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Gradient metasurfaces have been extensively used in the past few years for advanced wave 

manipulation over a thin surface. These metasurfaces have been mostly designed based on the 

generalized laws of reflection and refraction. However, it was recently revealed that 

metasurfaces based on this approach tend to suffer from inefficiencies and complex design 

requirements. We have recently proposed a different approach to the problem of efficient beam 

steering using a surface, based on bianisotropic particles in a periodic array. Here, we show 

highly efficient reflective metasurfaces formed by pairs of isotropic dielectric rods, which can 

offer asymmetrical scattering of normally incident beams with unitary efficiency. Our theory 

shows that moderately broadband anomalous reflection can be achieved with suitably designed 

periodic arrays of isotropic nanoparticles. We also demonstrate practical designs using TiO2 

cylindrical nanorods to deflect normally incident light towards a desired direction. The proposed 

structures may pave the way to a broader range of light management opportunities, with 

applications in energy harvesting, signaling and communications. 
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I. Introduction 

Metamaterials are ensembles of carefully designed nanostructures that can be used to obtain 

special optical responses, such as negative refraction [1]-[3], subwavelength imaging [4] or 

cloaking [5]-[6]. Metamaterials in their three-dimensional form suffer from losses degrading 

their performance and challenges in their realization, especially as the wavelength shrinks and 

the inclusions have to become extremely small. Metasurfaces on the other hand are more 

immune to losses and can be realized with lithographic approaches, and therefore have attracted 

significant attention [7]-[12]. 

These surfaces can be realized for the purpose of beam shaping in the form of gradient 

metasurfaces, which offer the possibility of realizing a wide range of electromagnetic and optical 

functionalities [13]-[23]. So far, the approaches taken for the design of such metasurfaces consist 

predominantly in engineering the local reflection coefficient or the impedance, leading to graded 

impedance profiles [13]. This technique requires the realization of a gradually inhomogeneous 

profile for the metasurface properties, usually spanning over a wide range of values, which may 

require fine discretization in order to implement it in practice. It may also imply going through 

resonances for the involved elements, which enhances losses and does not enable a uniform 

amplitude distribution as the phase changes. The necessity to discretize these continuous phase 

profiles also leads to the necessity of small constituent elements. Another problem with the local 

design approach is that it is limited by a fundamental upper bound regarding the power that can 

be transmitted in a particular direction [24]-[26], as long as we consider passive elements 

forming the surface, which decreases as the difference between incident and transmitted 

directions increases.  
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In this work, we focus on metasurfaces for the purpose of asymmetrical scattering of 

normally incident light. This is a challenging task to do using gradient metasurfaces based on the 

generalized law of reflection and refraction where the efficiency dramatically drops when the 

steering angle increases (e.g., see [14]). These structures are important for applications such as 

filters [27], lenses [28] and sensors [29]. Moreover, they can be used for trapping of normally 

incident light inside a slab for the purpose of increased absorption efficiency. Therefore, these 

surfaces may become important for improving the performance of many devices, such as 

photodetectors and solar cells [30]-[32]. Moreover, such scatterers can be used for frequency-

dependent steering of the impinging light, which may be useful for LIDAR systems [33], 

efficient signaling and tagging.  

Recently the concept of meta-grating was proposed, based on which, it was shown that a 

periodic array of individual bianisotropic particles enables asymmetric scattering of a normally 

incident wave to a desired direction [34]. In addition to unitary efficiency, this concept 

eliminates the need for gradient impedance profiles that require high-resolution discretization of 

metasurfaces. Here we show that this response can be synthesized using a pair of isotropic 

particles in each unit cell of a metasurface. Our proposed technique does not pose a limitation on 

the minimum size of the metasurface particles, and therefore it relaxes fabrication requirements, 

without restricting the available wavefront transformation functionalities or compromising the 

efficiency. A similar approach was recently taken to realize a focusing lens, however the 

proposed design does not provide unitary efficiency [28]. 

In this paper, we start by investigating the details of the near-field interaction between 

resonant dipoles positioned on top of a perfect electric conductor, assuming that the dipoles are 

made of polarizable materials. By specifically considering the components of different 
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diffraction orders in the far-field, we obtain some relationships that should hold to obtain an 

asymmetric reflection profile of choice. Finally, we present practical designs for metasurfaces 

steering normally incident light to steep angles based on the presented theoretical analysis.  

