Efficient and Scalable Query Routing for
Unstructured Peer-to-Peer Networks

Abhishek Kumar Jun (Jim) Xu Ellen W. Zegura
Georgia Institute of Technology, 2005

Sensing Networking

The Problem:

« Searching for content in an unstructured network

Event

o, | A sink

Constraints:

« Content and/or structure are highly dynamic

« Any node can originate content (lots of content)
* Limited bandwidth and memory at each node

* No a priori knowledge of the environment

Possible Solutions:

 Flooding

« Random Walk

« Supernodes/Ultrapeers
 One-Hop Replication of Index
« Expanding ring search

* GIA: Optimized Topology Construction, Load
Balancing

Problems (trade-offs):
 Speed (low temporal locality in search traffic)

exp%%asllegylty (replicating content indices is

Scalable Query Routing (SQR)

Scalable Query Routing (SQR)

« Maintain probabilistic “routing tables”

* High information about close neighbors

* Information intensity “decays” with distance

* A data-structure at each node to achieve this

 Queries perform a “partially guided” random
walk

Scalable Query Routing (SQR)

O O

Ay
™, \\ ",
Y b
", kY
W N
~N \\ 5
by Y
R kY

} Low . Medium . Strong
Noise % information ‘. information information
Qoise N nforgaion R, mforien e
O —0O e, —0 O
,f”' Noise i Content Host
_ 7,

(Origin of information)

__,r'f 24 //'
4 A
- Noise 7 /
se _ _ ’
. L
/ f.-" i

S

Information about content on a host
decays exponentially with distance

Bloom Filter

Given a set S = {x,%,,X;,...X,} on a universe U,
want to answer queries of the form:

doesze S

 Bloom filter answers in “constant” time
« Small amount of space.
* But with some probability of being wrong.

Bloom Filter

Array of m bits all set to 0 initially
B |olo|lolo|lo]olo|lo]lo|lo]oO]O

When inserting an element x, set B[h{(x)]

1fori=1to k
B [(o|l1]0]j0|0fO|1]|]O]jO|[1([O]O

To check if yisin S, check B at h(y). All k values must be 1
B [o|1]|o]of1|o]1]ofof1]1]1

May have false positives; all kvalues are 1, but yisnotin S
B |of1]ofo]1fo]|1|of0]|1[1]1

Bloom Filter

Under the assumption:
» Good (pseudo-random) hash functions

Can bound the probability of a false positive and
optimize the number k of hash functions to minimize

this probability.

Given n objects and a Bloom filter of size m:
p = Pr[cellis empty] = (1 _1/m)kn ~ e—kn/m
f = Pr[false pos] = (1— p)* = (1= /™)k

k that minimizes f = (In 2)m/n

Exponentially Decaying Bloom Filter (EDBF)

Array of m bits. Also uses k hash functions.
Insertion is identical to BF.

Testing for membership, returns the number of bits set to 1
0(z) = {ilAlhi(z)] = 1,4 = 1,2,..,k}|

When EDBF is used in the probabilistic query routing in
SQR, 9(z)/k roughly represents the probability of finding x
along a particular link

Exponentially Decaying Bloom Filter (EDBF)

* Nodes advertise their EDBF to their neighbors

« Each node keeps separate copies of EDBF received from
each of its neighbors

« When advertising to downstream neighbors nodes take
the union of local EDBF with EDBFs of the neighbors
resetting bits in these with probability (1/d)

» Because of the decay, for any object x, 8(x) = k for a node
one hop away, k/d two hops away, k/(d") n hops away

Exponentially Decaying Bloom Filter (EDBF)

Constructing and updating EDBF:

Create Local EDBF (given local content X):
// Populate local EDBF A.

1. Ve € X

2. Set bits A[h1(x)], ... Alhg(x)] to1;

Create Update (for neighbor j):

// Copy all the bits from the local EDBF A into

// the updateUs;.
1. Uj — A;
// Decay the information received from all neighbors
// otherthan j by a factor of d, and add the
// surviving bits to Uj.
Vi € neighbor_ list,i % j

Vre {1,---,m}

if(Afr] == 1)
with probability 1/d, U;[r] < 1;

Return Uj;

> W

Fig. 2. Algorithms for creating updates in SQR.

