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SUMMARY

This article is dedicated to the rapid computation of separable expansions for the approximation of random
fields. We consider approaches based on techniques from the approximation of non-local operators on the
one hand and based on the pivoted Cholesky decomposition on the other hand. Especially, we provide an
a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace norm. Numerical
examples are provided to validate and quantify the presented methods. Copyright c© 2014 John Wiley &
Sons, Ltd.

Received . . .

1. INTRODUCTION

In this article, we present and compare two different approaches for the approximation of random

fields in L2
P

(

Ω, Hp(D)
)

for a spatial domain D ∈ Rd and a probability space (Ω,F ,P). Stochastic

fields appear for example in the modeling of diffusion problems with random data, see e.g. [1],

and in machine learning, see e.g. [2]. To make a stochastic field a(x, ω) feasible for numerical

computations in a stochastic Galerkin or stochastic collocation method, see e.g. [1, 3, 4, 5, 6, 7] and

the references therein, one has to separate the spatial variable x and the stochastic variable ω. Since

L2
P

(

Ω, Hp(D)
) ∼= L2

P
(Ω)⊗Hp(D), see e.g. [8], this task can be accomplished by computing a basis

representation of a in L2
P
(Ω)⊗Hp(D). A very common approach to obtain such a representation is

the Karhunen-Loève expansion, cf. [1, 9], which can be regarded as linear operator analogue of the

singular value decomposition of matrices.

The main task in the computation of a Karhunen-Loève expansion is the solution of a symmetric

and positive semidefinite eigen-problem. In this context, approaches to efficiently compute the

Karhunen-Loève expansion have been made by means of the Fast Multipole Method (FMM) based

on interpolation, cf. [10], in [11] and with the aid of H-matrices, cf. [12], in [13]. The idea in

these articles is to provide a data-sparse representation of the covariance operator which is then

used to solve the related eigen-problem numerically by a Krylov subspace method, cf. [14]. Of

course, another algorithm for the efficient approximation of non-local operators, like the Adaptive

Cross Approximation (ACA), cf. [15, 16], or the Wavelet Galerkin Scheme (WGS), cf. [17, 18],

can be considered as well for the representation of the covariance operator. Nevertheless, the major

drawback of these approaches is that the number of eigenvalues to be computed has to be known in

advance which might be a strong assumption in practice.
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To overcome this obstruction, we present here an alternative approach based on the Pivoted

Cholesky Decomposition (PCD). The PCD can be interpreted as a single-block ACA with applicable

total pivoting, cf. [19]. Hence, only the main diagonal of the discretized operator has to be

precomputed, which can be performed in essentially, i.e. up to possible poly-logarithmic terms,

linear complexity, if the quadrature proposed in [20] is applied to discretize the operator. Then, in

each step of the algorithm, the quality of the approximation with respect to the stochastic field is

controllable by means of the trace norm. If the desired accuracy is achieved, the algorithm stops with

an M -term approximation to the operator. If M is substantially smaller than the dimension of the

ansatz space, we end up with a remarkable computational speed-up. The related Karhunen-Loève

expansion might then be computed in a post-processing step. Notice that then the PCD yields a full

but relatively small eigen-problem if the operator under consideration exhibits a certain smoothness.

This eigen-problem might be solved numerically exact by e.g. the QR-method, cf. [21].

Now the following question arises: which approach is more efficient? We will try to answer this

question numerically by comparing the PCD with methods lend from the approximation of non-

local operators. We employ here ACA for the data-sparse approximation of the covariance operator

which results in a fast matrix-vector product. Thus, a Krylov subspace method – we use the Implicit

Restarted Arnoldi Method (IRAM), cf. [22, 23, 24] – is feasible to compute the desired eigenvalues

of largest magnitude.

Finally, we would like to emphasize that, although we focus here on the application to random

fields, the presented methods are also applicable in the more general case of approximating bi-

variate functions in L2(D1)⊗ L2(D2) for two domains D1 ⊂ Rd1 and D2 ⊂ Rd2 .

The rest of this article is structured as follows. Section 2 is devoted to the Karhunen-Loève

expansion. Especially, we discuss here the related error estimates including discretization and

truncation error. To that end, it is crucial to have bounds for the decay of the covariance operator’s

eigenvalues. These bounds are considered here, too. In Section 3, we provide the theoretical

background for the pivoted Cholesky decomposition. Moreover, we establish error estimates for

the approximation of random fields in terms of the trace norm. These estimates are essential for the

a-posteriori control of the approximation error. Section 4 introduces a special class of covariance

functions based on the Matérn kernel functions. We choose this class of covariance functions for our

numerical tests, since we a-priori know the decay rate of the respective eigenvalues. In particular, we

are also able to analytically compute the eigenfunctions and eigenvalues in the case of the unit sphere

S2. Thus, these kernels provide an excellent benchmark to compare both approaches. Section 5 is

dedicated to testing the numerical performance of the methods under consideration. We will solve

the eigenvalue problem for covariance operators related to some of the Matérn kernels from Section

4 on different geometries. Finally, we sum up the results presented within this article in Section 6.

In the following, in order to avoid the repeated use of generic but unspecified constants, by C . D
we mean that C can be bounded by a multiple of D, independently of parameters which C and D
may depend on. Obviously, C & D is defined as D . C, and C h D as C . D and C & D.

2. THE KARHUNEN-LOÈVE EXPANSION

Let (Ω,F ,P) be a probability space with σ-field F ⊂ 2Ω and a complete probability measure P, i.e.

for all A ⊂ B and B ∈ F with P[B] = 0 it follows A ∈ F . Furthermore, let D ⊂ Rd for d = 2, 3 be

a sufficiently smooth and bounded domain.

