
Efficient and Transparent Instrumentation

of Application Components
Using an Aspect-Oriented Approach

Markus Debusmann1 and Kurt Geihs2

1 Fachhochschule Wiesbaden, University of Applied Sciences
Department of Computer Science, Distributed Systems Lab
Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany

debusmann@informatik.fh-wiesbaden.de
2 Berlin University of Technology

Intelligent Networks and Management of Distributed Systems
Einsteinufer 17, 10587 Berlin, Germany

geihs@ivs.tu-berlin.de

Abstract. The increasing significance of Service Level Management
(SLM) strongly requires an appropriate instrumentation of application
components in order to monitor compliance with the defined Service
Level Objectives (SLOs). The manual instrumentation of application
components is very costly and error-prone and thus rather inefficient.
This paper presents an approach for using aspect-oriented program-
ming techniques for efficiently and transparently instrumenting appli-
cation components. The approach is applied to the interference sensitive
area of performance monitoring using the Application Response Mea-
surement (ARM) API. Experiments with a prototype have revealed that
our aspect-oriented approach fits well to the integration of instrumenta-
tion code into application components and that the runtime overhead is
only slightly higher than the overhead of a manual instrumentation.

1 Motivation and Related Work

Over the past years, economic pressure has forced enterprises to outsource many
IT services and purchase them from external service providers. Quality-of-Service
(QoS) parameters agreed on by service providers and their customers are laid
down in a contract, called service level agreement (SLA) [1, 2, 3]. Typical QoS
parameters specified in SLAs define availability criteria and performance-related
metrics, e.g. response times. The fulfilment of such an SLA has to be monitored
at run-time by both the customer and the service provider. Customers are pri-
marily interested in short end-user response times and high service availability.
Providers are interested in a more fine-grained view of the interrelated perfor-
mance metrics of the components constituting their services, especially when
using the same service infrastructure for different customers at the same time.

For computing high-level SLA parameters, such as service response times
and availability, the application components within the service provider domain

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 209–220, 2003.
c© IFIP International Federation for Information Processing 2003

210 Markus Debusmann and Kurt Geihs

have to be instrumented appropriately for management purposes. Instrument-
ing applications incurs additional cost since instrumentation is a non functional
requirement that is not part of the business logic interface. Often, instrumenta-
tion is added on top of existing applications in an ad-hoc manner as described
in [4]. In [5] an integrated software development process for applications and
their management infrastructure is described. The development of the manage-
ment functionality runs in parallel to the development of the normal software.
For implementing management solutions based on CIM [6], developers are addi-
tionally supported by a design patterns catalogue that contains reusable patterns
for CIM models.

Alternative approaches aim for realising instrumentation in a transparent
manner, e.g., by instrumenting middleware components and platforms. [7] pre-
sents an approach for modifying an EJB server in a way that EJBs are in-
strumented automatically while they are deployed. Response times of method
invocations are automatically monitored using the Application Response Mea-
surement (ARM) API defined by the OpenGroup [8]. In addition, EJBs are in-
strumented via Java Management Extensions (JMX) [9] to expose configuration
information. In [10] CORBA applications are instrumented based on CORBA
Portable Interceptors which allow to insert any kind of instrumentation code
that is executed at certain points of method invocations. The insertion of the
Portable Interceptor code into the application causes only minimal effort for the
application developer. He only has to add two additional lines of code to the
source code of the component which is to be instrumented. [11] presents an ap-
proach for an automated instrumentation of component-based applications. The
approach is limited to measuring and correlating response times similar to the
Application Response Measurement (ARM) API defined by the OpenGroup.

The examples described above show that there is a certain tradeoff between
the degree to which the instrumentation can be automated and the level of
detail obtained by the instrumentation. The more generic the instrumentation
approach the more abstract is the achievable data. On the other hand, the more
specific information shall be extracted the higher the instrumentation costs for
the application developer. Obviously, if fine-grained monitoring is the goal, then
the instrumentation needs to be woven into the code of the application compo-
nents. This is where aspect-oriented programming (AOP) can help.

