
E�cient and Scalable Cross-ISA Virtualization of
Hardware Transactional Memory

Wenwen Wang
University of Georgia, USA

Pen-Chung Yew
University of Minnesota, USA

Antonia Zhai
University of Minnesota, USA

Stephen McCamant
University of Minnesota, USA

Abstract

System virtualization is a key enabling technology. However,
existing virtualization techniques su�er from a signi�cant
limitation due to their limited cross-ISA support for emerg-
ing architecture-speci�c hardware extensions. To address
this issue, we make the �rst attempt at hardware transac-
tional memory (HTM), which has been supported by modern
multi-core processors and used by more and more applica-
tions to simplify concurrent programming. In particular, we
propose an e�cient and scalable mechanism to support cross-
ISA virtualization of HTMs. The mechanism emulates guest
HTMs using host HTMs, and tries to preserve as much as
possible the performance and the scalability of guest appli-
cations. Experimental results on STAMP benchmarks show
that an average of 2.3X and 12.6X performance speedup can
be achieved respectively for x86_64 and PowerPC64 guest ap-
plications on an x86_64 host machine. Moreover, it can attain
similar scalability to the native execution of the applications.

CCS Concepts • Software and its engineering → Just-

in-time compilers; Runtime environments; Dynamic

compilers;Virtualmachines;Multithreading; •Hardware

→ Emerging languages and compilers.

Keywords System Virtualization; Cross-ISA; DBT; HTM

ACM Reference Format:

Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCa-

mant. 2020. E�cient and Scalable Cross-ISA Virtualization of Hard-

ware Transactional Memory. In Proceedings of the 18th ACM/IEEE

International Symposium on Code Generation and Optimization (CGO

’20), February 22–26, 2020, San Diego, CA, USA. ACM, New York, NY,

USA, 14 pages. h�ps://doi.org/10.1145/3368826.3377919

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

CGO ’20, February 22–26, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00

h�ps://doi.org/10.1145/3368826.3377919

1 Introduction

System virtualization has played a critical role in many im-
portant applications [4, 24, 37, 46, 68, 69, 73]. However, due
to the rapid evolution of processor hardware, existing virtu-
alization techniques su�er a fundamental limitation from the
lack of or limited support for cross-ISA virtualization, par-
ticularly, in emerging ISA-speci�c hardware extensions. For
example, Intel x86 provides transactional synchronization
extensions (TSX) [36] to support transactional memory, and
IBM POWER8 provides similar support but with di�erent
implementations [41]. In another example, to support more
secure execution environments, Intel x86 provides software
guard extensions (SGX) [34], while ARMo�ers TrustZone [6].
And to a lesser extent, the SIMD instruction subsets have
evolved across several di�erent generations of the same ISA
or di�erent ISAs [5, 33, 35].
Cross-ISA virtualization of these hardware extensions is

essential to build a transparent, e�cient, and secure virtual-
ization environment. This is crucial for workload migration,
isolation and consolidation across machines with di�erent
ISAs, which are increasingly populating existing cloud en-
vironment [8, 9, 60]. For instance, Amazon launched elastic
compute cloud (EC2) instances powered by ARM processors
in 2018 [1]. Therefore, it is imperative to enhance existing vir-
tualization techniques for such hardware extensions. In this
paper, we focus on hardware transactional memory (HTM),
which has become a permanent part of many modern archi-
tectures, e.g., Intel’s Haswell, Skylake, and IBM’s POWER8
and zEnterprise EC12 (zEC12). As more and more applica-
tions are taking advantage of HTM [25, 51, 53, 55, 70, 72, 76],
virtualizing HTM across ISAs becomes necessary when such
applications are migrated across machines with di�erent
HTM implementations.
Dynamic binary translation (DBT) is the cornerstone of

cross-ISA virtualization [64]. In general, a DBT system can
virtualize the execution environment of a guest machine on a
physical host machine with a di�erent ISA. By executing the
host binary code translated from the guest binary code, the
DBT system can emulate the functionality of the guest ap-
plication on the host machine. Notable DBT systems include
QEMU [11], Transmeta [17], IA-32 EL [7], and Dolphin [2].
In fact, many dynamic binary instrumentation (DBI) systems
such as Intel Pin [44], DynamoRIO [13], and Valgrind [49],

107

https://doi.org/10.1145/3368826.3377919
https://doi.org/10.1145/3368826.3377919

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4

P
er

fo
rm

an
ce

 S
p
ee

d
u
p

(B
as

el
in

e:
 S

er
ia

l
E

x
ec

u
ti

o
n
)

Number of Threads

Native
Pin
DynamoRIO
QEMU-x86_64
QEMU-ppc64le

Figure 1. Poor scalability of existing popular DBT/DBI sys-
tems without HTM support.

also use techniques and infrastructures similar to DBTs even
though their guest and host binaries are in the same ISA.

Due to the lack of e�cient virtualization support for HTMs,
most existing DBT systems su�er from poor e�ciency and
scalability. Figure 1 shows the scalability of the application
genome from the STAMP benchmark suite [47], using ex-
isting popular DBT/DBI systems1. Here, the host machine
is a Quad-Core Intel Xeon E5-1620 v4, which supports In-
tel transactional synchronization extensions (TSX) [36]. We
respectively emulate x86_64 and PowerPC64 guest binary
code using QEMU-x86_64 and QEMU-ppc64le (“le” means
the little-endian mode) running on the host machine. We also
run Intel Pin and DynamoRIO on genome’s x86_64 binary
without any instrumentation. As shown in the �gure, exist-
ing DBT and DBI systems cannot scale the performance for
a guest application with HTMs in it. In this paper, we mainly
focus on DBT systems. Additional work might be required
to integrate our mechanism into existing DBI systems, but
the main approach is the same.
To this end, this paper presents an e�cient and scalable

cross-ISA virtualization mechanism for HTMs. It leverages
host HTMs to emulate guest HTMs by translating guest hard-
ware transactions (HTs) into host HTs. A software-based
emulation scheme is employed during the translation stage
to reduce the abort-causing interferences from the translator
to the translated host HTs (see §3 for more details). Several
optimizations are explored to further reduce the abort ratios
of the host HTs. A prototype of such a mechanism has been
implemented in an extensively-used DBT system QEMU [11].
Experimental results on benchmarks from STAMP show that
an average of 2.3X and 12.6X performance speedup can be
achieved for x86_64 and PowerPC64 guest binaries on an
x86_64 host machine, compared to the original QEMU with-
out HTM support. Moreover, it can also attain similar scala-
bility to the original native execution on the host machine.

1We also evaluated Valgrind (version 3.13), but most of the STAMP bench-

marks failed when the number of threads exceeds one.

In summary, this paper makes the following contributions:

• An e�ective cross-ISAHTMvirtualizationmech-

anism.We propose to emulate guest HTMs by lever-
aging host HTMs for improved performance and scal-
ability. To the best of our knowledge, this is the �rst
e�ort to virtualize HTMs across ISAs that leverages
host HTMs.

• Apractical prototype implemented on a realDBT

system.We implement the proposed mechanism us-
ing QEMU, which is a widely-used DBT system, to
demonstrate the feasibility and e�ectiveness of such a
cross-ISA HTM virtualization mechanism.

• Comprehensive experiments. We conduct a num-
ber of experiments on benchmarks from STAMP,which
show that the emulationwithHTM support can achieve
a signi�cant performance speedup and similar scala-
bility to the native execution on the host machine.

The rest of this paper is organized as follows. Section 2
describes the background of HTM and DBT. Section 3 iden-
ti�es the challenges to virtualize HTM in cross-ISA DBT
systems. Section 4 presents our proposed HTM translation
mechanism. Section 5 explains the implementation details.
Section 6 shows the experimental results. Section 7 discusses
related work. And Section 8 concludes the paper.

2 Background: HTM and DBT

Transactional memory (TM) is a concurrency control mecha-
nism that attempts to ease concurrent programming, in par-
ticular, for synchronizing accesses to shared variables among
threads using transactions, as well as to take advantage of
the increasing number of cores for a higher performance.

Based on di�erent implementations, TM can be classi�ed
into software transactional memory (STM) and hardware
transactional memory (HTM). Compared to STM, HTM suf-
fers much less performance overhead and is provided to
programmers through an extension to existing ISAs. For in-
stance, the Intel TSX provides three machine instructions:
xbegin, xend, and xabort, to begin, end, and abort hardware
transactions (HTs), respectively.

After a transaction is started, the hardware keeps track of
memory loads and stores executed in this transaction, and
detect access con�icts using its cache coherence protocol [48].
The granularity of the con�ict detection is a cache line. If
the same memory location is accessed by two concurrent
transactions, and at least one of the accesses is a store, the
transactions are in con�ict and one of them is aborted. The
aborted transaction is then rolled back to the beginning of
the transaction and the execution is restarted. Although the
interfaces of HTMs vary among di�erent ISAs, the semantics
are very similar. Next, we describe the semantics shared by
most HTMs available in commodity processors.

Best-E�ort HTM. It is important to note that, on today’s
o�-the-shelf processors that support HTMs, the hardware

108

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

 1: ret = HTM_begin;
 2: if (ret == HTM_BEGIN_SUCCESSFULLY) {
 3: if (htm_lock is not free)
 4: HTM_abort;
 5: /* transactional code */
 6: HTM_end;
 7: } else { /* fallback path */
 8: acquire (htm_lock);
 9: /* non-transactional code */
10: release (htm_lock);
11: }

Figure 2. A software-de�ned fallback path is required to
guarantee forward progress of HTM.

provides no guarantee that a transaction will eventually
commit, i.e., hardware only supports a best-e�ort HTM. Pro-
grammers thus must always provide an alternative code
sequence in the fallback path to guarantee forward progress.
This is the main reason why existing DBT/DBI systems such
as QEMU and Intel Pin can still emulate guest applications
with HTMs even without using host HTM support.

