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Abstract Kernel logistic regression (KLR) is the kernel learning method best suited to bi-
nary pattern recognition problems where estimates of a-posteriori probability of class mem-
bership are required. Such problems occur frequently in practical applications, for instance
because the operational prior class probabilities or equivalently the relative misclassifica-
tion costs are variable or unknown at the time of training the model. The model parameters
are given by the solution of a convex optimization problem, which may be found via an
efficient iteratively re-weighted least squares (IRWLS) procedure. The generalization prop-
erties of a kernel logistic regression machine are however governed by a small number of
hyper-parameters, the values of which must be determined during the process of model se-
lection. In this paper, we propose a novel model selection strategy for KLR, based on a
computationally efficient closed-form approximation of the leave-one-out cross-validation
procedure. Results obtained on a variety of synthetic and real-world benchmark datasets are
given, demonstrating that the proposed model selection procedure is competitive with a more
conventional k-fold cross-validation based approach and also with Gaussian process (GP)
classifiers implemented using the Laplace approximation and via the Expectation Propaga-
tion (EP) algorithm.

Keywords Model selection - Kernel logistic regression

1 Introduction

Kernel learning methods (see e.g. Miiller et al. 2001; Scholkopf and Smola 2002; Shawe-
Taylor and Cristianini 2004), such as the support vector machine (Boser et al. 1992;
Cortes and Vapnik 1995; Vapnik 1998), kernel Fisher discriminant analysis (Mika et al.
1999, 2003), kernel ridge regression (Saunders et al. 1998) and kernel principal compo-
nent analysis (Scholkopf et al. 1997; Mika et al. 2003), have attracted considerable interest
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in the machine learning community in recent years, due to a combination of mathematical
tractability and state-of-the-art performance demonstrated over a wide range of benchmark
datasets (e.g. Cawley and Talbot 2003) and real-world applications (e.g. Brown et al. 2000).
Kernel learning methods generally aim to construct a linear model in a feature space induced
by a positive definite Mercer kernel (Mercer 1909). Depending on the choice of kernel, the
feature space may be of high or even infinite dimension, while dealing with only finite di-
mensional quantities, such as the kernel matrix giving the value of the kernel function for
every pair of data points comprising the training sample. The richness of the feature space
allows the construction of very complex, powerful models, however Tikhonov regularization
(Tikhonov and Arsenin 1977) has proved an effective means of capacity control, prevent-
ing over-fitting and optimizing generalization. The linear nature of the underlying model
means that the optimal model parameters are often given by the solution of a convex opti-
mization problem (Boyd and Vandenberghe 2004), with a single global optimum, for which
efficient algorithms exist. The generalization properties of kernel methods however tend
to be heavily dependent on the values of a small number of hyper-parameters, including
regularization parameters (Tikhonov and Arsenin 1977) and parameters defining the kernel
function (Chapelle et al. 2002). The search for the optimal values of these hyper-parameters
is a process known as model selection. Unfortunately the model selection criteria for kernel
learning methods are not generally unimodal, and so this paper is concerned with efficient
search methods for finding a locally optimal set of hyper-parameter values.

The most common approach to model selection aims to minimize some form of cross-
validation (Stone 1974) estimate of an appropriate model selection criterion, for example
the misclassification rate or perhaps the cross-entropy in the case of a statistical pattern
recognition problem. Under a k-fold cross-validation scheme, the available data are divided
into k disjoint subsets. A model is then trained on £ — 1 of these subsets and the model
selection criterion evaluated on the unused subset. This procedure is then repeated for all k
combinations of k — 1 subsets. The k-fold cross-validation estimate for the model selection
criterion is then simply the mean of the model selection criterion computed over the unused
subset in each fold. Cross-validation makes good use of the available data as all data are used
as both training and test data. The most extreme form of k-fold cross-validation, in which
each subset consists of a single training pattern is known as leave-one-out cross-validation
(Lachenbruch and Mickey 1968). An attractive property of leave-one-out cross-validation
for model selection purposes is that it provides an almost unbiased estimate of generaliza-
tion performance (Luntz and Brailovsky 1969). The regularization and kernel parameters
can then be tuned via minimization of the leave-one-out error using standard optimization
techniques, such as the Nelder-Mead simplex algorithm.

Unlike kernel methods based on a least-squares training criterion, exact leave-one-out
cross-validation of kernel logistic regression cannot be performed efficiently in closed-form.
However in this paper, we propose a useful approximation, based on exact leave-one-out
cross-validation of the quadratic approximation to the regularized training criterion obtained
during the final iteration of the IRWLS training algorithm. This extends an existing efficient
leave-one-out method for kernel Fisher discriminant analysis (Cawley and Talbot 2003) to be
adapted for computationally efficient model selection for a family of kernel learning meth-
ods, including kernel logistic regression. The approximation is also shown to be equivalent
to taking a single Newton step to minimize the reduced training criterion in each iteration of
the leave-one-out procedure, starting from the optimal parameters for a model fitted to the
entire training sample (see Appendix A).

The remainder of this paper is structured as follows: Sect. 2 introduces the kernel logistic
regression model and introduces the notation used throughout. Section 3 proposes a simple
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model selection procedure for KLR based on an efficient, closed-form approximation of the
leave-one-out and k-fold cross-validation estimates of the test cross-entropy. Section 4 com-
pares model selection procedures based on approximate leave-one-out and conventional k-
fold cross-validation. Results are also obtained for expectation-propagation based Gaussian
process classifiers, providing a state-of-the-art baseline for comparison purposes. Results
presented in Sect. 4 demonstrate that the approximate leave-one-out cross-validation pro-
cedure is competitive with the alternative procedures, at a vastly reduced computationally
expense. Finally, the work is summarized and conclusions drawn in Sect. 5.