This paper presents an aspect-oriented instrumentation approach for appli-
cation components. Aspect-orientation helps to solve the shortcomings of the
existing instrumentation approaches by providing transparency for the applica-
tion developer and furthermore offering the opportunity to monitor management
data at any level of detail. In addition, it is not limited to monitoring a single
environment like CORBA or EJB.

The paper is structured as follows: Section 2 gives a brief introduction to the
concepts of aspect-oriented programming and introduces AspectJ as an example
of an aspect-oriented development environment. In Section 3 we present how
the aspect-oriented paradigm can be applied to simplify the monitoring of dis-
tributed applications. Section 4 discusses performance measurements that under-

Efficient and Transparent Instrumentation of Application Components 211

line the efficiency of the aspect-oriented instrumentation compared to a manual
instrumentation. Section 5 concludes the paper and gives an outlook to future
work.

2 Aspect-Oriented Programming (AOP) and AspectJ

The design of large applications is arduous since decisions made in early mod-
elling stages influence later phases, i.e. implementation and maintenance. Hence
much effort in the past has been made to employ proper software analysis and
design methods. Typically these methods are tied to a distinct programming
paradigm, e.g. imperative or object-oriented, and they attempt to structure
the model accordingly. The aspect-oriented programming paradigm (AOP) [12]
claims that although conventional analysis and design methods try to partition
a given problem into self-contained, encapsulated entities, this kind of partition-
ing is not always feasible. Dependencies between modelled entities break the
desired encapsulation and thus make the design hard to deploy and even harder
to reuse. AOP aims at a conceptual understanding of the ”cross-cutting” of re-
sponsibilities through separate entities. For that purpose, the AOP distinguishes
aspects and components.

A component is an entity which encapsulates a distinct responsibility. Com-
ponents can be combined with other components to achieve a distinct behaviour.
They interact through well defined interfaces.

In contrast to components, aspects are not encapsulated. They cross-cut each
other, preventing clear encapsulation. Aspects typically reflect non-functional
issues of a system, e.g., error handling, performance tuning, or synchronisation.

The proposed solution to the coexistence of aspects and components in a sys-
tem is the introduction of aspect languages and a corresponding aspect weaver.
Aspect languages are specialised languages, suitable for modelling and express-
ing the distinct properties of an aspect and its connection with other aspects.
The aspect weaver is a tool which takes all aspect specifications of a system and
generates a corresponding program.

So far, most aspect-oriented approaches dealt with distribution and syn-
chronisation aspects in distributed systems. Recently, the integration of QoS
management in distributed applications has become a target for AOP-based
systems [13, 14].

AspectJ [15], originally developed at Xerox Parc, is an implementation of
aspect-oriented programming paradigm for the Java language. In the following,
a short overview of the AspectJ’s basic concepts and constructs is given; details
are provided in [16]. AspectJ defines the concept of a join point which represents
a well-defined point within the program flow, e.g., a method call, a constructor
call, referencing of a field, etc. Pointcut designators, or simply pointcuts, are
used to identify certain join points within the program flow. Pointcuts can also
be combined using filters to define more complex expressions. For example the
pointcut

pointcut foo() : call (void ClassA.methodA (int)) ||

call (* ClassB.get* (..));

212 Markus Debusmann and Kurt Geihs

identifies every invocation of methodA in ClassA as well as every invocation
of ClassB’s methods that start with get, regardless of its return type and its
parameter list.

Advices define the additional code, typically implementing the cross-cutting
concern, that should be executed when a join point is reached. Pointcuts are used
within the definition of an advice to identify the join point. Three different advice
types are distinguished: before advice run when their joint point is reached, after
advice run after their joint point, and around advice run in place of their join
point. For example the advice

before() : foo

{

System.out.println ("After pointcut foo");

}

prints out a simple message when the pointcut foo is reached and before the
computation of the original code proceeds.