Figure 2 shows an example of how to program correctly
with an HTM. In the example, HTM_begin delimits the
start of an HT (line 1). If the transaction is started success-
fully, it begins to execute the code in the transaction (line 2).
During the execution, the lock htm_lock, which is used in
the fallback path to protect its non-transactional code (line
8–10), is examined to see if it has been acquired (line 3). If
yes, the transaction is aborted (line 4). Otherwise, the normal
transactional code is executed (line 5). Note that it is nec-
essary to track htm_lock in the transaction to synchronize
its execution with the non-transactional code. Otherwise,
inconsistent data could be accessed by the transaction. If
the transaction is completed successfully, the execution re-
sults of the transaction are committed viaHTM_end (line 6).
During the execution of the transactional code (line 5), the
transaction will abort if an access con�ict is detected. When
it aborts, the execution is rolled back to the beginning of the
transaction (line 2). The condition in the if statement (line 2)
will fail, and the execution will enter the fallback path (line 8),
which is essentially a critical section protected by htm_lock.
In practice, as mentioned in previous work [19, 70], htm_lock
is typically a coarse-grained lock to simplify the multi-thread
programming. This is one of the main reasons why existing
DBT/DBI systems cannot achieve scalable performance with
an increased number of threads.

It is worth noting that, in the above example, there is only
one try to the transaction. That is, the transactional code
(line 5) is executed at most once, no matter whether the
transaction is committed successfully or aborted. In practice,
it is possible to retry the transaction multiple times to im-
prove its chance of a successful commit. To this end, a branch

TM_begin;
r1 = x;

r2 = x;
TM_end;

x = 1;

Thread 0 Thread 1

Weak
Atomicity

Init: x = 0;

Strong
Atomicity

Outcome
r1 = 0, r2 = 1

Observable

Not
Observable

Figure 3. An example for weak and strong atomicity.

statement can be added on the fallback path (before line 8) to
redirect the execution �ow to restart the transaction (line 1).

Strong Atomicity. A TM implementation can provide
two distinct atomicity semantics, i.e., weak atomicity and
strong atomicity [45]. In weak atomicity semantics, transac-
tions are atomic only with respect to other transactions, but
not with the non-transactional code. That is, the execution
of non-transactional code may interleave (and access the
shared data) with a transaction. In contrast, strong atomic-
ity semantics enforce atomicity with respect to both other
transactions and non-transactional code. The example in
Figure 3 illustrates the di�erence between them. As shown
in the example, the execution of the transaction, which is
surrounded by TM_begin and TM_end, can be interleaved
with the non-transactional code in weak atomicity, and thus
the outcome “r1 = 0, r2 = 1” is legal and observable. But, this
outcome is not observable under a strong atomicity seman-
tic because the execution of the transaction is atomic and
cannot be interleaved with non-transactional code.
Although the strong atomicity is more intuitive than the

weak atomicity from a programmer’s perspective, most STM
implementations in practice do not provide a strong atom-
icity semantic due to the signi�cant overhead required to
monitor memory accesses in non-transactional code. In con-
trast, HTM can leverage the cache coherence protocol to
track memory accesses inside and outside of a transaction.
As a result, HTM almost by default o�ers strong atomicity
semantics, which makes HTM easier to program in addition
to the potential bene�t of higher performance.

Granularity of Conflict Detection. As existing HTMs
leverage cache coherence protocols to detect access con�icts,
the granularity of the con�ict detection is by default a cache
line. It is thus possible that two memory accesses to the
same cache line can be detected as con�ict even though they
are not accessing the same memory location. This is also
called false sharing or false con�ict in previous work [42,
61]. Table 1 shows the granularity of con�ict detection on
di�erent architectures that support HTM [48]. As shown in
the table, di�erent architectures employ di�erent con�ict
detection granularities. For instance, the con�ict detection
granularity for Intel Haswell processors is 64 Bytes.

109

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

Table 1. HTM features of di�erent architectures.

Haswell POWER8 zEC12

Con�ict Granularity 64 B 128 B 256 B
Load Capacity 4 MB 8 KB 1 MB
Store Capacity 22 KB 8 KB 8 KB
Abort Reasons 6 11 14

Transaction Capacity. The transaction capacity is the
maximum amount of memory data that can be accessed in
a transaction without triggering an abort. For HTM, it is
limited to the amount of the hardware resources available
to keep track of memory accesses for con�ict detection, and
to bu�er transactional stores. Table 1 also shows the transac-
tion capacities of di�erent architectures. In general, the load
capacity is larger than the store capacity because stored data
needs to be bu�ered to allow the recovery of the machine
state in case the transaction is aborted.

Abort-Reason Code. To facilitate the debugging of an
HTM program, hardware typically provides an abort-reason
code to tell the reason why a transaction is aborted, such as a
memory access con�ict or a capacity over�ow. It is a helpful
hint that allows a program to determine whether to retry an
aborted transaction or not. Table 1 shows the counts of abort
reasons supported by di�erent architectures. For example,
Intel TSX supports 6 abort reasons, which are provided to
the software through the EAX register.

Some Key Features in DBT. A DBT system dynamically
translates binary code in its guest ISA and produces another
binary code in its host ISA. The translated host binary code is
stored in a software-managed code cache and can be reused
in the same execution to mitigate the translation overhead.
In general, DBT systems translate a guest binary at the

granularity of a basic block (or block for short), which is
a sequence of guest instructions with only one entry and
one exit [57]. After a block is translated, a user-level context
switch will transfer the control from the translator to the
generated code in the code cache. But, if the next block is not
in the code cache, i.e., not translated yet, it will transfer the
control back to the translator (via another user-level context
switch) to translate the next block. Given the heavy perfor-
mance overhead in such repeated context switches, each of
which typically requires saving and restoring all host regis-
ters, the translated basic blocks are often chained together
(a DBT optimization called block chaining) to allow the exe-
cution to stay within the code cache and reduce the number
of context switches [29, 63]. Figure 4 gives a comparison
between a native execution and a DBT emulation.

3 Issues and Challenges

Inspired by the observation that di�erent implementations of
HTM in di�erent architectures have very similar semantics,

A B C A B

T A’ T B’ T C’ A’ B’

Time

Native

DBT

A, B, C: guest basic blocks; T: binary translator;
A’, B’, C’: translated host code.

Figure 4. Native execution vs. DBT emulation.

we leverage the host HTM to virtualize the guest HTM in a
DBT system. To this end, we translate a guest HT into a cor-
responding host HT and emulate the guest HT by executing
the host HT. Although the idea is rather intuitive, there are
still several signi�cant challenges to put it into practice.

Interference from DBT. A simple and intuitive HTM
translation mechanism that requires no change to existing
DBT framework is simply to translate guest transaction be-
gin/end/abort instructions into corresponding host transac-
tion begin/end/abort instructions. In fact, we did implement
such a mechanism in an existing DBT system QEMU [11].
However, the experimental results show that almost all host
HTs are aborted due to various reasons. After some inves-
tigation, we found most of the HTs are aborted during the
binary translation phase. That is, the binary translator in the
DBT system severely interferes with the host HTs.

There are typically three major reasons why the translator
can abort a host HT. First, most of existing translators are not
designed to work with HTs. They are not aware of the opera-
tions that are disallowed in an HT. For example, a translator
can freely invoke system calls to allocate/deallocate memory
during the translation process, which can cause an HT to
abort persistently. Second, the host transaction capacity can
be substantially exceeded due to undisciplined data accesses
in existing translators. Third, to supportmulti-threaded guest
applications, some DBT systems such as QEMU use multi-
threaded translators to support concurrent translation [15].
This can potentially increase HT aborts, especially when two
translator threads are active in two concurrent transactions.
If a host HT is aborted due to the interference from the

translator, it does not help to simply retry the HT. This is
because all of the blocks translated in an aborted transaction
are discarded and need to be re-translated, which will only
trigger more aborts as the cause of the abort remains the
same. It is obvious that existing binary translators need to be
refactored to support HTM. A naïve solution is to translate
all basic blocks, instead of one basic block at a time, in a guest
HT before emulating them on the host machine. However,
this is impractical due to two reasons. First, translating all
basic blocks in a guest HT at a time is non-trivial and often
impossible. It faces the same challenges as in a static binary
translation such as the code discovery problem for ISAs that
have variable-length instructions (e.g., x86), and indirect
branches with unknown branch targets [14, 40]. Second, it

110

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

could introduce a signi�cant translation overhead, especially
when the guest transaction has a very large code region and
only a small portion of the code is executed at runtime. Such
translation overhead is unacceptable to a DBT system.

Therefore, to overcome the above challenges, we propose a
new translationmechanism. In particular, themechanism em-
ploys a software-based emulation when a host HT is aborted
due to interference from the binary translator. The software-
based emulation is used to dynamically translate basic blocks
and also emulate the semantics of a guest HT when it is not
fully translated yet. Since all of its blocks only need to be
translated once, a partially translated guest HT can be exe-
cuted until the next untranslated basic block is encountered.
This way, we can reduce the interference from the translator
and cut down the aborts substantially.
To preserve strong atomicity semantics in our software-

based emulation, we dynamically instrument memory ac-
cesses in the guest HT to detect access con�icts from other
concurrent transactions that are also in the software-based
emulation. Moreover, we leverage the page protection mech-
anism to detect con�icts from other non-transactional code.
See §4.2 for more details.

