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Abstract With the growing popularity of cloud comput-

ing, more and more enterprises and individuals tend to

store their sensitive data on the cloud in order to reduce the

cost of data management. However, new security and pri-

vacy challenges arise when the data stored in the cloud due

to the loss of data control by the data owner. This paper

focuses on the techniques of verifiable data storage and

secure data deduplication. We firstly summarize and clas-

sify the state-of-the-art research on cloud data storage

mechanism. Then, we present some potential research

directions for secure data outsourcing.

Keywords Outsourced storage � Verifiable search � Data
auditing � Secure data deduplication

1 Introduction

Cloud computing, the new term for the long-dreamed

vision of computing as a utility, can offer plenty of benefits

for real-world applications, such as on-demand self-ser-

vice, ubiquitous network access, rapid resource elasticity,

usage-based pricing, outsourcing, etc. One of the funda-

mental advantages of cloud computing is the so-called

outsourcing paradigm. That is, the resource-constrained

users can enjoy high-quality data storage services by out-

sourcing their data to the cloud server.

Despite the tremendous benefits, the outsourcing para-

digm brings some new security challenges. On the one

hand, the cloud server may be not fully trusted, and face

both internal and external security threats, such as soft-

ware/hardware failures, compromised employees, hacker.

A query on data stored on a cloud server may return an

invalid search result. What’s more, the cloud server may be

‘‘semi-honest-but-curious’’ and intentionally execute par-

tial search operations in order to save its computation and

communication overhead. Thus, one significant security

challenge is how to achieve the verifiability of search

results for data stored in the cloud. It means that the client

should efficiently check the validation for the results

returned by the cloud server. Specifically, the following

two security requirements should be meet: (1) correctness:

the result is the original data and has not been modified; (2)

completeness: the result includes all the matched data

satisfying the client’s search request.

On the other hand, with the rapid popularity of cloud

computing, an increasing amount of data is being out-

sourced to the cloud in a exponential growth manner.

Inevitably, this leads to a cost explosion of data storage.

This concerns not only the cost of the hardware and soft-

ware necessary for storing data, but also the rapidly

growing energy consumption in storage systems. As a

promising solution, data deduplication has attracted

increasing attention from both academic and industrial

community. Deduplication can eliminate redundant data by

storing one single copy for duplicate data.

In this paper, we present a comprehensive survey of

solutions for verifiability of search results and secure data

deduplication. Specifically, we first review the state of the

art for verifiable data search and secure data deduplication

techniques, and introduce a classification of these tech-

niques. Then, we present current research directions, with

the aim of promoting further research of data security in the

cloud.
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The rest of the paper is organized as follows. In Sect. 2,

we briefly present an brief overview of verifiable cloud

storage, including security threats and the corresponding

solutions. A summary of secure data deduplication in cloud

environments is presented in Sect. 3. Finally, we discuss

some future research directions for secure data outsourcing

and conclude this paper in Sect. 4.

2 Verifiable Storage on Outsourced Databases

Database outsourcing has recently attracted considerable

interest. The concept of database outsourcing was first

implicitly introduced by Hacigümüş et al. [22]. Their

approach allows the data owner to delegate the database

management to a cloud service provider (CSP) that pro-

vides various database services to users. More specifically,

in the outsourced database (ODB) scenario, the data owner

locally encrypts its own database and then outsources the

encrypted database with additional metadata (i.e., index) to

the CSP, which hosts the database and provides various

database services to the users on behalf of data owner. The

data users can issue query to the CSP and receive the

corresponding results from the CSP.

Despite the tremendous benefits, the outsourced data-

base paradigm inevitably suffers from some new security

challenges. Specifically, due to self-interest and hard-

ware/software failures, cloud servers may execute only a

fraction of the search operations honestly and/or return an

incorrect and/or incomplete query result. What is worst is

that, since users no longer locally possess a copy of the

data, it is difficult to check the integrity of search result.

Therefore, one of the most critical challenges is to effec-

tively audit the integrity of outsourced databases.

2.1 System Model

As shown in Fig. 1, anODB system consists of three entities:

the data owner, the data user, and the cloud service provider.

The data owner outsources its encrypted database to the

cloud service provider, and an (authorized) data user can

issue encrypted queries to the CSP. It is worth nothing that

the CSP should be able to process queries over encrypted

data. In addition, the data user should be able to verify the

search result. Verifiability includes the following two secu-

rity goals: (1) correctness: the result is the original data and

has not been modified; (2) completeness: the result includes

all valid data items satisfying the search condition.