2 Kernel logistic regression

In this section, we provide a brief overview of the kernel logistic regression (KLR) model,
and introduce the notation used throughout. In an off-line statistical pattern recognition prob-
lem, we are given labeled training data,

D= {(Xhti)}f:] ) X; € X CRda IS {Oa 1}7

on which a decision rule is trained to discriminate between examples belonging to positive
and negative classes, where X; represents a vector of d input variables describing the i ex-
ample, and #; indicates the class of the i example, where #; = 1 if the example belongs to the
positive class C; and #; = 0 if it belongs to the negative class C_. Kernel logistic regression
aims to construct a familiar linear logistic regression model in a high-dimensional feature
space induced by a Mercer kernel, giving rise to a non-linear form of logistic regression, i.e.

logit{y(x)} =w-¢(x) +b, wherelogit{p}= log{ % }

w is a vector of model parameters, ¢(-) represents a non-linear transformation of the input
vectors. Equivalently, we could write

1
1 +exp{—w- ¢(x) — b}’

y(x) =

The logit link function constrains the output of the model to lie in the range [0, 1]. Rather
than specifying the transformation ¢ : X — F directly, it is implied by a Mercer kernel,
K :X x X — R, which evaluates the inner product between the images of vectors in the
feature space, F,

K(x,x) = ¢((x) - ¢(x).

For the interpretation of the kernel function as an inner product in a fixed feature space to
be valid, the kernel must obey Mercer’s condition (Mercer 1909), i.e. the kernel or Gram
matrix, K = [k;; = K£(x;, X j)]f’ j=1, must be positive (semi)-definite. The kernel most com-
monly used in practical applications of kernel learning methods is the squared exponential,
or radial basis function (RBF), kernel,

K(x,x) = exp{—0|x — x|}, (1

where 6 is a kernel parameter controlling the sensitivity of the kernel. Interpreting the output
of the kernel logistic regression model as an estimate of the a-posteriori probability of class

@ Springer



246 Mach Learn (2008) 71: 243-264

membership, then provided the data represent an i.i.d. (independent and identically distrib-
uted) sample from a Bernoulli distribution conditioned on the input variables, the likelihood
of the training data is given by

4
l_[ l—ylt’

where y; = y(x;). The optimal vector of model parameters, w, is found by minimizing a cost
function representing the regularized (Tikhonov and Arsenin 1977) negative log-likelihood
of the training data, in this case known as the cross-entropy,

_1 2 VY : ) ] . v
E=|wl —Eg[nlog{y,}m 1) log{1 — y:}1, )

where y is a regularization parameter controlling the bias-variance trade-off (Geman et al.
1992). The representer theorem (Kimeldorf and Wahba 1971; Scholkopf et al. 2002) states
that the solution to an optimization problem of this nature can be written in the form of a
linear combination of the training patterns, i.e.

¢
W= Zai¢(xi)7
i=1

which implies that

¢
logit{y(x)}:ZailC(xi,x)—i—b and |w|?=a Ka,
i=1

where & = (v, @3, ..., ) is a vector of dual model parameters. The benefit of the “ker-
nel trick” then becomes apparent; it allows us to construct powerful linear models in very
high (potentially infinite) dimensional feature spaces using mathematics involving only fi-
nite quantities, such as the £ x £ Gram matrix.

2.1 Iteratively re-weighted least squares training procedure

The objective function for a wide range of kernel learning methods, including kernel logistic
regression, can be written in the form,

1 4
= SIWIP +y 3 et ) 3)

i=1

where c(-, -) is a convex loss function, in this case the negative log-likelihood assuming a
Bernoulli trial, c(y,?) = —[tlogy + (1 —#)log(1 — y)]. A closed form expression for the
minimum of the objective function (3) is not immediately apparent, and so it is most easily
minimized via an iteratively re-weighted least-squares (IRWLS) procedure, commonly used
in training conventional logistic regression models and radial basis function (RBF) networks
(Nabney 1999). Let z; represent the output of the kernel machine for the i training pattern,
prior to the non-linear transform,

4
=) ;K. x)+b.

j=1
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In the case of kernel logistic regression, z; represents the log-odds ratio. The first and second
derivatives of the loss, with respect to z;, are then given by

dc; . d 3%¢; (a )
ey~ and —2 =v.(1 — ),

8Zl yl 1 8212 yl yl

where ¢; = c(y;, ;). As we are interested only in minimizing the convex loss function, we
substitute a weighted least-squares criterion, providing a local approximation of ¢; only up

to some arbitrary constant, C, i.e.

&[7]1 _Zl] ’\’C(yivti) +C.

Clearly, we require the curvature of ¢g; and ¢;, with respect to z;, to be identical at z;, and
therefore
%q;, 3¢
922 8z?