Block Translation. One new challenge that can arise
from the above-mentioned software-based emulation is that
the very mechanisms can now interfere with the execution
of the host HT after the guest HT is fully translated. The
instrumented code becomes unnecessary for the translated
host HT since such con�icts can be detected automatically
by the host HTM hardware. Even worse, the data used to
track memory accesses by the instrumented code can exceed
transaction capacity of the host HTM. A naïve solution is to
check the DBT status each time the instrumented memory
accesses are executed, and invoke the instrumented code only
if the status is in the software-based emulation. However,
this can introduce a signi�cant overhead because such a
check may have to be done at every memory access.
In contrast, we propose to generate two versions of host

code for each block with memory accesses in a guest HT. One
is instrumented for software-based emulation and the other
is un-instrumented for hardware transactional execution
after it is fully translated. Note, the un-instrumented host
code can also be used for non-transactional execution, as a
block can be executed both inside and outside of transactions,
e.g., blocks in a library. We then enhance the existing block
chaining mechanism to chain host code in the same version
together for improved performance. See §4.1 for more details.

Indirect Branches. Guest indirect-branch instructions
can lead to frequent context switching between the execution
in the code cache and the execution in the binary translator,
because the guest branch targets can only be resolved until
the indirect branch instructions are dynamically emulated.
Such context switching can cause a large number of host HT
aborts that need to be reduced.

Abort
?5

DBT
?6

Host
Code

?
2

Guest
Transaction
1

Host
Transaction

Abort
?

Software-based
Emulation

Yes

No

Yes

No

Yes

Yes

NoNo Report to Guest
Application

Continue
Emulation

4

3

7

8

9

Figure 5. Overview of our HTM virtualization mechanism.

To this end, optimizations such as shadow stacks [32, 38,
39] and indirect branch tables [30, 31] are developed to mit-
igate the overhead. Unfortunately, these optimizations are
typically not designed for HTs, and thus are unaware of the
constraints posed by the host HTM. Therefore, additional
work is required to adapt these optimizations to transactional
execution. More details can be found in §4.3.

Retry Strategy. So far, we only discuss how to handle
a host HT abort due to interferences from the translator.
However, if a host HT is aborted due to a con�ict access to
the guest data, it is unclear what should be done next. One
option is to retry the host HT several times until it can no
longer make further progress, and report the abort to the
guest application for further action. The problem with this
option is that it can result in an unfaithful emulation, as
the corresponding guest HT can also be aborted due to the
same con�ict access running natively on a guest machine.
Moreover, the additional retries could introduce additional
performance overhead if the host HT is �nally aborted. In-
stead, we use a straightforward but e�cient retry strategy.
Each time when an HT abort results from a con�ict access to
the guest data, we immediately report the abort to the guest
application and let the guest application decide whether it
is necessary to retry the transaction or not. The host abort-
reason code is translated to guest abort-reason code (i.e., a
reverse translation) to provide the abort information for the
guest application. More details can be found in §4.4.

4 HTM Virtualization

Figure 5 shows an overview of our mechanism. Before emu-
lating a guest HT, we �rst check whether this guest HT (1)
has been translated into a host HT or not (2). If yes, the host
transaction is executed (3). Otherwise, the software-based
emulation is invoked to translate and emulate the guest trans-
action (4). If the host transaction is aborted (5), we need
to check the abort reason to see if the abort is caused by the
interference from the binary translator or not (6). If yes, the
software-based emulation is invoked to retry the transaction.

111

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

A

B C

A’1

A’2

B’1

B’2

...

C’1

C’2

...

Control Flow
of Guest Code

Two Versions
of Host Code

Binary
Translation

Figure 6. Block chaining for two versions of host code.

Otherwise, the abort is caused by the original guest applica-
tion, we then report the abort reason to the guest application
(7). If the host HT is completed successfully, the emulation
continues without interruption (8). If an access con�ict is
detected during the software-based emulation (9), the emu-
lation will be aborted and the abort reason is reported to the
guest application. Otherwise, the emulation continues.

4.1 Binary Code Translation

There are two main purposes for the software-based emula-
tion: 1) translating basic blocks in a guest HT to avoid the
interference from the translator to the execution of the trans-
lated host HT; 2) emulating the guest transaction during
the binary translation process. We focus on the �rst in this
subsection, and the second in next subsection.

For each basic block in a guest HT that contains memory
accesses, two versions of the host binary code are gener-
ated for this block. In one version, each memory access is
instrumented for the con�ict detection in the software-based
emulation. In the other version, there is no instrumentation
and is used for non-transactional and hardware transactional
execution. To accommodate two versions of the host code, we
enhance the block chaining scheme in existing DBT systems
to chain host code with the same version together, as shown
in Figure 6. Each time when we need to chain host code of
two guest blocks together, we respectively chain the host
code with the same version of these two basic blocks together.
Note that block chaining only happens in the software-based
emulation or non-transactional execution because there will
be no further translation/optimization in a host HT after all
of its blocks are translated and chained together.

The correct emulation of atomic instructions is a key chal-
lenge for DBT systems [15, 71], especially when the guest and
the host ISAs have di�erent atomic instructions. However,
when an atomic instruction is executed in an HT with strong
atomicity, it can be handled as a couple of normal memory
access instructions because the HT has already guaranteed
its atomic semantics. We can thus emulate a guest atomic in-
struction as a couple of normal memory access instructions
during the software-based emulation. This can substantially

simplify the emulation as there is no need to execute host
atomic instructions during the emulation.

4.2 Software Emulation of Strong Atomicity

To correctly emulate the semantics of guest HTs, our software-
based emulation needs to provide strong atomicity. We dy-
namically instrument memory accesses in guest HTs to de-
tect con�icts between concurrent transactions. For potential
con�icts between transactional code and non-transactional
code, we try to detect them by leveraging page protection
mechanism available in modern hardware. Note that there
is no need to detect con�icts between software-based em-
ulation and host HTs because hardware can automatically
detect such con�icts and abort HTs when detected.

For each memory access in a guest HT, we dynamically in-
strument it to check if it con�icts with any memory access in
concurrent transactions. To emulate such con�ict detection
on the guest hardware, the granularity of the con�ict detec-
tion is set to the size of a guest cache line, e.g., 64 Bytes for
Intel Haswell guest architecture. For the guest memory re-
gion that corresponds to a guest cache line, a lock is assigned
to synchronize concurrent transactional accesses to this re-
gion. Each time such a guest memory region is accessed in a
transaction, we perform the con�ict detection (i.e., it is an
eager con�ict detection policy) by checking if there is any
access to this region from other threads. If yes, we further
compare the types (i.e., load or store) of these accesses be-
cause concurrent transactional loads from di�erent threads
are allowed. If no access con�ict is detected, the access is
granted and recorded for future con�ict detection. Otherwise,
we abort the software-based emulation of this transaction
and report the abort reason to the guest application.

To detect potential access con�icts between transactional
code and non-transactional code, our software-based emula-
tion leverages page protection mechanism, which is available
in modern commercial hardware. Speci�cally, each guest
memory page is set to “read-only” when it is read in a trans-
action at the �rst time. A page access violation (through a
page fault) will be triggered when a memory access in the
non-transactional code tries to write this page. Such writes
are delayed until the con�icted transactions are completed.

Besides, for each guest memory region accessed in a trans-
action that corresponds to a guest cache line, a bu�er is
allocated to keep the results of stores in the transaction
to avoid modifying the original memory locations directly.
These bu�ered store results will be committed to their origi-
nal memory locations if the transaction completes success-
fully, or discarded if the transaction is aborted. To guarantee
the consistency in the commit process, all original (virtual)
pages modi�ed in the transaction are set to “non-readable”
before the commit. We employ a rather commonly-used par-
allel mapping technique to remap a new “writable” (virtual)
page for each modi�ed (virtual) page to the same physi-
cal page [18, 27, 50]. This allows two virtual pages with

112

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

di�erent protection settings, one with “non-readable” and
the other with “writable,” to be mapped to the same phys-
ical page. We can then commit the bu�ered store results
through the new “writable” (virtual) page while the original
“non-readable” (virtual) page can protect it from accesses
in non-transactional code. This way, we can avoid access
con�icts between transactional code and non-transactional
code during the commit of bu�ered store results.

4.3 Handling Indirect Branches

To enhance the performance of supporting guest indirect
branches, several optimizations have been adopted in DBT
systems, e.g., using a shadow stack [32, 38, 39] and an indirect
branch table [30, 31]. However, additional work is required
to adapt them to the transactional execution.

Shadow Stack. A shadow stack is mainly used to support
guest return instructions. The basic idea is to push the guest
return address and its corresponding host code address to the
shadow stack at a guest call instruction. When a return
is encountered, the return address on the shadow stack is
popped, and compared with the return address on the guest
stack because it may be altered during the execution. If they
match, the execution can be transferred to the host address
saved on the shadow stack. To this end, additional host code
is generated to maintain the pointer of the shadow stack.
Unfortunately, this could potentially introduce additional
pressure on a transaction’s store capacity and result in unex-
pected transaction aborts. To handle this issue, we allocate
the shadow stack with a �xed o�set from the guest stack [16]
and access it using the guest stack pointer with the �xed
o�set. Thus, the shadow stack pointer can be eliminated.