2.2 Threat Model

In an ODB system, the CSP refers to a ‘‘semi-honest-but-

curious’’ server. That is, the CSP may not honestly follow

the proposed protocol but return incomplete search result

and/or execute only partial search operations honestly.

Thus, two types of attacker are considered: (1) external

attacker: a party which wants to obtain knowledge on the

database beyond what the party is authorized to obtain, i.e.,

a revoked user or hacker. (2) internal attacker: a party may

have some knowledge about database (i.e., the CSP). The

goal of the attacker is to return incomplete/incorrect search

results without being detected.

2.3 Integrity Auditing for Outsourced Databases

Several researchers have investigated techniques for veri-

fiable database outsourcing in the past decade. The existing

approaches can be categorized into two types according to

the verification approach adotped.

2.3.1 Authenticated Data Structure-Based Integrity

Verification

The first approach is based on authenticated data structures

(e.g., Merkle hash tree [36]) [8, 16, 17, 27, 34, 38, 47].

Devanbu et al. [17] firstly investigated the problem of

integrity auditing on outsourced databases. Their solution

does not require the results pre-computation (signature) of

all the possible queries nor deliver the whole database to

the user. The basic idea is that an index based on the

Merkle hash tree (MHT) is generated, and then, the search

result can be verified by re-computing the signature of the

root of the MHT. Note that the leaf nodes of a MHT should

be ordered. Such requirement makes frequent data updates

costly. More importantly, the size of verification object

(VO) is linear in the cardinality of the query result and

logarithmic in the scale of the database. Pang et al. [47]

proposed the notion of verifiable B-trees (VB-tree), where

each internal node is assigned with a signed hash value

derived from all the data items in the subtree rooted at the

current node. In processing a query, the cloud server first

locates the smallest subtree covering all the query results. It

then computes the VO as the hash values for all the data

items in the subtree that are not included in the result.

Trivially, the size of VO is independent of the database

size. Nuckolls [45] presented a flexible verification struc-

ture called hybrid authentication tree (HAT) by incorpo-

rating one-way accumulator. The proposed solution

enables a consolidated proof to reduce the size of the VO.

Later, Li et al. [27] introduced a novel notion of Embedded

Merkle B-tree (EMB-tree). The basic idea is to embed a

Bþ-tree into an MHT. To verify the completeness of a

range query, the VO includes all the sibling hash out of

scope of two immediately neighboring records in the

ordered sequence.
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2.3.2 Signature Chaining-Based Integrity Verification

The second approach is based on the signature chaining

technique [40, 41, 43, 46]. Mykletun et al. [40] investigated

the notion of signature aggregation which allows one to

combine multiple signatures into a single one, thereby

reducing verification overhead for search results. However,

their mechanism ensures correctness for search results and

does not provide completeness guarantee. Later, Nar-

asimha et al. [43] addressed completeness by integrating

signature aggregation and chaining techniques. Specifi-

cally, the client generates a signature for each data item

containing all the immediate predecessors in different

dimensions. Then, given a range query, their technique

requires two boundary data items to be returned along with

the target data items. The completeness of the search result

can be verified using the chained signature. Pang et al.

[46, 48] give two solutions to the completeness problem for

static and dynamic outsourced database, respectively. In

their solutions, all data items are assumed to be ordered

with respect to certain searchable attributes, and the data

owner creates a signature for each item that consists of

information about the two neighboring items in the ordered

sequence. Note that there is no need for additional

boundary data items. Nevertheless, the case when non-

continuous regions are queried is intractable. Recently,

Yuan and Yu [59] presented a new verifiable aggregation

query scheme for outsourced databases. Specifically, each

data item is assigned an authentication tag based on a

polynomial, which can be used to check the integrity of

query result for certain aggregation queries.

Notice that none of the existing solutions ensure the

completeness of result when the cloud server intentionally

returns an empty result. Wang et al. [55] proposed a novel

verifiable outsourced database scheme based on Bloom

filters. In their construction, the data user can check the

integrity of the search result even if the CSP intentionally

returns an empty set. Their technique allows the data user

to ensure the correctness of search result by checking

whether the search request belongs to the Bloom filters.

