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Efficient and universal characterization of atomic structures
through a topological graph order parameter
James Chapman 1✉, Nir Goldman1,2 and Brandon C. Wood 1

A graph-based order parameter, based on the topology of the graph itself, is introduced for the characterization of atomistic
structures. The order parameter is universal to any material/chemical system and is transferable to all structural geometries. Four
sets of data are used to validate both the generalizability and accuracy of the algorithm: (1) liquid lithium configurations spanning
up to 300 GPa, (2) condensed phases of carbon along with nanotubes and buckyballs at ambient and high temperature, (3) a
diverse set of aluminum configurations including surfaces, compressed and expanded lattices, point defects, grain boundaries,
liquids, nanoparticles, all at nonzero temperatures, and (4) eleven niobium oxide crystal phases generated with ab initio molecular
dynamics. We compare our proposed method to existing, state-of-the-art methods for the cases of aluminum and niobium oxide.
Our order parameter uniquely classifies every configuration and outperforms all studied existing methods, opening the door for its
use in a multitude of complex application spaces that can require fine structure-level characterization of atomistic graphs.
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INTRODUCTION
Atomic structure–property relationships form the basis of modern
materials science, underlying both the discovery of new materials
and optimization of existing systems1–5. At the heart of these
relationships is the fundamental principle that the arrangement of
atoms dictates the behavior of the material throughout a
spectrum of length and time scales. In the computational domain,
reliably capturing atomic structure–property relationships is vital
for crystal structure prediction6, the dynamic evolution of complex
defect networks7, and the construction of interatomic poten
tials8–10 among others. A crucial roadblock in this endeavor is the
ability to characterize complex atomic arrangements in materials
in a computationally efficient and physically meaningful way,
through the use of order parameters or similar mathematical
quantities. For instance, order parameters that can uniquely
capture local atomic geometries are necessary to adequately
characterize phase transitions from molecular dynamics simula-
tions11,12 and nucleation parameters using free energy
calculations13,14.
However, this characterization is often nontrivial, especially for

atomically disordered systems in which the underlying symmetry
of the atomic geometries is difficult to determine15,16. The atomic
disorder is intrinsic to features such as defects, surfaces, grain
boundaries, and heterogeneous interfaces, which have been
critically linked to transport, mechanical, electronic, and optical
properties17–20. Moreover, advances in synthetic protocols for
nanostructuring and mesostructuring create interface-dominated
materials with local coordination, structural arrangement, and
strain that deviate significantly from equilibrium bulk assump-
tions21. These applications are among many that would draw
significant benefit from improved mathematical and physical
capabilities to describe the disorder.
Throughout the decades, many schemes have been proposed

to capture various portions of this ordered-disordered spectrum as
scalar values such as the common neighbor analysis (CNA)22,
adaptive CNA (A-CNA)23, centrosymmetry parameter (CNP)

analysis24, Voronoi analysis25, bond order analysis such as the
Steinhardt order parameter (SP)26 and the bond angle analysis
(BAA)27. Each method has shown varying degrees of success, with
each scheme playing a vital role in capturing specific classes of
materials phases23. Voronoi, SP, and other bond-order algorithms
generally fail to capture the differences in crystalline systems with
compressed and/or expanded lattices as well as those experien-
cing atomic perturbations close to the melting temperature of the
material phase28. While methods such as CNA and A-CNA
overcome these pitfalls with a more robust underlying algorithm,
they ultimately break down in situations wherein the material
symmetry is lost or difficult to comprehend29. In fact, all of the
above algorithms struggle to capture the subtle differences in the
local coordination environment when the underlying geometric
symmetry is either broken or exists only at short-range such as the
environments encountered in grain boundaries, surfaces, liquids,
and amorphous structures30.
More mathematically involved methods, such as the smooth

overlap of atomic positions (SOAP)31, the Behler–Parrinello
symmetry functions (BP)32, atomic cluster expansion (ACE)33,
Chebyshev polynomial representations (CPR)34, and the adaptive
generalizable neighborhood informed features (AGNI)9,35, rely on
sophisticated symmetry functions with a plethora of tunable
parameters to map an atom’s local environment to an invariant
mathematical space36,37. While these methods are often accu-
rate38–42, they are also computationally cumbersome when
compared to the previous order parameters4,43 and require the
nontrivial tuning of their corresponding parameter sets for a
material system. Such methods also generally operate on atomic
environments, not structural ones, forcing one to use statistical
modifications to average the atomic feature vectors into a single
configurational descriptor. Importantly, structural information
obtained in this way is always tied to the atomic representation,
an inherently local property, and therefore does not explicitly
capture global information such as the shape and connectivity of
the atomic network over long distances. The feature vectors
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generated by these methods are also not guaranteed to be
unique44, which in turn makes the atoms-to-structure mapping
even more precarious. A visual depiction of this process can be
seen in Fig. 1a.
Methods such as convolutional neural networks (CNN)45,46,