For p ≥ 0, the Lebesgue-Bochner space L2
P

(

Ω;Hp(D)
)

consists of all maps

a : Ω → Hp(D)

that satisfy

‖v‖L2
P
(Ω;Hp(D)) :=

(
∫

Ω

‖v(·, ω)‖2Hp(D) dP(ω)

)1/2

< ∞. (1)

In the following, it will be convenient to identify L2
P

(

Ω;Hp(D)
)

according to

L2
P

(

Ω;Hp(D)
) ∼= Hp(D)⊗ L2

P(Ω).

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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For further details on Lebesgue-Bochner spaces see e.g. [25].

For the approximation of spatial functions in L2(D), we will consider piecewise continuous finite

elements. Therefore, we introduce a family of quasi-uniform triangulations Th for D with mesh

width h and define the spaces

V s
h := {vh : D → R : v|T is a polynomial of order s for all T ∈ Th} ⊂ L2(D). (2)

Then, given a function v ∈ Hp(D) with 0 ≤ p ≤ s, we have due to the Bramble-Hilbert lemma the

approximation estimate

inf
vh∈V s

h

‖v − vh‖L2(D) . hp‖v‖Hp(D) (3)

uniformly in h, see e.g. [26, 27].

A very common representation of random fields for numerical purposes is given by the Karhunen-

Loève expansion. In order to ensure that L2
P
(Ω) is separable, we have to assume that Ω is a separable

set.

Definition 2.1. Let a ∈ Hp(D)⊗ L2
P
(Ω) for some p ≥ 0 be a random field. The expansion

a(x, ω) = a(x) +

∞
∑

m=1

σmϕm(x)Xm(ω) (4)

with σ1 ≥ σ2 ≥ · · · ≥ 0, (Xm, Xn)L2
P
(Ω) = δm,n and (ϕm, ϕn)L2(D) = δm,n is called Karhunen-

Loève expansion with respect to a. Here, a(x) denotes the mean of a with respect to the stochastic

variable, i.e.

a(x) =

∫

Ω

a(x, ω) dP(ω).

The Karhunen-Loève expansion can be regarded as the continuous analogue to the singular value

decomposition of matrices. Especially, it holds σm =
√
λm, where {(λm, ϕm)}m are the eigen-pairs

(in decreasing order) of the covariance operator

(Cu)(x) :=
∫

D

k(x,y)u(y) dy, (5)

given via the correlation kernel

k(x,y) :=

∫

Ω

(

a(x, ω)− a(x)
)(

a(y, ω)− a(y)
)

dP(ω).

Notice that, for a ∈ Hp(D)⊗ L2
P
(Ω), it holds k ∈ Hp,p

mix(D ×D) := Hp(D)⊗Hp(D). Addition-

ally, the random variables {Xm}m are given by

Xm(ω) =
1

σm

∫

D

(

a(x, ω)− a(x)
)

ϕm(x) dx.

In the following, we will also make use of the Hilbert-Schmidt operator associated with the

centered random field, i.e. S : L2
P
(Ω) → Hp(D) with

(Su)(x) =
∫

Ω

(

a(x, ω)− a(x)
)

u(ω) dP(ω) for u ∈ L2
P(Ω)

and its adjoint S⋆ : H̃−p(D) → L2
P
(Ω) with

(S⋆u)(ω) =

∫

D

(

a(y, ω)− a(y)
)

u(y) dy for u ∈ H̃−p(D).

Then, we especially find that SS⋆ : H̃−p(D) → Hp(D) is given by

(SS⋆u)(x) =

∫

Ω

(

a(x, ω)− a(x)
)

∫

D

(

a(y, ω)− a(y)
)

u(y) dy dP(ω) = (Cu)(x),

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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where the last identity holds due to Fubini’s theorem.

For numerical issues, one has to truncate the Karhunen-Loève expansion appropriately. Here, the

truncation error depends on the decay of the covariance operator’s eigenvalues. More precisely, for

the decay of the eigenvalues, we have along the lines of [28] the following theorem.

Theorem 2.2. Let a ∈ Hp(D)⊗ L2
P
(Ω). Then, the eigenvalues of the covariance operator

C : H̃−p(D) → Hp(D) decay like

λm . m−2p/d for m → ∞.

Proof

We consider the operator S⋆S : L2
P
(D) → L2

P
(D). Let (λm, Xm) be an eigen-pair of S⋆S. On the

one hand, we have

C(SXm) = λm(SXm).

On the other hand, it holds for λm > 0 that

(SXm,SXm)L2(D) = (S⋆SXm, Xm)L2
P
(Ω) = λm > 0. (6)

Thus, we conclude that (λm,SXm/σm) is an eigen-pair of C. The proof is now based on an

approximation argument.

We consider the approximation space V
⌈p⌉
h ⊂ L2(D), cf. (2). Let dim(V

⌈p⌉
h ) = N . Notice that

h h N−1/d, where the constant depends on the polynomial degree ⌈p⌉. Furthermore, we define the

L2(D)-orthogonal projection QN : L2(D) → V
⌈p⌉
h . Then, due to the Bramble-Hilbert lemma, we

conclude the estimate

‖(I −QN )v‖L2(D) . N−p/d‖v‖Hp(D) for u ∈ Hp(D).

The min-max principle of Courant-Fisher implies now for arbitrary subspaces Vm ⊂ L2
P
(Ω) with

dim(Vm) ≤ m that

λm+1 = min
Vm

max
v∈V ⊥

m ,‖v‖
L2
P
(Ω)

=1
(S⋆Sv, v)L2

P
(Ω)

= min
Vm

max
v∈V ⊥

m ,‖v‖
L2
P
(Ω)

=1
(Sv,Sv)L2(D).