II. Theoretical analysis 

We consider a periodic array of polarizable elements over a reflecting ground plane, tailored 

to achieve efficient asymmetrical reflection, which is of importance in wavefront transformation 

operations using a thin metasurface [25]. Let us first consider a two-dimensional (2D) array of 

dipoles, ˆzp z=p , at angular frequency ω  located at height d  on top of a perfect electric 

conductor. The electric field radiated by the array is given by [35]  
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In this equation, ( ) 22 ynPxn +−=ρ  and ( )( )nPxyn −− /tan= 1θ  and the two terms in 

parenthesis correspond to radiation from the dipoles and their images. Moreover, μ  corresponds 

to the vacuum permeability and ( )2
0H  refers to the zero order Hankel function of the second kind. 

It can be verified that having a single resonant dipole per unit cell is not sufficient to achieve 

asymmetrical reflection for normal incidence, consistent with the fact that a symmetric array 

cannot steer the beam from normal to one oblique direction suppressing the scattering towards 

the opposite direction. In Appendix A, we show however that two dipoles per unit cell with 

suitably tailored asymmetric phase difference in their respective polarizability is sufficient to 

realize beam steering from normal incidence to an oblique direction with unitary efficiency. In 
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our theoretical analysis, we assume two polarizable dipoles per unit cell, induced by the 

incoming incident wave. 

In order to steer the wave to the desired angle θ  (see geometry in Fig. 1), the array 

periodicity should satisfy the Bragg’s condition ( )/ cosP λ θ= . We are interested in the case for 

which only three diffraction orders exist, corresponding to left, normal and right outgoing waves. 

This condition can be satisfied if / 3θ π< . Let us consider now two dipoles with out of plane 

moments 1zp  and 2zp , laterally separated by the distance l  and positioned at heights 1d  and 2d  

from the ground plane. In this scenario, it is possible to obtain the radiated electric field based on 

an analysis similar to the diffraction order analysis presented in [35] and outlined in Appendix A 
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where 
2

2 2
tk k

P
π⎛ ⎞= − ⎜ ⎟

⎝ ⎠
. Since, we want to reflect the incoming light towards one direction, the 

power that goes to the other diffraction order should be cancelled. This criterion puts a constraint 

on the polarizabilities required for the two dipole moments. The corresponding details for the 

specific case 1 2d d d= =  are provided in Appendix A. After some algebraic manipulation, we 

obtain the required static polarizabilities 
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The previous expressions do not include radiation loss, therefore the dynamic polarizabilities are 

given by 
12

1
1,2 4p ll

kjα α
−
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. This condition on the required polarizabilities depends on a 

given height and separation of dipoles, and it allows totally suppressing the power carried by the 

left diffraction order. After having suppressed the power going to this channel, we should cancel 

the power that is specularly reflected. Assuming that Eqs. (3) and (4) are satisfied, the ratio of 
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power going to the anomalous diffraction order versus the incident power can be calculated in 

closed form: 
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with uniteless quantities 1,2g  and 1,2κ  given by  
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Based on this formula, we can calculate the achievable efficiency for asymmetrical scattering for 

a given height and separation between dipoles [leading to determined polarizabilities 1α  and 2α

based on Eqs. (3) and (4)], and choose these parameters to maximize the coupling to the 

anomalous diffraction order. By investigating Eq. (5), it is possible to realize unitary efficiency 

for a desired deflection angle. 

We can use cylinders with appropriate refractive indices in order to realize the necessary 

polarizabilities required for the asymmetrical scattering [see Fig. 1].  The required 

polarizabilities can be implemented using cylinders with the same specific radius. The refractive 

index needed for a cylinder with radius r  is obtained with the formula, derived in Appendix A, 
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Using this equation we can calculate the required refractive indices in order to achieve the 

required polarizabilities.  

 

III. Realistic design made of TiO2 cylinders 

Since it is difficult to find materials with a specific refractive index at the frequency of 

interest, we can instead use cylinders with different radius sizes, but an available refractive index 

to achieve the required polarizabilities. Aiming to address the wavelength of 700 nm and 

knowing that the relative permittivity of TiO2 is 5.1 at this wavelength, we can obtain the size of 

cylinders needed for the asymmetrical scattering. The design parameters and achieved 

efficiencies for different scattering angles have been listed in Table 1. Based on these fine-tuned 

radii, the ratio of scattered power to different diffraction orders is calculated over a range of 

frequencies for the three considered scattering angles. The corresponding results are shown in 

Fig. 2.  