1

= Bi=yi(l—y).
We also require the gradient of ¢;, with respect to z;, to match that of ¢;, such that

9 8c,~ C— 1
ql :81[77! zil=— = 77[:2[_#.
yi(L—yi)

aZ, aZ,‘
The original objective function (2), can then be solved iteratively, alternating updates of the
dual parameters, (&, b), via a regularized weighted least-squares loss function,

14
~s 1 y
L =5||w||2+52 ini — 2%, “

and updates of the weighting coefficients, 8 = (81, B, ..., Be), and targets, n = (1, 12,
.., n¢). In the case of kernel logistic regression, the update formulae are:

Yi— 1t

_ 5
yill =) ©)

Bi=yi(l—y) and n; =z —

The weighted least-squares problem (4) can also be solved via a system of linear equations,
with a computational complexity of (O(£3) operations, as follows: Minimizing (4) can be
recast in the form of a constrained optimization problem (Suykens et al. 2002a),

L
. 1 0 Y 2
min 7 = ||| +5;ﬂiei (©)
subject to

i =w-px)+b+e, Vief{l,2,... 0} )

The primal Lagrangian for this optimization problem gives the unconstrained minimization
problem,

1 4 4
£=5||w||2+§2 Z o {W- (x) + b+ — i),
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where & = (a1, a2, ..., ap) € R is a vector of Lagrange multipliers. The optimality condi-
tions for this problem can be expressed as follows:

AL ¢

S =0=w= gaiqs(xf), (8)
AL ‘

= _9 =0, 9
b :;“ ©
AL

5. =0=a=pye, Vie(l2.. 0 (10)
&

oL ,

5 =0=w-¢(x;)+b+e—n=0, Vie{l,2,...,0}. a1
o

Using (8) and (10) to eliminate w and € = (¢4, &3, ..., &), from (11), we find that

@

145

¢
> aib(x) d(xi)+b+

=, Vie{l,2,....¢}. (12)
j=1 ;

Noting that (x,x') = ¢(x) - §(x), the system of linear equations can be written more

concisely in matrix form as
K+1IB 1
’ =11 (13)
17 ollb 0

where K = [k;; = K(x, xj)]f’j:l and B = diag{ﬂfl , /32’1, e, ﬂ[' }. The optimal parameters
for the kernel machine can then be obtained with a computational complexity of O(£*) oper-
ations. Note that the iteratively re-weighted least-squares (IRWLS) procedure is equivalent
to the application of Newton’s method. We present the learning algorithm in terms of IR-
WLS here as the proposed approximate leave-one-out method is an extension of an existing
exact method for weighted least-squares models.

2.2 Efficient implementation via Cholesky decomposition

A more efficient training algorithm can be obtained, taking advantage of the special structure
of the system of linear equations. The system of linear equations (13) to be solved during
each step of the iteratively re-weighted least squares procedure is given by,

KR!

where M = K + y~'B. Unfortunately the matrix on the left-hand side is not positive def-
inite, and so we cannot solve this system of linear equations directly using the Cholesky
decomposition (Golub and Van Loan 1996). However, the first row of (14) can be re-written
as

M(x +M~'15) = . (15)
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Rearranging (15), we see that & = M~! (5 — 1b), using this result to eliminate o, the second
row of (14) can be written as,

1™ 16 =1"M""y. (16)

The system of linear equations (14) can be then be solved by first solving two positive
definite linear systems

Mé=1 and M¢ =1, 17

and then updating the model parameters of the kernel logistic regression machine as follows:

17¢

b:ﬁ

and a=¢ —é&b.

The two systems of linear equations (17) can be solved efficiently using the Cholesky de-
composition of M = RTR, where R is the upper triangular Cholesky factor of M (Suykens
et al. 2002b). Note that the computational complexity of the Cholesky decomposition is
O(£3), but that of the back-substitution used in solving the two systems of linear equations
is only O(£?) operations. As a result, the Cholesky decomposition is both computationally
efficient as well as numerically more robust (Golub and Van Loan 1996).

3 Cross-validation based model selection strategies

The simplest form of model selection criterion typically partitions the available data into
training, validation and test sets. The training set is used to determine the optimal values of
the model parameters, an appropriate performance measure is evaluated over the validation
or hold-out set in order to optimize the hyper-parameters and the test set is used to obtain
an unbiased estimate of generalization performance. If data is relatively scarce, a cross-
validation procedure is often used (Stone 1974). Under a k-fold cross-validation strategy,
the data are partitioned into k subsets of approximately equal size. Models are then trained
on each of the k combinations of k — 1 subsets, in each case the performance of the model is
estimated using the remaining subset not forming part of the training data for that model. The
cross-validation estimate of a given performance metric is simply the mean of the perfor-
mance in each fold of the cross-validation procedure. Cross-validation clearly makes better
use of the available data as every pattern is used as both a training and a test pattern. The
most extreme form of cross-validation, in which each subset contains only a single pattern,
is known as leave-one-out cross-validation (Lachenbruch and Mickey 1968). Leave-one-out
cross-validation is often used in model selection, partly as it is known to be approximately
unbiased (Luntz and Brailovsky 1969), but also because it can be implemented very effi-
ciently in the case of linear regression, least-squares kernel learning methods (Allen 1974;
Cook and Weisberg 1982; Weisberg 1985; Cawley and Talbot 2003, 2004b; Bo et al. 2006;
Rasmussen and Williams 2006) and k-nearest neighbor methods, or approximated efficiently
in the case of the support vector machine (Chapelle et al. 2002). In this paper, in addition
to investigating conventional cross-validation based model selection strategies, we also pro-
pose an approximate leave-one-out cross-validation method for kernel logistic regression
based on existing efficient methods for least-squares kernel learning methods, the method
presented here being a greatly refined version of the method briefly outlined in Cawley and
Talbot (2004a). However, the approach is quite general, and can easily be applied to any
kernel regression method with a convex loss function, c(-, -).
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3.1 Approximate leave-one-out cross-validation