graph neural networks (GNN)47–50, and variational autoencoders
(VEA)51,52 can alleviate both the cost and manual parameter fitting
of symmetry functions, but require large amounts of reference
data to train the models. In particular, these methods can be
difficult to train for materials with complex chemical phase spaces
where obtaining enough reliable reference data is challenging
(e.g., detonations of energetic materials53, nanostructures gener-
ated under explosive conditions54, and the irradiation damage of
complex glasses55). This hinders both the generalizability and
transferability of the models to both new configurations and
material systems which are not characterized within the training
set. Such methods can require a large number of tuned
parameters in order to achieve sufficient accuracy, which in turn
can present high computational costs for large system sizes.
Graph theoretical methods such as those employed in Molecu-
laRnetworks56 and ChemNetworks57 have been used to analyze
small molecules with good success. However, such methods rely
on properties of the graphical representations that are not unique,
such as the geodesic distance of the grap. These approaches can
have difficulty characterizing materials classes with subtle
differences, such as oxides, metals, ceramics, and/or structural
environments depending on extreme pressures, grain boundaries,
surfaces, and the presence of nanoparticles.
In this work, we build upon these efforts through the

development of a physically intuitive and computationally
efficient framework, henceforth referred to as the scalar graph
order parameter (SGOP), which serves as a semi-empirical graph
topology metric. One distinct advantage of SGOP lies in the ability
to explicitly capture global information about the graph by
looking at the set of unique node degrees contained within the
graph and the probability of these degrees occurring throughout
it. We also discuss a vector graph order parameter (VGOP), which
allows for a set of different SGOP values in order to add a high
degree of fidelity to our analysis. In general, SGOP characterizes

the graph representation of an atomic network by determining
two physical characteristics of the graph: the entropy of the graph,
and its connectivity. This characterization can be broken down
into three parts: (1) identification of subgraphs contained within
the system, (2) determination of the shape of the subgraphs,
which is motivated to resemble the entropy of the subgraph, and
(3) calculations of the connectivity of the subgraphs, which is
determined via the subgraph’s degree matrix. A visual demonstra-
tion of this workflow can be found in Fig. 1b.
Importantly, SGOP explicitly captures global information about

the graph itself such as its shape and connectivity rather than
operating at the node-level of the graph. It is this difference that
allows for not only a reduction in the complexity of our
algorithm’s functional form when compared to existing meth-
odologies. This also provides a more physically intuitive under-
standing of the relationship between configurations, based on the
resulting order parameter value. Importantly, SGOP explicitly
captures global information about the graph itself such as its
shape and connectivity, placing it in a distinct category from
existing methodologies such as symmetry functions which
operate at the node-level of the graph.
The remainder of the paper is as follows. We provide the reader

with a simplistic and intuitive theoretical validation of SGOP by
observing how SGOP characterizes several simple graphs. We then
perform atomic structure characterization over a multitude of
distinct systems such as liquid lithium, elemental carbon58, and
aluminum51, and finally several crystal phases of niobium oxide
under dynamic conditions. A discussion about our proposed
methodology and its future implications are then discussed. We
conclude this work by providing a detailed theoretical discussion
regarding the configurational graph construction, SGOP, and
VGOP formalisms.

RESULTS
Theoretical validation
We validate the SGOP formalism by characterizing simple and
intuitive graphs to showcase what is meant by a physically-
intuitive predictive capability. Figure 2 shows three graphs, each

Atoms-to-Structure

(a)

:→ :→

Explicit Structure

(b)

:→ , , :→

Fig. 1 Visual depiction of two structure-level characterization methods. a Atomic local neighborhoods are converted to feature vectors,
which are modified statistically (usually taken as the Nth moment) to construct a final configuration descriptor that represents the entire
structure. r:→F(r) represents the mapping from atomic positions to atomic descriptors. F(r):→f(F(r)) represents the mapping from atomic
descriptors into a single structural descriptor through statistical modification of the atomic descriptors. b Our proposed methodology, in
which global information about the atomic network is explicitly captured and passed through our order parameter to represent the structure
of the network itself. The center portion of (b) represents the set of unique degrees captured within the graph placed above their
corresponding probabilities of occurrence within the network. D(G):→ {D≠, P≠} represents the mapping of the set of all degrees in G to the set
of unique degrees in G, along with their corresponding probabilities. {D≠, P≠}:→θ represents the mapping of the set of unique degrees and
corresponding probabilities in G to the structure-level order parameter of the graph.
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containing four vertices. One can think of these as atomic systems
containing four atoms each. Due to their edge connections,
however, each graph represents a unique composition. Our
argument is that these graphs can be judged by their entropy
and connectivity observed within their degree sets. For the first
graph on the left with a degree set of DG= 1, 2, each degree has a
probability P(dm) of 0.5. For the remaining two graphs each degree
has a probability P(dm) of 1, with degree sets of DG= 2 and DG= 3,
respectively.
The entropic term contained within SGOP will be zero for the

second and third graphs, and their degree sets contain only a
single unique value. This makes physical sense, as the disorder
contained within the set of unique degrees is zero. For the first
graph the entropic term with being nonzero, again making
intuitive sense. One can immediately see why the connectivity

term is included, as the entropic terms of the second and third
graphs are identical. This is expected, as the property of the graph
that we are measuring is indeed the same between the two
graphs. The connectivity term will then distinguish the graphs, as
the unique degree values themselves are used to calculate this
term. From Fig. 2 this can be seen as the SGOP value for the
second graph is 8 while the SGOP for the third graph is 27, even
though they both have the same entopic term of zero. The SGOP
values also make physical sense, as a less connected graph will
have a smaller SGOP. This makes the SGOP ideal for providing a
physically informative prediction, allowing one to not only cluster
unique systems from one another in an unsupervised manner but
also provide physical intuition for what the SGOP value represents.