Pointcuts are able to expose the execution context at their join point. This
context information can be used in advices.

pointcut setX(ClassA a, int x) :

{

call (void ClassA.setX(int))

&& target (a)

&& args (x);

before(ClassA a, int x)

{

System.out.println ("New value for x: " + x);

}

}

This pointcut setX exposes the two values from calls to method setX of
ClassA: the instance of ClassA that receives the call and the new value for x.
The advice prints out the new value of x before the setX method is invoked.

Introductions are used to modify classes and the hierarchy by adding new
members and changing relationships between classes. Introductions change the
declarations of classes. Since these changes are inherited they effect the rest
of the program. Introductions are static, i.e., they take place at compile time
whereas advices operate during runtime.

The definition of aspects is very similar to classes. Aspects define the units for
implementing cross-cutting concerns using pointcuts, advices, and introductions.

aspect Count

{

private int count = 0;

pointcut CountSetX () : call (ClassA.setX (int));

before() : CountSetX ()

{

count++;

}

}

Efficient and Transparent Instrumentation of Application Components 213

The aspect Count introduces count as a new member of ClassA and defines
a pointcut for the setX method of ClassA. The before advice increments the
newly introduced count variable every time the setX method is invoked.

3 Monitoring Distributed Applications with AOP

Managing distributed systems requires knowledge about the status of the con-
stituting components. Their status can be deduced from information gained by
monitoring the components. This is realised by inserting instrumentation code
into the managed system. Here, two basic approaches can be distinguished: First,
an intrinsic instrumentation approach where code is inserted into the component
under monitoring. Second, an extrinsic instrumentation approach which uses ad-
ditional components, either hardware or software to monitor components of the
system, e.g., by analysing the log files of a Web server. Typically, the intrinsic
approach is able to provide more fine-grained data, since component internals
can be used. The extrinsic approach typically provides more coarse-grained infor-
mation since it has to rely on information exported by the component. However,
the latter approach is less intrusive.

Our approach based on aspect-oriented programming can be characterised
as an intrinsic instrumentation approach since it inserts the instrumentation
into the code of the component. In the following sections we describe how our
approach helps to make components more manageable.

3.1 Measuring Servlet Response Times Using ARM

In the area of Service Level Management, Service Level Objectives (SLOs) defin-
ing availability criteria and performance-related metrics, e.g., response times,
are the key issues of many Service Level Agreements. The fulfilment of an SLA
has to be monitored to prove compliance with the defined SLOs. In the terms
of AOP, response time is a non-functional requirement and its measurement
a cross-cutting concern since many parts of a component are involved. Even fur-
ther, several components may be involved and their measurements have to be
correlated.

For response time measurements the ARM API is a well accepted approach
for instrumenting applications at the source code level. The API supports exe-
cution time measurements of source code fragments termed ARM transactions
within a distributed application. ARM provides ways of correlating nested mea-
surements, even across host boundaries. For this purpose the API provides cor-
relators that identify ARM transactions. Correlators can be supplied on creating
a nested transaction for relating this to the enclosing transaction. However, pass-
ing of correlators between application components, which might prove difficult
especially in distributed systems, is the task of the application developer.

214 Markus Debusmann and Kurt Geihs

3.2 Scenario

In the future, application service providers will offer a wide range of different
services from simple web hosting to complex e-business applications. These com-
plex applications are typically realised in a Web-based e-business environment
consisting of a Web server as central entry point and a web container to provide
Java server pages and servlets. Most of the business logic is implemented by
Enterprise Java Beans (EJB) that live in an EJB container. CORBA is used to
implement business logic as well as an integration middleware for legacy com-
ponents. A relational database ensures the persistent storage of the enterprise
data.

Our previous research has revealed that instrumenting such a complex en-
vironment using ARM is a difficult task [17]. Since the ARM specification does
only specify the format of the ARM correlator which is used for correlating
nested transactions, but not the mechanism to transfer them between process
boundaries, this task is up to the software developer.