The optimal values for the parameters of a kernel regression model are iteratively determined
via a sequence of weighted least-squares optimization problems. It is well known that leave-
one-out cross-validation of least-squares models can be performed very efficiently in closed
form (Cook and Weisberg 1982; Weisberg 1985; Green and Silverman 1994; Cawley and
Talbot 2003; Cawley and Talbot 2004b). These methods can be extended to provide an
approximate leave-one-out cross-validation method for kernel regression methods with an
arbitrary loss, via exact leave-one-out cross-validation of the quadratic approximation (4) of
the true loss minimized in the final iteration of the IRWLS training procedure (Green and
Silverman 1994; Cawley and Talbot 2004a). The matrix on the left-hand side of (13) can be
decomposed into block-matrix representation, as follows:

K+y'B 1 c e
Y =" T=c (18)
IT 0 Cy C1
Let [a~"; b~)] represent the parameters of the kernel machine during the i iteration of

the leave-one-out cross-validation procedure, then in the first iteration, in which the first
training pattern is excluded,

(=1
o _
[b(—n ] =C{'[n2,....n.,0]".
The leave-one-out prediction for the first training pattern is then given by,
=1
(=1 o _
Z(1 )= clT |:b(_1) ] =c]TC1 1[nz, TR 0]".

Considering the last £ equations in the system of linear equations (13), it is clear that
[e; Cille, ... o, b]" =[n2,..., 7, 0]", and so

N -1 -1 T
Zg ) =¢C Cl [er C]][(XT, b]T =CTC1 ciay +c¢plag, ..., o, b] .
Noting, from the first equation in the system of linear equations (13), that n; = cjj0; +
¢/ laa, ... a0 b]", thus
~A(—=1 —
ZE "= —ai(en —¢/Clley).

Finally, via the block matrix inversion lemma,

P k! —k e, C7!
b = 1 1 1 I 11 ’ (19)
a G Cill+x7'ClefeCy —k71C e/

where k = ¢ — cTCflc, and noting that the system of linear equations (13) is insensitive
to permutations of the ordering of the equations and of the unknowns, we have that,

o

- (20)

2@) =i

1

This means that, assuming the system of linear equations (13) is solved via explicit inversion
of C, an approximate leave-one-out cross-validation estimate of the test loss (22) can be

@ Springer



Mach Learn (2008) 71: 243-264 251

evaluated using information already available as a by-product of training the least-squares
support vector machine on the entire dataset. This approximation is based on the assumption
that the parameters of the quadratic approximation of the regularized loss function, 8 and
n are essentially unchanged during the leave-one-out cross-validation procedure (c.f. Green
and Silverman 1994). Essentially we substitute a leave-one-out cross-validation of the model
using the quadratic approximation for a leave-one-out cross-validation using the true loss.
Alternatively, as described in Appendix A, we can view the approximation as taking a single
Newton step of the reduced training criterion in each fold of the leave-one-out procedure,
starting from the vector of model parameters minimizing the regularized loss on the entire
training sample.

3.2 Efficient implementation via Cholesky factorization

The approximate leave-one-out cross-validation estimator for kernel logistic regression is
described by (20). The coefficients of the kernel expansion, &, can be found efficiently,
via iteratively re-weighted least squares based on Cholesky factorization, as described in
Sect. 2.2. However we must also determine the diagonal elements of C~! in an efficient
manner. Using the block matrix inversion formula, we obtain

o |:M 1}1 |:M“+M‘IISM'1TM‘1 —M‘llsM'j|
1m0 -S,/1T™M! Sy

where M=K+ y !B and Sy = —1"TM~'1 = —17§ is the Schur complement of M. The
inverse of the positive definite matrix, M, can be computed efficiently from its Cholesky
factorization, via the SYMINV algorithm (Seaks 1972), for example using the LAPACK
(Anderson et al. 1999) routine DTRTRI. Let R = [r;]} = be the lower triangular Cholesky
factor of the positive definite matrix M, such that M = RR". Furthermore, let

i—1
S=1Is;li ;=1 = R™', wheres; = 1 and s;; = —s;; Zrikskj,
ii P
represent the (lower triangular) inverse of the Cholesky factor. The inverse of M is then
given by M~! = STS. In the case of efficient approximate leave-one-out cross-validation
of kernel logistic regression machines, we are principally concerned only with the diagonal
elements of M~!, given by

i i 2

M =) 5) = c;1=zs3j+s—l, Vie{l,2,....t).
. , M
j=1 j=1

The computational complexity of the basic training algorithm is O(£%) operations, being
dominated by the evaluation of the Cholesky factor. However, the computational complexity
of the analytic approximate leave-one-out cross-validation approximation, when performed
as a by-product of the training algorithm, is only O(£) operations. The computational ex-
pense of the leave-one-out cross-validation procedure therefore rapidly becomes negligible
as the training set becomes larger.

Note that the proposed approximate leave-one-out cross-validation procedure is quite
general, and can be applied to kernel regression machines with an essentially arbitrary con-
vex loss, for instance kernel Poisson regression (Cawley et al. 2007). The support vec-
tor machine (Boser et al. 1992; Cortes and Vapnik 1995) can also be trained in primal
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form via Newton’s method (Chapelle 2007), where the approximate leave-one-out cross-
validation method given here is equivalent to the span bound (Vapnik and Chapelle 2000;
Chapelle et al. 2002). It should be noted, however, that the proposed leave-one-out cross-
validation method is not suitable for large scale applications in its current form, due to the
computational complexity of O(£*) operations. For large scale applications, sparse algo-
rithms, such as the import vector machine (Zhu and Hastie 2005), could be used. However,
if a sparse set of basis vectors has been identified, an approximate leave-one-out cross-
validation method for sparse kernel logistic regression would be feasible based on the cor-
responding approach for sparse least-squares kernel machines (Cawley and Talbot 2004a,
2004b).