Remark 1 As a complementary solution, a probabilistic

integrity verification methods have been proposed by Xie

at al. [57] and Sion [50]. The main idea of such methods is

that the data owner inserts some faked data items in the

database beforehand. The disadvantages of such methods

are twofold: On the one hand, the fake data items must be

shared by all authorized data users and this makes the

methods vulnerable to compromise attacks. On the other

hand, the methods requires the cloud server to return all

attributes of the data items and thus the method cannot

support some common database operations such as

projection.

Remark 2 Another concern about data integrity auditing

is related storage integrity for outsourced data. Storage

integrity refers to the ability to check whether the out-

sourced data are lost or corrupted without retrieving it. The

pioneer works include the Provable Data Possession (PDP)

protocol [3] and the Proof of Retrievability (POR) protocol

[26]. Since the definition of such protocols, several

researchers have investigated the problem of remote data

auditing.

It should be pointed out that there are some differences

between storage and query integrity for outsourced data.

First, in the storage integrity setting, the user must have

beforehand knowledge about the database (e.g., the hash

value of data blocks). By contrast, in the query integrity

setting, the user is not required to have knowledge about

the database. Furthermore, storage integrity only focuses

on query correctness whereas query integrity must ensure

both the correctness and completeness of the query.

Fig. 1 Architecture of an

outsourced database system

model
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2.4 Verifiable Databases with Updates

Benabbas et al. [7] proposed a useful cryptographic prim-

itive for verifiable databases with efficient updates (VDB).

That is, a resource-constrained client may outsource a

large-scale database to a cloud server and later efficiently

performs verification of query results in a dynamic data-

base scenario. If a dishonest cloud server tampers with any

data item in the database, the misbehavior will be detected

with an overwhelming probability (once the tampered data

item is queried). In addition, the cost of query processing

and query result verification should be independent of the

size of the database.

For the case of static databases, the above problem can

be addressed by trivially adopting message authentication

or digital signature technique. Namely, the client signs

each data item before uploading it to the cloud server, and

the cloud server is required to return the requested data

item together with its valid signature. Nevertheless, this

solution cannot work well when the database is updated.

The main challenge is related to how to revoke the valid

signatures given to the cloud server for the previous values

of the modified data item. A naive solution is that the client

locally keeps track of every change. However, such a

solution negates the advantages of database outsourcing.

Although existing techniques such as accumulators

[10, 11, 44], and authentication data structures

[35, 42, 49, 52] that can be adopted to address such

problem, these solutions either rely on nonconstant size

assumptions (e.g., the q-Strong Diffie-Hellman assump-

tions) or require expensive operations such as the genera-

tion of primes and re-shuffling procedures.

Benabbas et al. [7] proposed the first efficient VDB

scheme under the subgroup membership assumption in

composite order bilinear groups. The main idea is to apply

a verifiable polynomial evaluation scheme constructed with

algebraic pseudo-random functions. However, their solu-

tion can only achieve private verifiability. In other words,

only the data owner can perform verification of search

results. As the data users have limited resources, it is

critical that any data user verify the validity of data updated

by the server. Here, we introduce the formal definition of

VDB [7]. In the definition, the term ‘‘client’’ refers to the

notion of ‘‘data owner’’ that we use in our discussion

throughout the paper.

Definition 1 A verifiable database

scheme VDB ¼ ðSetup;Query;Verify;UpdateÞ consists

of four algorithms defined as follows.

• Setupð1k;DBÞ ! ðS;PK;SKÞ: On input the security

parameter k and a database DB, the setup algorithm is

run by the client to generate a database encoding S that

is given to the server, a public key PK that is distributed

to all users, and a secret key SK that is secretly stored at

the client.

• QueryðPK;S; xÞ ! r: The query algorithm takes as

input an index x and returns a pair r ¼ ðv; pÞ, which is

run by the server.

• VerifyðPK=SK; x; rÞ ! v: The public verification algo-

rithm outputs a value v if r is correct with respect to x,

and an special symbol ? otherwise.

• UpdateðSK; x; v0xÞ ! PK0: In the update algorithm, the

client firstly generates a token t0x with its own secret key

SK and then sends the pair ðt0x; v0xÞ to the server. Then,

the server uses v0x to update the database record of index

x, and outputs the updated public key PK0 according to

t0x.

