
The improvements are more marked at low values of y 
because the lower network loads allow the faded packets that 

- -  
0.002 0.004 0.006 0.008 

mean throughput, packellslot 1226131 
O b  ' ' I I ' I ' '  

Fig. 3 Throughput-delay performance with shorter mean backoff length 
~ fading, common backoff 

_ _ _ _  nonfading 
fading packets nonpersistent, shorter mean backoff 

retransmit earlier greater probabilities of contending suc- 
cessfully for the channel. Clearly, this will not be the case at 
higher values of y (network loads), and because faded packets 
that retransmit unsuccessfully back off according to the 
original algorithm, performance tends towards that of the 
common backoff algorithm, as Fig. 3 illustrates. 

One-persistent backoff: Intuitively, the backoff delay of packets 
that fail by channel errors can be further optimised if the 
channel is sensed persistently after aborting transmission for 
the end of channel errors after which retransmission is initi- 
ated. For a fading channel, all users must thus be capable of 
end-of-fade detection, which in practice may be implemented 
through some form of receiver feedback. Fig. 4 compares the 
numerical throughput-delay performance with that of the 
common backoff algorithm.' Note that as with the short 

Fig. 4 Throughput-delay performance with one-persistent backoff 
~ fading, wmmon backoff 

- ~ _ _  nonfading 
faded packets persistent backoff 

mean hackoff length algorithm above, performance improve- 
ments are more significant at low values of y and less con- 
siderable as y increases. The reasons are similar to those 
discussed earlier for the first modified backoff algorithm. 
However, note that this second modification generally results 
in better network performance than the first. This can be 
attributed to the greater optimisation of the backoff delay as 
is intuitively expected. 
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EFFICIENT APPROXIMATION OF 
CONTINUOUS WAVELET TRANSFORMS 

Indexing terms: Transforms, Algorithms 

An efficient algorithm is developed for computing the wntin- 
uous wavelet transform or wideband ambiguity function on a 
grid whose samples are spaced uniformly in time but placed 
arbitrarily in scale. The method is based on the chirp z trans- 
form and requires the same order of computation as 
constant-bandwidth analysis techniques, such as the short- 
time Fourier transform and narrowband ambiguity function. 

Introduction: Signal representations based on the wavelet 
transform and the closely related wideband ambiguity func- 
tion appear promising in a number of applications.' Whereas 
very ellicient algorithms exist for computing expansions of a 
signal onto a discrete orthogonal wavelet basis, the sampling 
density in both time and scale of such a representation is 
insufficient for a number of applications. Examples include 
analysing Doppler-shifted sonar signals, which requires fine 
resolution over a small range in the scale parameter, and gen- 
erating a constant-Q time-frequency representation. 

We propose an ellicient algorithm for computing the con- 
tinuous wavelet transform (CWT) on a grid of samples in time 
and scale, with equally spaced time samples and arbitrary 
sampling of the scale parameter. Complete freedom in the 
scale parameter makes the technique flexible enough to 
support the needs of most applications. The algorithm 
employs the chirp z-transform method' to achieve a computa- 
tional complexity of O[N,L  log L]  to compute N , L  trans- 
form samples, where N ,  is the number of arbitrary scale 
samples, and L is the effective number of samples of the signal 
and the normalised wavelet. The method implicitly timescales 
the normalised wavelet by an inverse scaling in the frequency 
domain and elliciently computes a constant-scale slice of the 
distribution using fast convolution via the FFT. This algo- 
rithm has the same order of complexity as the short-time 
Fourier transform and other time-frequency representations. 

Continuous wauelet transform: The CWT of a signal s(t) is the 
two-dimensional time-scale representation given by 

where h(t) is known as the normalised analysing wavelet and a 
is the scale parameter. Equivalently, the CWT can be 
expressed in terms of the Fourier transforms of the signal and 
wavelet 

Typically, the wavelet is chosen to be a bandpass function, 
hence each constant-scale slice of the CWT can be interpreted 
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as the output of a bandpass filter H*(aR) driven by the signal 
to be analysed. Changing the scale parameter varies the centre 
frequency and bandwidth of the filter in a constant-Q fashion, 
providing better time resolution at high frequencies. 
In principle, the CWT can be computed by first finding the 

Fourier transforms of the signal and the normalised wavelet. 
The inverse Fourier transform of the product of S(n) and the 
scaled wavelet H*(aR) yields one constant-scale slice of the 
transform. 

In practice, we can proceed similarly, but must deal with 
sampled versions of the signal and wavelet. Assuming that s(t) 
and h(t) have been sampled at or above the Nyquist ratef,,  
denote the sampled signal and wavelet by sdn) = s(nT), 
hAn) = h(nT), and denote their discrete-time Fourier trans- 
forms by SAL), Hd(A). To satisfy the Nyquist criterion, the 
sampled signal and wavelet must be bandlimited and, there- 
fore, in general, cannot be represented by a finite number of 
samples. We assume that enough samples are available so that 
the discrete signals contain essentially all of the energy in s(t) 
and h(t). Let the number of samples of the signal and wavelet 
by N ,  and N ,  , respectively. The scale parameter is discretised 
to a set of values a i ,  i = 1, ..., N,; the value of each ai is 
arbitrary. 