Liquid lithium
Previous works have indicated that the configuration space of the
liquid phases of lithium spans a vast domain, with each liquid
phase showing structural differences when compared to results
from a different pressure59. These structural dissimilarities result in
strong differences in properties such as the vibrational density of
states, which ultimately govern the self-transport behavior of the
material60. Previous density functional theory calculations have
shown that, within a given temperature range, there is a strong
linear correlation between the self-diffusion constant and the
density of the liquid phase60. The coupling of these two properties
allows one to make predictions on unknown phases at high
pressures without the need for performing nontrivial and
expensive simulations and/or experiments.
Figure 3 highlights the ability of a single SGOP value to

characterize the complexity of the lithium liquid phase space. The
SGOP values shown here were calculated from a graph coordina-
tion network (GCN), discussed within the methods section, which
employed an Rc of 2.5 Å. This corresponds to the maximum value
of the first peak of the radial distribution function (RDF) position

= 8.0= 0.2 = 27.0

= 1,2 = 2 = 3

Fig. 2 Theoretical validation of the SGOP formalism. The coloring
of the nodes corresponds to their respective degree value. The
degree set used to calculate the SGOP is shown above each graph,
while the calculated SGOP value for the graph is shown below it.
Here, the degree value is simply taken as the number of edges into
each node.

Fast diffusion region

Moderate diffusion 
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Slow diffusion 
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Fig. 3 Characterization of liquid Li using SGOP. a Histograms representing the distribution in SGOP values for each liquid phase of lithium.
Colors represent the different phases and are defined in the plot by the external pressure on the simulation box obtained from DFT. b Self-
diffusion constant values, obtained from the mean squared displacement of the ab initio molecular dynamics trajectories plotted as a function
of the mean of each histogram, shown in (a). Three diffusion regions are highlighted and are determined by the underlying structure of the
vibrational density of states of each trajectory, calculated from the velocity auto-correlation function. θP is defined as the SGOP for a specific
phase P.
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over all liquid phases used. Figure 3a shows histograms of the
SGOP values for each liquid phase. One can clearly see the
separation of each phase, indicating that the SGOP values are
capable of characterizing the unique differences in local geometry
encountered within each phase, but also the spread within a
specific phase. The structures encountered within a liquid phase,
over some period of time, will oscillate about an equilibrium point,
assuming that all external conditions are held constant. Figure 3a
provides a visual representation of these perturbations, with the
width of each normal distribution representing the extent of the
spread for a given phase.
Figure 3b showcases the SGOP’s ability to reproduce the

underlying trend of density versus self-diffusion constant. Diffu-
sion constant values were calculated from the mean square
displacement for each liquid phase using a simple Fickian
diffusion model61. Figure 3b tracks the changes in the self-
diffusion constant as a function of the mean SGOP value from
each phase’s histogram, shown in Fig. 3a. From this relationship
we can correctly identify three diffusion regions: (1) fast diffusion
occurs in low-density phases, (2) moderate diffusion occurs in
phases that are more dense than the low-density regime but do
not exhibit “crystal-like” properties, and (3) slow diffusion occurs in
highly-compressed phases which behave more closely to a crystal
phase than a liquid one. The SGOP histogram averages are able to
classify not only the structures within each liquid phase, but also
correctly identify unique self-diffusion regions across a vast
configuration space. This clearly indicates that one can use the
SGOP values as inputs to predictive models.
In order to further test the relative accuracy of our method

against another graph-based methodology, we also compare our
SGOP predictions with those from the PageRank (PR) method62.
PR has been used previously to study molecules56 and chemical
solutions57 and represents a state-of-the-art graph-based metho-
dology to study complex chemical transformations and their
energy landscapes. For our PR analysis, we employ a weighted
connectivity matrix based on the real-space distance between
atoms56,63. PR yields an output of an eigenvector corresponding to
the maximum connectivity between nodes in a graph. We then
condense this information into a scalar through the use of a
principal component analysis (PCA) decomposition, where the first
PCA component yields a least-squares approximate representation
of the data and can be used for structural analysis64. Further
details regarding our use of PR can be found in the Supplementary
Methods section, along with Supplementary Fig. 5.
Figure 4 shows the distribution of the first PCA component

values of various liquid Li phases. As one can see, PR’s ability to
uniquely classify the various liquid Li phases is limited, with
significant overlap existing between all considered phases. We

also note that the resulting histograms tend to be very discrete,
indicating that the resulting PR information is not unique enough
to distinguish the small differences between certain liquid phases.
We can therefore conclude that SGOP can classify the subtle
structural differences found within this disordered phase space
with a much higher level of fidelity than that of PR.