For the choice VN = img(S⋆QNS), the orthogonality of the projection QN yields

λN+1 ≤ max
v⊥img(S⋆QNS),‖v‖

L2
P
(Ω)

=1
(Sv,Sv)L2(D)

= max
v⊥img(S⋆QNS),‖v‖

L2
P
(Ω)

=1

(

Sv, (I −QN )Sv
)

L2(D)

= max
v⊥img(S⋆QNS),‖v‖

L2
P
(Ω)

=1

(

(I −QN )Sv, (I −QN )Sv
)

L2(D)

≤ sup
‖v‖

L2
P
(Ω)

=1

(

(I −QN )Sv, (I −QN )Sv
)

L2(D)

≤ sup
‖v‖

L2
P
(Ω)

=1

‖(I −QN )Sv‖2L2(D)

. N−2p/d sup
‖v‖

L2
P
(Ω)

=1

‖Sv‖Hp(D).

This estimate together with the continuity of S, see e.g. [28], yields the assertion.

Now, in accordance with [28], an estimation of the Karhunen-Loève expansion’s truncation error

is provided by the following theorem.

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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Theorem 2.3. Let a ∈ Hp(D)⊗ L2
P
(Ω) with p > d/2. Then, it holds

∥

∥

∥

∥

a− a−
M
∑

m=1

σm(ϕm ⊗Xm)

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

=

√

√

√

√

∞
∑

m=M

λm . M
1
2−

p
d .

Proof

For a proof of this theorem see [28].

This theorem tells us that, in order to guarantee an error bound

∥

∥

∥

∥

a− a−
M
∑

m=1

σm(ϕm ⊗Xm)

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

. ε,

we have to choose

M h ε
2d

d−2p .

For the numerical purposes, we have also to take the smoothness of the covariance operator’s

eigenfunctions into account, cf. [28, 11].

Theorem 2.4. Let a ∈ Hp(D)⊗ L2
P
(Ω). Then, the eigenfunctions {ϕm}m of the covariance

operator C satisfy

‖ϕm‖Ht(D) . σ
− t

p
m , 0 ≤ t ≤ p.

Proof

From (6) and the continuity of S we deduce

‖ϕm‖Hp(D) =
1

σm
‖SXm‖Hp(D) .

1

σm
‖Xm‖L2

P
(Ω) =

1

σm
.

By using in addition ‖ϕm‖L2(D) = 1, we obtain the assertion via an interpolation argument.

Remark 2.5. As a consequence of Theorem 2.4, we can approximate the eigenfunctions in V s
h

according to

inf
vh∈V s

h

‖ϕm − vh‖L2(D) . hs‖ϕm‖Hs(D) . σ
− s

p
m hs. (7)

The approximation of the related eigenvalues is given in terms of the gap between the invariant

sub-space Um = span{ϕ1, . . . , ϕm} ⊂ L2(D) corresponding to the eigenvalues λ1, . . . , λm and the

approximation space V s
h , i.e.

θ(Um) := sup
u∈Um,‖u‖

L2(D)=1

‖(I −Qh)u‖L2(D),

where Qh : L
2(D) → V s

h denotes the L2(D) orthogonal projection onto V s
h .

Lemma 2.6. Let Um = span{ϕ1, . . . , ϕm} ⊂ L2(D) be the invariant sub-space corresponding to

the eigenvalues λ1, . . . , λm. Then, it holds

θ(Um) . σ
− s

p
m hs. (8)

Proof

Let u =
∑m

i=1 αiϕi. Thus, it holds
∑m

i=1 α
2
i = 1 since ‖u‖L2(D) = 1. Then, with α =

(α1, . . . , αm), we have

θ(Um) = sup
u∈Um,‖u‖

L2(D)=1

‖(I −Qh)u‖L2(D) = sup
‖α‖

ℓ2=1

∥

∥

∥

∥

m
∑

i=1

αi(I −Qh)ϕi

∥

∥

∥

∥

L2(D)

≤ sup
‖α‖

ℓ2=1

m
∑

i=1

|αi|‖(I −Qh)ϕi‖L2(D) . sup
‖α‖

ℓ2=1

m
∑

i=1

|αi|σ
− s

p

i hs

. σ
− s

p
m hs,

where we used (7) in the second to last step.

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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Remark 2.7. In order to achieve convergence for the m-th eigenvalue, we have to guarantee

θ(Um) < 1 which imposes a restriction to the mesh width h of the discretization.

From [29], we have the following convergence result, which relates the eigenvalue’s rate of

approximation to the eigenfunction’s rate of approximation.

Theorem 2.8. Let {(λm, ϕm)}m be the set of eigen-pairs of the covariance operator C as

defined in (5). Furthermore, let UM = span{ϕ1, . . . , ϕM} be such that dim(QhUM ) = M . Then,

the approximation λm,h to the m-th eigenvalue by the Rayleigh-Ritz method, i.e. QhCQhϕm,h =
λm,hϕm,h, satisfies the estimate

0 ≤ λm − λm,h ≤ λm

(

θ(Um)
)2

for all 1 ≤ m ≤ M. (9)

Proof

The proof of this theorem can be found in [29].

By inserting (8) into (9), we thus arrive at

0 ≤ λm − λm,h . λ
p−s
p

m h2s. (10)

Hence, given that the random variables {Xm}m in the Karhunen-Loève expansion are represented

exactly, we finally derive the following result for the approximation of the stochastic field a by the

discretized truncated Karhunen-Loève expansion.

Theorem 2.9. Let the length M of the Karhunen-Loève expansion be such that the truncation error

is smaller than ε for some ε > 0. Then, we have

∥

∥

∥

∥

a− ah −
M
∑

m=1

σm,h(ϕm,h ⊗Xm)

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

. ε+ c(M)hs

with a constant c(M) ≤ M which might depend on s, p, d, but is independent of h.