Fabricating structures in which the required resonators are located at a specific height from 

the ground plane may be difficult in practice. To address this problem, we also consider 

structures in which the required cylinders are located right above the substrate. Using the same 

lateral distances between the cylinders as those used before, we find through optimization the 

required sizes. The necessary radii of cylinders for different scattering angles in these modified 

designs are summarized in Table 2. Moreover, in order to investigate the sensitivity of the designs 

to the fabrication errors, we have calculated the efficiencies for the structures with the radius of 
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cylinders deviated ±5% from the optimal designs. These efficiencies have been listed in Table 2. 

The corresponding frequency responses and field distributions of such designs are shown in Fig. 

3. We have also investigated the effect of the incidence angle variation in the efficiency of these 

designs. Based on our calculations the efficiency does not become lower than 91.6%, 93.5%, and 

92.2% for incidence angles between -5 to +5 degrees for deflection angles of 30, 35 and 45 

degrees, respectively. It should be noted that the proposed structures provide a reasonably wide 

bandwidth, despite being based on resonant particles. The reason behind this response is that the 

size of the particles is not necessarily significantly subwavelength, given that the period is not 

small compared to the wavelength and that we use only two particles per period to control the 

scattering.  

 

IV. Conclusions 

In this paper, we have derived the conditions to realize efficient anomalous reflection with an 

optical metasurface consisting of periodic arrays of pairs of rods. The derived conditions require 

the rods to be near their resonance frequencies, and in this scenario the near-field interaction 

between the two elements allow ideally engineering the far-field response. Based on a thorough 

theoretical analysis, we have investigated the potential designs providing high efficiency for 

different deflection angles. The proposed designs consist of dielectric cylinders on top of a 

reflective ground plane, providing the possibility of achieving nearly 100% efficient 

asymmetrical scattering. These designs overcome the obstacles arising in similar designs based 

on gradient metasurfaces, as they do not need lossy and active regions to reach comparable 

efficiencies. Moreover, they relax the necessity of fine discretization and the requirement of 

having several small elements per unit cell. Furthermore, fabricating the proposed designs may 
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be achieved with conventional lithographic techniques. The analysis presented here can be 

extended to structures that support more than three diffractive channels in the far-field by using 

more than two dielectric rods, providing exciting opportunities for further control of the 

scattering and radiation in the far-field based on tuning the near-field interaction between 

resonators. The proposed structures can be used for different applications in energy harvesting 

and holography.  
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Appendix A 

• Radiation fields of a periodic array of pairs of dipoles located over a ground plane 

The total radiation fields of two adjacent dipoles 1 1 ˆzp z=p  and 2 2 ˆzp z=p  located over a ground 

plane can be written as 

 ( )( ) ( )( )cos2 4
1 2

1 ˆ= sin sin .
2

j jksjk
tot z zE e e kd p p e z

k

π
θρω μ θ
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This function suggests that it is possible to get zero emission in a specific direction by tuning 

different parameters. For an array located over a ground plane, the total contribution can be 

obtained through the superposition 
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2,θ . The local electric fields at the location of two dipoles ( 1=y d  

and = 0x  as well as 2=y d  and =x l ) are given by 
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Moreover, the total far-field radiation can be written as in Eq. (2). If 1zp  and 2zp  be in-phase, 

then if the left going power be zero then the right going wave will also be zero. However, if there 

exist a phase delay between them as Δ  then 
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the local one. Moreover, since we want the normally outgoing wave to be zero, therefore 
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However it is possible to have 
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After some algebraic manipulation, assuming that 1 2d d= , we can obtain the static 

polarizabilities as in Eqs. (3) and (4). These are the required polarizabilities for a given height 

and separation to eliminate the power carried by the left diffraction order. Having removed the 

power going to this channel, it remains to consider the power that back scatters normally. If the 

incident field be given as 0
0

jk yE e  then the diffraction orders will have the following relative 

amplitudes: 
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which corresponds to the power ratio in Eq. (5). 
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• Scattering of normally incident light from a cylinder 

Since we are interested here in the scattering of an incident wave with electric field parallel to 

the axis, we write the electric field as ˆ ˆ= =zE E z uz . Then, the wave equation becomes 

( )22 2 = 0u n r k u∇ + , where ( ) = 1n r  in the air and ( ) =n r n  in the cylinder. Assuming that the 

incident field is a plane wave, ( )cos
0= jkru E e ϕ− , and applying proper boundary conditions we get 

two required conditions at ar = : 