Carbon
While the structures encountered within the liquid lithium phase
space are highly complex, they required only a single SGOP to
classify the phases. This was in part due to the density acting as a
sole property needed to characterize the local coordination
environment. However, as one aims to characterize the multitude
of unique structural motifs within a material’s phase space, a
single SGOP may not be unique enough to differentiate between
local atomic geometries. One example of this is elemental carbon,
which exhibits a rich configuration space that includes both two-
dimensional and three-dimensional structures, nanotubes contain-
ing varying amounts of free volume, and nanoparticles that exist
in many shapes and sizes. This diversity of structures and
coordination numbers readily indicates the need for multiple
SGOPs to adequately represent various portions of the coordina-
tion environment.
Here we use an extension of the SGOP formalism, called the

vector graph order parameter (VGOP), which is discussed within
the methods section, to characterize a previously created and
highly diverse carbon dataset58. Due to the presence of different
phases with subtle structural differences, such as graphite vs.
diamond, an Rc set of (3, 4, 5, and 6 Å) was chosen, which was
determined via the peaks of the radial distribution functions from
each material in the dataset. This set of Rc ensures that all peak
positions are uniquely represented via the corresponding GCN
and is intended to be general in nature and not tailored to the
specific peak positions, thereby making the selection of values
transferable to any material system. The resulting VGOP can be
thought of as a feature set, similar to those discussed earlier, but
with the significant advantage of both small size and easy physical
interpretability. As discussed in the methods section, each VGOP
was normalized and decomposed using PCA. Information regard-
ing the PCA metrics can be found in the Supplementary Methods
section, along with Supplementary Figs. 6–8.
Figure 5a indicates the VGOP’s ability to characterize the various

bulk phases of elemental carbon. All phases (graphene, graphite,
diamond, and lonsdaleite) are clearly differentiated, and perhaps
more importantly, are clustered in a physically-intuitive manner.
Graphene is clustered near graphite, but far from both diamond
and lonsdaleite. Graphite is clustered between graphene and
diamond, while lonsdaleite (hexagonal diamond) finds itself
clustered near diamond but far from both graphene and graphite.
Amorphous diamond and lonsdaleite also cluster near one
another but are located in a unique portion of the PCA space,
when compared to the ordered crystal phases. As was the case
with lithium (using the SGOP), the VGOP not only characterizes
each phase correctly but also classifies them in a physically-
informed manner, providing the user with an intuitive interpreta-
tion pathway. One important aspect of these results can be seen
in the classification of the amorphous configurations. The VGOP
correctly classifies the structures encountered during each
trajectory as similar despite the large disparity in the temperature
used to generate each amorphous phase (2000 vs. 4000 K). The
high fidelity of the VGOP framework can allow for precise analysis
of phenomena such as phase transitions and/or for free energy
calculations, where an easy and clear distinction between material
phases is vital.
Similar clustering trends exist in Fig. 5b, c for nanotubes and

buckyball-like nanoparticles respectively. In Fig. 5b, nanotubes
with small radii are isolated from those with large radii in the PCA
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Fig. 4 PageRank clustering of liquid Li structures. The distribution
of the first PCA component of various liquid Li phases, was
calculated originally from the PageRank algorithm. Each color
represents a unique liquid phase. Large gaps exist between bins
due to the relatively discrete predictions made by PageRank.
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space. This again makes intuitive sense, as the local atomic
coordination environment will change as a function of the
nanotube’s radius. This can also be seen in Fig. 5c for the case
of small buckyball-like nanoparticles where particles with a fewer
number of atoms are more densely packed than those with a
larger number of atoms. This relationship is captured accurately in
our VGOP calculations, with small particles clustered to the right
and large particles clustered to the left of Fig. 5c. It is important to
note here that the number of timesteps in each trajectory is not
identical, so while the C70 buckyball appears to extend further
right than the C60 particle, the C70 trajectory explores a
significantly larger portion of its phase space than the C60
trajectory.

Aluminum
The previous cases of lithium and carbon provided insight into the
ability of the SGOP and VGOP frameworks to characterize both
structural disorder and geometric diversity. For the case of
aluminum, this coupling of complexity and heterogeneity is
obtained by observing a multitude of nonzero temperature
structural environments including surfaces, compressed and
expanded lattices, point defects, grain boundaries, liquids,
nanoparticles, all calculated previously via ab initio molecular
dynamics65. For all environments except for the bulk FCC, BCC,
and HCP trajectories, the structures were obtained from NVE
simulations with an initial temperature of 1000 K.
Here we compare our results to those of SP and the AGNI crystal

fingerprint. SP represents a mathematically robust, though fixed
with respect to any parameterization, characterization scheme
that has been used to determine structural similarities for several
decades. AGNI, on the other hand, represents a relatively new
class of characterization schemes, in which structures are
represented as a vector of highly parameterized functions, with
each vector element capturing distinct parts of an atom’s local
geometric environment. By taking the PCA of SP, AGNI, and VGOP,
we can create a level playing field, in which a direct comparison
can be made between all three methodologies and their ability to
characterize the same set of structural environments. Taking the

PCA of feature sets has been used previously to visualize AGNI’s
ability to characterize atomic structures9.
We use the VGOP framework, with an Rc set of (3, 4, 5, 7, and