Infrastructure components like a Web server and a Web container can be
instrumented transparently for the application developer. However, application
components, such as Servlets, should also be instrumented transparently for
the application developer in order to ensure cost effectiveness. In addition, an
automatic instrumentation guarantees a consistent instrumentation of all appli-
cation components which is the prerequisite of comparable measurements. The
following section describes our aspect-oriented instrumentation for transparently
measuring Servlet response times using the ARM API.

3.3 Aspect-Oriented Instrumentation Approach

A typical task of a Servlet is the retrieval of records from a database system.
Thus, the duration of a database query is an important unit of work to be
measured. Listing 3.1 shows the code of a simple Servlet that queries a number
of records from a database and subsequently transforms the result set into a Web
page. For the clarity of the code all try and catch clauses are not shown in the
listing.

The init method of the Servlet, which is executed only once during the
initialisation of the Servlet, is responsible for setting up the connection to the
database. The destroy method closes the database connection when the Servlet
is destroyed. The database query is performed as part of the doGet method.
Finally, the results of the query are transformed into HTML and sent back to
the client.

An application developer who has to instrument the Servlet with ARM man-
ually would place code for initialising the ARM environment into the init
method, and code for shutting down the ARM environment into the destroy
method. Within the doGet method the application developer has to check if
a parent correlator was handed over to the Servlet. Afterwards, a new ARM
transaction must be created and appropriate start and end points for the mea-
surements have to be identified in the application code. In our example, start
and stop commands were placed around the execution of the database query.

Efficient and Transparent Instrumentation of Application Components 215

Listing 3.1 Servlet for querying a database

public class MyDB extends HttpServlet {
final String url = ”jdbc :mysql://dbhost:3306/mysql”;
final String driver = ”com.mysql . jdbc .Driver”;
final String query = ”select host , user from user”;

5 Connection conn ;

public void init (ServletConfig config) throws ServletException {
super . init (config);
Class .forName(driver);

10 conn = DriverManager.getConnection(url , ”dbuser” , ””);
conn.setReadOnly(true);

}

public void destroy () {
15 i f (conn != null && !conn. isClosed ())

conn. close ();
}

public void doGet(HttpServletRequest request , HttpServletResponse response) throws . . . {
20 Statement stmt = conn .createStatement ();

ResultSet rs = stmt.executeQuery(query);
java . lang .Thread. sleep (20);
response .setContentType(”text/html ; charset=ISO−8859−1”);
PrintWriter out = response .getWriter ();

25 out . println(”<HTML><BODY>”);
. . .
out . println(”</BODY></HTML>”);
rs . close ();
stmt. close ();

30 }
}

In this simple example the manual instrumentation is considerably simple.
Nevertheless, the application developer has to handle all the complexity of the
ARM environment in order to achieve useful measurements, i.e., the application
developer has to understand the business requirements of the application to
correctly implement the functionality as well as the management requirements
to support the management of the application component later on. In addition,
the manual instrumentation leads to enormous costs since many code pieces have
to be instrumented. This work is monotonous and distracts from implementing
the business logic. Using inheritance does not really solve the problem since it
mainly simplifies the initialisation and destruction of the Servlet. Furthermore,
it requires a refactoring of the existing code which is again a potential source of
errors.

The aspect-oriented approach does not require modifications of the existing
code. Here, the instrumentation code is encapsulated as an aspect which may be
done by a different developer who is familiar with ARM environments, while the
application developer can concentrate on the application logic. The application
code is simply recompiled using a special compiler, the aspect weaver, which
connects the aspect code with the application code. Thus, instrumentation can
also easily be integrated into an existing application.