2.4.1 Vector Commitment-Based VDB Framework

Catalano and Fiore [12] formalized a powerful crypto-

graphic primitive named vector commitment. Informally

speaking, the notion of vector commitment allows one to

commit to an vector ðm1; . . .;mqÞ in such a way that the

committer can later open the commitment at specific

positions. Also, nobody should be able to open a com-

mitment to two different values at the same position (this is

called position binding). Besides, the vector commitment

should be concise, i.e., the size of the commitment string

and the opening are both independent of the vector com-

mitment q. Additionally, the vector commitment should be

updatable for constructing a VDB scheme. That is, it is

required that the committer is able to update the original

commitment value by changing a specific component of the

vector and the opening would still be valid for the updated

commitment. The detailed formal definition of vector

commitment can be found in [12].

Catalano and Fiore [12] constructed a novel VDB

scheme from the vector commitment. The proposed con-

struction does not only rely on the standard constant-size

cryptographic assumption (Computational Diffie-Hellman),

but also satisfies the property of public verifiability. For-

mally, the framework consists of the following algorithms:

• Setupð1k;DBÞ ! ðS;PK;SK: Let the database be

DB ¼ ði; viÞ for 1� i� q. Run the key generation and

committing algorithms of vector commitment to obtain

the public parameters PP VC:KeyGenð1k; qÞ and

the initial commitment and auxiliary information

ðC; auxÞ  VC:ComPPðv1; � � � ; vqÞ, respectively. It

outputs the database encoding S ¼ ðPP; aux;DBÞ, the
system public key PK ¼ ðPP;CÞ and the client’s secret

key SK ¼?.
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• QueryðPK;S; xÞ ! r: On input an index x, the server

firstly runs the opening algorithm to compute px  
VC:OpenPPðvx; x; auxÞ and then returns r ¼ ðvx; pxÞ.

• VerifyðPK; x; rÞ ! vx: Parse the proofs r as ðvx; pxÞ. If
VC:VerPPðC; x; vx; pxÞ ¼ 1, then return vx, and an

special symbol ? otherwise.

• UpdateðSK; x; v0xÞ: To update the record of index x, the

client firstly retrieves the current record vx from the

server. That is, the client obtains r QueryðPK;S; xÞ
from the server and checks that VerifyðPK; x; rÞ ¼
vx 6¼?. Then the client computes ðC0;UÞ  VC:

UpdatePPðC; vx; x; v0xÞ and outputs PK0 ¼ ðPP;C0Þ and
t0x ¼ ðPK

0; v0x;UÞ. Finally, the server uses v0x to update

the database record of index x, PK0 to update the public

key, and U to update the auxiliary information.

2.4.2 Weaknesses of Catalano–Fiore’s VDB Scheme

Chen et al. [14] described two types of attack for the

Catalano–Fiore’s VDB scheme, namely the Forward

Automatic Update (FAU) attack and the Backward Sub-

stitution Update (BSU) attack. We revisit them in what

follows:

2.4.2.1 Forward Automatic Update (FAU) Attack In the

Catalano–Fiore’s VDB scheme [12], anyone (include a

malicious cloud server) can update the data in the same

manner of the data owner. To be specific, an adversary first

retrieves a record vx. Then, the adversary generates the new

public key PK 0 and the token t0 based on a new data record

value v0 (without involving any knowledge of secret key).

Finally, the cloud server updates the corresponding data

record as well as the public key. Interestingly, any query

issued to the cloud server can be replied to with a valid

proof based on the forward updated public key PK 0. As a
consequence, the above misbehavior would not be detec-

ted. The result is that an auditor cannot determine with

certainty that the cloud server has been dishonest.

2.4.2.2 Backward Substitution Update (BSU) Attack The

so-called BSU attack means that anyone can substitute the

current public key with the previous one. As noted above,

anyone is allowed to update the public key. Therefore, if

the client does not locally store a copy of the public key; it

is difficult for him to distinguish the past public key from

the latest one. On the other hand, even if the client has

stored the latest public key, it is still to be difficult for the

client to prove that the locally stored public key is the latest

one.

Remark 3 The main reason of the above attacks is that the

client’s secret key is not be involved in the update of the

public key. Note that it is useless to append the signature

on the public key. If the cloud server generates the signa-

ture, it has the ability to compute the signature on any

public key. On the other hand, if the signature is computed

by the client, the original question arises again: How to

efficiently revoke the previous (valid) signature?