8 Å) determined via the aluminum RDF peaks (with each value in
the set capturing a unique peak in the RDF). A visual representa-
tion of the GCN for Rc= 3 Å for several of the Aluminum structures
is shown in Fig. 6. From Fig. 6 one can see how the GCNs capture
unique information about the structure. In the case of bulk Al, the
GCN indicates high but uniform connectivity amongst the nodes,
while for the case of the grain boundary there exists two distinct
regions of the graph, one corresponding to the bulk-like region
and the other representing the interface region. A similar graph
structure exists in the surface, though the surface region is far
more chaotic and randomized than the fairly ordered grain
boundary interface region. These structural differences within the
graph provide a unique mapping from structure to VGOP,
implying that structures with similar VGOP must have similar
structural environments (provided one captures all relevant
information via the cutoff radii).
For each method, a PCA decomposition was performed on the

initial feature vector (i.e., computed SGOPs for each Rc value), with
the first two principal components chosen for visualization
purposes. Such a procedure has been shown previously to be
an accurate way of visualizing the high-dimensional spaces used
in the structure characterization techniques used here9. Figure 7
showcases each method’s ability to accurately characterize each
class of aluminum environments. One should note here that each
subplot’s axes have been normalized between zero and one for
visualization purposes, and that the absolute axis values between
subplots are not shared. The absolute PCA representation can be
found in Supplementary Fig. 9.
The first column in Fig. 7 represents the Steinhardt order

parameter PCA classification. From Fig. 7a one can see that the SP
PCA eigenvectors can clearly distinguish between the low and
high-temperature BCC, FCC, and HCP phases. It also performs well
when classifying the FCC liquid phase as distinct from the ordered
crystal phases. However, the SP struggles to identify high-
temperature BCC as having the same underlying coordination
environment as low-temperature BCC. We know from the length
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Fig. 5 Visual clustering of carbon structures using VGOP. Principal component analysis plots, calculated from the VGOPs of the carbon
dataset’s GCNs, indicate the unsupervised clustering of a multitude of structural motifs: a the bulk phases of carbon (graphene, graphite,
diamond, and lonsdaleite), b single-walled carbon nanotubes of varying length and radius, and c buckyballs of varying diameter.
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Fig. 7 Spatial clustering of Al between the Steinhardt order parameter, AGNI, and VGOP. Comparison of the PCA reduction of three
different methods, using a robust aluminum database: (column 1) the Steinhardt order parameter, (column 2) the AGNI crystal fingerprint, and
(column 3) the VGOP. Each row represents a unique subset of the aluminum configuration space. Colors are uniform across the columns. Each
PCA subplot’s axis have been normalized to the data present within the plot to allow for better visualization of the data. Row labeling is as
follows: a, g, m Bulk, b, h, n Bulk with strain, c, i, o Bulk with vacancies, d, j, p Grain boundaries, e, k, q Surfaces, and f, l, r Clusters.
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Fig. 6 Visual depiction of graph coordination networks for various Al structures. a Aluminum atomic configurations from left to right: bulk
FCC, ∑(510) grain boundary, (110) surface, and a 12 Å diameter nanoparticle. b The corresponding graph coordination network at an Rc of 3 Å.
Vertices represent the atoms within their respective structures shown in (a), while the vertex colors represent the degree of the vertex. It
should be noted that the colors are not universal, but are relative to the smallest vertex degree within the graph, with purple representing the
smallest degree and with blue being indicative of the largest degree.
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of the trajectories that the high-temperature structure has large
thermal fluctuations of the ions that can mask its symmetry. In
addition, Fig. 7b indicates the SP’s inability to correctly identify the
structural differences between compressed and expanded FCC
lattices, effectively characterizing all cases as a single entity. Figure
7c also highlights the SP’s difficulty when attempting to
differentiate between a single vacancy within a pristine bulk
environment and that of a divacancy in an otherwise identical
geometry.
A similar trend emerges when characterizing the subtle

differences in grain boundary structures, shown in Fig. 7d. The
∑(210), ∑(310), and ∑(510) grain boundaries should yield some
underlying similarities, but are technically unique environments.
However, the SP has difficulty in distinguishing between the
configurations and also classifies the ∑(510) and ∑(320) grain
boundaries as identical coordination environments, which is
incorrect. Interestingly the SP performs well when characterizing
the differences between surface environments in Fig. 7e, perhaps
due to the well-defined uniqueness in the surface layers. For the
case of the nanoparticles, shown in Fig. 7f, the SP is able to clearly
differentiate between the ordered clusters (icosahedral, octahe-
dral, and Wulff particles), but fails to correctly capture the
differences inherent in the disordered particles (8.0, 10.0, and
12.0 Å particles). All told, the SP cannot be reliably used to
characterize the complexity of the aluminum configuration space.
The second column represents the AGNI crystal fingerprint

classification. From Fig. 7g one can see that the AGNI PCA
eigenvectors can clearly distinguish between the low and high-
temperature BCC and HCP/FCC but fails to correctly capture the
differences between HCP and FCC. However, it does perform well
when classifying the FCC liquid phase as distinct from the ordered
bulk phases. Figure 4h indicates AGNI’s ability to correctly identify
the structural differences between compressed and expanded FCC
lattices. Figure 7i highlights AGNI’s capabilities in differentiating
between the vacancy and divacancy environments. Unlike the SP,
AGNI performs much better when characterizing the subtle
differences between grain boundaries, though does encounter
some overlap between the ∑(510) and ∑(320) structures. AGNI also
performs well when characterizing the differences between
surface environments in Fig. 7k. However, for the case of the
nanoparticles, shown in Fig. 7l, AGNI fails to properly distinguish
between the ordered and disordered clusters, similar to the
problematic characterization of the SP. Overall, while AGNI can
correctly capture a much larger portion of the aluminum
configuration space, it breaks down in several areas, some of
which could be correctly captured by the SP.
The third column represents the VGOP classification. From

observing Fig. 7m–r one can see that the VGOP framework
predicts a unique characterization for every structural environ-
ment encountered in the dataset. Perhaps equally as important is
the VGOP’s ability to cluster similar coordination environments
together, providing an intuitive and natural unsupervised cluster-
ing. In principle, if one did not know what the structures being
characterized were, they could identify geometric similarities, or
differences, between them. Having this ability could make the
VGOP a powerful tool for enhancing sampling methods during
model development. One could use the VGOP to indicate
structures that a model does not need to be parameterized on,
due to the underlying similarities with other environments.