Using EDBF for Routing

Local EDBF

0[(1{0]/0|1(0f0|1]0

Using EDBF for Routing

00

0

0

Advertisements

Received \
O|0|1(0[1

-

Using EDBF for Routing

Union of
received
Bandambiese /&f
half the bits

NH

o &=

o |e=
o |<e=

Using EDBF for Routing

Take L@ieorclj| ost

X neng o
(Eﬁ]g%hborn”\

Exponentially Decaying Bloom Filter (EDBF)

Query routing:
* If the query is satisfied locally, it is answered

* If the query has previously been seen, it is forwarded
to a random neighbor

 Otherwise the query is forwarded to the neighbor
advertising the highest value 4(x), the total number of
bits set to 1 in locations indexed by h;(z),j € 1...k

Exponentially Decaying Bloom Filter (EDBF)

Query routing:

Forward Query (given query Y):
// Forward previously seen queries to neighborz, .
// chosenrandomly from neighbor_list.
1.2f(Seen Query(Y))
2. Deliver Query(Y ,t);
3. else
//Forward previously unseenqueries to the neighbor
// with the maximum information aboutthis query

4. © < Lookup (Y);
5. Pick ¢ such that8; = max(O);
6. Deliver Query(Y ,7);

Lookup (given query Y):

1. V2 € neighbor_list

2. Vge{l,---,k}

3. 0:+ = Ai[hq(y));

4, Return O; /0 = {6;}*/

Fig. 3. Algorithms for forwarding queriesin SQR.

Query Routing

Query

Exponentially Decaying Bloom Filter (EDBF)

Optimizations:
» Use delta encoding for updates
» Use arithmetic coding for data compression

- increasing the size of the array while reducing
the number of hash functions slightly can
improve the efficiency of BF

SQR Performance: Flat Topologies

100 T T T T T T T L T
80 r . _ SQR - A
- ' OHR -
o Random walk
2 flooding
@ 60
W)
w
2 *
)
3 40
©
*
20
0 & :

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Hop Limit

SQR Performance: Flat Topologies

% of queries answered

100

90 r

80

0 r
60 |
50
40
30
20
10

T

SQR
OHR
- Random walk
flooding

1000
Hop Limit

10000

100000

1e+06

SQR Performance: Hierarchical Topologies

100
80 |
-
[ah]
>
5 60
(44
Yy
8
o
3 40
©
-0
20 | ' " SQR+GIA
: GIA
Ultrapeer
O 1 Il
1 10 100 1000

Hop Limit

SQR Performance: Impact of Replication

10000 . 1 . 1 .
CHR :
GIA
Ultrapeer
7 SQR+GIA
»
- 1000) 5
o . 1
=
=2
2
(] w.
m .
5 ' -
E 100 | - 5
= :]
O
T
'IO 1 | A | |
1(0.04) 2{0.08) 5{0.2) 10 (0.4) 25 (1)

Number of Copies of each object (Replication rate in 9%)

SQR Performance: Impact of Replication
with Zipf distribution

100 ———— s
90
93]
.g 80 |
ab]
=}
T 70+
=]
B 60 F
QO
o
3 50
[43]
©
o 40 f
% . .
= 30t h SQR+GIA
] s GIA
o 20 | Ultrapeer
. | OHR
10
0 . | |
1 10 100 1000 10000

Hop limit

Conclusions:

« Highly compressed information about content in
the neighborhood cab speed up the routing

» Exponential decay of information with distance
ensures scalability of the approach

 Probabilistic routing information can be “reliable”
and efficient

Problems:

 Deleting content is unsupported in Bloom filters
(could be done in EDBF due to probabilistic nature)

* In a large sensor network, random walks may be
highly inefficient

« Hashing may be too time/energy expensive for
simple nodes

Thank You