Discretising eqn. 2 on a grid whose samples are uniformly 
spaced in time and arbitrarily spaced in scale yields 

W(nT, ai) % W&n, ai) = .,/(I ail) 

where c is a constant and M t N, + N, maxi I ai I - 1 is cho- 
sen to implement the linear convolution indicated in eqn. 1 
rather than a circular convolution. (Usually, M is chosen to be 
a power of 2.) Given S d [ ( 2 x / M ) k ]  and Hd.[(2n/M)ai k ] ,  eqn. 3 
can be efficiently computed, because it takes the form of an 
M-point inverse discrete Fourier transform, which can be 
implemented using an FFT. Likewise, S d [ ( 2 x / M ) k ]  is simply 
the M-point FFT of the zero-padded signal. 

The computation of the scaled spectrum, Hd[(2n/M)ai k ] ,  is 
more difficult, and lies at the heart of the fast algorithm. 
Hd[(2x/M)ai k ] ,  - Mi2 I k 5 M / 2  - 1, consists of samples of 
the discrete-time Fourier transform of the wavelet, HAL). in 
the interval I L I I ai x.  The intersample spacing is ( Z x / M ) a , ,  
When ai is a rational number, these samples could be com- 
puted via an FFT, but, in general, the cost would be prohibi- 
tive. For example, computation of M samples with ai = 0.99 
requires a 100M-point FFT. Furthermore, if ai is not rational, 
then FFT-based computation is impossible. We now show 
that the samples H d [ ( 2 x / M ) a ,  k ]  can be efficiently computed 
using the chirp z-transform algorithm. Using the definition of 
the discrete Fourier transform and setting p = k + M/2, we 
have 

Hd( $ ai k )  = Hd( $ ai p - x a i )  

(4) 

which is recognised as the chirp z-transform of the sequence 
hAn) with parameters W = e- j tZrlMMi and A = e-ixas. The cost 
of computing the chirp z transform is only a few times greater 
than an M-point FFT. Further details regarding the imple- 
mentation of the transform are given in Reference 2. Note that 
the case ai -= 1 requires samples of HAA) outside the interval 
I L I s I[. Because these samples correspond to analogue fre- 
quencies above the Nyquist frequency and the wavelet is 
assumed bandlimited, we set H d [ ( 2 x / M ) a i  k ]  = 0 for 1 k I > 
M/2ai .  

Now that we have an efficient means for computing samples 
of the discrete-time Fourier transform of the wavelet, it is 
straightforward to formulate a fast algorithm for computing 
samples of the CWT. First, we compute the M-point FFT of 
the signal sdn). Then, for each desired constant-scale slice, 
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p = 0, ..., M - 1 

compute Hd[(2x/M)ai k ]  from hkn) using the chirp z-transform 
algorithm, and take the inverse FFT indicated in eqn. 3. 

Computational complexity: For each scale sample a; ,  the fast 
algorithm requires a chirp z transform to compute the scaled 
wavelet spectrum and an inverse FFT to compute one 
constant-scale slice of the wavelet transform. The inverse FFT 
is of length M .  The chirp z transform requires a forward and 
inverse Fourier transform of length L 2 N ,  + M - 1, along 
with N ,  + M pre- and postmultiplications. Including the com- 
putation of the spectral product Sd[(2x/M)k]Hd. [ (2x/M)ai  k ] ,  
assuming a complex-valued signal and wavelet and a compu- 
tational cost of 5N log, N floating point operations for a 
basic radix-2 FFT, the total number of floating point oper- 
ations to compute the sampled continuous wavelet transform 
is 

N,(lOL log, L + 5M log, M + 6 N ,  + 6L) + 5M log, M (5) 

The above formula assumes precomputation of the weighting 
functions required by the chirp z transform; without precom- 
putation, the computational burden is perhaps twice as great. 

The O[N,L log, L ]  complexity of this algorithm compares 
favourably with the O[N, N ,  N ,  maxi I ai I] complexity of an 
implementation using direct convolution, and is of the same 
order as fixed-scale representations such as the short-time 
Fourier transform, although the multiple zero-padded FFTs 
in the chirp z transform may make the fast continuous wavelet 
transform a few times more costly in some cases. 