Listing 3.2 depicts the aspect code for measuring the duration of database
queries. (Again, try and catch clauses are not shown in the listing.) First,
a number of local variables are defined that are used within the aspect for the
ARM measurements. Thereafter, the first pointcut identifies the init method
of the Servlet, the second pointcut identifies the doGet Servlet method, and
the third pointcut identifies all invocations of the executeQuery method of the

216 Markus Debusmann and Kurt Geihs

Listing 3.2 Aspect for instrumenting JDBC calls with ARM

aspect MyDBAspect {
ArmTransactionFactory tranFactory ;
ArmTransaction dbTransaction;
HttpServletRequest request ;

5 byte [] myByteUuid = null ;

pointcut arm init () : call (void ∗. init (. .)) ;

pointcut arm doGet(HttpServletRequest request , HttpServletResponse response)
10 : call (void ∗.doGet(HttpServletRequest , HttpServletResponse))

&& args (request , response);

pointcut execQuery(String content)
: call (ResultSet Statement .executeQuery(String)) && args (content);

15
void around() : arm init () {

Class tranFactoryClass ;
tranFactoryClass = Class .forName(tranFactoryName);
tranFactory = (ArmTransactionFactory)tranFactoryClass .newInstance();

20 myByteUuid = new byte [] { (byte)0x6c , . . . , (byte)0xf1 };
proceed ();

}

void around(HttpServletRequest request , HttpServletResponse response)
25 : arm doGet(request , response) {

ArmUUID uuidDbTransaction ;
this . request = request ;
uuidDbTransaction = tranFactory .newArmUUID(myByteUuid);
dbTransaction = tranFactory .newArmTransaction(uuidDbTransaction);

30 proceed(request , response);
}

before(String content): execQuery(content) {
dbTransaction. start ((ArmCorrelator)request . getAttribute (”CORRELATOR”));

35 ArmCorrelator corr = dbTransaction.getCorr ();
}

after (String content) returning ():execQuery(content) {
dbTransaction. stop(ArmConstants.ARMGOOD);

40 }
}

Statement class. The second and the third pointcut also expose variables from
their context.

The instrumentation code of the aspect is defined in its advices. The arm init
advice is an around advice that traps the execution of its join point (initmethod
of Servlet), i.e., the code of the advice will be executed in place of the original
code. By including the proceed statement at the end of the advice the original
code of the init method will also be executed. The advice initialises the ARM
environment.

The arm doGet advice traps the execution of doGet Servlet method and
handles the initialisation of a new ARM transaction for measurement. By using
the proceed statement the original code is executed.

The ARM measurements are performed by using a before and an after
advice for the execQuery pointcut. These advices place ARM start and stop
statements around the execution of the database query. When starting a mea-
surement the instrumentation code tries to extract a parent correlator from
the CORRELATOR attribute of the the request object. This parent correlator will
then be used as basis for the measurements within the Servlet and later enables
a management application to correlate measurements of different components.

Efficient and Transparent Instrumentation of Application Components 217

4 Performance Evaluation

To evaluate the efficiency of the aspect-oriented instrumentation approach we
performed a series of measurements under lab conditions. The goal was to de-
termine the runtime overhead caused by the aspect-oriented instrumentation
approach.

Our prototype involved the Tomcat Web container in version 3.21 which
was instrumented using the tang-IT ARM library [18]. The Servlet code was
developed using the Sun Java Development Kit (JDK) 1.4.0; we used AspectJ
Version 1.0.6 as aspect-oriented programming environment. The experiments
were performed on a AMD Athlon XP 1880+ with 512 MB RAM running SuSE
Linux 7.3 with Kernel version 2.4.16. The Servlet performed a query on a local
MySQL database in version 3.23.55.

The measurements consisted of a client sending 1000 consecutive requests to
the Servlet. The think time between two requests was 100 ms. Three indepen-
dent experiments were performed using a uninstrumented Servlet, a manually
instrumented Servlet, and a Servlet instrumented using our aspect-oriented ap-
proach. The results of the measurements are shown in figure 1. The values are
based on measuring the overall processing time of the Servlet within the Tomcat
Web container.

At first glance, the overhead of the instrumentation (manual and aspect-
oriented) is quite high especially for performance measurements. The overhead
is caused by the additional instrumentation code that was inserted into the
Servlet. Since the functionality of the Servlet is minimal, as indicated by the
mean response time of about 1 ms, the execution time proportion of the in-
strumentation code is considerably high. Therefore, the measurements can be
regarded as representing the worst case. In real world Servlets with more com-
plex application logic, the overhead will be considerably smaller. The overhead
of the aspect-oriented instrumentation is slightly higher than the manual in-
strumentation. However, the aspect-oriented instrumentation offers a number of
advantages such as cost effectiveness, no code pollution of application code, and
separation of concerns. These advantages outweigh the slightly higher overhead.