Niobium oxide
The previous three examples showed the power of the SGOP
formalism to characterize a vast configuration space under
dynamic conditions. However, each study contained a single
chemical element within the system, resulting in a single atomic
network differentiated by varying the GCN cutoff values. Here, we
extend our efforts to multicomponent systems by characterizing

the complexity encountered in the niobium oxide (NbxOy) phase
space from ab initio molecular dynamics (AIMD) simulations. Here,
AIMD simulations were performed on 11 unique crystal phases
NbxOy phases (see the methods section for more details).
For the case of VGOP, three interaction types were used to

construct unique GCN: (1) Nb–O, (2) O–O, and (3) Nb–Nb. The
Nb–O VGOP was calculated using an Rc set of (2, 3, 4 Å), while the
O–O and Nb–Nb VGOPs both used an Rc set of (3, 4, 5, 6 Å). Again,
we emphasize here the general nature of these cutoff values,
chosen intuitively to capture all possible atomic interaction
regions within the system. As there are peaks in the RDF between
each of these values (ex: a peak exists in the Nb–O RDF between 2
and 3 Å), these sets of Rc effectively bound all possible
coordination environments within the maximum cutoff value for
each interaction type. The O–O and Nb–Nb networks do not use a
cutoff of 2 Å as there is little-to-no interaction information
contained between oxygen or niobium atoms at those distances
across all NbxOy phases studied in this work. Further details
regarding the VGOP and AGNI parameters used can be found in
Supplementary Table 1.
Figure 8 shows the results of the VGOP (left) and AGNI (right)

characterization. The AGNI characterization, while providing the
ability to distinguish between different stoichiometries of
niobium, fails to quantitatively separate distinct phases with
identical stoichiometries. For example, Nb4O4 is clustered uniquely
from the various Nb2O5 phases, but all Nb2O5 phases overlap with
one another. This can be attributed, in part, to the fact that each
local atomic environment is similar between the phases, due to
the Nb–O bonding environments, which is what symmetry
functions such as AGNI are designed to capture. However, the
global structure of the atomic networks is not captured by this
approach, with the averaging of local information not being
sufficient to fully capture the uniqueness of the global atomic
network.
The VGOP characterization represents a far more robust

classification than AGNI, with little-to-no overlap existing between
any of the NbxOy phases. From Fig. 8 (left) one can see that each
phase is isolated in its own region of the 2D PCA space. As not all
AIMD simulations have the same amount of simulated time we
cannot expect that each phase will cover the same portion of the
phase space. However, it is still interesting that some NbxOy

phases explore a much larger region of their configuration space,
indicating that some phases encounter larger perturbations from
their initial configuration than other phases. Regardless, these
types of deviations are all clearly characterized by our VGOP
analysis.
Finally, VGOP can be leveraged to determine the correlation of

the distance between cluster centroids within the PCA space to
similarities within each constituent atomic network. For example,
in the bottom left of Fig. 8 (left) we see two phases that exist in
close proximity (α-Nb2O5 and α-NbO2). At first glance, these
phases may seem quite different, though upon further inspection
one will see that the Nb–O and O–O atomic networks are very
similar, even at a cutoff distance of 6 Å. Further details regarding
the similarities and differences of the atomic networks can be
found in Supplementary Fig. 4. These results can be further refined
by calculating the VGOP with a different Rc set. Even with the
relatively coarse set of Rc used in this work, we still observe that
the VGOP clustered the two phases uniquely, with little overlap,
and tells the user that the two phases share similarities in their
underlying atomic network.

DISCUSSION
Structure–property relationships, which have always served a
fundamental role in materials science, have become critically
important due to the ever-increasing need for new materials
with targeted properties and chemistries. Frequently, a high
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degree of precision and accuracy can be needed to uniquely
characterize new structural environments and ultimately map
those unique geometries to properties of interest. Our efforts
here discuss a structural characterization scheme that can
uniquely classify the local atomic coordination environments
present in atomistic configurations through a semi-empirical
graph order parameter. This order parameter aims to explicitly
capture global information about the underlying atomic graph,
such as the shape and connectivity of the graph, presenting an
improvement over existing structural characterization methods
which represent the global structure of the system as some
combination of atomic environments, which are inherently local.
Our formalism is computationally efficient and mathematically
robust, providing the ability to characterize subtle differences in
atomic structure over a wide range of dynamic conditions. While
the SGOP formalism requires minimal user-adjusted parameters
(such as the graph Rc and SGOP exponent), they are physically
intuitive and require only a limited understanding of the
underlying system to be appropriately chosen. The computa-
tional efficiency combined with the uniqueness and physically-
informed nature of the SGOP formalism allows it to be applied to
a plethora of challenging application spaces including enhanced
sampling, and unsupervised clustering, which generally requires
the ability to determine subtle distinctions between underlying
phases or structures.
We propose the use of the SGOP as a valuable complement to

methods that are chiefly focused on local atomic structure.
Because our proposed methodology operates on global informa-
tion about the structure of the atomic network, it is especially ideal
for the study of problems such as the classification of unique
material phases. SGOP also operates on the graph itself, and not
on atomic coordinates, thereby making it possible to employ
SGOP to characterize more abstract concepts that are best
represented as graphs, such as the pathway an ion takes during
diffusion, the morphology of grains and voids, and the shape of
surface features.