Fig. 1 displays a contour plot of a continuous wavelet 
transform, computed using the fast algorithm, of a signal con- 
sisting of three Gaussian components centred at different 
times and frequencies, with the wavelet equal to the rightmost 
component. Fig. 2 contains a contour plot of a short-time 
Fourier transform computed using a baseband equivalent of 
the wavelet as a window function. The variation in time and 
frequency resolution with frequency is clear in the wavelet 
transform in Fig. 1; the choice between a wavelet transform 

f, 

plolll time 

Fig. 1 Wavelet transform magnitude of three-component Gaussian 
signal computed with bandpass Gaussian wavelet centred for fa = fJ6 

Scale axis is linear in frequencyf = f J a  

time 

Fig. 2 Short-time Fourier transform magnitude of same signal computed 
with Gaussian window 
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and a short-time Fourier transform depends on the character 
of the particular class of signals to be analysed. 
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CHAOS IN PHASE-LOCKED LOOPS 

Indexing terms: Chaos, Phase-locked loops 

The chaotic behaviour of phase-locked loops (PLL) in track- 
ing a received signal whose frequency is varying linearly with 
time is studied. This system is described by a third-order 
nonlinear autonomous equation. The Lyapunov exponents 
and dimension of the system are calculated to confirm the 
chaotic phenomenon. Numerical results indicate that the 
parameter ranges where the chaos could occur are realistic in 
the typical designs. 

Introduction: Phase-locked loops (PLL) have been widely 
used in the last three decades, e.g. in space-vehicle-to-earth 
data links, AM and FM demodulations, FSK decoders, motor 
speed controls, and frequency syntbesisers. A basic develop- 
ment was presented by Viterbi.’ Because there is a sinusoidal 
nonlinearity in the PLL, the phenomenon of chaos is believed 
to exist in such a system.’.’ The limitation of the second-order 
PLL is that the loop will not lock if the received signal fre- 
quency exceeds an upper bound; that is, if the input frequency 
is bigger than an upper bound, lock on is impossible on the 
basis of the singular-point behaviour. We have considered the 
chaotic behaviour of third-order PLL via perturbation 
analysis for phase-modulated signals previ~usly.~ The objec- 
tive of this Letter is to provide a numerical study of the third- 
order PLL when the frequency of the received signal is 
varying linearly with time. As expected, once the circuit 
parameters are within a certain range, a chaotic phenomenon 
can be observed. Moreover, the Lyapunov exponents and 
Lyapunov dimension of the system are also calculated to 
confirm the results. 

State space models of PLLr The block diagram of the PLL is 
shown in Fig. 1. The basic operation of the PLL is to feed 
back the voltage-controlled oscillator (VCO) frequency fo to 
the phase detector (PD) and lock on the input signal A. At 
this point, the loop is said to be synchronised, or phase- 
locked. 

PLL can be modelled equivalently as shown in Fig. 2.’ We 
see that the P D  is replaced by a subtracter and sinusoidal 
nonlinearity. The VCO is replaced by an integrator. In Fig. 2, 
$(t) is the phase difference between input and VCO. 
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The PLL operation is governed by the differential equations 
of phase error $ ( t )  and its time derivative. To track the 

detector f i l ter  detector f i l ter  

1224111 
Fig. 1 Phase-locked loop block diagram 

Fig. 2 Model of PLL 

frequency-variable signals and eliminate the steady state error 
of the system, the filter transfer function is chosen as follows:’ 

a b  
H(s)  = 1 + - + - 

s s2 

Thus, we have obtained a third-order nonlinear ordinary dif- 
ferential equation that contains a number of independent 
parameters. 

- d3$( t )  + d 2  sin $ ( t )  d sin $ ( I )  d ’ W )  + kb sin $(I)  = ~ 

dt  ’ dt’ + k a -  d t  dt’ 

If the received signal frequency is varying linearly with time, 
as is the case when a signal is transmitted from a constant 
frequency oscillator aboard a vehicle which has a constant 
radial acceleration relative to the receiver, then 

s,(t) = f R t 2  + - + eo 
where R is the constant rate of change of frequency, wo the 
free-running angular frequency, w the received constant fre- 
quency signal with an initial phase Bo. Hence 

- k sin 4 a + kb sin $ = 0 (3) [ dt  I 
Eqn. 3 is a nonlinear third-order autonomous equation. Let us 
define the state variables as follows: 

x ( t )  = #(t)  
y(t)  = $(I)  + k sin $ 

z(t)  = - & I )  - ka sin $ 

then the state space is given by 

i ( t )  = At) - k sin x( t )  

L(t) = -ka  sin x(t )  - z(t)  

i ( t )  = kb sin x(t)  (4) 

In the following Section, the computer simulation of eqn. 4 
and its Lyapunov exponents and dimension will be calculated. 

Simulation results: Consider the PLL eqn. 4 with system 
parameters k = 0.01, a = 100 and b = 1. Fig. 3 indicates a 
time series solution x(t )  against t .  Figs. 4 and 5 are the 
observed data projected onto the (y, z)  and (x. y) planes, 
respectively. 

To confirm that the PLL is indeed chaotic, we compute 
three Lyapunov exponents for eqn. 4. The method of calcu- 
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