Indirect Branch Table. Each entry of the table is a pair
of guest address and its corresponding host address. Initially,
the table is empty. An entry is inserted when an indirect
branch target is missed from the table. Each time an entry is
hit, the table is updated to reduce the next lookup time. Ob-
viously, this design may not be appropriate for transactional
execution due to its frequent updates. Instead, we use a sim-
ple but e�ective approach that updates the table only from
the outside of host HTs, i.e., after successful host HTs. This
way, we can attain its bene�t without introducing additional
pressure on the store capacities of host HTs.
Note we only place the address of the un-instrumented

version of the host binary code to the shadow stack and the
indirect branch table to speedup the transactional execution.
That is, such indirect branch optimizations are bypassed in
our software-based emulation.

4.4 Retry Strategy and Abort Translation

Figure 7 shows how to emulate a guest transaction begin in-
struction using the host transaction begin instruction. Specif-
ically, when a host transaction is aborted (line 4) and the
abort reason is not due to the binary translator (line 7), we

 /* Emulation of Guest_HTM_begin */
 1: ret = Host_HTM_begin;
 2: if (ret == HTM_BEGIN_SUCCESSFULLY) {
 3: set_emulated_guest_register (success);
 4: } else { /* host transaction is aborted */
 5: if (the abort is due to the translator) {
 6: software_based_emulation ();
 7: } else {
 8: translate_abort_reason_code (ret);
 9: set_emulated_guest_register (abort);
10: }
11: }

Figure 7. Emulation of a guest HTM begin instruction, sim-
pli�ed for demonstration.

report the abort to the guest application and let it decide
whether to retry the transaction or not (line 9). This simple
retry strategy enables us to achieve not only a faithful emu-
lation of a guest HTM from the perspective of an HT abort
but also an e�cient emulation, as will be shown in §6.1.
To facilitate the guest application to make a retry deci-

sion, we provide the abort reason of the host HT (in a coded
number) to the guest application. Due to di�erent kinds of
abort reasons supported by di�erent architectures, as shown
in Table 1, we need to translate the host abort-reason code
into the corresponding guest abort-reason code (line 8 in
Figure 7). For instance, when an HT is aborted, the Intel
Haswell processor tells the software if the transaction is
likely to succeed on a retry. In contrast, the IBM POWER8 ar-
chitecture informs the software that if the transaction abort
is persistent, i.e., the abort is likely to recur on each execu-
tion. Obviously, these two abort reasons can be translated
into each other albeit with an opposite semantic. This way,
most of the key abort reasons can be translated between
di�erent architectures. However, there are still some abort
reasons that are only supported by speci�c architectures. For
example, IBM POWER8 provides an abort reason that tells if
a transaction abort is due to an instruction fetched from a
memory location that was written previously in a transac-
tion. Though such abort reasons are rarely used in practice,
we translate them into abort reasons that have relatively
similar semantics.

5 Implementation

We have implemented the proposed HTM virtualization
mechanism on QEMU [11]. The implementation takes x86-64
and PowerPC64 (with the little-endian mode) as the guest
ISAs and x86-64 as the host ISA. The guest transaction in-
structions are translated into helper function calls, which
are regularly used in QEMU to translate complicated guest
instructions, e.g., �oating-point instructions, to invoke cor-
responding host transaction instructions.

113

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

 1

 2

 4

 8

 16

 32

 64

 128

 256

bayes
genome

intruder

kmeans-low

kmeans-high
labyrinth ssca2

vacation-low

vacation-high yada
geomeanN

o
rm

al
iz

ed
 E

x
ec

u
ti

o
n

 T
im

e

Pin
DynamoRIO

QEMU-x86_64
QEMU-x86_64-ib

QEMU-x86_64-htm
QEMU-ppc64le

QEMU-ppc64le-ib
QEMU-ppc64le-htm

Figure 8. Normalized execution time with the native execution on the host machine as the baseline.

 0

 20

 40

 60

 80

 100

NAQXQP NAQXQP NAQX QP NAQXQP NAQXQP NAQX QP NAQXQP NAQXQP NAQX QP NAQX QP

A
b

o
rt

 R
at

io
 (

%
)

Access Conflict
Capacity Overflow
Binary Translation
Unclassified

yadavacation-highvacation-lowssca2labyrinthkmeans-highkmeans-lowintrudergenomebayes

Figure 9. Abort ratios and reasons of host hardware transactions in native execution and on QEMU with proposed HTM
virtualization mechanism. NA: native execution, QX: QEMU-x86_64-htm, QP: QEMU-ppc64le-htm.

In order to simplify our implementation, an explicit host
transaction abort instruction with a speci�c abort code is
issued when a basic block is required to be translated during
the execution of host HTs. The abort instruction is used to
indicate that this transaction abort is caused by the request
of the translation. The instrumentation of the transactional
memory accesses for the con�ict detection in the software-
based emulation is implemented at the TCG Op level, which
is the intermediate representation used by QEMU for re-
targetable binary translation. Because there is no support
for indirect branches in the original QEMU, we added the
shadow stack and indirect branch table optimizations in our
prototype. For each basic block ending with a guest function
call instruction, we translate the block at the return address
(which is known at the translation time) immediately after
the translation of the current block to obtain the address
of the translated host code. In addition, the indirect branch
table is implemented as a hash table using the lowest ten bits
of the guest address as the hash key.

6 Experimental Results

To evaluate our HTM virtualization mechanism, we com-
pare the implemented prototype with the original QEMU.
The experimental results of existing popular DBI systems,
including Intel Pin [44] and DynamoRIO [13], are also in-
cluded for reference. The system con�gurations we used in
the evaluation are listed as follows:

• Native: native execution of the host binaries compiled
from the source code on the host machine.

• Pin: execution of the native host binaries using Intel Pin
without any instrumentation.

• DynamoRIO: execution of the native host binaries using
DynamoRIO without any instrumentation.

• QEMU-x86_64/ppc64le: emulation of the guest binaries
using QEMU on the host machine.

• QEMU-x86_64/ppc64le-ib: emulation of the guest bina-
ries using QEMU with the indirect branch optimizations
on the host machine.

• QEMU-x86_64/ppc64le-htm: emulation of the guest bi-
naries using QEMUwith the indirect branch optimizations
and our HTM virtualization on the host machine.

Our evaluation uses the STAMP benchmark suite [47], which
has been used widely to evaluate various TM implemen-
tations. The version of STAMP is an updated version of
0.9.10 [48], which has �xed nonessential transaction aborts
in the original version for four benchmarks: genome, in-
truder, kmeans, and vacation. Each con�guration mentioned
above is evaluated with all benchmarks in the STAMP bench-
mark suite, except three benchmarks: bayes, labyrinth, and
yada for QEMU-ppc64le(-ib/htm) due to random errors in
the original QEMU when we run those three benchmarks
with multiple threads on the host machine. In addition, we
use the default parameters as speci�ed in the README �les
of STAMP. For benchmarks kmeans and vacation, there are

114

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

bayes

genome

intru
der

kmeans-lo
w

kmeans-h
igh

labyrin
th

ssc
a2

vacation-lo
w

vacation-high
yada

geomean

N
o
rm

al
iz

ed
 N

u
m

b
er

 o
f

D
y
n
am

ic
 T

ra
n
sa

ct
io

n
s

QEMU-x86_64-htm QEMU-ppc64le-htm

Figure 10. Normalized number of dynamic host HTs with
the native execution as the baseline.

two sets of parameters corresponding to low and high con-
tention among concurrent transactions, respectively. We use
kmeans-low/high and vacation-low/high to denote them.

The host machine is equipped with a Quad-Core 3.5 GHz
Intel Xeon E5-1620 v4 processor. The private L1 D-Cache
and I-Cache are both 32 KB, the private L2 Cache is 256 KB,
and the shared L3 Cache is 10 MB. The cache line size is 64
Bytes. The main memory is 32 GB, and the operating system
is Ubuntu 16.04 with Linux-4.4.0. The host machine is set
up exclusively to run the evaluated benchmarks. Also, each
benchmark is run �ve times and their arithmetic means are
used to reduce the in�uence of random factors.

6.1 Performance

Figure 8 shows the normalized execution time of each bench-
mark with its native execution time as the baseline. Here, the
number of threads is four, which is the maximum number of
physical cores on the host machine. As shown in the �gure,
we can improve performance formost of the benchmarks. For
vacation-low, the speedup can be as high as 38.9X for Pow-
erPC64 guest binaries. But, for some benchmarks, e.g., bayes,
labyrinth, and yada, there is no noticeable performance im-
provement. This is because these benchmarks su�er very
high transaction abort ratios in their original guest binaries,
which can signi�cantly o�set the performance gained from
our mechanism. Compared to the original QEMU, an average
of 2.3X and 12.6X speedup are achieved for x86_64 and Pow-
erPC64 guest binaries, respectively. This gives a favorable
indication on the e�ciency of our mechanism.

As shown in Figure 8, QEMU-ppc64le su�ers a signi�cant
performance overhead compared to the native execution, i.e.,
97.2X on average. As discussed earlier, it is because it does
not utilize the host’s HTM support. It has to emulate the fall-
back paths de�ned by the guest application, which typically
employ a coarse-grained lock to guarantee the atomicity.
Even worse, QEMU emulates PowerPC64 atomic instructions
by stopping all concurrent threads to achieve the atomicity
semantics. This is the most straightforward way to emulate
atomic instructions supported by PowerPC64 on an x86-64

Table 2. Percentages of software-based emulation (SBE)
in emulated guest transactions and their abort ratios. QX:
QEMU-x86_64-htm, QP: QEMU-ppc64le-htm.

