
Efficient and Scalable Query Routing for

Unstructured Peer-to-Peer Networks

Abhishek Kumar Jun (Jim) Xu Ellen W. Zegura

Georgia Institute of Technology, 2005

The Problem:

• Searching for content in an unstructured network

Constraints:

• Content and/or structure are highly dynamic

• Any node can originate content (lots of content)

• Limited bandwidth and memory at each node

• No a priori knowledge of the environment

Possible Solutions:

• Flooding

• Random Walk

• Supernodes/Ultrapeers

• One-Hop Replication of Index

• Expanding ring search

• GIA: Optimized Topology Construction, Load
Balancing

Problems (trade-offs):

• Speed (low temporal locality in search traffic)

• Scalability (replicating content indices is
expensive)

Scalable Query Routing (SQR)

Host

Scalable Query Routing (SQR)

• Maintain probabilistic “routing tables”

• High information about close neighbors

• Information intensity “decays” with distance

• A data-structure at each node to achieve this

• Queries perform a “partially guided” random
walk

Scalable Query Routing (SQR)

Information about content on a host
decays exponentially with distance

Bloom Filter

Given a set S = {x1,x2,x3,…xn} on a universe U,
want to answer queries of the form:

does z ∈ S

• Bloom filter answers in “constant” time

• Small amount of space.

• But with some probability of being wrong.

Bloom Filter

0 0 0 0 0 0 0 0 0 0 0 0B

When inserting an element x, set B[hi(x)] = 1 for i =1 to k

0 1 0 0 0 0 1 0 0 1 0 0B

To check if y is in S, check B at hi(y). All k values must be 1

0 1 0 0 1 0 1 0 0 1 1 1B

0 1 0 0 1 0 1 0 0 1 1 1B
May have false positives; all k values are 1, but y is not in S

Array of m bits all set to 0 initially

Bloom Filter

Under the assumption:
• Good (pseudo-random) hash functions

Can bound the probability of a false positive and
optimize the number k of hash functions to minimize

this probability.

Given n objects and a Bloom filter of size m:
mknkn

emp
/)/11(]empty is cellPr[−

≈−==

kmknk
epf)1()1(]pos falsePr[/−

−≈−==

k that minimizes f = (ln 2)m/n

Exponentially Decaying Bloom Filter (EDBF)

Array of m bits. Also uses k hash functions.

Insertion is identical to BF.

Testing for membership, returns the number of bits set to 1

When EDBF is used in the probabilistic query routing in
SQR, roughly represents the probability of finding x

along a particular link

Exponentially Decaying Bloom Filter (EDBF)

• Nodes advertise their EDBF to their neighbors

• Each node keeps separate copies of EDBF received from

each of its neighbors

• When advertising to downstream neighbors nodes take
the union of local EDBF with EDBFs of the neighbors

resetting bits in these with probability (1/d)

• Because of the decay, for any object x, = k for a node

one hop away, k/d two hops away, k/(dn) n hops away

Exponentially Decaying Bloom Filter (EDBF)

Constructing and updating EDBF:

Using EDBF for Routing

Host

0000000 1 1 1

Local EDBF

Using EDBF for Routing

Host

1001001

0000010 1 1

Advertisements

Received

0 00

0

Using EDBF for Routing

Host

10001 1 11 1

Union of

received

advertisementsRandomly reset

half the bits

0 000

Using EDBF for Routing

Host

10001 1

0000000 1 1 1

Take union

with local

EDBF

1 1 1

Send

Advertisement to

neighbor

000 0

Exponentially Decaying Bloom Filter (EDBF)

Query routing:

• If the query is satisfied locally, it is answered

• If the query has previously been seen, it is forwarded
to a random neighbor

• Otherwise the query is forwarded to the neighbor
advertising the highest value , the total number of

bits set to 1 in locations indexed by

Exponentially Decaying Bloom Filter (EDBF)

Query routing:

Query Routing

Query

Host

Exponentially Decaying Bloom Filter (EDBF)

Optimizations:

• Use delta encoding for updates

• Use arithmetic coding for data compression

increasing the size of the array while reducing

the number of hash functions slightly can
improve the efficiency of BF

-

SQR Performance: Flat Topologies

SQR Performance: Flat Topologies

SQR Performance: Hierarchical Topologies

SQR Performance: Impact of Replication

SQR Performance: Impact of Replication

with Zipf distribution

Conclusions:

• Highly compressed information about content in
the neighborhood cab speed up the routing

• Exponential decay of information with distance
ensures scalability of the approach

• Probabilistic routing information can be “reliable”

and efficient

Problems:

• Deleting content is unsupported in Bloom filters
(could be done in EDBF due to probabilistic nature)

• In a large sensor network, random walks may be
highly inefficient

• Hashing may be too time/energy expensive for

simple nodes

Thank You