3.3 Optimization strategies

In practical applications of kernel learning methods the hyper-parameters are most often se-
lected via a simple grid-based search method, in which the model selection criterion is evalu-
ated at a set of points, forming a regular grid with even spacing, normally over a logarithmic
scale. An improved hierarchical grid search procedure repeats this process, each time using
arefined grid centered on the best solution found at the previous scale. However, grid-search
procedures rapidly become computationally unfeasible as the number of hyper-parameters
to be optimized grows larger than only two or three. However, if the model selection strategy
is a relatively smooth function of the hyper-parameters, the Nelder-Mead simplex optimiza-
tion algorithm (Nelder and Mead 1965), as implemented by the fminsearch routine of
the MATLAB optimization toolbox, provides a simple and efficient alternative, as long as
the number of hyper-parameters remains relatively small (less than about ten). For problems
with a larger vector of hyper-parameters, gradient-based methods are likely to be more ef-
ficient, for instance conjugate-gradient methods, as implemented by the fminunc routine
of the MATLAB optimization toolbox, or scaled conjugate gradient optimization (Williams
1991). Appendix B provides the derivation of gradient information with a computational
complexity of O(£3 + d¢?) operations, where d is the number of kernel parameters. Note
that for the Gaussian process classifier based on the Laplace approximation, the gradient
of the marginal likelihood, with respect to the parameters of the covariance function, can
be evaluated with a complexity of O(d¢?) operations (provided the inverse of the covari-
ance matrix is available as a by-product of fitting the model). The computational expense of
model selection for LOO-KLR and L-GPC can thus be expected to exhibit similar scaling.
However, when fitting models with many hyper-parameters there is a danger of over-fitting
the model selection criterion, and so the addition of a regularization term to the selection
criterion may be beneficial (Cawley and Talbot 2007). It should be noted however, that the
use of gradient-based methods does not necessitate the analytic computation of gradient in-
formation (c.f. Bo et al. 2006) as the required partial derivatives can also be approximated by
the method of finite-differences, albeit with an increased complexity of O(d¢*) operations.

3.4 Model selection for Gaussian process classifiers

An estimate of the leave-one-out cross-validation loss is also available as a by-product of fit-
ting a Gaussian process classifier using the Expectation Propagation algorithm (Minka 2001;
Rasmussen and Williams 2006). This approach is equivalent to the mean-field methods in-
troduced by Opper and Winther (2000). Sundararajan and Keerthi (2001) present a leave-
one-out cross-validation procedure for hyper-parameter selection in Gaussian process re-
gression, also discussed in Rasmussen and Williams (2006). The Gaussian process classifier

@ Springer



Mach Learn (2008) 71: 243-264 253

based on the Laplace approximation (Williams and Barber 1998) also uses a model selection
criterion, in this case the marginal likelihood, evaluated using a quadratic approximation to
the regularized loss function. The model selection process for Gaussian process classifiers
under the Laplace approximation thus bears some similarities with the proposed approxi-
mate leave-one-out cross-validation method.

4 Results

We begin by investigating the accuracy of the approximate leave-one-out method using Rip-
ley’s synthetic data. Figure 1 shows a kernel logistic regression model of this dataset,
using an isotropic radial basis function kernel. Figure 2 shows contour plots of the cross-
entropy loss for a kernel logistic regression model of Ripley’s synthetic data, using an
isotropic radial basis function kernel, computed using the proposed approximate leave-one-
out method, exact leave-one-out, 10-fold cross-validation and the test loss as a function of
the hyper-parameters. It is clear that the approximate leave-one-out loss behaves in a similar
manner to the exact leave-one-out loss, without being exactly identical. Most importantly,
the minimum of all three estimates of the true loss are in accordance with the loss computed
over the independent test set. Note that the loss is a smooth function of the hyper-parameters
and so is well suited to automated model selection using standard non-linear optimization
methods. Figure 3 shows the exact and approximate leave-one-out cross-entropy loss as a
function of each of the hyper-parameters, holding the other constant at its optimal value.
The approximate leave-one-out estimator is clearly of sufficient accuracy for model selec-
tion purposes, but would not be suitable for performance evaluation, except for well-tuned
models. Note also that cross-validation based model selection criteria are not necessarily
unimodal.

Next, we present experimental results demonstrating the accuracy and efficiency of the
proposed approximate leave-one-out cross-validation model selection procedure for kernel
logistic regression. Table 1 shows a comparison of the error rates of kernel logistic regres-
sion, using the proposed approximate leave-one-out cross-validation based model selection
process, and a variety of other state-of-the-art statistical pattern recognition algorithms over
the suite of thirteen public domain benchmark datasets used in the study by Mika et al.