2.4.3 VDB Framework from Commitment Binding

To achieve public verifiability and protect against the FAU/

BSU attacks simultaneously, Chen et al. [14] proposed a

novel VDB framework for vector commitment based on

the idea of commitment binding (see Fig. 2). That is, the

client uses the secret key to generate a signature on some

binding information. This information consists of the latest

public key, the commitment on the current database, and a

global counter. Assume that the client’s signature on the

binding information is HT ¼ SignskðCT�1;C
ðTÞ; TÞ, then we

obtain the current public key as CT ¼ HTC
ðTÞ. Thus, this

method recursively binds the commitment CT to a 3-tuple

ðCT�1;C
ðTÞ; TÞ. As a consequence, an adversary (i.e., the

cloud server) cannot update the database and public key

without the client’s secret key.

Chen et al. [15] also introduced the notion of verifiable

database with incremental updates (Inc-VDB), i.e., the

client can efficiently update the ciphertext with the previ-

ous one, rather than from scratch. It is useful for large

database settings, especially when there are frequent slight

modifications. Note that in traditional encryption schemes

the ciphertext needs to be totally recomputed even if only

one single bit is changed in plaintext , resulting in very

high overhead for the resources-constrained clients. To

address this challenge, the Inc-VDB framework incorpo-

rates vector commitment and encrypt-then-incremental

MAC mode of encryption [9]. The main trick is that the

updated ciphertext v0x is generated in an incremental man-

ner as follows: we define v0x ¼ ðvx;PxÞ, where Px ¼
ðp1; p2; . . .; pkÞ denotes the location of bit positions with

different values between the original and updated plaintext

message. Given v0 ¼ ðvx;PxÞ, the client first decrypts vx to

Fig. 2 Commitment binding technique
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obtain mx and then performs the bit flipping operation on

the positions of Px to obtain the final plaintext m0x.

It worth noting that the existing VDB schemes cannot

fully support data update operations. Specifically, the

existing solutions can only support data replacement and

deletion operations while they are not applicable of the

insertion operation. The main reason is that the number of

index of the database must be fixed in advance and published

as the system parameters in both schemes. On the other hand,

when the client performs an insertion/deletion operation on

an outsourced database, the number of the index will be

increased/ decreased by 1. Therefore, it seems to be a para-

dox to design a VDB scheme that supports all update oper-

ations using the existing solutions, such as delegating high-

degree polynomial function and vector commitment.

Miao et al. [37] utilized the idea of hierarchical (vector)

commitment to address the above dilemma. The hierarchical

commitment consists of multiple levels, and the maximum

number of data items for each level is the dimension q of

vector in a vector commitment.When a level is a full (i.e., the

number of data items in this level is q), a new inserted data

record will be located in a new level.

3 Secure Cloud Data Deduplication Technique

According to the latest analysis by IDC [54], the volume of

data we create and copy annually is doubling in size every

2 years, and will reach 44 trillion gigabytes in 2020. With

the dramatic increase in data volumes, how to efficiently

store the ever-increasing data becomes a critical challenge

for cloud servers. Data deduplication, as a specialized data

compression technique, has been adopted widely to save

storage costs by only storing a single copy of repeating data

and replacing with links to that copy. Data deduplication

can achieve more than 50 % storage reduction [2] and has

been deployed by many cloud storage providers, such as

Dropbox, Google Drive, Bitcasa and Mozy.

However, conventional encryption is incompatible with

deduplication. Specifically, encrypting the same data with

different encryption keys results into distinct ciphertexts

corresponding to the same source data. Thus, it makes

cross-user deduplication impossible.

To fill the above gap, convergent encryption (CE) [19],

an elegant cryptographic primitive, is proposed. Essentially

speaking, CE is a deterministic symmetric encryption

scheme and its encryption key is derived from the cryp-

tographic hash value of the file content. Then, each iden-

tical data item generates the same ciphertext, which

achieves deduplication and encryption simultaneously.

Bellare et al. [6] defined a new cryptographic primitive

called message-locked encryption (MLE), which can be

viewed as a generalization of CE. Furthermore, to enhance

performance of deduplication, a randomized convergent

encryption (RCE) scheme has been proposed. It is char-

acterized by the efficiency of the relevant operations, i.e.,

key generation, message encryption, and tag production.