METHODS
Ab initio molecular dynamics
All AIMD data was obtained using the Vienna ab initio simulation package
(VASP)66,67. AIMD simulations were performed only for the case of the
niobium oxide crystal phases. The Perdew–Burke–Ernzerhof (PBE) func-
tional68 was used to calculate the electronic exchange–correlation
interaction. Projector augmented wave (PAW) potentials69 and plane-
wave basis functions up to a kinetic energy cutoff of 600 eV were used.
Γ-centered k-point meshes were carefully calibrated for each atomic
configuration to ensure numerical convergence in both energy and atomic
forces. Each AIMD step’s electronic loop was considered converged at
10−7 eV. Simulations were performed in the NVE ensemble, with all phases
having an initial temperature of 1000 K, using a 0.5 fs timestep. Each MD
run’s initial configuration was obtained from Materials Project70,71 and was
subsequently relaxed using the same parameters used during AIMD,
though with the appropriate relaxation parameters, with an energy
tolerance of 10−7 eV and force tolerance of 10−3 eVÅ−1. During the
relaxation, the volume was allowed to change along with the ion positions.
Visual depictions of all atomic structures used in this work can be found in
Supplementary Figs. 1–3.

Graph coordination networks
The diversity and complexity of atomic structures necessitate the efficient
and intuitive characterization of these environments. In this work, we
employ a graph-based characterization scheme, which we call the graph
coordination network, to identify pairwise atomic networks contained
within a configuration of atoms. GCNs begin by sorting the chemical
identities of the atoms in the configuration into separate categories.
Depending on the pairwise interaction one aims to capture, the various
species lists are then scanned to find atomic interactions that occur within
some cutoff radius. The GCN is similar to a radial distribution function, as it
aims to capture the unique coordination environments encountered by
each atom, with respect to a particular chemical interaction environment.
The GCN can be represented by an adjacency matrix, with matrix elements
defined by:

Gi�j
ki ;kj

¼ 1
dki ;kj

3 dki ;kj � Rc (1)

Here, i and j represent the chemical identities of the atoms contained in
the GCN. ki and kj are the atomic index of a given atom from chemical

PCA(AGNI)PCA(VGOP)
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Fig. 8 Spatial clustering of NbxOy between AGNI and VGOP. Comparison of the PCA reduction of the AGNI (b) and VGOP (a) generated
feature vectors for various crystalline phases of niobium oxide. The inserted legend indicates the colors differentiating the phases. The PCA
axes have been normalized and shifted to be all positive.
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specie i and j respectively. dki ;kj is defined as the L2-norm between two
atoms. Rc is the cutoff radius specified when constructing the GCN. A visual
depiction of how a GCN is constructed from various aluminum atomic
structures can be found in Fig. 6. Each matrix element, 1

dki ;kj
, represents the

weight of a given edge for a given pair of connected nodes in the graph.
The degree of each node is then given by the sum of the elements in a
node’s edge set. It should be noted that the matrix representation of the
GCN is equivalent to a Coulomb matrix72,73, which has been used
previously to characterize molecular environments.
For the case of multicomponent systems, such as those encountered in

alloys, polymers, and oxides, the GCN formalism can be extended to
incorporate unique interactions between chemical species. For instance, in
the case of a system containing two elements, three distinct GCN can exist
(1) A-A, (2) A-B, and (3) B-B. Depending on the problem being studied, one
may wish to employ specific graphs and there is no requirement that all
three graphs be used to describe a particular system. For example, in the
case of a two-component oxide, one may wish the observe how the
network of metal ions changes over time, which can give an indication of
how diffuse the metal network is. In this case, one would construct a
metal-metal GCN where the corresponding nodes in the graph do not
include any oxygen atoms.

Scalar graph order parameter
Here, we introduce the scalar graph order parameter to characterize the
atomic coordination networks contained within the GCNs described in
the previous section. Generally speaking, one can think of SGOP as a
semi-empirical physically-informed graph similarity metric. We define
this SGOP as:

θi�j;Rc ¼
XS

s

XDs

m

PðdmÞlogbPðdmÞ þ dmP dmð Þ
 !3

(2)

