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Efficient arbitrary simultaneously entangling gates
on a trapped-ion quantum computer
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Efficiently entangling pairs of qubits is essential to fully harness the power of quantum

computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of

qubits on a trapped-ion quantum computer. The protocol requires classical computational

resources polynomial in the system size, and very little overhead in the quantum control

compared to a single-pair case. We demonstrate an exponential improvement in both

classical and quantum resources over the current state of the art. We implement the protocol

on a software-defined trapped-ion quantum computer, where we reconfigure the quantum

computer architecture on demand. Our protocol may also be extended to a wide variety of

other quantum computing platforms.
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Quantum computers are expected to solve certain com-
putational problems of interest more efficiently than
classical computers using state-of-the-art classical algo-

rithms. Notable examples include integer factorization1, unsorted
database search2, and quantum dynamics simulations3. Multiple
quantum computing platforms are under active development
today. One of these platforms is the trapped-ion quantum
information processor (TIQIP), which has demonstrated 171Yb+

qubit coherence times in excess of 10 minutes4, single-qubit gate
fidelity of 99.9999%5, and two-qubit gate fidelity of 99.9%6,7. In
addition, a TIQIP may leverage the all-to-all connectivity between
ion qubits. The ability to directly apply a two-qubit gate to any
pair of qubits provides TIQIPs an important advantage over other
QIPs with limited connectivity8.

While the current progress in TIQIP technology is remark-
able, better quality quantum gates are needed to run longer
quantum programs and still obtain reliable quantum compu-
tational results9. The shortest quantum program known to date,
expected to deliver scientifically meaningful discoveries,
requires hundreds of thousands of quantum gates10. Therefore,
to address quantum computational problems of broad interest,
the two-qubit gate design in TIQIPs must be improved. An
efficient procedure that simultaneously implements as many
two-qubit gates as possible with the least amount of resources
will thus accelerate the process of harnessing the power of
universal, programmable quantum computers.

In this paper, we devise a new protocol that efficiently and
simultaneously implements multiple two-qubit gates on a
TIQIP. Using our efficient, arbitrary, simultaneously entangling
(EASE) gates, arbitrary ion-qubit pairs, overlapping or not, can
be entangled with programmable degrees of quantum entan-
glement. We implement EASE gates by modulating the
amplitude of laser pulses that address individual ion qubits that
comprise our scalable, general-purpose, programmable TIQIP,
hosted at IonQ11. These new gates pave the way for efficient
implementations of large-scale quantum algorithms on
a TIQIP.

Results
Two-qubit gate on a trapped-ion quantum information pro-
cessor. The native two-qubit gate on our TIQIP is implemented
according to the Mølmer–Sørensen protocol12–14, which induces
an effective XX-Ising interaction between a pair of qubits. The
coupling between the computational states of the qubit pair is
mediated by the motional modes of the linear N-ion chain stored
in an ion trap. The evolution operator Û that describes this
operation is15

Û ¼ exp
XN

m¼1
ðβ̂ðmÞ � β̂

ðmÞyÞσ̂ðmÞ
x � i

X
n≠m

χðm;nÞσ̂ðmÞ
x σ̂ðnÞx =4

h i

ð1Þ

where β̂
ðmÞ ¼ i

PN
p¼1 α

ðmÞ
p ðτÞâyp (with motional-mode index p,

coupling strength αðmÞ
p between ion m and mode p, the pth

motional-mode creation operator âyp—see Fig. 1—and the gate
duration τ) denotes the coupling between the computational state
of qubit m and the motional modes, σ̂ðmÞ

x is the Pauli-x operator
on the mth qubit, and χ(m, n) denotes the degree of entanglement
between qubits m and n. To obtain a successful single-pair XX
gate, we require that the first term in Eq. (1) and all χ(m, n) vanish,
except for χ(m, n) of the targeted ion pair m, n. Similarly, to
implement EASE gates between freely chosen pairs of qubits with
an arbitrary degree of entanglement for every pair, we require that

(A) the first operator β̂
ðmÞ

, which represents the coupling
between motional modes of the ion chain and the
computational states of the qubits, vanishes at the end of
the evolution, and that

(B) the second operator’s coefficient χ(m, n) either vanishes (if
the ion pair m, n is not to be entangled) or computes to a
pre-specified degree of entanglement (if the pair is to be
entangled).

To satisfy conditions (A) and (B), we individually address
participating ions with amplitude-modulated (AM) laser pulses11,
where the modulation is performed by dividing the gate time τ
into Nseg equi-spaced segments and allowing the amplitude to
vary from one segment to the next.