We also determined the overhead from an end-user perspective, i.e., the re-
sponse time as seen by the client (see figure 2). Here, the overhead of the instru-
mentation code went down to about 7% for manual instrumentation and about
8% for the aspect-oriented instrumentation. This overhead is within acceptable

(1) without (2) with manual (3) with
instrumentation instrumentation aspects

mean (ms) 1.145 1.473 1.536

std. dev. (ms) 0.954 1.247 1.274

% increase 28.646 % 34.148 %

Fig. 1. Processing times of the Servlet code

218 Markus Debusmann and Kurt Geihs

(1) without (2) with manual (3) with
instrumentation instrumentation aspects

mean (ms) 4.059 4.176 4.426

% increase 7.203 % 8.063 %

Fig. 2. Client side response times

boundaries for performance measurements. Again, these values reflect a worst
case scenario, since the Servlet contains only minimal application functionality.

The results of the performance evaluation show that the aspect-oriented ap-
proach is very appropriate for performance instrumentation since its overhead
is only slightly higher than the overhead caused by a manual instrumentation.
The higher overhead of the aspect-oriented approach is due to the fact that it
involves more instrumentation code than the manual instrumentation. The As-
pectJ environment generates a class representing the code of the aspect. In the
class that has to be instrumented, hooks to this aspect class are added.

In principle, the number of measurement points within a component should
be as minimal as necessary in order to keep the overhead as low as possible.
Alternatively, the implementation of the ARM library and the AOP environment
could be optimised which would require modifications of their source code. This
was not the focus of our work.

5 Conclusions and Future Work

The increasing importance of Service Level Management implies a strong de-
mand for management instrumentation of application components.

In this paper, we presented an aspect-oriented approach for instrumenting
application components. The instrumentation code is encapsulated as an as-
pect and woven into the application code during compile time. Except for the
use of a different compiler, the aspect weaver, the instrumentation process is
completely transparent to the application developer. Thus, he is relieved from
the burden of manual instrumentation and can concentrate on the application
logic. We achieve separation of concerns by decoupling the application logic from
the management logic. Thus, the efficiency of the overall software development
process is increased, since separate concerns can be treated in separate tasks
performed by different experts. An additional strong advantage of our approach
is, that the aspect code can be reused in other applications. This is usually
impossible in conventional instrumentation approaches.

For demonstrating our approach we chose the performance instrumentation
of a Servlet in a typical e-business application scenario. Concretely, the duration
of JDBC database queries was measured using the ARM API. The efficiency
of the aspect-oriented instrumentation is demonstrated by a series of measure-
ments. The instrumentation approach has been compared to an uninstrumented
Servlet and a manually instrumented Servlet. The results show that in a worst
case scenario the overhead of the aspect-oriented approach is only slightly higher

Efficient and Transparent Instrumentation of Application Components 219

than the overhead of a manual instrumentation. This demonstrates that clarity
of program structure and support for code reuse can be achieved without a sub-
stantial loss of efficiency.

Since our aspect-oriented instrumentation approach has demonstrated its vi-
ability and effectiveness, we are optimistic to apply the approach successfully to
other management problems as well. So far, we also used AOP for instrument-
ing Web Services with ARM. There we chose a dual approach, i.e., we manually
instrumented the Web Services platform and used AOP to instrument the Web
Service itself. The results are comparable to the results published in this paper.
Our future work will concentrate on using AOP to tackle management problems
other than ARM instrumentation, e.g., we are working on a transparent integra-
tion of JMX instrumentation into EJBs. We expect to gain general insights into
the use of AOP in management applications and to understand the limitations
of the approach.