Proof

Since the random variables are exactly represented, we have by splitting up the error and using

Theorem 2.3 that

∥

∥

∥

∥

a− ah −
M
∑

m=1

σm,h(ϕm,h ⊗Xm)

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

. ε+ ‖a− ah‖L2(D) +

∥

∥

∥

∥

M
∑

m=1

(

σmϕm − σm,hϕm,h

)

⊗Xm

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

. ε+ hs‖a‖Hs(D) +

M
∑

m=1

∥

∥σmϕm − σm,hϕm,h

∥

∥

L2(D)
,

where we used in the last step that ‖Xm‖L2
P
(Ω) = 1. Each summand in the last term is now estimated

as follows:

∥

∥σmϕm − σm,hϕm,h

∥

∥

L2(D)
≤

∥

∥(σm − σm,h)ϕm

∥

∥

L2(D)
+
∥

∥σm,h(ϕm − ϕm,h)
∥

∥

L2(D)

. σm − σm,h + σm,hσ
− s

p
m hs,

due to ‖ϕm‖L2(D) = 1 and the estimate of the gap in Lemma 2.6. Furthermore, we have for the

singular values

(σm − σm,h)
2 = λm − 2σmσm,h + λm,h ≤ λm − λm,h . λ

p−s
p

m h2s,

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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since σm,h ≤ σm, and therefore

∥

∥σmϕm − σm,hϕm,h

∥

∥

L2(D)
. σ

p−s
p

m hs.

Inserting this in the above estimate yields together with Theorem 2.2 that

∥

∥

∥

∥

a− ah −
M
∑

m=1

σm,h(ϕm,h ⊗Xm)

∥

∥

∥

∥

L2(D)⊗L2
P
(Ω)

. ε+ hs‖a‖Hs(D) +

M
∑

m=1

σ
p−s
p

m hs

. ε+ hs‖a‖Hs(D) + hs
M
∑

m=1

m
s−p
d .

Estimating the sum by the respective integral yields

c(M) =

M
∑

m=1

m
s−p
d h

∫ M

1

x
s−p
d dx =

{

d
s−p+d

(

M
s−p+d

d − 1
)

, for s 6= p− d,

log(M), else.
(11)

This completes the proof.

3. THE PIVOTED CHOLESKY DECOMPOSITION

In this section, we consider an alternative approach for the representation of a random field. This

approach makes use of the pivoted Cholesky decomposition as considered in [19]. The idea is here to

approximate the spatially discretized stochastic field Qha rather than to approximate the stochastic

field itself. One easily verifies for a ∈ Hp(D)⊗ L2
P
(Ω) that

‖(I −Qh)a‖L2(D)⊗L2
P
(Ω) ≤ hs‖a‖Hp(D)⊗L2

P
(Ω) for 0 ≤ s ≤ p (12)

by the definition of the Bochner norms (1) and the estimate (3). Furthermore, due to Fubini’s

theorem, we conclude for the mean that

∫

Ω

Qha(x, ω) dP(ω) = Qha(x).

The related covariance operator is then given by

(Chu)(x) =
∫

D

∫

Ω

Qh,x

(

a(x, ω)− a(x)
)

Qh,y

(

a(y, ω)− a(y)
)

dP(ω)u(y) dy

= Qh,x

∫

D

Qh,yk(x,y)u(y) dy

= Qh,x

∫

D

k(x,y)Qh,yu(y) dy

= (QhCQhu)(x).

(13)

Especially, for each finite dimensional ansatz space, Ch is a symmetric and positive semidefinite

matrix. Thus, Ch exhibits a (possibly pivoted) Cholesky decomposition. By pivoting the Cholesky

Copyright c© 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
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decomposition, cf. Algorithm 1, we achieve numerical stability on the one hand, cf. [30], and, if the

eigenvalues of Ch decay sufficiently fast, a low-rank approximation on the other hand, cf. [19].

Algorithm 1: Pivoted Cholesky decomposition ([19])

Data: matrix A = [ai,j ] ∈ RN×N and error tolerance ε > 0

Result: low-rank approximation AM =
∑M

i=1 ℓiℓ
T
i such that ‖A−AM‖tr ≤ ε

begin

set M := 1;

set d := diag(A) and error := ‖d‖ℓ1 ;

initialize π := [1, 2, . . . , N ];
while error > ε do

set i := argmax{dπj
: j = M,M + 1, . . . , N};

swap πM and πi;

set ℓM,πM
:=

√

dπM
;

for M + 1 ≤ i ≤ N do

compute ℓM,πi
:=

(

aπM ,πi
−

M−1
∑

j=1

ℓj,πM
ℓj,πi

)

/

ℓM,πM
;

update dπi
:= dπi

− ℓM,πM
ℓM,πi

;

compute error :=

n
∑

i=M+1

dπi
;

increase M := M + 1;

The approximation error of the (truncated) pivoted Cholesky decomposition is a-posteriori

controllable in terms of the trace norm, i.e.

‖A‖tr := trace(A) :=

N
∑

i=1

ai,i.

Suppose that the pivoted Cholesky decomposition terminates with an approximation Ch,M to Ch
with

‖Ch − Ch,M‖tr < ε. (14)

We denote the spectral decompositions related to Ch by

Ch =

N
∑

i=1

λiviv
⊺

i . (15)

With respect to the orthonormal basis Φ(x) := [φ1(x), . . . , φN (x)] of V s
h , the Karhunen-Loève

expansion of ah(x, ω) is then given by

ah(x, ω) = Φ(x)ah +

N
∑

i=1

√

λiΦ(x)viXi(ω).

This representation can be rewritten in matrix notation as

ah(x, ω)−Φ(x)ah =: Φ(x)VΣX(ω) (16)

with V := [v1, . . . ,vN ], Σ := diag(
√
λ1, . . . ,

√
λN ) and X(ω) := [X1(ω), . . . , XN (ω)]⊺.