Fig.1 Kernel logistic regression 1.2
model of Ripley’s synthetic
data, with isotropic radial basis 1

function kernel and approximate
leave-one-out cross-validation
based model selection 0.8

0.6
0.4

0.2
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Fig. 2 Contour plots of (a) the approximate leave-one-out cross-entropy loss, (b) the exact leave-one-out
loss, (¢) the 10-fold cross-validation loss and (d) the test set loss for the synthetic benchmark, for a
kernel logistic regression model, as a function of the regularization parameter, y, and the kernel parameter, 7.
The minimum loss is indicated by a cross, +

(2000). The same set of 100 random partitions of the data (20 in the case of the image and
splice benchmarks) to form training and test sets used in that study are also used here.
In the case of the LOO-KLR, KLR, EP-GPC and LOO-KFD algorithms, model selection
is performed independently for each realization of the dataset, such that the standard errors
reflect the variability of both the training algorithm and the model selection procedure with
changes in the sampling of the data. For the LOO-KLR and KLR methods, model selec-
tion was performed via the Nelder-Mead simplex algorithm (Nelder and Mead 1965). The
isotropic squared exponential (RBF) kernel is used for all kernel learning methods, includ-
ing the L-GPC and EP-GPC, chosen due to their state-of-the-art performance and similar
structure.

Table 2 shows the model selection time for leave-one-out and 10-fold cross-validation
based kernel logistic regression (LOO-KLR and KLR respectively) and expectation propa-
gation and Laplace approximation based Gaussian process classifiers (EP-GPC and L-GPC).
Table 3 shows the average amount of information about the test set labels in excess of pre-
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Fig. 3 Plot of the approximate and exact leave-one-out cross-entropy loss, as a function of (a) the regular-
ization parameter, y, with the kernel parameter, 7, held at its optimal value and (b) the kernel parameter, with
the regularization parameter held at its optimal value

Table 2 Model selection time for kernel logistic regression models with leave-one-out and 10-fold cross-
validation based model selection (LOO-KLR and KLR respectively) and Gaussian process classifiers based
on the Laplace approximation and expectation propagation (L-GPC and EP-GPC respectively) over thirteen
benchmark datasets

Dataset Selection time (seconds)
LOO-KLR KLR L-GPC EP-GPC

Banana 37.5+1.231 199.1 +7.995 44.6 £ 0.587 916.9 +£20.51
Breast cancer 5.440.210 28.7+1.030 16.0£0.269 126.2 £1.919
Diabetes 37.9+0.939 201.9 £5.803 111.5+1.746 1129.2 £22.10
Flare solar 90.1 +4.703 429.6 +£22.33 273.7+3.610 3108.9 £75.08
German 99.5 +2.687 531.8+12.03 566.9 + 6.853 3760.4 £ 67.04
Heart 3.14+0.092 18.2 £0.645 18.5+0.227 116.6 +2.177
Image 832.6 +94.82 4537.5£168.0 3643.6 £ 378.3 25764.9 + 2314

Ringnorm 60.9 +1.948 359.9 +£6.555 216.8+3.825 1544.7 £43.35
Splice 237.4+10.84 1325.7 £ 74.08 4054.2 £122.72 12653.7 £+ 1480

Thyroid 5.2+0.348 21.6 +£0.839 9.0+£0.278 133.4 +4.049
Titanic 3.3+0.192 11.5 +£0.447 5.1£0.053 83.8 £2.669
Twonorm 46.7 +£1.218 270.0 +7.240 245.6 £3.722 1302.0 £45.05
Waveform 46.5 +0.998 260.2 £+ 6.509 222.0+2.263 1145.2 £35.38

dictions based on the prior class frequencies,

I_l—l-1 ntl + (1 —1)log,(1 )
= = i 108 Vi —1i) 10 =i
nE 82 Y 53 Yy

where n is the number of test patterns. This statistic provides a measure of the accuracy
of the predictions of a-posteriori probability obtained from a model (note that it is closely
related to the cross-entropy).
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Table 3 Mean target information for kernel logistic regression models with leave-one-out and 10-fold cross-
validation based model selection (LOO-KLR and KLR respectively) and Gaussian process classifier based
on the Laplace approximation and expectation propagation (L-GPC and EP-GPC respectively) over thirteen
benchmark datasets

Dataset Information (bits)
LOO-KLR KLR L-GPC EP-GPC

Banana 0.648 £ 0.002 0.653 +0.001 0.647 £0.001 0.655 + 0.001
Breast cancer 0.222 +0.007 0.223 +0.007 0.228 +0.006 0.227 £ 0.007
Diabetes 0.306 £ 0.003 0.306 £ 0.003 0.312 +0.003 0.311 +0.003
Flare solar 0.172 +0.002 0.172 +0.002 0.174 + 0.002 0.174 + 0.002
German 0.294 + 0.004 0.296 + 0.004 0.297 £+ 0.004 0.298 £ 0.004
Heart 0.421 +0.007 0.424 +0.007 0.425 +0.007 0.421 £0.008
Image 0.876 + 0.005 0.875 £ 0.005 0.671 £0.010 0.881 + 0.004
Ringnorm 0.930 + 0.002 0.932 4+ 0.001 0.613 £0.001 0.757 £0.003
Splice 0.613 +0.004 0.613 +0.004 0.532 £ 0.001 0.589 + 0.003
Thyroid 0.806 £ 0.023 0.837+0.012 0.708 £0.012 0.858 + 0.006
Titanic 0.182+£0.011 0.242 £+ 0.004 0.257 +0.002 0.256 + 0.002
Twonorm 0.885 +0.001 0.886 + 0.001 0.872 £0.001 0.880 £ 0.001
Waveform 0.675 +0.001 0.675 +0.001 0.654 £ 0.001 0.668 + 0.001

The use of multiple training/test partitions allows an estimate of the statistical signifi-
cance of differences in performance between algorithms to be computed. Let x and y rep-
resent the means of the performance statistic for a pair of competing algorithms, and e, and
e, the corresponding standard errors, then the z statistic is computed as