However, RCE is vulnerable to what is called duplicate

faking attack. Specifically, an honest user cannot retrieve

his original message because it can be undetectably

replaced by a fake one. To tackle this problem, an inter-

active version of RCE, called interactive randomized

convergent encryption (IRCE) [4], has been proposed. In

IRCE, an honest user can check tag consistency by inter-

acting with the server and thus verify that the original

ciphertext is stored. If an adversary may upload a modified

ciphertext, this ciphertext will be inconsistent with respect

to the corresponding file tag. Such a mismatch allows one

to detect that the ciphertext is incorrect.

3.1 Deduplication Classification

According to the granularity and architecture, deduplica-

tion can be categorized into different types. With respect to

granularity, there are two deduplication strategies. (1) File-

level deduplication: The data redundancy is exploited at the

file level. Only one copy of the identical data file is saved

and subsequent copies are replaced with a link that points

to the original file. (2) Block-level deduplication: each file

is divided into multiple blocks (or segments, chunks) and

the data redundancy is exploited at the block level. Note

that the block size can be either fixed or variable in prac-

tice. Despite achieving higher deduplication ratio, block-

level deduplication inevitably requires more metadata and

needs longer processing times.

With respect to the architecture, there are two dedupli-

cation strategies. (1) Server-side deduplication (known as

target-based deduplication): All clients upload their data to

the CSP and are unaware of deduplication that might occur.

TheCSP is responsible for deleting the duplicate copies. This

strategy reduces storage costs, but does not save bandwidth

costs. (2) Client-side deduplication (known as source-based

deduplication): The client first sends a tag of the data (e.g., a

hash value) to the CSP to check whether the data to be

uploaded are already in the cloud. If yes, the data does not

need to be uploaded. This strategy can save both bandwidth

and storage costs, but is prone to side channel attacks since a

client can learn if another client already uploaded a givenfile.

The details will be discussed later.

3.2 Security Challenges and Solutions

Without loss of generality, we focus on client-side, cross-

user deduplication. Cross-user deduplication means that
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the deduplication operations are performed across all data

uploaded by all users. Such method increases the effec-

tiveness of deduplication, as deduplication is executed

not only when a single user repeatedly uploads the same

data but also when different users upload the same data.

Despite its benefits in reducing storage and communi-

cation costs, client-side cross-user deduplication suffers

from several privacy threats [5, 24, 58].

3.2.1 Brute-Force Attack

As discuss above, CE protocols can be used to ensure data

privacy in deduplication. However, it is vulnerable to

brute-force attacks. That is, suppose the target message is

drawn from a finite space of size n S ¼ fM1; . . .;Mng.
Then, any attacker can generate the convergent key of each

message and compute the corresponding ciphertext as in

off-line encryption. If one computed ciphertext is equal to

the target ciphertext, the target message is inferred. The

basic reason is that CE is a deterministic symmetric

encryption scheme, and the key space is limited. It implies

that no MLE (CE) scheme can achieve traditional semantic

security [21]. The ideal security for MLE scheme, PRV$-

CDA [6], refers to an encryption scheme that can achieve

semantic security when the messages are unpre-

dictable (i.e., have high min-entropy).

Bellare et al. [5] proposed a novel secure deduplication

system resisting brute-force attacks, called DupLESS,

which can transform the predictable message into an

unpredictable one with the help of an additional key server.

More specifically, DupLESS introduces an additional key

server that generates the convergent key based on two

inputs: the hash of message and a system-wide key. The

client obtains the convergent key by interactively running

an oblivious pseudorandom function (OPRF) with the key

server. As long as the key server is secure, the convergent

key is derived from a random large key space. It implies

that DupLESS can ensure confidentiality for the pre-

dictable message. Furthermore, to prevent online brute-

force attacks by compromised client, a per-client rate-

limiting strategy is applied to limit the total number of

queries a client can make during each epoch. It implies that

DupLESS can achieve the same security of MLE at worst

even the key server is compromised. Duan [20] proposed a

distributed version of DupLESS, where the client must

interact with the threshold of other clients to generate the

convergent key before uploading a file. Moreover, a trusted

dealer should be included to distribute key shares for each

client. We argue that the trusted dealer has similar role of

the key server in DupLESS. Thus, this scheme still suffers

from online brute-force attacks in the case in which the

dealer is comprised.