Denoting the amplitude of the pulse Ω(m)(t) applied to ion m

during segment k as ΩðmÞ
k , the laser detuning from the carrier

frequency as μ and the motional-mode frequencies as ωp,
condition (A) implies, for all m and p,

αðmÞ
p ðτÞ ¼ �ηðmÞ

p

Z τ

0
dt ΩðmÞðtÞ cosðμtÞeiωpt ¼ 0

7!
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k

Z kτ=Nseg

ðk�1Þτ=Nseg

dt cosðμtÞeiωpt ¼ M̂ΩðmÞ ¼ 0;
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where ηðmÞ
p denotes the coupling constant (Lamb–Dicke para-

meter) for qubit m and mode p (see also Fig. 1), M̂ is the matrix
with elements that are the segmented integrals shown above, and

Ω(m) is the vector of ΩðmÞ
k . Likewise, in the segmented form,

condition (B) implies
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¼ θðm;nÞ if m and n are to be entangled;

0 otherwise;

(
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where D̂
ðm;nÞ ¼ D̂

ðn;mÞ
is the triangular matrix with elements

that are the segmented double integrals and the angle parameters
θðm;nÞ denote the desired degree of entanglement between the
qubit pair (m, n). We note that, according to Eq. (1), the desired
evolution to be induced between qubits m and n is

exp½�iðχðm;nÞ þ χðn;mÞÞσðmÞ
x σðnÞx =4�. Since the χs are scalars,

χðm;nÞ þ χðn;mÞ ¼ χðm;nÞ þ ðχðm;nÞÞT . Therefore, the constraint
Eq. (3) may be rewritten as

ΩðmÞ
� �T

Ŝðm;nÞΩðnÞ ¼ θðm;nÞ if m and n are to be entangled;

0 otherwise;

(

ð4Þ

where Ŝ
ðm;nÞ ¼ ½D̂ðm;nÞ þ ðD̂ðm;nÞÞ

T
�=2 is a symmetric matrix. The

problem of finding the amplitude vectors Ω satisfying the two
conditions Eq. (2) and Eq. (4) can, in principle, be written in the
form of a quadratically constrained quadratic program (QCQP)16,
which is in general NP-hard, as has been pointed out in the
literature17,18. However, our problem is fully specified by the
two equations, Eqs. (2) and (4), which is a special case of QCQP.
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The vectors Ω that satisfy Eq. (2) and Eq. (4) can be solved exactly
in polynomial time using a linear approach.

EASE-gate protocol. Figure 2 shows a flowchart that outlines
our linear approach to produce pulse shapes that implement an
EASE gate. Once the experimental parameters, such as the
number and positions of the ion qubits, the motional-mode fre-
quencies of the ion chain, the Lamb–Dicke parameters, the
detuning frequency, the desired EASE-gate duration, the number
of AM segments, and the qubit pairs with corresponding degrees
of entanglement are specified, our protocol constructs the
M̂-matrix in Eq. (2). The null-space vectors of M̂ are then
computed. They span a vector space from which we draw pulse
shapes that satisfy Eq. (4).

To find a suitable pulse shape that requires minimal laser
power, an important experimental concern, the Ŝ matrix in Eq.
(4) is first projected onto the null space of M̂. The eigenvector c
with the largest absolute eigenvalue of the projected matrix is
then guaranteed to require the minimal power possible, measured

according to the sum of squares of the individual amplitudes

ΩðmÞ
l . This methodology can then be iterated to find the pulse

shapes for all ion qubits involved in the EASE gate (see
Supplementary Notes 1 and 2 for theoretical details) by
considering the pulse-shape search-space for a given qubit to be
the intersection between the full null space and a subspace
orthogonal to the space of previously identified pulse shapes for
ions that the given qubit needs to be decoupled from.

We note that, even though an EASE gate with NEASE

participating qubits may require as many as NEASE(NEASE− 1)/
2 angle parameters θ(m, n) (see Eq. (3)), we require only Nseg=
2N+NEASE− 1 as the minimal number of segments, which is

sufficient to satisfy all χ(m, n) relations and αðmÞ
p conditions. This is

enabled by the fact that, for every additional participating qubit,
we may start with the full set of null-space vectors that always
satisfy condition (A), and the number of relations with respect to
each of the participating qubits, according to condition (B), is at
maximum NEASE− 1. In other words, each participating qubit in
an EASE gate is subject to at most 2N+NEASE− 1 linear
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Fig. 1 Quantum dynamics of an EASE gate. a An energy-level diagram associated with the pth motional mode showing off-resonant red and blue sideband
transitions that cause the desired two-qubit coupling between 00j i and 11j i quantum states. Here, ω±=ω01 ± μ, and n denotes the motional state.
b Frequency spectrum of the motional modes ωp of the ion chain centered around the carrier frequency ω01 that induces a single-qubit state transition.
Symmetric detuning by frequency μ for red and blue sidebands is applied to the pulses that illuminate ions to induce the desired EASE gate. c Motional-
mode diagrams that show the geometric structure of the modes. The ion displacements from their respective equilibrium positions are proportional to the
coupling strength ηðmÞp between the different ions m and the different modes p.