Here, i and j represent the chemical identities of the atoms contained in
the GCN. Rc is the cutoff radius specified when constructing the GCN. We
make the assumption that a particular GCN is disconnected, and that the
underlying network exists as a set of subgraphs, S, with s indexing a
particular subgraph. Note that in the event a GCN is fully connected the
outer sum disappears and no further changes are required to the
formalism. Ds is the set of unique node degrees in a subgraph, with Pdm
being the probability of a given degree, dm, occurring in the subgraph.
The underlying formalism of SGOP provides physical intuition about a

graph: (a) P(dm)logbP(dm) uses entropy to approximate a graph’s shape and
(b) dmP(dm) characterizes a graph’s connectivity. The entropic term can be
easily identified as capturing the amount of chaos present in a graph,
providing a unique mapping to the underlying shape. The connectivity
term represents an empirical approximation of the density of a graph. It
can be insufficient to compare more standard graph properties such as the
maximum degree, minimum degree, and average degree, as these metrics
can be not unique enough to capture the diversity present in a material’s
phase space. Therefore, the connectivity term was crafted to identify not
only the degrees present within a graph but also the likelihood of
occurrence of those degrees.
The cubed exponent of the inner summation provides a heuristic

weighting mechanism to compare the sum of entropy and connectivity
that was determined through trial and error. It is important to remember
that the SGOP value is simply the sum of subgraph SGOPs if multiple
subgraphs are present within a configuration of atoms. If the exponent is
too large, highly connected and chaotic subgraphs will always be
weighted too heavily when compared to smaller, poorly connected
subgraphs. If the exponent is too small the opposite becomes true, in
which subgraphs that are explicitly distinct run the risk of becoming
indistinguishable during unsupervised clustering. Our experimentation has
indicated that a cubed exponent provides a strong balance between these
two extreme scenarios. In this way, SGOP can capture both similarities and
subtle differences between graphs in a computationally efficient manner.
We note that the SGOP formalism is generalizable and transferable to

any graph characterization, and is not restricted to the study of atomic
configurations. It should also be noted that Eq. 2 is invariant under
permutation, translation, replication (system size), and rotation operations.
We also note that there exists a multitude of graph-based formalisms in
the literature that aim to characterize atomic structures74–77, and the
primary distinction between such methods and those prescribed in this
work is the computational cost, mathematical completeness, and universal

transferability of our method. While further details regarding the software
formalism and cost of the SGOP calculations can be found in
Supplementary Table 2, we will indicate here that an SGOP for a 32,000
atom Aluminum system was computed in less than 0.5 s using only a serial
execution. The low cost of the algorithm allows for the efficient
characterization of not only complex structural systems but also the study
of systems on the order of tens of nanometers in size.

Vector graph order parameter
While the SGOP formalism prescribed in the previous section accurately
characterizes the graph network encoded within an atomic environment,
the resulting value encodes local geometric information within a
coordination sphere of radius Rc. Many atomic environments share
underlying similarities in their local structure, which leads to overlapping
values within the order parameter space. As a result, a single scalar is often
not sufficient to distinguish between the complexity of a material’s
configuration space due to seemingly small but important differences
encountered between atomic systems.
Here, we introduce the vector graph order parameter, which is simply a

set of SGOP values, calculated using a unique, user-chosen set of Rc. By
taking a set of coordination sphere radii, one can ensure that various
portions of an atom’s local geometry are properly encoded. We note here
that, unlike previous methodologies which rely on explicitly capturing all
unique atomic environments present in the system, VGOP merely requires
that the global graph information at each cutoff is captured. This allows
one to choose Rc in a less restrictive manner, and even a qualitative guess
as to the important connectivity information is often all that is required.
Figure 9 shows a visual workflow for how the VGOP is determined for the
case of a carbon nanoparticle. Principle component analysis78 is used to
reduce the number of features and allow for the visual inspection of the
underlying data. Z-score normalization79 was used to normalize the VGOPs
as a preprocessing measure to aid in the PCA decomposition, though in
principle is not necessary. For the material systems studied in this work, the
first two principle components comprised at least 95% of the underlying
variance, and therefore the remaining components were discarded.
Further information regarding the PCA decomposition for all systems
studied in this work can be found in the Supplementary Methods section,
along with Supplementary Figs. 6–8.
For the case of multicomponent systems, the final VGOP vector has a

length of
PN

n kn, where N is the number of GCN used to describe the
system, with an index of n, and kn is the number of cutoff values used in
that particular GCN’s VGOP vector. There is no restriction requiring that
each GCN used to describe a unique A-B chemical interaction must have
the same set of cutoff values. In fact, it makes intuitive sense that each
interaction type would have its own set of cutoff values corresponding
to the interaction distances encountered within that specific atomic
network. The final VGOP for a system containing N interaction types
would be given as:

θfinal ¼ fθ0; θ1; ¼ ; θkg (3)

where θk is the VGOP vector of interaction type k. As stated previously, all
θk are mutually exclusive, with no requirement that an overlap exists
between them. Each θk can have its own length and set of Rc. If one wishes
to employ a normalization technique, one can either perform it over the
entire set or on each θk individually, with each scenario representing a
different statistical modification of the original θfinal vector. It is important
to emphasize here that not all possible interaction types in the system
have to be explicitly represented in θk, and it is up to the user to determine
which interaction types are important for the problem being studied.

DATA AVAILABILITY
All data required to reproduce this work can be requested by contacting the
corresponding author. All Al and C structures can be found in the Khazana data
repository, while all initial NbxOy structures can be found at Materials Project. We
forward the reader to Sabri Elatresh and Stanimir Bonev for access to all Li data.

CODE AVAILABILITY
The SGOP formalism will be made publicly available in LAMMPS.
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