Stopping time

The minimum stopping time is the time it would take the
robot to decelerate to a stop from its current normal velocity
vn, using the maximum deceleration. Assuming a constant
longitudinal deceleration,un < 0, the stopping time is

tstop =
vn

−un
. (4)

Since theVO assumes collision at a constant speed,
whereaststop assumes a constant deceleration, usingtstop

as the time horizon would alert the robot too early of
a potential collision. Taking into account the decelerating
velocity allows us to use a shorter time horizon. To determine
how short, we compare the distance traveled overtstop at a
constant speed and at a constant deceleration.

The distance traveled at a constant velocityvn over the
stopping timetstop is:

dconst = vntstop. (5)

The distance traveled at a constant decelerationun from the
initial velocity vn to a stop is:

ddec = vntstop +
1
2

unt2
stop. (6)

Substitutingvn = −untstop into (6) yields:

ddec = vntstop −
1
2

vntstop =
1
2

vntstop =
1
2

dconst . (7)

Since the distance traveled at a constant deceleration is half
the distance traveled at a constantvn over the stopping time
tstop, the moving robot should start decelerating when the
time to collision at a constant speed drops to half the stopping
time (4). The smallest time horizonts for the stopping
maneuver is therefore half the stopping timetstop:

ts =
1
2

tstop =
vn

−2un
. (8)

B. Passing time

The minimum time for passing,tp, is the solution to the
minimum time problem of traversing the distancedt , given
an initial velocity vt and an unspecified final velocity. The
solution to this problem is an extremal control that either
accelerates or decelerates, depending on the signs ofdt and
vt .

The velocity v f developed by accelerating atut over tp

until traversingdt satisfies:

v f = vt +uttp (9)

v2
f = v2

t +2utdt . (10)

The minimum time,tp, to traverse the distancedt is thus the
smallest positive solution:

tp = min
−vt ±

√

v2
t +2utdt

ut
(11)

Note that there are two such solutions, one for passing on
the right and one on the left. Obviously, the smallest of the
two is selected.

Selecting the time horizon as the smallest of the two times

th = min{ts, tp} (12)

ensures that when the robot’s velocity touches the boundary
of the velocity obstacle, there remains sufficient time to avoid
the obstacle either by stoppingor by passing. Penetrating the
velocity obstacle would leave no time for a safe avoidance
maneuver, which implies that the boundary of the velocity
obstacle, generated fort ≤ th, represents states on the bound-
ary of theICS. The time horizon is computed individually for
each obstacle, using the relative velocity between the robot
and obstacle.

We can summarize these results in the following state-
ments:
Statement 1: Assume a robotA that is modeled by a point
mass, and is moving at some velocityva in the vicinity of
obstacleB. B is moving at a constant known velocity, and is
represented by its velocity obstacleNLVOth

t0 for t ∈ (t0, th),
whereth is the minimum of the stopping and passing times.
If va /∈ NLVOth

t0, then 1)A will not collide with B within the
time t ∈ (t0, th); 2) A has sufficient time and control effort to
avoid colliding withB either by stopping or by passing.
Statement 2: For the scenario in Statement 1, ifva ∈NLVOth

t0,
thenA cannot escape collision withB.
Statement 3: The boundary ofNLVOth

t0 represents states
that overlap with the boundary of theICS. This follows
from Statements 1 and 2 since every point insideNLVOth

t0 is
also inICS, and every point outside ofNLVOth

t0 is not in ICS.

Figure 5 shows a static obstacle and the trajectory gener-
ated by the on-line planner discussed later. The robot starts
from rest at point(0,−4) at the bottom, and moves in near-
minimum time to the goal at(0,2). The stopping and passing
times along this path are shown in Figure 6, of which the
smallest is used in determining the safe maneuver at each
time step. As the stopping time depends only on the current



longitudinal velocity, it grows from zero, then decreases as
the robot moves tangentially to the obstacle. The stopping
time is zero at the tangency point since the longitudinal
velocity that is pointing toward the obstacle is zero at this
point. The stopping time is set to zero when the longitudinal
velocity is negative, as is the case when the robot moves
away from the obstacle.
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Fig. 5. Dynamic avoidance of a static obstacle
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Fig. 6. The stopping and passing time horizons along the path

The passing time stays constant while the robot moves
toward the center of the obstacle (the passing distance stays
constant and the lateral velocity is zero all this time). The
passing time decreases as the lateral velocityvt increases. In
this case, the passing time is higher than the stopping time
along the entire path because of the relatively large size ofthe
obstacle. The time horizon along the entire path is therefore
the stopping time. Using the minimum time horizon between
the stopping and passing ensures that at no time the robot
enters inevitable collision states.