§—3
/o2 2
ex—l—ey

The z-score can then be converted to a significance level via the normal cumulative distrib-
ution function, such that z = 1.64 corresponds to a 95% significance level. All statements of
statistical significance in the remainder of this section refer to a 95% level of significance.
Comparison of leave-one-out and 10-fold cross-validation based model selection strategies
for kernel logistic regression reveals that the performance of both model selection strategies
are very similar in terms of mean error rate. None of the differences in mean error rate for the
two algorithms, shown in Table 1, are statistically significant at the 95% level. The estimates
of a-posteriori probability obtained using these approaches are generally very similar, with
k-fold cross-validation being statistically superior on only two benchmarks (BANANA and
TITANIC). The kernel Fisher discriminant classifier appears to perform better than KLLR or
GPC models in terms of error rate, however it should be noted that the KFD classifier does
not attempt to estimate the conditional probability of class membership, and so has an easier
learning task, that concentrates more strongly on the decision boundary. Table 2 also shows
that the approximate leave-one-out cross-validation based model selection is significantly
less expensive, being approximately five times faster than the 10-fold cross-validation based
approach, even though the latter had been extensively optimized (e.g. to prevent redundant
evaluation of the kernel matrix). The computational complexity of the L-GPC, EP-GPC,
KLR and LOO-KLR procedures are all O(£*) operations (being dominated by the cost of

=
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fitting the initial model), so the model selection times essentially differ only by a constant
factor for a given dataset.

The Gaussian process classifier, based on the expectation propagation algorithm (EP-
GPC) with hyper-parameters selected so as to maximize the marginal likelihood, represents
the state-of-the-art model having the same basic structure and design goals as kernel logistic
regression (see e.g. Rasmussen and Williams 2006). The EP-GPC therefore provides a stern
test of the proposed model selection algorithm. The Gaussian process classifier based on the
Laplace approximation (L-GPC) is also relevant; like the LOO-KLR, it also adopts a model
selection criterion, in this case the marginal likelihood, based on a quadratic approximation
of the loss. The L-GPC provides very similar results, but with much lower computational ex-
pense. Table 1 shows the performance of LOO-KLR and EP-GPC to be generally compara-
ble, in terms of error rate, with neither method dominating over all benchmarks. LOO-KLR
is statistically superior to the EP-GPC on three benchmark datasets (RINGNORM, TWONORM
and WAVEFORM) and statistically inferior on two (BANANA and TMAGE). In terms of predic-
tive information (Table 3) again neither method uniformly dominates, with EP-GPC being
statistically superior on three benchmarks (BANANA, THYROID and TITANIC) and sta-
tistically inferior on four (RINGNORM, SPLICE, TWONORM and WAVEFORM). This is a
surprising result as the EP-GPC moderates the output by marginalizing over the posterior
distribution of the model parameters, and therefore might be expected to produce more ac-
curate estimates of the a-posteriori probability of class membership. However, the model
selection criterion for the GPC models gives the probability of the data, given the assump-
tions of the model (Rasmussen and Williams 2006). Cross-validation based approaches, on
the other hand, provide an estimate of generalization performance that does not depend on
the model assumptions, and so may be more robust against model mis-specification (Wahba
1990). The results suggests the performance of the LOO-KLR algorithm is at least on a par
with the EP-GPC in terms of generalization performance, whilst being typically 20 times
faster. Note that the LOO-KLR model is also consistently faster than the L-GPC.

5 Conclusions

Model selection is an important step in practical applications of kernel learning meth-
ods, and must be performed in a diligent manner in order to obtain near-optimal gen-
eralization performance. In this paper we have proposed a close approximation of the
leave-one-out cross-validation procedure for kernel logistic regression, which can be per-
formed efficiently in closed form, providing a convenient means for automated model se-
lection. An extensive experimental comparison has shown this method to be competitive
in terms of performance with conventional k-fold cross-validation based model selection
and with state-of-the-art Bayesian model selection principles, embodied by the expecta-
tion propagation based Gaussian process classifier. The proposed model selection technique
is also demonstrated to be significantly faster than either of the alternative approaches
investigated. The approach can easily be adapted to form efficient model selection pro-
cedures for a wide range of other kernel learning methods, for instance for use in sur-
vival analysis (e.g. Cawley et al. 2006). A public domain MATLAB implementation of
the efficient approximate leave-one-out procedure described in this paper is available from
http://theoval.cmp.uea.ac.uk/~gcc/projects/gkm/.

Acknowledgements We thank Olivier Chapelle and anonymous reviewers for their careful and construc-
tive comments that have greatly improved this paper. We are particularly indebted to Olivier for providing
the clever trick (26) for evaluating gradient information more efficiently and (with one of the reviewers) for
pointing out the alternate derivation of the approximation, described in Appendix A.
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Appendix A: Alternate derivation of the approximation leave-one-out criterion

Adapting the approach of Chapelle (2006), we consider a generalized kernel machine with-
out an unregularized bias parameter, such that

4
fit=z=) &K, x),

j=1

where the vector of dual model parameters, &, minimizes the regularized training criterion
(3) over the full set of training samples. In each iteration of the leave-one-out procedure
(for notational convenience we consider the £), we must find a set of model parameters, &,
minimizing a reduced training criterion,

-1
A 1 T
E= Ecc Ka + ch(y,»,t,«).

i=1

However, a useful approximation can be found by taking only a single Newton step of the
reduced criterion, E, starting from the optimal parameters for the full training set, &, without
iterating to convergence, i.e.