QX (%) QP (%)

SBE Abort SBE Abort

bayes 0.71 11.64 - -

genome 0.06 0.78 0.01 4.92

intruder < 0.01 11.67 < 0.01 11.32

kmeans-low 0.05 1.59 < 0.01 0

kmeans-high 0.01 2.07 < 0.01 0

labyrinth 1.18 10.53 - -

ssca2 0.16 0.1 < 0.01 0

vacation-low 0.02 0 0.02 0

vacation-high 0.01 0 0.01 2.33

yada < 0.01 11.86 - -

host with a di�erent set of atomic instructions [15]. In con-
trast, with our mechanism, the fallback paths can be mostly
avoided by emulating guest HTs with the host HTM.

Another interesting observation from Figure 8 is that exist-
ing popular DBI systems, such as Intel Pin and DynamoRIO,
also su�er high performance overhead even without any
instrumentation, i.e., 2.6X and 2.3X, respectively. More in-
vestigation is required to enhance the performance of these
DBI systems. Figure 8 also shows that indirect branch opti-
mizations can achieve good performance improvement for
most of the benchmarks. But, such optimizations only aim to
optimize the performance of a single thread, and thus cannot
scale up as the number of threads increases.

Figure 9 shows the abort ratios of host HTs in native exe-
cution and QEMUwith our mechanism. Note the missed bars
for bayes, labyrinth, and yada are due to the random errors in
original QEMU for PowerPC64 guest binaries. As shown, for
some benchmarks, e.g., genome and ssca2, we achieve similar
or slightly higher abort ratios. This is because of the addi-
tional memory accesses added in the translated host code.
For instance, QEMU uses a set of host memory locations to
emulate the guest’s register �le. It maintains their consis-
tency at the boundaries of basic blocks. This can potentially
result in additional access con�icts and transaction capac-
ity over�ows. Thus, developing more optimizations with a
smaller memory footprint and fewer memory accesses to
bring down the abort ratios is part of our future work.
Interestingly, Figure 9 shows for some benchmarks, e.g.,

kmeans-low/high and vacation-low/high, the transaction abort
ratios of QEMU with our mechanism are lower than the na-
tive execution. A possible explanation is that the emulation
in QEMU can change the original thread interleaving behav-
ior, and thus avoids part of the concurrent execution that
creates transaction con�icts. Figure 9 also shows that, with
our mechanism, QEMU shares a similar distribution of abort
reasons as the native execution. Moreover, the number of
transaction aborts caused by binary translation is negligible.

115

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

 0

 0.5

 1

 1.5

 2

bayes

genome

intru
der

kmeans-lo
w

kmeans-h
igh

labyrin
th

ssc
a2

vacation-lo
w

vacation-high
yada

geomean

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e w/o SBE + w/o IB

w/o SBE + w/ IB
w/ SBE + w/o IB
w/ SBE + w/ IB

Figure 11. Performance impact of software-based emulation
(SBE) and indirect branch optimizations (IB).

Figure 10 shows the normalized number of dynamically
executed host HTs, including successful and aborted, with
the corresponding number in native execution as the base-
line. For most benchmarks, a similar number of host HTs
are executed in QEMU with our mechanism compared to
native execution. But for some benchmarks such as kmeans-
low/high, fewer host HTs are executed by QEMU with our
HTM mechanism. One possible reason is the higher trans-
action success ratios (as shown in Figure 9) can reduce the
number of HT retries by the guest application after an abort.
Table 2 shows the percentages of dynamically emulated

guest transactions in software-based emulation. As expected,
for most benchmarks less than 1% of guest transactions are
emulated using the software-based emulation. In another
word, most of the guest HTs are emulated by host HTs after
the translation. In addition, the abort ratio of software-based
emulation for most benchmarks is less than 12%.
We also look into the impact of the software-based emu-

lation and the indirect branch optimizations on the perfor-
mance of the proposed HTM virtualization mechanism using
QEMU-x86_64-htm. In this study, we individually disable the
software-based emulation and the indirect branch optimiza-
tions in QEMU-x86_64-htm and observe the changes of the
performance. Figure 11 shows the experimental results. Here,
the execution time of the original QEMU, i.e., QEMU-x86_64,
is used as the baseline. As shown in the �gure, without the
software-based emulation and the indirect branch optimiza-
tions, the performance degrades substantially due to the
frequent transaction aborts. In fact, almost all of the host
HTs are aborted due to the interference of the translator to
the host HTs, as explained before. In contrast, the perfor-
mance can be improved with the help of the software-based
emulation and the indirect branch optimizations. But, they
must work together to achieve a better performance.
Finally, we study the impact of retry strategies on the

proposed HTM virtualization mechanism. In this study, we
vary the number of retries when a host HT is aborted not
due to the translator before reporting it to the guest applica-
tion (see §4.4), and observe the performance changes. Two
benchmarks are employed to conduct the study: genome and

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 5 10 15 20

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

Number of Retries

QEMU-x86_64-htm + genome
QEMU-ppc64le-htm + genome
QEMU-x86_64-htm + intruder
QEMU-ppc64le-htm +intruder

Figure 12. Performance impact of retries.

intruder. Figure 12 shows the results. The baseline is the exe-
cution time without a retry if not caused by the translator.
As shown in the �gure, the performance decreases substan-
tially as the number of retries increases. In particular, 4.7X
slowdown can be observed for QEMU-x86_64-htm when em-
ulating intruder with 20 retries for each aborted host HT not
caused by the translator. This demonstrates the e�ectiveness
and e�ciency of our simple retry strategy.

6.2 Scalability

Figure 13 shows the scalability results of di�erent evalu-
ation con�gurations as the number of threads increases.
Note that all threads are running on di�erent physical cores.
Here, each evaluation con�guration uses its corresponding
single-threaded performance as the baseline. For example,
the speedup of QEMU-x86_64 is calculated using the perfor-
mance of QEMU-x86_64 running the single-threaded guest
application as the baseline. Hence, all lines in the �gure start
from (1, 1). As shown in the �gure, the original QEMU, i.e.,
QEMU-x86_64, su�ers extremely poor scalability. As dis-
cussed before, the main reason is that QEMU has to emulate
the fallback paths de�ned by the guest application.

With the proposed HTM virtualization mechanism, many
benchmarks can gain a signi�cantly improved emulation
scalability, e.g., genome, ssca2, and vacation-low/high, which
can be very close to the native execution. Some benchmarks,
e.g., labyrinth and yada, are hard to scale up even in their
original guest applications [48, 74]. Overall, the proposed
mechanism can e�ectively improve the emulation scalability
of QEMU for scalable guest HTM applications.

7 Related Work

Due to the large performance overhead needed to monitor
memory accesses in non-transactional code, most of STMs
only preserve weak atomicity [20–23, 26, 28, 62]. They typ-
ically require programmers to avoid accessing shared data
used in transactions from non-transactional code regions.
Some other STMs leverage static analyses to detect con�ict
accesses in non-transactional code and protect them using

116

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 4

bayes

S
p
ee

d
u
p

Number of Threads

 0

 1

 2

 3

 4

1 2 4

genome

S
p
ee

d
u
p

Number of Threads

Native
QEMU-x86_64
QEMU-x86_64-htm
QEMU-ppc64le-htm

 0

 1

 2

 3

1 2 4

intruder

S
p
ee

d
u
p

Number of Threads

 1

 2

 3

 4

1 2 4

kmeans-low

S
p
ee

d
u
p

Number of Threads

 0

 1

 2

 3

 4

1 2 4

kmeans-high

S
p
ee

d
u
p

Number of Threads

 0.8

 0.9

 1

 1.1

1 2 4

labyrinth

S
p
ee

d
u
p

Number of Threads

 0

 1

 2

 3

 4

1 2 4

ssca2

S
p
ee

d
u
p

Number of Threads

 0

 1

 2

 3

 4

1 2 4

vacation-low

S
p
ee

d
u
p

Number of Threads

 0

 1

 2

 3

 4

1 2 4

vacation-high

S
p
ee

d
u
p

Number of Threads

 0.7

 0.8

 0.9

 1

 1.1

1 2 4

yada

S
p
ee

d
u
p

Number of Threads

Figure 13. Scalability of individual benchmarks with di�erent system con�gurations.

critical sections [59, 75] or synchronize them with transac-
tional accesses using barriers [12, 54, 56]. However, most of
them rely on a not-accessed-in-transaction (NAIT) analysis,
which makes it hard to apply for binaries because the NAIT
analysis relies on source code analyses to determine what
memory locations are never accessed inside transactions,
allowing the schemes to skip protection for these locations.
A hardware mechanism was proposed to assist STMs to

achieve strong atomicity [10]. It provides access protection
on each cache line, and thus can detect con�icts at a �ner
granularity. Similar approaches at the page level were also
used in previous work to preserve strong atomicity semantics
for transactions [3] and lock-based critical sections [52]. But,
static program analysis is still required to reduce the over-
head introduced by potential con�icts in non-transactional
code. In contrast, the software-based emulation in our mech-
anism is used mainly to perform the binary translation, and
most of the guest HTs are actually emulated by the host HTs.