 
( ) ( ) ( )
( ) ( ) ( )

' ' = ' ,

= ,
m m m m m

m m m m m

J ka b H ka nd J nka

J ka b H ka d J nka

−

−
  (17) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
' '

= .
' '

m m m m
m

m m m m

nJ nka J ka J ka J nka
b

nJ nka H ka H ka J nka
−
−

 

 
Knowing that the electric field of a dipole with moment of p  is given by 

( ) ( )(2)
0 ˆ=

4
zj p

E H k z
ωμ ω

ρ
−

, the following equation holds for the polarizability of the cylinder 

2
0

4= = ,zp N
E j D

α
ω μ

 

where 

( ) ( )

( )

2 3

2
2 3

1= 1 ,
2

2 1= 1 1 2 1 ( ),
2 4

N n x O x

j j xD n x log O x
x

γ
π π

− − +

⎛ ⎞⎛ ⎞⎛ ⎞
− − − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

Here e is the Euler–Mascheroni constant. This equation results in the condition between 

refractive index and the required polarizabilities [see Eq. (7)]. 

 
 



14 
 

References 

[1] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and Negative 

Refractive Index,” Science 305, 788 (2004). 

[2] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative 

Index of Refraction, Science 292, 77 (2001). 

[3] V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41 (2007). 

[4] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Far-Field Optical Hyperlens 

Magnifying Sub-Diffraction-Limited Objects, Science 315, 1686 (2007). 

[5] A. Alù and N. Engheta, Achieving Transparency with Plasmonic and Metamaterial 

Coatings, Phys. Rev. E 72, 016623 (2005). 

[6] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. 

Smith, Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314, 

977 (2006). 

[7] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, An 

Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional 

Equivalents of Metamaterials, IEEE Antennas Propag. Mag. 54, 10 (2012). 

[8] C. Pfeiffer and A. Grbic, Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts with 

Reflectionless Sheets, Phys. Rev. Lett. 110, 197401 (2013). 

[9] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Planar Photonics with 

Metasurfaces, Science 339, 1232009 (2013). 

[10] Y. Zhao, X. -X. Liu, and A. Alù, Recent Advances on Optical Metasurfaces, J. Opt. 16, 

123001 (2014). 

[11] N. Yu and F. Capasso, Flat Optics with Designer Metasurfaces, Nat. Mater. 13, 139 

(2014). 



15 
 

[12] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. 

Simovski, Metasurfaces: From Microwaves to Visible, Phys. Rep. 634, 1 (2016). 

[13] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, 

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and 

Refraction, Science 334, 333 (2011). 

[14] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, 

W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, High-Efficiency Broadband 

Anomalous Reflection by Gradient Meta-Surfaces, Nano Lett. 12, 6223 (2012). 

[15] A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Broadband Focusing Flat 

Mirrors Based on Plasmonic Gradient Metasurfaces, Nano Lett. 13, 829 (2013). 

[16] M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, 

Metamaterial Mirrors in Optoelectronic Devices, Nat. Nanotechnol. 9, 542 (2014). 

[17] M. Kim, A. M. H. Wong, and G. V. Eleftheriades, Optical Huygens Metasurfaces with 

Independent Control of the Magnitude and Phase of the Local Reflection Coefficients, 

Phys. Rev. X 4, 041042 (2014). 

[18] F. Monticone, N. Mohammadi Estakhri, and A. Alù, Full Control of Nanoscale Optical 

Transmission with a Composite Metascreen, Phys. Rev. Lett. 110, 203903 (2013). 

[19] N. Mohammadi Estakhri, V. Neder, M. W. Knight, A. Polman, and A. Alù, Visible 

Light, Wide-Angle Graded Metasurface for Back  Reflection, ACS Photon. 4, 228 

(2017). 

[20] N. Mohammadi Estakhri, and A. Alù, Recent Progress in Gradient Metasurfaces, J. 

Opt. Soc. Am. B 33, A21 (2015). 



16 
 

[21] N. Mohammadi Estakhri, C. Argyropoulos, and A. Alù, Graded Metascreens to Enable 

a New Degree of Nanoscale Light Management, Phil. Trans. A 373, 20140351 (2015). 

[22] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Space-Variant Pancharatnam–

Berry Phase Optical Elements with Computer-Generated Subwavelength Gratings, 

Opt. Lett. 27, 1141 (2002). 