The matrix (VΣ)⊺ ∈ RN×N from (16) exhibits a QR-decomposition:

QL⊺ = (VΣ)⊺ or LQ⊺ = VΣ,
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respectively. Here, Q ∈ RN×N denotes an orthogonal matrix, i.e. Q⊺Q = I ∈ RN×N , and L ∈
RN×N is a lower triangular matrix. We shall next define the transformed random vector

Y(ω) := Q⊺X(ω)

Then, Y(ω) also consists of N uncorrelated and centered random variables, since it holds

∫

Ω

Y(ω)Y⊺(ω) dP(ω) = Q⊺

∫

Ω

X(ω)X⊺(ω) dP(ω)Q = Q⊺IQ = I.

That the random variables Yi(ω) are also centered, follows from the fact that they are weighted sums

of centered random variables. Thus, we obtain for the covariance matrix Ch of ah(x, ω) that

Ch =

∫

Ω

(

VΣX(ω)
)(

VΣX(ω)
)⊺

dP(ω) =

∫

Ω

LY(ω)Y(ω)⊺L⊺ dP(ω) = LL⊺.

Since L is a lower triangular matrix, we thus end up with the Cholesky decomposition of Ch. In

the following, without loss of generality, we will especially assume, that LL⊺ corresponds to the

pivoted Cholesky decomposition of Ch.

Using the Cholesky decomposition of Ch, we obtain the separable representation

ah(x, ω) = Φ(x)ah +

N
∑

i=1

Φ(x)ℓiYi(ω) = Φ(x)ah +Φ(x)LY(ω) (17)

for a(x, ω) with L = [ℓ1, . . . , ℓN ]. Whereas, the related truncated Cholesky decomposition leads to

the truncated expansion

ah,M (x, ω) = Φ(x)ah +

M
∑

i=1

Φ(x)ℓiYi(ω).

It is easy to see that Ch,M is the covariance matrix of ah,M (x, ω).

Remark 3.1. The separable representation (17) of the stochastic field is based on the knowledge

of an appropriate matrix R ∈ RN×N , a square root of the covariance matrix, such that Ch =
RR⊺. It is known that for two different square roots, i.e. Ch = RR⊺ = R̃R̃⊺, there exists an

orthogonal matrix Q ∈ RN×N such that R̃ = RQ⊺. The change of the representation (16) due to

the application of Q is then performed by the change of the basis in L2
P
(Ω), i.e. Y(ω) := Q⊺X(ω).

Thus, any square root of Ch yields a separable representation of ah(x, ω). Nevertheless, we focus

on the pivoted Cholesky decomposition here.

The approximation error of a given stochastic field by truncation of the pivoted Cholesky

decomposition is now controllable in accordance with the following theorem.

Theorem 3.2. For a given covariance matrix Ch ∈ RN×N given by (13), let Ch,M ∈ RN×N denote

its pivoted Cholesky decomposition computed by Algorithm 1 such that

‖Ch − Ch,M‖tr < ε

holds for some ε > 0. Then, for the related stochastic fields, we have the error estimate

‖ah − ah,M‖L2(D)⊗L2
P
(Ω) <

√
ε.

Proof

Let Ch,M = LML
⊺

M be the pivoted Cholesky decomposition computed by Algorithm 1. We

denote the (pivoted) Cholesky decomposition of the Schur-complement Ch − Ch,M by E, that is

Ch − Ch,M = EE⊺ with a lower triangular matrix E ∈ RN×N with E = [e1, . . . , eN ]. Then, it holds

LL⊺ = (LM +E)(LM +E)⊺
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and therefore

E = L− LM .

Noticing that ah,M (x, ω) = ΦLMY(ω), we are able to estimate the error of the approximate random

field according to

‖ah − ah,M‖2L2(D)⊗L2
P
(Ω) = ‖ΦLY −ΦLMY‖2L2(D)⊗L2

P
(Ω) = ‖ΦEY‖2L2(D)⊗L2

P
(Ω)

=

∫

D

∫

Ω

( N
∑

i=M+1

Φ(x)ℓiYi(ω)

)2

dP(ω) dx

=

∫

D

N
∑

i=M+1

(

Φ(x)ℓi
)2

dx =

N
∑

i=M+1

∫

D

(

Φ(x)ℓi
)2

dx

=

N
∑

i=M+1

ℓ
⊺

i ℓi =

N
∑

i=1

e
⊺

i ei

= trace(EE⊺) < ε.

The theorem states that the choice ε h h2s in the pivoted Cholesky decomposition guarantees,

together with inequality (12), the error estimate

‖a− ah,M‖L2(D)⊗L2
P
(Ω) . hs.

The major advantage of this approach is, that at no time the covariance matrix Ch has to be fully

assembled. It is sufficient to provide access to single entries of this matrix while processing the

pivoted Cholesky decomposition. The error in the approximation of the random field a is then a-

posteriori controllable by the trace norm. Furthermore, it is shown in [19] that the pivoted Cholesky

decomposition is optimal in the sense of best M -term approximations for sufficiently fast decaying

eigenvalues.

Given that the pivoted Cholesky decomposition for Ch truncates with M ≪ N terms and Ch,M =
LML

⊺

M ∈ RN×N , the computation of the related Karhunen-Loève expansion is performed with

complexity O(M2N), cf. [19]. This can be achieved by computing the eigenvalues of L
⊺

MLM ∈
RM×M which coincide with those of Ch,M . Then, if v1, . . . ,vM denote the orthonormal vectors of

the small eigen-problem, the eigenvectors of Ch,M are given by Lv1, . . . ,LvM and we have

(Lvi)
⊺(Lvj) = viL

⊺Lvj = λiδi,j for all i, j = 1, . . . ,M. (18)

Thus, the related Karhunen-Loève decomposition is given by

ah,M (x, ω) = ah(x) +

M
∑

i=1

Φ(x)LviX̃i(ω). (19)

If the laws of the random variables Xi(ω) are known, we obtain the relation

X̃(ω) = [v1, . . . ,vM ]⊺Y(ω)

with vi from (19). Otherwise, the related random variables X̃i(ω) can be determined by a maximum

likelihood estimate, cf. [11]. Notice that for the important Gaussian case X(ω) ∼ [N (0, 1)]N , we

have for any orthogonal transform QX(ω) ∼ [N (0, 1)]N and thus X̃ has the same law as X.