Pico [15] proposes a design for a scalable DBT system that
enables e�cient emulation ofmulti-core guests onmulti-core
hosts. It even leverages the host HTM to e�ciently emulate
guest atomic instructions. However, it does not address the
issue of how to emulate guest HTM in such a DBT system,
which is the main focus of this paper.

In addition, there are several schemes proposed to opti-
mize DBT systems [43, 58, 65–67, 77]. Basically, our HTM
virtualization mechanism can cooperate with these optimiza-
tions to further improve the emulation performance.

8 Conclusion

Due to the limited cross-ISA support for emerging architecture-
speci�c hardware extensions, existing virtualization tech-
niques su�er from poor performance and scalability when
emulating guest applications that take advantage of these
hardware features. This paper addresses this limitation with
the focus on HTM. In particular, we propose an e�cient and
scalable cross-ISA virtualization mechanism for HTM, which
leverages host HTMs to emulate guest HTMs by translating
guest HTs into host HTs. A software-based emulation scheme
is employed to reduce the abort-causing interferences from
the translator to host HTs. A prototype based on such a
mechanism has been implemented on QEMU. Experimental
results on benchmarks from STAMP demonstrate that this
mechanism can achieve 2.3X and 12.6X speedup for x86_64
and PowerPC64 guest binaries, respectively, on an x86_64
host machine. Moreover, it can attain similar scalability to
the original native execution on the host machine.

Acknowledgments

We are very grateful to the anonymous reviewers for their
valuable comments and feedback. This material is based
upon work supported by the National Science Foundation
under Grant No. CNS-1514444. Any opinions, �ndings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily re�ect the
views of the National Science Foundation.

117

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

References
[1] 2018. Introducing Amazon EC2 A1 Instances Powered By New Arm-

based AWS Graviton Processors. h�p://aws.amazon.com/about-

aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances.

[2] 2019. Dolphin GameCube/Wii Emulator. h�p://dolphin-emu.org.

[3] Martín Abadi, Tim Harris, and Mojtaba Mehrara. 2009. Transactional

Memory with Strong Atomicity Using O�-the-shelf Memory Protec-

tion Hardware. In Proceedings of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’09). ACM, New

York, NY, USA, 185–196. h�ps://doi.org/10.1145/1504176.1504203

[4] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea,

and Eno Thereska. 2014. End-to-End Performance Isolation through

Virtual Datacenters. In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation (OSDI’14). USENIX

Association, USA, 233–248.

[5] ARM. 2019. NEON Technology. h�p://developer.arm.com/

technologies/neon.

[6] ARM. 2019. Security On ARM - TrustZone. h�p://www.arm.com/

products/security-on-arm/trustzone.

[7] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex

Skaletsky, Yun Wang, and Yigel Zemach. 2003. IA-32 Execution Layer:

A Two-phase Dynamic Translator Designed to Support IA-32 Appli-

cations on Itanium®-based Systems. In Proceedings of the 36th An-

nual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 36). IEEE Computer Society, Washington, DC, USA, 191–201.

h�p://dl.acm.org/citation.cfm?id=956417.956550

[8] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony

Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017.

Breaking the Boundaries in Heterogeneous-ISA Datacenters. In Pro-

ceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’17). ACM, New York, NY, USA, 645–659. h�ps://doi.org/10.1145/

3037697.3037738

[9] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-

nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and

Binoy Ravindran. 2015. Popcorn: Bridging the Programmability Gap

in heterogeneous-ISA Platforms. In Proceedings of the Tenth European

Conference on Computer Systems (EuroSys ’15). ACM, New York, NY,

USA, Article 29, 16 pages. h�ps://doi.org/10.1145/2741948.2741962

[10] Lee Baugh, Naveen Neelakantam, and Craig Zilles. 2008. Using

Hardware Memory Protection to Build a High-Performance, Strongly-

Atomic Hybrid Transactional Memory. In Proceedings of the 35th An-

nual International Symposium on Computer Architecture (ISCA ’08).

IEEE Computer Society, Washington, DC, USA, 115–126. h�ps:

//doi.org/10.1109/ISCA.2008.34

[11] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.

In Proceedings of the Annual Conference on USENIX Annual Technical

Conference (ATC ’05). USENIX Association, Berkeley, CA, USA, 41–46.

h�p://dl.acm.org/citation.cfm?id=1247360.1247401

[12] Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. 2009.

Feedback-directed Barrier Optimization in a Strongly Isolated STM. In

Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL ’09). ACM, New York, NY,

USA, 213–225. h�ps://doi.org/10.1145/1480881.1480909

[13] Derek L. Bruening. 2004. E�cient, Transparent, and Comprehensive

Runtime Code Manipulation. Ph.D. Dissertation. Cambridge, MA, USA.

AAI0807735.

[14] Jiunn-Yeu Chen, Bor-Yeh Shen, Quan-Huei Ou, Wuu Yang, and Wei-

Chung Hsu. 2013. E�ective Code Discovery for ARM/Thumb Mixed

ISA Binaries in a Static Binary Translator. In Proceedings of the 2013

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems (CASES ’13). IEEE Press, Piscataway, NJ, USA, Arti-

cle 19, 10 pages. h�p://dl.acm.org/citation.cfm?id=2555729.2555748
[15] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017.

Cross-ISA Machine Emulation for Multicores. In Proceedings of the

2017 International Symposium on Code Generation and Optimization

(CGO ’17). IEEE Press, Piscataway, NJ, USA, 210–220. h�p://dl.acm.

org/citation.cfm?id=3049832.3049855

[16] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The

Performance Cost of Shadow Stacks and Stack Canaries. In Proceedings

of the 10th ACM Symposium on Information, Computer and Communi-

cations Security (ASIA CCS ’15). ACM, New York, NY, USA, 555–566.

h�ps://doi.org/10.1145/2714576.2714635

[17] James C. Dehnert, Brian K. Grant, John P. Banning, Richard John-

son, Thomas Kistler, Alexander Klaiber, and Jim Mattson. 2003. The

Transmeta Code MorphingTM Software: Using Speculation, Recov-

ery, and Adaptive Retranslation to Address Real-Life Challenges. In

Proceedings of the International Symposium on Code Generation and

Optimization: Feedback-Directed and Runtime Optimization (CGO ’03).

IEEE Computer Society, USA, 15–24.

[18] Dinakar Dhurjati and Vikram Adve. 2006. E�ciently Detecting All

Dangling Pointer Uses in Production Servers. In Proceedings of the

International Conference on Dependable Systems and Networks (DSN

’06). IEEE Computer Society, Washington, DC, USA, 269–280. h�ps:

//doi.org/10.1109/DSN.2006.31

[19] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. 2009. Early

Experience with a Commercial Hardware Transactional Memory Im-

plementation. In Proceedings of the 14th International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS XIV). ACM, New York, NY, USA, 157–168. h�ps:

//doi.org/10.1145/1508244.1508263

[20] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. 2009.

Stretching Transactional Memory. In Proceedings of the 30th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’09). ACM, New York, NY, USA, 155–165. h�ps:

//doi.org/10.1145/1542476.1542494

[21] Aleksandar Dragojević and Tim Harris. 2012. STM in the Small:

Trading Generality for Performance in Software Transactional Mem-

ory. In Proceedings of the 7th ACM European Conference on Com-

puter Systems (EuroSys ’12). ACM, New York, NY, USA, 1–14. h�ps:

//doi.org/10.1145/2168836.2168838

[22] Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic

Performance Tuning of Word-based Software Transactional Memory.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP ’08). ACM, New York, NY,

USA, 237–246. h�ps://doi.org/10.1145/1345206.1345241

[23] Sérgio Miguel Fernandes and João Cachopo. 2011. Lock-free and

Scalable Multi-version Software Transactional Memory. In Proceed-

ings of the 16th ACM Symposium on Principles and Practice of Par-

allel Programming (PPoPP ’11). ACM, New York, NY, USA, 179–188.

h�ps://doi.org/10.1145/1941553.1941579

[24] Google. 2019. Run apps on the Android Emulator. h�ps://developer.

android.com/studio/run/emulator.

[25] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and JingWang. 2015. Protect-

ing Private Keys Against Memory Disclosure Attacks Using Hardware

Transactional Memory. In Proceedings of the 2015 IEEE Symposium on

Security and Privacy (SP ’15). IEEE Computer Society, Washington, DC,

USA, 3–19. h�ps://doi.org/10.1109/SP.2015.8

[26] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. 2006.

Optimizing Memory Transactions. In Proceedings of the 27th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’06). ACM, New York, NY, USA, 14–25. h�ps:

//doi.org/10.1145/1133981.1133984

[27] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao. 2015.