Acknowledgements

The authors like to express their gratitude to Alexander Hoffmann, member
of the Distributed Systems Lab at Fachhochschule Wiesbaden - University of
Applied Sciences, Germany, for his helpful discussions and implementation work.

References

[1] Lewis, L.: Managing Business and Service Networks. Kluwer Academic Publishers
(2001) 209

[2] Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management.
SAMS Publishing (2000) 209

[3] Verma, D.: Supporting Service Level Agreements on IP Networks. Macmillan
Technical Publishing (1999) 209

[4] Katchabaw, M.K., Howard, S. L., Lutfiyya, H. L., Marshall, A.D., Bauer, M.A.:
Making Distributed Applications Manageable Through Instrumentation. In:
2ndSecond International Workshop on Software Engineering for Parallel and Dis-
tributed Systems (PDSE’97). (1997) 210

[5] Mehl, O., Becker, M., Köppel, A., Paul, P., Zimmermann, D., Abeck, S.: A
Management-Aware Software Development Process Using Design Patterns. In:
8th IFIP/IEEE International Symposium on Integrated Network Management
(IM 03). (2003) 579–592 Colorado Springs, USA 210

[6] Distributed Management Task Force: Common Information Model (CIM) Speci-
fication. (1999) Version 2.2. 210

[7] Debusmann, M., Schmid, M., Kröger, R.: Generic Performance Instrumentation
of EJB Applications for Service-Level Management. In Stadler, R., Ulema, M.,
eds.: 8th IEEE/IFIP Network Operations and Management Symposium (NOMS).
(2002) Florence, Italy 210

[8] The Open Group: Systems Management: Application Response Measurement
(ARM). (1998) Open Group Technical Standard, Document Number: C807 210

[9] Sun Microsystems, Inc.: The Java Management Extensions Instrumentation and
Agent Specification, v1.0. (2000) 210

220 Markus Debusmann and Kurt Geihs

[10] Debusmann, M., Schmid, M., Kröger, R.: Measuring End-to-End Performance
of CORBA Applications using a Generic Instrumentation Approach. In: 7th

IEEE Symposium on Computers and Communications. (2002) Taormina/Giar-
dini Naxos, Italy 210

[11] Hauck, R.: Architecture for an Automated Management Instrumentation of Com-
ponent Based Applications. In: 12th International Workshop on Distributed Sys-
tems: Operations & Management (DSOM’2001). (2001) 210

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: European Conference on
Object-Oriented Programming (ECOOP), Springer (1997) 211

[13] Becker, C., Geihs, K.: Generic QoS Support for CORBA. In: 5th International
Symposium on Computers and Communications (ISCC 2000), Antibes, France,
Springer (2000) 211

[14] Hauck, F. J., Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.:
AspectIX: A quality-aware, object-based Middleware Architecture. In: New De-
velopments in Distributed Applications and Interoperable Systems (DAIS’01),
Kluwer (2001) 115–120 211

[15] The AspectJ Team: AspectJ. Xerox Corporation. (2002)
http://www.eclipse.org/aspectj/ 211

[16] The AspectJ Team: The AspectJ Programming Guide. Xerox Corporation. (2002)
http://download.eclipse.org/technology/ajdt/aspectj-docs-1.0.6.tgz 211

[17] Debusmann, M., Schmid, M., Schmidt, M., Kröger, R.: Measuring Service Level
Objectives in a complex Web-based e-Business Environment. In: 10th HP Open-
View University Association Workshop (HPOVUA). (2003) Geneva, Switzerland
214

[18] tang-IT Consulting GmbH: tang-IT Application Response Measurement (ARM).
(2003) http://arm.tang-it.com/ 217

	Efficient and Transparent Instrumentation of Application Components Using an Aspect-Oriented Approach
	Motivation and Related Work
	Aspect-Oriented Programming (AOP) and AspectJ
	Monitoring Distributed Applications with AOP
	Measuring Servlet Response Times Using ARM
	Scenario
	Aspect-Oriented Instrumentation Approach

	Performance Evaluation
	Conclusions and Future Work