Recently, Liu et al. [33] proposed a secure single-server

cross-user deduplication scheme that resists brute-force

attacks. The client who wants to upload a given file runs a

password authenticated key exchange (PAKE) protocol

with the CSP to obtain the encryption key from the original

client who had previously uploaded the identical file.

Suppose the client wants to upload a file, the client first

sends a short hash of the uploading file as ‘‘password.’’

Upon receiving the uploading request, the CSP firstly

identifies all the candidate clients with the same short hash

value and asks the client to engage in a Same-Input-PAKE

protocol with each candidate client. Note that as the Same-

Input-PAKE protocol is run between the CSP and the cli-

ent, the client does not need direct communications among

themselves. To protect against brute-force attacks, two

additional mechanisms are introduced. First, it uses the

randomized threshold strategy [24] to assign a random

threshold for each file and perform client-side deduplica-

tion once the number of the file is higher than the threshold

value, so that the attacker cannot determine whether the file

being uploaded already exists at the CSP. Second, a per-file

rate-limiting strategy is used to protect against online

brute-force attacks. Compared with the per-client rate-

limiting strategy in DupLESS, the proposed strategy

enhances security of deduplication and reduces communi-

cation overhead (i.e., the run time of PAKE).

3.2.2 Duplicate Faking Attacks

In a duplicate faking attack, an honest user might be unable

to retrieve his original file, since it can be replaced by a

fake one and the replacement cannot be detected. That is,

suppose that users Alice and Bob possess two different files

Fa and Fb, respectively. The malicious user Alice may

upload a modified ciphertext Ca ¼ ðEðHðFbÞ;FaÞÞ and the

corresponding tag Ta ¼ HðEðHðFbÞ;FbÞÞ into the CSP.

Later, when the honest user Bob uploads the ciphertext

Cb ¼ ðEðHðFbÞ;FbÞÞ and its tag Tb ¼ HðEðHðFbÞ;FbÞÞ,
the CSP wrongly determines that the plaintexts of Cb and

Ca are identical, and thus deletes Cb. As a result, Bob

cannot retrieve his original plaintext. The main reason is

that the CSP cannot check tag consistency [6] without

knowing the hash value of the file.

To address this drawback, a variant of MLE called

randomized convergent encryption (RCE) has been intro-

duced [6]. RCE introduces a checking mechanism, called

guarded decryption, by which the client can check the

integrity of the returned ciphertext. The RCE scheme is

described as follows: the client first picks at random a key

L and then computes ciphertext C1 ¼ EðL;FÞ and

C2 ¼ L� K, where K is the hash value of file H(F). The

tag is generated from the file by a double hash, i.e.,

T ¼ HðKÞ. Upon receiving the ciphertexts C1 and C2, the

184 J. Wang, X. Chen

123



tag T, the client can obtain the random key L ¼ C2 � K

using the hash of file, and the plaintext F by decrypting C1

with L. Then, the client regenerates a tag T 0 ¼ HðHðFÞÞ
and checks whether T 0 is equal to T. Furthermore, an

interactive version of RCE, called interactive randomized

convergent encryption (IRCE), has been proposed [4], by

which a client can check the consistency of a file tag by

interacting with the CSP. In this way, the client can ensure

that the original ciphertext is stored by the CSP. However,

the cloud server cannot check consistency between the tag

and the ciphertext, since it has no access to the original

plaintext. Thus, the CSP cannot determine which user is

dishonest. From the point of view of practical applications,

this is a major drawback. Preferably, it should be possible

not only to identify which users are malicious, but also to

trace these users—i.e., identify all ciphertexts uploaded by

these. This is nontrivial, if a CSP or the data owners allow

users to remain anonymous or appear under different

identities. Wang et al. [56] designed a novel deduplication

scheme, called TrDup, which makes it possible to trace

malicious users. Specifically, each user generates a kind of

anonymous signature for the uploaded file—a variant of the

traceable signature scheme is used. Once a duplicate faking

attack is detected, the tracing agent can determine the

identity of the malicious user without revealing identities

of other users or linking their files in the cloud.

3.2.3 Hash Manipulation Attack

Harnik et al. [24] pointed out that client-side deduplication

is vulnerable to side channel attacks. That is, whenever

receiving an upload request, the CSP will tell whether the

uploading file has already been stored. However, an

attacker may abuse the information to launch a brute-force

attack by trying all possible variants of the same file.

Mulazzani et al. [39] show how to carry out this attack

against mainstream cloud storage provider (i.e., Dropbox).