Optimizing Binary Translation of Dynamically Generated Code. In

Proceedings of the 13th Annual IEEE/ACM International Symposium on

Code Generation and Optimization (CGO ’15). IEEE Computer Soci-

ety, Washington, DC, USA, 68–78. h�p://dl.acm.org/citation.cfm?id=

2738600.2738610

118

http://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
http://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
http://dolphin-emu.org
https://doi.org/10.1145/1504176.1504203
http://developer.arm.com/technologies/neon
http://developer.arm.com/technologies/neon
http://www.arm.com/products/security-on-arm/trustzone
http://www.arm.com/products/security-on-arm/trustzone
http://dl.acm.org/citation.cfm?id=956417.956550
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1109/ISCA.2008.34
https://doi.org/10.1109/ISCA.2008.34
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1480881.1480909
http://dl.acm.org/citation.cfm?id=2555729.2555748
http://dl.acm.org/citation.cfm?id=3049832.3049855
http://dl.acm.org/citation.cfm?id=3049832.3049855
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1109/DSN.2006.31
https://doi.org/10.1109/DSN.2006.31
https://doi.org/10.1145/1508244.1508263
https://doi.org/10.1145/1508244.1508263
https://doi.org/10.1145/1542476.1542494
https://doi.org/10.1145/1542476.1542494
https://doi.org/10.1145/2168836.2168838
https://doi.org/10.1145/2168836.2168838
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/1941553.1941579
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://doi.org/10.1109/SP.2015.8
https://doi.org/10.1145/1133981.1133984
https://doi.org/10.1145/1133981.1133984
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://dl.acm.org/citation.cfm?id=2738600.2738610

E�icient and Scalable Cross-ISA Virtualization of Hardware Transactional Memory CGO ’20, February 22–26, 2020, San Diego, CA, USA

[28] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie

Kohler, Barbara Liskov, and Liuba Shrira. 2016. Type-aware Transac-

tions for Faster Concurrent Code. In Proceedings of the Eleventh Euro-

pean Conference on Computer Systems (EuroSys ’16). ACM, New York,

NY, USA, Article 31, 16 pages. h�ps://doi.org/10.1145/2901318.2901348

[29] Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W. Davidson, and

Bruce R. Childers. 2006. Evaluating Fragment Construction Policies

for SDT Systems. In Proceedings of the 2nd International Conference on

Virtual Execution Environments (VEE ’06). ACM, New York, NY, USA,

122–132. h�ps://doi.org/10.1145/1134760.1134778

[30] Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W. Davidson, and

Bruce R. Childers. 2006. Evaluating Fragment Construction Policies

for SDT Systems. In Proceedings of the 2nd International Conference on

Virtual Execution Environments (VEE ’06). ACM, New York, NY, USA,

122–132. h�ps://doi.org/10.1145/1134760.1134778

[31] Jason D. Hiser, Daniel Williams, Wei Hu, JackW. Davidson, JasonMars,

and Bruce R. Childers. 2007. Evaluating Indirect Branch Handling

Mechanisms in Software Dynamic Translation Systems. In Proceedings

of the International Symposium on Code Generation and Optimiza-

tion (CGO ’07). IEEE Computer Society, Washington, DC, USA, 61–73.

h�ps://doi.org/10.1109/CGO.2007.10

[32] Raymond J. Hookway and Mark A. Herdeg. 1997. DIGITAL FX!32:

Combining Emulation and Binary Translation. Digital Tech. J. 9, 1 (Jan.

1997), 3–12. h�p://dl.acm.org/citation.cfm?id=268940.268941

[33] Intel. 2019. Intel Advanced Vector Extensions 512 (Intel AVX-

512). h�p://www.intel.com/content/www/us/en/architecture-and-

technology/avx-512-animation.html.

[34] Intel. 2019. Intel Software Guard Extensions (Intel® SGX). h�p:

//so�ware.intel.com/en-us/sgx.

[35] Intel. 2019. Intel Streaming SIMD Extensions Technology.

h�p://www.intel.com/content/www/us/en/support/articles/

000005779/processors.html.

[36] Intel. June, 2017. Programming with Intel Transactional Synchroniza-

tion Extensions. In Intel 64 and IA-32 Architectures Software Developer’s

Manual, Volume 1, Chapter 16.

[37] Daehoon Kim, Hwanju Kim, Nam Sung Kim, and Jaehyuk Huh. 2015.

vCache: Architectural Support for Transparent and Isolated Virtual

LLCs in Virtualized Environments. In Proceedings of the 48th Interna-

tional Symposium on Microarchitecture (MICRO-48). ACM, New York,

NY, USA, 623–634. h�ps://doi.org/10.1145/2830772.2830825

[38] Ho-Seop Kim and James E. Smith. 2003. Dynamic Binary Transla-

tion for Accumulator-oriented Architectures. In Proceedings of the

International Symposium on Code Generation and Optimization (CGO

’03). IEEE Computer Society, Washington, DC, USA, 25–35. h�p:

//dl.acm.org/citation.cfm?id=776261.776264

[39] Ho-Seop Kim and James E. Smith. 2003. Hardware Support for

Control Transfers in Code Caches. In Proceedings of the 36th An-

nual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 36). IEEE Computer Society, Washington, DC, USA, 253–. h�p:

//dl.acm.org/citation.cfm?id=956417.956565

[40] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni

Vigna. 2004. Static Disassembly of Obfuscated Binaries. In Proceedings

of the 13th Conference on USENIX Security Symposium - Volume 13

(SSYM’04). USENIX Association, Berkeley, CA, USA, 18–18. h�p:

//dl.acm.org/citation.cfm?id=1251375.1251393

[41] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J.

Starke, C. May, R. Odaira, and T. Nakaike. 2015. Transactional memory

support in the IBM POWER8 processor. IBM Journal of Research and

Development 59, 1 (Jan 2015), 8:1–8:14. h�ps://doi.org/10.1147/JRD.

2014.2380199

[42] Tongping Liu and Emery D. Berger. 2011. SHERIFF: Precise Detection

and Automatic Mitigation of False Sharing. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA ’11). ACM, New York, NY, USA,
3–18. h�ps://doi.org/10.1145/2048066.2048070

[43] Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, and Wei-

Chung Hsu. 2017. Exploiting Asymmetric SIMD Register Con�gura-

tions in ARM-to-x86 Dynamic Binary Translation. In Proceedings of the

26th International Conference on Parallel Architectures and Compilation

Techniques (PACT ’17). IEEE Computer Society, Washington, DC, USA,

343–355. h�ps://doi.org/10.1109/PACT.2017.15

[44] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geo� Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. 2005. Pin: Building Customized ProgramAnalysis Tools withDy-

namic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’05). ACM, New York, NY, USA, 190–200. h�ps://doi.org/10.1145/

1065010.1065034

[45] Milo Martin, Colin Blundell, and E. Lewis. 2006. Subtleties of Transac-

tional Memory Atomicity Semantics. IEEE Comput. Archit. Lett. 5, 2

(July 2006), 17–20. h�ps://doi.org/10.1109/L-CA.2006.18

[46] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,

Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and

the Art of Network Function Virtualization. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Implementation

(NSDI ’14). USENIX Association, USA, 459–473.

[47] Chi CaoMinh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-

tun. 2008. STAMP: Stanford Transactional Applications for Multi-

Processing. In 4th International Symposium on Workload Characteri-

zation (IISWC 2008), Seattle, Washington, USA, September 14-16, 2008.

35–46. h�ps://doi.org/10.1109/IISWC.2008.4636089

[48] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael,

and Hisanobu Tomari. 2015. Quantitative Comparison of Hardware

Transactional Memory for Blue Gene/Q, zEnterprise EC12, Intel Core,

and POWER8. In Proceedings of the 42nd Annual International Sympo-

sium on Computer Architecture (ISCA ’15). ACM, New York, NY, USA,

144–157. h�ps://doi.org/10.1145/2749469.2750403

[49] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework

for Heavyweight Dynamic Binary Instrumentation. In Proceedings of

the 28th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’07). ACM, New York, NY, USA, 89–100.

h�ps://doi.org/10.1145/1250734.1250746

[50] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Com-

pilation Using Modular Control-Flow Integrity. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’14). ACM, New York, NY, USA, 1317–1328. h�ps:

//doi.org/10.1145/2660267.2660281

[51] Rei Odaira, Jose G. Castanos, and Hisanobu Tomari. 2014. Eliminating

Global Interpreter Locks in Ruby Through Hardware Transactional

Memory. In Proceedings of the 19th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’14). ACM, New

York, NY, USA, 131–142. h�ps://doi.org/10.1145/2555243.2555247

[52] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and

Kapil Vaswani. 2009. ISOLATOR: Dynamically Ensuring Isolation in

Comcurrent Programs. In Proceedings of the 14th International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS XIV). ACM, New York, NY, USA, 181–192.

h�ps://doi.org/10.1145/1508244.1508266

[53] Carl G. Ritson, Tomoharu Ugawa, and Richard E. Jones. 2014. Ex-

ploring Garbage Collection with Haswell Hardware Transactional

Memory. In Proceedings of the 2014 International Symposium on Mem-

ory Management (ISMM ’14). ACM, New York, NY, USA, 105–115.

h�ps://doi.org/10.1145/2602988.2602992

[54] Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza

Adl-Tabatabai. 2008. Dynamic Optimization for E�cient Strong Atom-

icity. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-

oriented Programming Systems Languages and Applications (OOPSLA

’08). ACM, New York, NY, USA, 181–194. h�ps://doi.org/10.1145/

1449764.1449779

119

https://doi.org/10.1145/2901318.2901348
https://doi.org/10.1145/1134760.1134778
https://doi.org/10.1145/1134760.1134778
https://doi.org/10.1109/CGO.2007.10
http://dl.acm.org/citation.cfm?id=268940.268941
http://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-animation.html
http://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-animation.html
http://software.intel.com/en-us/sgx
http://software.intel.com/en-us/sgx
http://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
http://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://doi.org/10.1145/2830772.2830825
http://dl.acm.org/citation.cfm?id=776261.776264
http://dl.acm.org/citation.cfm?id=776261.776264
http://dl.acm.org/citation.cfm?id=956417.956565
http://dl.acm.org/citation.cfm?id=956417.956565
http://dl.acm.org/citation.cfm?id=1251375.1251393
http://dl.acm.org/citation.cfm?id=1251375.1251393
https://doi.org/10.1147/JRD.2014.2380199
https://doi.org/10.1147/JRD.2014.2380199
https://doi.org/10.1145/2048066.2048070
https://doi.org/10.1109/PACT.2017.15
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/L-CA.2006.18
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1145/2749469.2750403
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/2555243.2555247
https://doi.org/10.1145/1508244.1508266
https://doi.org/10.1145/2602988.2602992
https://doi.org/10.1145/1449764.1449779
https://doi.org/10.1145/1449764.1449779

CGO ’20, February 22–26, 2020, San Diego, CA, USA Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant

[55] Aritra Sengupta, Man Cao, Michael D. Bond, and Milind Kulkarni.