PREPROCESSING:

Re-order the qubits
STEP 1:  Identify
non-interacting qubits

STEP 2:  Construct a
solution subspace

STEP 3:  Determine
how to proceed

CASE I:  Save the
solution subspace

CASE II:  Compute
power-optimal
pulse shapes

CASE III:  Compute the
pulse shape satisfying
the desired couplings

Fig. 2 Flowchart for EASE-gate pulse-shape synthesis. As a preprocessing step, reorder those qubits that participate in a given EASE gate into disjoint,
non-interacting sets, where the first and second qubits of each set interact. In other words, within each set, overlapping qubit pairs may interact, if the size
of the set is larger than two. Consider now the following iterative steps. In Step 1, identify the qubits considered in the past iterations that do not interact
with the currently considered qubit. In Step 2, construct a subspace orthogonal to the interactions between previously determined pulse shapes for qubits
identified in Step 1 and the currently considered qubit. In Step 3, determine how to proceed based on the index of the currently considered qubit within its
set. If that qubit is the first element of its set, proceed to Case I; if it is the second, proceed to Case II; otherwise, proceed to Case III. Case I: save the
orthonormalized vectors spanning the subspace constructed in Step 2. Some linear combination of those vectors will yield a power-optimal pulse shape for
the currently considered qubit. Case II: using two sets of orthonormal vectors, for the currently considered and the immediately preceding qubits, compute
the power-optimal pulse shapes for those qubits given their interaction matrix. Case III: Compute the pulse shape for the currently considered qubit that
satisfies the desired entangling interactions between itself and all of the previously considered qubits. We iterate Steps 1–3 until all participating qubits
have been accounted for. This method may be used for non-overlapping or overlapping pairs of qubits. See Supplementary Note 2 for further details.
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constraints. Because our approach is completely linear, the EASE-
gate pulse shapes that exactly implement the desired operation
are obtained in polynomial time.

Implementation. We implement our EASE-gate protocol on a
TIQIP hosted at IonQ11, which can load and control small chains
of 171Yb+ ion qubits. Each qubit is optically initialized to a pure
quantum state and then manipulated by addressing the qubit with
pulses from a mode-locked 355-nm pulsed laser. These pulses can
be engineered to drive either single-qubit operations by coupling
to the internal (spin) degree of freedom of the ion, or two-qubit
operations by coupling to both the internal and external (col-
lective motional) degrees of freedom. We realize EASE gates by
coupling the internal and external degrees of freedom of many
ions simultaneously with segmented AM laser pulses.

In particular, we implemented EASE gates to fully entangle
qubits in multiple disjoint pairs in a system with 11 ion qubits on
a 13-ion chain. Of these qubits, up to 5 pairs (10 qubits) were
simultaneously entangled. We then performed partial output state
tomography on each entangled state by measuring the parity of
the entangled pairs as a function of an analysis-pulse angle
(shown in Fig. 3), and also measuring the even parity population
without applying analysis pulses. By extracting the amplitude of
the measured parity and populations via maximum likelihood
estimation7,11, we are able to get a lower-bound estimate of the
fidelity of the performed EASE gate. For our implementation with
five simultaneous gates (Fig. 3a), we estimate an average gate
fidelity of F ¼ 88:3þ1:6

�1:0%. For the case in which we applied five
gates sequentially (Fig. 3b), we estimate an average gate fidelity of
F ¼ 92:0þ0:8

�1:4%. The given errors on fidelity represent a 1σ
confidence interval on the maximum likelihood estimation used
to determine the fidelity.

We use the same technique to estimate any residual
entanglement with non-addressed ions, due predominantly to
optical crosstalk, by determining the overlap of any pair with the

fully entangled Bell state we are trying to prepare. For pairs with
one ion participating in a gate, the fidelity is ideally F= 25%,
which corresponds to a fully mixed state. For pairs where neither
ion participates in an applied gate, we expect to have F= 50%
because the initial pure state has 50% overlap with the Bell state
we are trying to prepare. The 50 non-involved pairs have δF ¼
2:3þ2:1

�1:6% average deviation from the ideal fidelity for the five
simultaneously applied gates (Fig. 3a). In the case of five
sequentially applied gates (Fig. 3b), we see an average deviation
from the ideal fidelity of δF ¼ 0:9þ2:4

�1:0%. In these results, we have
performed more simultaneous two-qubit entangling gates than
previously reported17 on chains of ions at least twice as long as
any previously reported results17,18. The fidelities reported here
are markedly lower; however, it should be noted that our results
are not corrected for state-preparation and measurement errors.