ar~ra=a—H'V,
where H and V represent the Hessian matrix and gradient vector of the reduced training
criterion evaluated at &, given by

i ; . ¢ 9 ac?
H=K+ yKDK whereD:diag= “ € Ciq O}

—29—7-“5 2 )
dzy  0z3 075,

and

2 dc; 0 dcy—
V=K@-+7vy8) where@:( a oo cel O).

aZl, 812’“" 82[-1,

However, as a is the minimizer of the original training criterion, we know that

dE 3 dei\"
— =K(@+yg =0 whereg=|— ,
oo |~ 0z;

a=a i=l1

and thus &; +yg; =0=d; + &, Vi # ¢, such that
V= K( 0 )
oy
Noting that ﬁu = 0, the Newton step is then given by

a—a=-H"'V=—[K+yKDK] 'K (O? )
4

A N
_ | T+yDiK; yDik <0)
B 0" 1 @ )
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Kk . [D 0 L
K= _ , D= -~ | B, =D .
k KN OT Da

Using block matrix inversion lemma (19) we can re-write the Newton step as follows,

where

A0 [[I+ yDIK 1T [+ yf)lKl]-lyf)lk} ( 0 )
- 0" 1 7

(47
(—[y—lf),—‘ +K11-1k> i
= | (o7

The output of the kernel machine in the £% fold of the leave-one-out cross-validation proce-
dure is then approximated by

" Ki k\ /-y 'D/'+K] 'k
i~z =Ka-KA'V=7-[ _ D+ Kl a
k' Ky 1

} < K[y 'D7'+ K] 'k—k )
=7+ Oy.

K[y "Dy + K17k — Ky

The approximation to the £th output in the £th iteration of the procedure is then

SO -0 _ = B -

B0~ =5 - (Ku—kT[f+K1] k)a@. 1)
As a by-product of training the kernel machine on the full training sample, we have already
evaluated

B —1
. [Kl + 7 k ]
T a |
k Ko+ 55

Using the block matrix inversion lemma (19), the bottom right element of C~! is given by

—1 1 T Bl -
Chl=Ku+— —K' | = +K/| Kk
VP 14

substituting this into (21), we obtain

zg—@) :ze _ |:L—1 _ L:| &@.
CU VIBZ

Finally, noting that the training samples are interchangeable and substituting (10) and (11),

=(=i) i
=0T o
Cii

which is identical to the result given in (20).
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Appendix B: Analytic approximation of gradient information

Let ©® = {y,6,,...,6;} represent the set of hyper-parameters for a kernel logistic regres-
sion model. Near-optimal values for these hyper-parameters are chosen by minimizing an
approximate leave-one-out cross-validation estimate of the true cross-entropy loss, i.e.

12

P(©)=— lt;log{p{"} + (1 — 1) log{l — p{""}1, (22)
i=1
where
1 . o;
(=i) __ A(—i) __ i
P = and V" =9 — —.
1 +exp({—2""} c;'

In order to implement an efficient gradient descent model selection procedure, we require
the partial derivatives of P(®) with respect to the hyper-parameters. The coefficients of the
quadratic approximation of the regularized loss, n and 8, Using the chain rule, we obtain,

P(@) 3 IP(O) az( 7
- Z A( )
where
, A1) -1
3P(€Q) =p 1, and 9z, % ac; %%
927 06; [C'12 99;  C;! a6
j Jj Jj

such that

1

P(@)_ZBP(@) 1 aa, iap(@) a; 9C; 23

A_</ ) C = az(j*j) [Cj—jl]z 0, ’

The parameters of a kernel logistic regression model, [e", b]T, are given by a system of
linear equations,

" b]"=C'[p" 0]".

Using the following identity for the derivatives of the inverse of a matrix,

9C! oC
=-C!'=c! (24)
006; 00;
we obtain
A’ b]T _ C 4 T_ C
- = —_c! 0 — — b] . 25
30, 30 9, [n" 0] 8 D (o' D] (25)

The partial derivatives of C with respect to the regularization parameter, y, and a kernel
parameter, 6;, are given by

aC B 0 aC 0K/06; 0
— = and — = ,
ay 0" 0 00; 0" 0
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respectively. As (25) involves two matrix-vector products, the partial derivatives of the
model parameters, and therefore the first summation in (23), can be computed with a com-
plexity of @O (£?) operations per hyper-parameter. The second summation can be written as

=Trace{C’1§C"D}

iap(@) a; 9C;
36;
j=1

927 [C'1P 00;
where

IP(O) «a;

D =diag| ——
2277 [CH'P

Noting that Trace(ABAD) = Trace(ADAB) and defining M = C~'DC~!, where D is diag-
onal, we have

z‘:ap(@) a; 9Cj
j=1

027 [C}'P 96

aC
= Trace{M— ;. (26)
20;

Therefore, provided we pre-compute M, then the partial derivatives of the model selection
criterion with respect to all of the kernel hyper-parameters can be evaluated with a com-
putational complexity of only O(£3 + d£?) operations. There exist a great variety of kernel
functions, however for this study we adopt the isotropic Gaussian radial basis function ker-
nel (1), for which the partial derivatives are given by

K (x,x) , ,
— = —K(x, X)[Ix — X[ 27
30,

Since the regularization parameter, y, and the scale parameters of a radial basis function
kernel are strictly positive quantities, in order to permit the use of an unconstrained opti-
mization procedure, we might adopt the parameterization 6; = log, 6;, such that

IP(® dP(®) d6; a6;
(~ ) = ( ) —  where — = 9,‘ log 2. (28)
89, 891 39, 89,
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