[23] V. S. Asadchy, Y. Ra’di, J. Vehmas, and S. A. Tretyakov, Functional Metamirros 

Using Bianisotropic Elements, Phys. Rev. Lett. 114, 095503 (2015). 

[24] N. Mohammadi Estakhri, and A. Alù, Wavefront Transformation with Gradient 

Metasurfaces, Phys. Rev. X 6, 041008 (2016). 

[25] V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, and S. A. 

Tretyakov, Perfect Control of Reflection and Refraction Using Spatially Dispersive 

Metasurfaces, Phys. Rev. B 94, 075142 (2016). 

[26] A. Epstein and G. V. Eleftheriades, Huygens’ Metasurfaces via the Equivalence 

Principle: Design and Applications, JOSA B 33, A31 (2016). 

[27] W. Suh and S. Fan, All-Pass Transmission or Flattop Reflection Filters Using a Single 

Photonic Crystal Slab, Appl. Phys. Lett. 84, 4905 (2004). 

[28] R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, R. M. Bakker, X. Liang, Y. H. Fu, 

and A. I. Kuznetsov, A Metalens with Near-Unity Numerical Aperture, arXiv: 

1705.00895 [physics.optics]. 

[29] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Ultracompact 

Biochemical Sensor Built with Two-Dimensional Photonic Crystal Microcavity, Opt. 

Lett. 29, 1093 (2004). 



17 
 

[30] F. Xia, T. Mueller, Y. -M. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast Graphene 

Photodetector, Nat. Nanotechnol. 4, 839 (2009). 

[31] Z. Yu, A. Raman, and S. Fan, Fundamental Limit of Nanophotonic Light Trapping in 

Solar Cells, Proc. Natl. Acad. Sci. 107, 17491 (2010). 

[32] A. Pospischil, M. M. Furchi, and T. Mueller, Solar-Energy Conversion and Light 

Emission in an Atomic Monolayer p–n Diode, Nat. Nanotechnol. 9, 257 (2014). 

[33] A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, Integrated 

Phased Array for Wide-Angle Beam Steering, Opt. Lett. 39, 4575 (2014). 

[34] Y. Ra’di, D. L. Sounas, and A. Alù, Metagratings: Beyond the Limits of Graded 

Metasurfaces for Wavefront Control, arXiv: 1705.03879 [physics.optics]. 

[35] S. Tretyakov, Analytical Modeling in Applied Electromagnetics electromagnetics 

(Artech House, Norwood, MA, 2003).  

 
 
 
 
 
 
  



18 
 

Figures 
 
 
 

 
 

Fig. 1. Schematic of the geometry under analysis. 
 
 
 

Table 1. Design parameters for an array of cylinders located at a certain distance from the ground plane 

     Exact radii from analytical 
derivations Radii after a fine optimization 

Scattering 
angle (deg) λ/d  Pl/  ,1llα  ,2llα

 1r  2r  
Efficiency 

(%) 1r  2r  
Efficiency 

(%) 
30  0.15  0.26  0.911877  5.28068 /18.9P /12.6P 93 / 18P  / 11P 97.5
35  0.15  0.27  0.910905  7.03184 /19.9P / 12.8P 93 / 19P  / 10.6P 96.5
45  0.15  0.29  0.963991 10.5506 / 22.7P / 14.1P 89 / 21.2P / 11.3P 94

 
 

 

Figure  2: Frequency variation of the scattered power to different diffraction orders for the TiO2 cylinders 

located at the same height from the ground plane for deflection angles of (a) 30 deg (b) 35 deg (c) 45 deg. 
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Subsets in these plots show the numerical simulations for the normalized electric fields for frequencies 

with maximum efficiency.  

 
Table 2. Design parameters for an array of TiO2 cylinders located right on top of the ground plane 

Scattering 
angle (deg) 1r  2r  Efficiency (%) 

Efficiency (%) 
For the design 
with +5% error 

Efficiency (%) 
For the design 
with -5% error 

30  / 13.6P  / 9.3P  96.5 93.3 88.3 
35  / 14.1P  / 9.8P  97.1 92.9 92.0 
45  /15.7P  / 11.2P  94.3  89.1 92.9 

 
 

 

Figure  3: Frequency variation of the scattered power to different diffraction orders for practical TiO2 

cylinders located right on top of the ground plane for deflection angles of (a) 30 deg (b) 35 deg (c) 45 

deg. Subsets in these plots show the numerical simulations for the normalized electric fields for 

frequencies with maximum efficiency. 

 
 
 

 