Discussion
Because a TIQIP can induce couplings between arbitrary pairs of
qubits by simply switching on and off pairwise interactions, the
EASE gates developed and demonstrated here can readily be
implemented on a TIQIP through software alone. This is in
contrast to other quantum hardware platforms such as a solid-
state QIPs, where each two-qubit interaction has to be hard-wired
during the manufacturing process. TIQIPs can load as many
qubits as necessary and employ the EASE-gate protocol to
simultaneously implement any combinations of simultaneously
addressible Ising interactions with little to no extra cost at the
hardware level.

A host of quantum algorithms benefit from the ability to
implement EASE gates. These algorithms tend to contain an orderly
structure such that the circuit may be manipulated to reveal mul-
tiple Ising interactions applied simultaneously. For instance:

● Quantum arithmetic circuits19,20—useful for solving an
integer factoring problem or computing discrete logarithms
over Abelian groups1.
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Fig. 3 Parity curves for EASE and sequential gates and a 11-qubit TIQIP all-to-all connectivity diagram. The connectivity diagram displays the ion pairs
used in the experiments. The associated fidelities are computed from the amplitudes of the measured parity and populations via maximum likelihood
estimation. a Parity curve for an EASE gate with five simultaneous XX interactions. We chose pulses with Nseg= 35 and gate time τ= 924.0 μs. This gate
yielded an average fidelity of 88:3þ1:0

�1:6% with an average deviation from the ideal fidelity of 2:3þ2:1
�1:6% for the 50 non-involved pairs. b Parity curve for a series

of five sequential XX interactions. We chose pulses with Nseg= 27 for each XX gate with gate time τ= 318.6 μs, which yielded an average fidelity of
92:0þ0:8

�1:4 % with an average deviation from the ideal fidelity of 0:9þ2:4
�1:0% for the 50 non-involved pairs. To ensure a fair comparison of gate times, we made

sure that the peak powers at which we executed the EASE and the sequential gates differed by no more than 0.5%. Thus, comparing the EASE and
sequential-based approaches to create the same final state of all qubits, application of the EASE gate saved ~669.0 μs, i.e., 42% of the total gate time
needed in the sequential approach. The quoted errors are 1σ confidence intervals from the maximum likelihood estimation. See Supplementary Note 3 for
implementation details.
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● Multi-control Toffoli gates using global XX gates as a special
instance of an EASE gate21—useful, e.g., Grover’s unsorted
database search algorithm2, applicable for solving certain
satisfiability problems9.

● Fan-in or fan-out CNOTs or various roots of NOTs—useful
for realizing the quantum Fourier transform21 or the
Bernstein–Vazirani algorithm22.

● Disjoint k-local operators—useful for quantum simulation
circuits, including both variational quantum eigensolver23 or
Hamiltonian-dynamics simulations10, and the Hidden-shift
algorithms24.

To highlight the advantages offered by the EASE operation, in
Fig. 4 we show a selection of notable algorithms that benefit from
our efficient EASE-gate protocol.

Our EASE-gate protocol is linear and the pulse shapes we obtain
exactly solve the problem and induce the desired quantum opera-
tion with up to N(N− 1)/2 angle parameters θ(m, n) with minimal
control overhead, i.e., linear in N, comparable to a single XX gate in
terms of the number of segments. The shapes are generated in time
polynomial in the system size and are power-optimal for the AM
approach when used for a single XX gate with a fixed number of
segments, since, in this case, the EASE protocol produces the pulse
vector Ω with the minimal possible norm that implements a single
entangling gate. This is in contrast to the non-linear, approximate
methods used in previous studies17,18 that in general return an
approximate pulse-shape solution and require an exponential
overhead in the number of segments. Our protocol explains why it
was possible in previous studies17 that a certain echo-based pulse-
shape ansatz worked well for applying simultaneous gates on dis-
joint pairs of qubits—the shape automatically satisfies the entan-
glement requirement condition (B) and the infidelity owing to the
imperfect decoupling from the motional modes, due to condition
(A), may be minimized by navigating through the null space of M̂.
Furthermore, our protocol enables us to entangle pairs of qubits
with overlapping qubits.