2017. Legato: End-to-end Bounded Region Serializability Using Com-

modity Hardware Transactional Memory. In Proceedings of the 2017

International Symposium on Code Generation and Optimization (CGO

’17). IEEE Press, Piscataway, NJ, USA, 1–13. h�p://dl.acm.org/citation.

cfm?id=3049832.3049834

[56] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven

Balensiefer, Dan Grossman, Richard L. Hudson, Katherine F. Moore,

and Bratin Saha. 2007. Enforcing Isolation and Ordering in STM. In

Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’07). ACM, New York, NY,

USA, 78–88. h�ps://doi.org/10.1145/1250734.1250744

[57] Jim Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms

for Systems and Processes (The Morgan Kaufmann Series in Computer

Architecture and Design). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[58] Changheng Song, Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and

Weihua Zhang. 2019. Unleashing the Power of Learning: An Enhanced

Learning-Based Approach for Dynamic Binary Translation. In Pro-

ceedings of the 2019 USENIX Conference on Usenix Annual Technical

Conference (USENIX ATC ’19). USENIX Association, USA, 77–89.

[59] Gautam Upadhyaya, Samuel P. Midki�, and Vijay S. Pai. 2010. Using

Data Structure Knowledge for E�cient Lock Generation and Strong

Atomicity. In Proceedings of the 15th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’10). ACM, New

York, NY, USA, 281–292. h�ps://doi.org/10.1145/1693453.1693490

[60] Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M.

Tullsen. 2016. HIPStR: Heterogeneous-ISA Program State Reloca-

tion. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS ’16). ACM, New York, NY, USA, 727–741. h�ps:

//doi.org/10.1145/2872362.2872408

[61] M. M. Waliullah and Per Stenstrom. 2014. Removal of Con�icts in

Hardware Transactional Memory Systems. Int. J. Parallel Program. 42,

1 (Feb. 2014), 198–218. h�ps://doi.org/10.1007/s10766-012-0210-0

[62] Jons-Tobias Wamho�, Christof Fetzer, Pascal Felber, Etienne Rivière,

and Gilles Muller. 2013. FastLane: Improving Performance of Software

Transactional Memory for Low Thread Counts. In Proceedings of the

18th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’13). ACM, New York, NY, USA, 113–122. h�ps:

//doi.org/10.1145/2442516.2442528

[63] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio

Breternitz, Zhiwei Ying, and Youfeng Wu. 2007. StarDBT: An E�cient

Multi-platform Dynamic Binary Translation System. In Proceedings

of the 12th Asia-Paci�c Conference on Advances in Computer Systems

Architecture (ACSAC’07). Springer-Verlag, Berlin, Heidelberg, 4–15.

h�p://dl.acm.org/citation.cfm?id=2392163.2392166

[64] Wenwen Wang, Stephen McCamant, Antonia Zhai, and Pen-Chung

Yew. 2018. Enhancing Cross-ISA DBT Through Automatically Learned

Translation Rules. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 84–97.

h�ps://doi.org/10.1145/3173162.3177160

[65] Wenwen Wang, Chenggang Wu, Tongxin Bai, Zhenjiang Wang, Xiang

Yuan, and Huimin Cui. 2014. A Pattern Translation Method for Flags

in Binary Translation. Journal of Computer Research and Development

51, 10 (2014), 2336–2347. h�p://crad.ict.ac.cn/EN/10.7544/issn1000-

1239.2014.20130018

[66] Wenwen Wang, Jiacheng Wu, Xiaoli Gong, Tao Li, and Pen-Chung

Yew. 2018. Improving Dynamically-Generated Code Performance

on Dynamic Binary Translators. In Proceedings of the 14th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution En-

vironments (VEE ’18). ACM, New York, NY, USA, 17–30. h�ps:

//doi.org/10.1145/3186411.3186413
[67] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCa-

mant. 2016. A General Persistent Code Caching Framework for Dy-

namic Binary Translation (DBT). In Proceedings of the 2016 USENIX

Conference on Usenix Annual Technical Conference (USENIX ATC ’16).

USENIX Association, USA, 591–603.

[68] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen McCamant,

Youfeng Wu, and Jayaram Bobba. 2017. Enabling Cross-ISA O�oading

for COTS Binaries. In Proceedings of the 15th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys ’17).

ACM, New York, NY, USA, 319–331. h�ps://doi.org/10.1145/3081333.

3081337

[69] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin Zhou. 2015.

SecPod: A Framework for Virtualization-Based Security Systems. In

Proceedings of the 2015 USENIX Conference on Usenix Annual Technical

Conference (USENIX ATC ’15). USENIX Association, USA, 347–360.

[70] Xin Wang, Weihua Zhang, Zhaoguo Wang, Ziyun Wei, Haibo Chen,

and Wenyun Zhao. 2017. Eunomia: Scaling Concurrent Search Trees

Under Contention Using HTM. In Proceedings of the 22Nd ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’17). ACM, New York, NY, USA, 385–399. h�ps://doi.org/10.

1145/3018743.3018752

[71] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua

Zhang, and Binyu Zang. 2011. COREMU: A Scalable and Portable Paral-

lel Full-system Emulator. In Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming (PPoPP ’11). ACM, New

York, NY, USA, 213–222. h�ps://doi.org/10.1145/1941553.1941583

[72] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. 2014. Using

Restricted Transactional Memory to Build a Scalable In-memory Data-

base. In Proceedings of the Ninth European Conference on Computer

Systems (EuroSys ’14). ACM, New York, NY, USA, Article 26, 15 pages.

h�ps://doi.org/10.1145/2592798.2592815

[73] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuanchao Huang,

Jiaming He, Tianyin Xu, and Ennan Zhai. 2019. Mobile Gaming on Per-

sonal Computers with Direct Android Emulation. In The 25th Annual

International Conference on Mobile Computing and Networking (Mobi-

Com ’19). Association for Computing Machinery, New York, NY, USA,

Article Article 19, 15 pages. h�ps://doi.org/10.1145/3300061.3300122

[74] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.

2013. Performance Evaluation of Intel Transactional Synchronization

Extensions for High-performance Computing. In Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 19,

11 pages. h�ps://doi.org/10.1145/2503210.2503232

[75] Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond. 2015.

Low-overhead Software Transactional Memory with Progress Guar-

antees and Strong Semantics. In Proceedings of the 20th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP

2015). ACM, New York, NY, USA, 97–108. h�ps://doi.org/10.1145/

2688500.2688510

[76] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2016. TxRace: Ef-

�cient Data Race Detection Using Commodity Hardware Transac-

tional Memory. In Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS ’16). ACM, New York, NY, USA, 159–173.

h�ps://doi.org/10.1145/2872362.2872384

[77] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen, and Weiwu

Hu. 2015. HERMES: A Fast cross-ISA Binary Translator with Post-

optimization. In Proceedings of the 13th Annual IEEE/ACM International

Symposium on Code Generation and Optimization (CGO ’15). IEEE Com-

puter Society, Washington, DC, USA, 246–256. h�p://dl.acm.org/

citation.cfm?id=2738600.2738631

120

http://dl.acm.org/citation.cfm?id=3049832.3049834
http://dl.acm.org/citation.cfm?id=3049832.3049834
https://doi.org/10.1145/1250734.1250744
https://doi.org/10.1145/1693453.1693490
https://doi.org/10.1145/2872362.2872408
https://doi.org/10.1145/2872362.2872408
https://doi.org/10.1007/s10766-012-0210-0
https://doi.org/10.1145/2442516.2442528
https://doi.org/10.1145/2442516.2442528
http://dl.acm.org/citation.cfm?id=2392163.2392166
https://doi.org/10.1145/3173162.3177160
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2014.20130018
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2014.20130018
https://doi.org/10.1145/3186411.3186413
https://doi.org/10.1145/3186411.3186413
https://doi.org/10.1145/3081333.3081337
https://doi.org/10.1145/3081333.3081337
https://doi.org/10.1145/3018743.3018752
https://doi.org/10.1145/3018743.3018752
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/3300061.3300122
https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/2688500.2688510
https://doi.org/10.1145/2688500.2688510
https://doi.org/10.1145/2872362.2872384
http://dl.acm.org/citation.cfm?id=2738600.2738631
http://dl.acm.org/citation.cfm?id=2738600.2738631

	Abstract
	1 Introduction
	2 Background: HTM and DBT
	3 Issues and Challenges
	4 HTM Virtualization
	4.1 Binary Code Translation
	4.2 Software Emulation of Strong Atomicity
	4.3 Handling Indirect Branches
	4.4 Retry Strategy and Abort Translation

	5 Implementation
	6 Experimental Results
	6.1 Performance
	6.2 Scalability

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