Furthermore, Halevi et al. [23] argued that an attacker can

obtain the ownership of a file that he actually does not own

by providing the hash of file. The main reason is that the

CSP determines whether a client owns a specific file using

a small piece of information about the file (i.e., hash value).

Thus, anyone who possess the short hash value for a

specific file can be allowed to access the entire content of

file.

To protect against such attack, Halevi et al. [23] intro-

duced the concept of proof of ownership (PoW), which can

be used to ensure data privacy and confidentiality in case of

client-side deduplication. Namely, a user can efficiently

prove to the cloud storage server that he indeed owns a file

without uploading it. Three concrete PoW constructions

have been presented—all based on a Merkle hash tree

(MHT) built from the content of a data file.

Specifically, a challenge/response protocol is run

between server and client. Each data file is denoted as a

MHT (the leaf nodes constitute the data file), and the server

first asks for a random subset of the MHT leaf nodes from

the client. If the client does not possess the whole file, it

cannot generate a valid proof with overwhelming proba-

bility. Using a PoW, the cheating attacks can be prevented.

That is, a user that only knows only the hash signature of a

file cannot convince the cloud server that he owns that file.

Di Pietro and Sorniotti [18] proposed an efficient PoW

scheme, in which each challenge is a seed for a pseudo-

random generator and the response is the set of values in

the file at bit positions derived by the generator from the

seed. Every time a file is uploaded to the server, the latter

computes a set of challenges for that file and stores them

for a later check. Alı́s et al. [1] proposed a PoW

scheme based on a Bloom filter, which is efficient at both

the server and the client side.

3.3 Deduplication Efficiency

Recent approaches to secure deduplication have focused on

security enhancements and efficiency. [2, 13, 25, 28–32,

51, 53, 60, 61]. Among those works, most are focused on

security enhancement and efficiency improvement. Stanek

et al. [51] proposed a novel deduplication encryption

scheme that can provide different security levels for data

files according their popularity that refers to how fre-

quently the file is shared among users. Their approach can

achieve a fine-grained trade-off between the storage effi-

ciency and data security for the outsourced data. Arm-

knecht et al. [2] designed a novel verifiable deduplication

storage system, namely ClearBox, which ensures that the

client can check the deduplication pattern of his own

encrypted data, i.e., whether his files are deduplicated or

not. Li et al. [31] and Hur et al. [25] have investigated the

key update and user revocation problems, respectively.

Li et al. [28] have proposed DeKey [29], an efficient and

reliable key management scheme for block-level dedupli-

cation. In DeKey, each client distributes the convergent

key shares across multiple servers based on the ramp secret

sharing scheme. Zhou et al. [61] proposed a more fine-

grained key management scheme called SecDup, which

mitigates the key generation overhead by exploiting hybrid

deduplication policies. Li et al. [30] proposed a fine-

grained deduplication mechanism based on user privileges.

A client can perform a duplication check only for the files

marked with matching privileges. Li et al. [28] designed a

distributed reliable deduplication scheme, which can

achieve data reliability and secure deduplication simulta-

neously by dispersing the data shares across multiple cloud

servers. Chen et al. [13] proposed a novel storage-efficient
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deduplication scheme, called block-level message-locked

encryption (BL-MLE), in which the block keys are

encapsulated into the block tag to reduce metadata storage

space.

4 Conclusion and Future Work

Secure data outsourcing is an important research topic in

cloud computing. Even though secure data outsourcing has

been widely investigated, more research work is needed.

Relevant research directions include the following:

• Publicly Verifiable ODB The existing ODB schemes

just support private verifiability. That is, as only the

data owner can check the validity of his own data

because only the data owner knows the secret key. The

data owner must be involved in every verification1.

Thus, how to design a publicly verifiable ODB

scheme is an interesting problem.

• Privacy-preserving VDB The traditional VDB schemes

do not consider the privacy of users. Specifically,

information about update patterns (i.e., the updated data

items and the update frequency) is leaked to the CSP. A

valuable research direction is how to construct a

construct privacy-preserving VDB scheme.

• User-Revokable deduplication Although the traceabil-

ity of malicious users can be achieved in secure data

deduplication, the problem of user revocation still

needs to be addressed in multi-user scenarios. Thus,

one valuable research topic is the development of data

deduplication mechanism supporting user revocation.
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