4. THE MARTÉRN CLASS OF KERNELS

For our numerical tests, we consider a special subset of Hilbert-Schmidt kernels, namely the Matérn

class of kernel functions, cf. [31]. They are very often used as covariance kernels for the definition

of stochastic fields. In accordance with [2], they are defined as follows.
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Definition 4.1. Let r := ‖x− y‖2 and ℓ ∈ (0,∞). Then, the Matérn covariance function of order

ν > 0 is given by

kν(r) :=
21−ν

Γ(ν)

(
√
2νr

ℓ

)ν

Kν

(
√
2νr

ℓ

)

. (20)

Here, Γ denotes the gamma function and Kν denotes the modified Bessel function of the second kind

of order ν, cf. [32].

The expression (20) simplifies if ν = p+ 1/2 with p ∈ N. In this case, [2] provides

kp+1/2(r) = exp

(

−
√
2νr

ℓ

)

p!

(2p)!

p
∑

i=0

(p+ i)!

i!(p− i)!

(
√
8νr

ℓ

)p−i

.

Especially, we have

ν =
1

2
, k1/2(r) = exp

(

− r

ℓ

)

,

ν =
3

2
, k3/2(r) =

(

1 +

√
3r

ℓ

)

exp

(

−
√
3r

ℓ

)

,

ν =
5

2
, k5/2(r) =

(

1 +

√
5r

ℓ
+

5r2

3ℓ2

)

exp

(

−
√
5r

ℓ

)

,

ν =
7

2
, k7/2(r) =

(

1 +

√
7r

ℓ
+

14r2

5ℓ2
+

49
√
7r3

15ℓ3

)

exp

(

−
√
7r

ℓ

)

,

ν =
9

2
, k9/2(r) =

(

1 +
3r

ℓ
+

27r2

7ℓ2
+

18r3

7ℓ3
+

27r4

35ℓ3

)

exp

(

− 3r

ℓ

)

,

ν = ∞, k∞(r) = exp

(

− r2

2ℓ2

)

.

(21)

A visualization of this kernels for different values of ν is given in Figure 1. Obviously, the Sobolev

smoothness of the kernel kν is controlled by the smoothness parameter ν.
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Figure 1. Different values for the smoothness parameter ν.
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For increasing values of ν, the respective kernel function kν exhibits successively more regularity.

Especially, the eigenvalues of the Matérn correlation kernels decay like

λm ≤ Cm−(1+ 2ν
d
) (22)

for some C > 0, cf. [33]. Thus, since the decay of the covariance operator’s eigenvalues is known

in advance, they are very well suited for numerical examples.

Obviously, the Matérn kernels provide rotational symmetry, i.e. they are invariant under

isometries of D, since they are only dependent on the particular distance of the points x and y. Thus,

we obtain analytic expressions for the eigenvalues of the underlying Hilbert-Schmidt operators, if

we choose D = Sd−1 to be the d-dimensional unit sphere. More precisely, we may apply the Funk-

Hecke formula, cf. [34], which reads as follows.

Theorem 4.2. Let x ∈ Sd−1 and f ∈ C([−1, 1]), then it holds

∫

Sd−1

f(x⊺y)Ym(y) dσy = λmYm(x)

with

λm =
∣

∣S
d−2

∣

∣

∫ 1

−1

Pm(d; t)f(t)(1− t2)
d−3
2 dt.

Here, Ym corresponds to a spherical harmonic of order m and Pm(d; t) denotes the polynomial

Pm(d; t) := m! Γ

(

d− 1

2

) ⌊m/2⌋
∑

i=0

(−1

4

)i
(1− t2)itm−2i

i!(m− 2i)!Γ
(

i+ d−1
2

) .

A proof of this theorem can be found in [34]. Especially, for the case d = 3, the polynomials

Pm(3; t), correspond to the Legendre polynomials, cf. [34].

Notice, that the Funk-Hecke formula applies to all kernel functions on Sd−1, which depend

only on the Euclidean distance r(x,y) = ‖x− y‖2. This is easily seen due to r(x,y) = r(x⊺y) =√
2− 2x⊺y for all x,y ∈ Sd−1. Figure 2 shows the distribution of the Matérn-kernels’ eigenvalues
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Figure 2. Decay of the eigenvalues with related fits.

for ν = 3/2, 5/2, 7/2, 9/2 on S2 up to an order of magnitude of 10−10 for the correlation length
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ℓ = 1. The constant C is estimated by a least-square fit for the ratio of the rate given by formula

(22) for C = 1 and the exact eigenvalues given by Theorem 4.2. The obtained values of C for each

kernel under consideration are denoted in the legend of Figure 2. The plot indicates, that the fitted

rates perfectly match the asymptotic behavior of the eigenvalues.

5. NUMERICAL RESULTS

The numerical tests in this section are performed on parametric surfaces Γ ⊂ R3. These surfaces

have recently been considered in the context of solving boundary integral equations, cf. [35] and

the references therein. Especially, the implementation of ACA, we apply here, is explained in [35].

The implementations of ACA and PCD rely on the same single-scale code, which means, they use

the same quadrature routines for the integration of the Galerkin matrices. In case of ACA, we use

ARPACK, cf. [23] to solve the eigen-problem for the covariance operator (5). The size of the Krylov

subspace in ARPACK is chosen to twice the number of desired eigenvalues, which is a reasonable

choice according to [23]. All computations are carried out on a single core of a computing server

with eight Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz and 48GB of main memory.