Our protocol is scalable and is guaranteed to work for any
modulation that admits a linear construction, such as the equi-
spaced segment-based AM approach explored here or a more
general approach demonstrated in ref. 25 (see Sec. S12 therein). In
addition, because, again, our protocol admits a linear construc-
tion, we can readily take advantage of the high degree of stabi-
lization with respect to external parameter fluctuations
demonstrated in ref. 25 directly in the EASE-gate implementa-
tions, at the cost of additional degrees of freedom; in the segment-
based AM method, this translates to an additional number of
segments. The improved stability will likely lead to a better gate
fidelity. Furthermore, we could leverage the first circuit identity
that appears in Sec. IV of ref. 21 to remove certain crosstalk errors
to first order: Note that the circuit identity reads XX(φ)(1⊗ σz)
XX(φ)(1⊗ σz)= (1⊗ 1) for any entangling angle φ, where σz is
the Pauli-z operator. As an example, this implies that a weak XX
interaction or crosstalk, for instance induced between an
EASE-participating qubit that sees the pulse shape Ω and a non-
EASE-participating qubit that sits adjacent to one of the EASE-
participating qubits that sees εΩ0, due to the spilled-over beam
seen by the nonparticipating qubit, can be removed to first order
in ε by repeating twice the interleaving of the σz gates on, e.g., a
nonparticipating qubit and the EASE gate with half the desired
entanglement angles. This costs, in our approach, a factor two in
the number of segments used to implement an EASE gate. Our
approach can be further generalized to mitigate higher order
crosstalk errors at the cost of more segments.

We note that other quantum information processor archi-
tectures, such as those based on quantum dots26, neutral
atoms27,28, or superconducting circuits29,30, also employ pulse-

shape techniques to induce desired quantum operations. While
the evolution operators for these approaches are not identical to
the one considered here, the motivation behind the pulse shaping
is the same: Remove the unwanted coupling while preserving the
desired interaction from the architecturally-inducible Hamilto-
nian. We anticipate that the kind of efficient, linear approach we
show here may be applicable for other qubit technologies with
further research.

Classical supercomputers employ Multi-Instruction Multi-
Data architectures and today’s personal computers typically
employ Single-Instruction Multi-Data architectures. These par-
allel architectures have contributed significantly to sustaining the
growth of classical processing power in the era where the fre-
quency scaling of the processors has halted. Likewise, we expect
the EASE protocol we explore in this paper to significantly boost
the power of quantum computing, unlocking its ability to
implement multiple entangling gates efficiently. Akin to the well-
known Amdahl’s law in classical parallel computing31, we may
roughly estimate the speed-up in quantum latency to scale
inversely proportional to 1− p+ 2pr/N2, where p denotes the
proportion of the quantum computational task that benefits from
the simultaneous operations, r= TEASE/TSINGLE denotes the
latency overhead of an EASE gate with duration TEASE over a
single entangling gate with duration TSINGLE, and the factor N2/2
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Fig. 4 Quantum resource requirement as a function of the number of
qubits for various algorithms. The resources are counted as the number of
two-qubit CNOT gates for non-EASE-based implementation and multi-
qubit EASE gates for EASE-based implementation. The quantum
computational runtime or fidelity of the algorithms may vary in practice.
See Fig. 3 for the details of the trade-off between the two approaches for
the particular context described therein. Well-defined circuit layouts of the
two-qubit entangling gates in all cases considered allow for negligible
classical resource overhead in solving for EASE pulse shapes over the
standard pairwise pulse shapes used in a serial approach. Shown are the
Hamiltonian simulation (HSIM) algorithms (circles) simulating the
Heisenberg Hamiltonian over various connectivity structures10, variational
quantum eigensolver (VQE) circuits (triangles) simulating the water
molecule with varying degrees of approximations23, quantum Fourier
transform (QFT) circuits (red lines)21, and Bernstein–Vazirani (BV)
algorithm (orange lines)22 with expected gate counts over all possible
oracles of a fixed size. Hollow plot symbols and dashed lines denote the
two-qubit CNOT gate based implementations. Solid plot symbols and solid
lines denote the multi-qubit EASE-based implementations. Quadratic
improvements in the resource requirement are observed for HSIM and
QFT, and a linear to constant complexity improvement is observed for the
BV and the Hidden-shift (not shown) algorithms. See Supplementary
Note 4 for details on how to obtain EASE-gate counts.
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arises from the capability of the EASE gate to implement up to
≈N2/2 entangling gates at a time. We believe simultaneously
entangling gates, such as the EASE gates developed in this paper,
will help ensure continued growth of the power of quantum
processors, even when we encounter resource limitations
per qubit.

Data availability
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