IV. T HE PLANNER

The efficient representation of static and moving obstacles
by velocity obstacles allows us to efficiently plan safe
trajectories in dynamic environments. We assume knowledge
of the positions and velocities of the neighboring obstacles.

We distinguish between local and global planners. The
local planner generates one, or a few steps at every time
step, whereas the global planner uses a global search to
the goal over a time spanned tree. The local planner cannot
ensure convergence to the goal and in some cases may lead
to inevitable collision states [14]. The global planner, onthe

other hand, is complete, i.e. capable of finding a solution if
one exists. Our planner is local as it generates one move at
every time step.

The proper choice of the time horizon ensures survival of
the robot, i.e. not entering inevitable collision states (ICS).
For one obstacle, this guarantees convergence to the goal. For
many obstacles, a solution cannot be guaranteed due to the
changing nature of the environment: it is possible that during
the local search, the state space around the robot becomes
disconnected from the goal even though the global search
might escape such a trap. Consequently, the success of the
on-line planner should be measured by its ability to achieve
a hierarchical set of goals, with survival being the first,
reaching the goal being second, and other objectives being of
lower priority. The off-line planner computes a solution by
exploring a tree of attainable states from the start node until
the goal node is reached. The tree can be expanded using any
efficient heuristics, such as a depth-first search or A*. This
search can be drastically reduced by considering only ”safe”
attainable states that satisfy system dynamics and are out of
the ICS. This planner is new in its on-line minimization of
the time-to-go, combined with the use of velocity obstacles
and the proper time horizon to guide the tree search.

A. System Dynamics

For simplicity, the robot is assumed a planar point mass.
This is necessary for computational reasons, and is in no way
a limitation of this approach.

We consider the following point mass model:

ẍ = u1; |u1| ≤ 1 (13)

ÿ = u2; |u2| ≤ 1 (14)

where (x,y)T ∈ R2 represents the robot’s position in a
Cartesian coordinate frame and(u1,u2)

T ∈ R2 represents the
robot’s controls.

Given the robot’s dynamics, we wish to compute the set
of attainable Cartesian velocities (ACV ) of the maneuvering
robot that can be reached over a given time interval,∆t
[13]. This set contains the avoidance maneuvers that are
dynamically feasible from a given state. The attainable
Cartesian velocities, ACV (t + ∆t) are integrated from the
current state(x,v) = (x,y, ẋ, ẏ) by applying all admissible
controlsu = (u1,u2) ∈U :

ACV (t +∆t) = {v|v = v(t)+∆tu,u ∈U}. (15)

The geometric shape ofACV (t +∆t) depends on the specific
system dynamics. For a point mass model, with constant
control constraints, it is a rectangle, similar in shape to the
set of admissible controlsU , as shown in Figure 7.

B. Tree Search

The planner uses a depth first A* search over a tree
that expands over time to the goal. Each node contains the
current position and velocity of the robot at the current
time step. At each state, the planner computes the set of
admissible velocitiesACV , which is then tessellated by a
uniform grid, as shown in Figure 7. To test the safety of
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Fig. 7. Attainable Cartesian Velocities

the nodes on the grid, a set of temporal velocity obstacles
NLVO(t), t ∈ (0, th) are computed at specified time intervals
(the temporal velocity obstacles are computed in reverse
order, starting fromt = th). In Figure 7, only NLVO(th)
is shown, where nodes insideNLVO(th), marked red, are
inadmissible. Nodes out ofNLVO(th) are further evaluated
by computing from each the unconstrained (no obstacles)
minimum time-to-go, as discussed next. The node with the
lowest time is then explored to the next time step. This
is repeated until reaching the goal. For one obstacle, this
planner is guaranteed to reach the goal in the near minimum
time. For many moving obstacles, it may not, and a global
search may be required.

C. Cost Function

Our search is guided by a minimum time-to-go cost
function to produce near-time optimal trajectories to the goal.
The time horizon selected in Section III guarantees safety
by ensuring that the robot stays out of theICS. Combining
minimum time with the safe time horizon produces high
speed, yet safe trajectories.