Furthermore, we set the correlation length of the Matérn kernels to ℓ = 1 in each example.

In the following, let kh,M (x,y) denote the covariance kernel corresponding to the discretized

stochastic field ah,M (x, ω) which is either obtained by PCD or by ACA. If the random variables

{Xm}m are represented exactly in ah,M (x, ω), we can measure the error in terms of the (continuous)

traces of the related covariance operators. Namely, from [11], we know that

‖a− ah,M‖L2(D)⊗L2
P
(Ω) ≤

√

Tr C − Tr Ch,M .

Denoting the orthonormal eigenfunctions of C by {ϕm}m, it holds that

Tr C =

∞
∑

m=1

(Cϕm, ϕm)L2(D) =

∞
∑

m=1

λm =

∫

D

k(x,x) dx

by Mercer’s theorem. Thus, the trace is easily computable in our application.†

5.1. First example

Figure 3. The unit sphere S
2 represented by 6 patches.

† Notice that the Matérn kernels are equal to 1 along the diagonal. Therefore, the trace corresponds to the surface measure.
Especially, we have Tr C = 4π on the unit sphere S2 and Tr C = 120− 7.5π for the plate geometry, considered here.
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As a benchmark, we consider the three-dimensional unit sphere S2 ⊂ R3 represented by 6

congruent patches, see Figure 3. Thus, with the knowledge from the preceding Section 4, we can

compute the exact eigenvalues and eigenfunctions of the Matérn covariance functions as reference.

Furthermore, we can estimate the truncation error due to (22). For the truncation error related to the

Matérn covariance with smoothness parameter ν, it holds that

√

√

√

√

∞
∑

m=M

λm .

√

∫ ∞

M

Cx−1−ν dx =

√

1

ν
CM−ν . (23)

Notice that the dimension is essentially d = 2 here, since we restrict the Matérn kernels to the unit

sphere S2. Using piece-wise constant finite elements, we can achieve a rate of convergence which

is proportional to the mesh width h. Thus, to bound the truncation error of the Karhunen-Loève

expansion by h, we have to ensure

√

1

ν
CM−ν ≤ h ⇒ M ≥

(

C

νh2

)
1
ν

.

j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2
1 6 (9) 4 (4) 4 (4) 4 (4)
2 18 (25) 13 (16) 11 (16) 9 (9)
3 48 (49) 25 (25) 20 (25) 17 (25)
4 120 (121) 45 (49) 33 (36) 26 (36)
5 305 (324) 79 (81) 49 (49) 40 (49)
6 768 (789) 139 (144) 76 (81) 57 (64)
7 1928 (1936) 243 (256) 113 (121) 78 (81)
8 4807 (4900) 423 (441) 166 (169) 107 (121)

Table I. Different values for the cut-off parameter Mj on the unit sphere S
2.

j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2
1 5 (6) 5 (6) 4 (5) 4 (5)
2 19 (21) 14 (14) 12 (13) 11 (12)
3 49 (56) 29 (32) 23 (24) 21 (22)
4 137 (158) 53 (58) 38 (41) 32 (35)
5 359 (414) 97 (107) 58 (62) 46 (49)
6 935 (1082) 167 (185) 89 (96) 64 (69)
7 2415 (2812) 295 (327) 132 (143) 90 (96)
8 − (7158) 513 (569) 197 (214) 122 (130)

Table II. Ranks determined by PCD on the unit sphere S
2.

With the estimation of the constant C at hand, cf. Figure 2, we could now compute the related

length of the Karhunen-Loève expansion. Unfortunately, this approach yields very large numbers

of eigen-pairs to be approximated by ACA. Therefore, we choose another approach. We consider

for each respective kernel the sum of those eigenvalues with magnitude larger then 10−10 as an

approximation to the actual trace of the kernel, i.e.

∫

S2

kν(x,x) dsx =

Mmax
∑

m=1

λm + ε
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with Mmax = arg minm{λm > 10−10}. The resulting truncation error is computable due to the

knowledge of the exact traces which are equal to 4π for every ν. We have ε = 4.18 · 10−6 for

ν = 3/2, ε = 2.43 · 10−7 for ν = 5/2, ε = 4.93 · 10−8 for ν = 7/2, and ε = 1.70 · 10−8 for ν = 9/2.

The rank on each level j with mesh-witdh h = 2−j is then determined according to

Mj = arg min
k∈{1,...,Mmax}

{Mmax
∑

m=1

λm −
k

∑

m=1

λm < h2

Mmax
∑

m=1

λm

}

. (24)

The finest level j which we consider here is 8, resulting in 393216 finite elements. For the levels

j = 1, . . . , 8 and ν = 3/2, 5/2, 7/2, 9/2, the related cut-off parameters Mj are found in Table I.

The number in the brackets denotes the size necessary to resolve clusters of eigenvalues by

approximating only complete subspaces related to the multiplicity of the respective eigenvalue.

This is proposed in [23] in order to achieve the optimal performance of ARPACK.

Table II shows the ranks determined by PCD. The numbers in front of the brackets correspond to

the recompressed ranks, the numbers within the brackets denote the original rank. As it turns out,

the ranks computed by PCD are rather optimal in the sense that they reflect the estimated length of

the Karhunen-Loéve expansion determined by formula (22). Especially for increasing smoothness

of the kernel function, the determined rank gets successively better.

Remark 5.1. We end up with the spectral decomposition of the approximate covariance Ch,M when

we solve the eigen-problem (18) for PCD. By truncating this decomposition with the prescribed

relative accuracy h2, we achieve an a-posteriori recompression of the PCD. This procedure may

at most double the approximation error but reduces the rank by up to 10% on average in our

computations for this article.