The cost function for each node is the minimum time to go
to the goal from that node. It is determined by first computing
the minimum time to the goalw(x, ẋ,x f , ẋ f ) from the current
state(x, ẋ) to the goal(x f , ẋ f ) for each axis [19], [16]:

w(x, ẋ,x f , ẋ f ) =

−ẋ− ẋ f + 2

√

−x+ x f +
ẋ2

2
+

ẋ2
f

2
, i f x ∈ R

ẋ+ ẋ f + 2

√

x− x f +
ẋ2

2
+

ẋ2
f

2
otherwise (16)

whereR is the region below and above the switching curve
in the state space:

R(x, ẋ) = {ẋ2−2(x− x f +
ẋ2

f

2
> 0,

ẋ2 +2(x− x f −
ẋ2

f

2
< 0} (17)

Considering both axes, the minimum time to the goal used
in the cost function is the largest of the times computed for

both axes [19]. This cost function produces time-optimal tra-
jectories with no obstacles, and near-time optimal trajectories
with obstacles.

V. EXAMPLES

The on-line planner was implemented and tested for
obstacle-free, and crowded static and dynamic environments.
In the first example, shown in Figure 8, the robot, represented
by a point, starts near point(0.25,−1) at zero speed,
attempting to reach the goal at point(0.25,2) (marked by
a red triangle) at zero speed, while avoiding two obstacles,
one static and one moving (to the right). The trajectory
is shown in six snapshots, starting from the top left, and
ending at the bottom right of Figure 8. In each snapshot,
the two obstacles are shown in blue, together with their
temporal velocity obstaclesNLVO(th), shown each at the
respective time horizon. Also shown is the robot trajectory
up to that point from the start, with the velocity marked at
the current point. Note that as the time horizon decreases,
the velocity obstacle increases. At first, the robot turns left to
avoid penetrating the velocity obstacle. This turn to the left
occurs before the robot reaches the obstacle. After passing
the static obstacle on the left, it turns right, to avoid the
moving obstacle. At some point, the robot grazes the obstacle
on the right, after which it is enclosed by the second velocity
obstacle. This does not indicate a collision since its velocity
points outside of the velocity obstacle. At that point, the
relative velocity of the robot relative to the obstacle is tangent
to the obstacle, as it should for the two to be sliding relative
to each other. After avoiding the moving obstacle, the robot
turns to the left to reach the goal. The second example,
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Fig. 8. Avoiding a static and a moving obstacle. Obstacles areshown in
blue, and their respective velocity obstacles shown in yellow. The velocity
vector is guided not to penetrate the velocity obstacles.



in Figure 9, shows the robot avoiding 70 static obstacles,
starting from the bottom left and moving to three different
goals. For each goal, two trajectories are shown: the local
trajectory in blue dots, and the global trajectory in red. The
dots are spaced at constant time intervals, thus indicatingthe
changing speeds as the robot accelerates and slows down
through narrow passages toward the goal. The local and
global trajectories are quite similar for all three cases. The
travel time along the local trajectories were about 10% longer
than the time along global solutions. The third example, in
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Fig. 9. Local (blue) and global (red) trajectories avoiding70 static obstacles

Figure 10, shows four snapshots of the robot avoiding 70
moving obstacles. It starts from the bottom center and moves
to the target at the top right. A video clip of the full run is
available in www.ariel.ac.il/me/pf/shiller/oren.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Fig. 10. Avoiding 70 moving obstacles

VI. CONCLUSIONS

An on-line planner for dynamic environments was pre-
sented. It ensures safety by using velocity obstacles that

are truncated at a carefully selected time horizon. This
time horizon is selected for each obstacle, static or moving,
as the smallest of the minimum stopping and minimum
passing times from the current state. Keeping the robot’s
velocity vector out of the velocity obstacle ensures that the
robot does not enter unsafe states from which avoidance
cannot be guaranteed. Recognizing unsafe states using the
velocity obstacles is not only safe but also very efficient as
it drastically reduces the search tree. The planner generates
near time-optimal trajectories, using the minimum time-to-
go to guide the tree search. The planner was demonstrated
for a point mass dynamic model. Other robot models can be
used with minor modifications. The planner was successfully
tested for crowded static and dynamic environments. It is
suitable for real time generation of high speed trajectories in
crowded static and dynamic environments.
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