The error plots and related computational times for the numerical experiments on the unit sphere

are found in Figure 4 and in Figure 5, respectively. Unfortunately, the computations of ACA as well

as PCD with recompression for ν = 3/2 and level 8, i.e. for 393216 finite elements, could not be

carried out since the available main memory has been insufficient.

Figure 4 shows the trace error for each particular kernel. The expected rate 2−j is indicated in the

plots by the dashed black line. The magenta colored line with boxes shows the error for ACA with

clusters of eigenvalues resolved, whereas the red line with circles shows the error for ACA with

the exact number of eigenvalues computed by (24). The error of the PCD is indicated by the blue

lines with squares and finally the error of PCD with recompression is indicated by the cyan colored

line with circles. It turns out that all four methods provide the expected rate of convergence in this

example. For overview purposes, we have chosen the same colors and markers for each particular

method in the subsequent visualizations.

Figure 5 shows the computational times for every method and each particular kernel. There seems

to be no significant difference in the times for ACA with clusters of eigenvalues resolved and ACA

with the exact number of eigenvalues from (24) for all kernels under consideration. The situation

changes if we look at the times for PCD with and without recompression. Especially for ν = 3/2, the

computational time nearly doubles due to the recompression. Thus, the decision if a recompression

is reasonable depends on the situation at hand. Nevertheless, we observe that PCD is about a factor

of 10 times faster than ACA.

5.2. Second example

In our second example, we consider the plate geometry shown in Figure 6. It is a rectangle with 30
inscribed, equi-spaced circular holes, which is represented by 120 patches and scaled to a size of

2× 2.4. Here, the computations are carried out on levels j = 1, . . . , 6, where level 6 corresponds

to 491520 finite elements. Figure 7 contains a visualization of the four orthonormal eigenfunctions

corresponding to the four largest eigenvalues of the Matérn kernel with ν = 3/2.

In this example, we do not know the number of eigenvalues necessary to achieve the desired

precision with ACA and ARPACK. Therefore, we use here the ranks provided by PCD with

recompression as reference. The respective values are found in Table III. Again, the numbers in
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Figure 4. Numerical results (errors) on the unit sphere S
2.
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Figure 5. Numerical results (computational times) on the unit sphere S
2.
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Figure 6. Plate geometry represented by 120 patches.

Figure 7. First four orthonormal eigenfunctions on the plate geometry and Matérn kernel for ν = 3/2.

front of the brackets correspond to the recompressed ranks of PCD and the numbers within the

brackets denote the original ranks.

The error plots and related computational times for the numerical experiments on the plate

geometry are presented in Figure 8 and in Figure 9, respectively.

The trace error for each particular kernel, i.e. ν = 3/2, 5/2, 7/2, 9/2, and the different methods is

found in Figure 8. Again, PCD provides exactly the expected rate of convergence. Nevertheless, in

this regime, PCD with recompression performs from 25% up to 30% worse. The behavior of ACA is
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j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2
1 13 (14) 11 (11) 9 (9) 9 (9)
2 34 (36) 19 (20) 15 (15) 14 (14)
3 78 (86) 31 (33) 25 (26) 20 (21)
4 178 (196) 52 (56) 35 (37) 29 (30)
5 416 (459) 87 (93) 49 (52) 38 (39)
6 983(1085) 141 (151) 71 (75) 53 (55)
Table III. Ranks determined by PCD on the plate geometry.
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Figure 8. Numerical results (errors) on the plate geometry.

not that monotone as in the previous example. In case of the smoother kernels, i.e. ν = 7/2, 9/2, the

rate of convergence deteriorates in the last step. For ν = 3/2 we have a contrary behavior. The rate

of convergence is increased from level 2 to 3 and in the last step. Finally, we observe for ν = 5/2
an increased rate of convergence from level 4 to 5 on the one hand and an increase of the error

in the last step on the other hand. Possibly, these effects are caused by a lack of resolution of the

faster oscillating eigenfunctions which are involved in the deflation process of the implicit restarted

Arnoldi method and the resulting impact on the computation of the sought eigenvalues.

Figure 9 shows the computational times for every method and each particular kernel. Here,

the times for the recompression of PCD are rather moderate due to the low ranks. Nevertheless,

the benefit of the recompression is relatively small here, especially for the smoother kernels,

cf. Table III. Again, PCD outperforms ACA by about a factor of 10.
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Figure 9. Numerical results (computational times) on the plate geometry.

6. CONCLUDING REMARKS

The present article is devoted to the efficient approximation of random fields for numerical

applications. It is state of the art to compute a separable representation of the random field under

consideration. A very common approach to determine such a representation is the (truncated)

Karhunen-Loève expansion. Here, one has to solve the eigen-problem for the related covariance

operator. We have tackled this task by combining the Adaptive Cross Approximation and

ARPACK. Nevertheless, a major drawback of this approach is that the number of eigen-pairs to

be approximated has to be known in advance. This might be a problem in practice since the correct

number is not feasible in many applications. With the pivoted Cholesky decomposition, we provide

a method which overcomes this obstruction. Due to the knowledge of the discretized covariance

operator’s main diagonal, we are able to a-posteriori control the approximation error in terms of

the trace norm. If, for the application at hand, an orthogonal decomposition of the stochastic field

is required, this can be realized relatively cheap by the pivoted Cholesky decomposition in a post-

processing step. The numerical experiments suggest that both approaches provide the optimal rate

of convergence. In the comparison of the computational times, we observe however that the pivoted

Cholesky decomposition is the superior method.
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9. Loève M. Probability theory. I+II. Fourth edn., no. 45 in Graduate Texts in Mathematics, Springer: New York,
1977.

10. Giebermann K. Multilevel approximation of boundary integral operators. Computing 2001; 67(3):183–207.
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