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Abstract. This contribution focuses on a class of Galois field used to achieve fast
finite field arithmetic which we call an Optimal Extension Field (OEF), first introduced
in [3]. We extend this work by presenting an adaptation of Itoh and Tsujii’s algorithm
for finite field inversion applied to OEFs. In particular, we use the facts that the action of
the Frobenius map in GF(pm) can be computed with only m−1 subfield multiplications
and that inverses in GF(p) may be computed cheaply using known techniques. As a
result, we show that one extension field inversion can be computed with a logarithmic
number of extension field multiplications. In addition, we provide new extension field
multiplication formulas which give a performance increase. Further, we provide an
OEF construction algorithm together with tables of Type I and Type II OEFs along
with statistics on the number of pseudo-Mersenne primes and OEFs. We apply this
new work to provide implementation results using these methods to construct elliptic
curve cryptosystems on both DEC Alpha workstations and Pentium-class PCs. These
results show that OEFs when used with our new inversion and multiplication algorithms
provide a substantial performance increase over other reported methods.

Key words. Finite fields, Fast arithmetic, Binomials, Modular reduction, Elliptic
curves, Inversion.

1. Introduction

Since their introduction by Miller [20] and Koblitz [14], elliptic curve cryptosystems
(ECCs) have been shown to be a secure and computationally efficient method of per-
forming public-key operations. Our focus in this paper is the efficient realization of ECCs
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in software. Our approach focuses on the finite field arithmetic required for ECCs. Finite
fields are identified with the notation GF(pm), where p is a prime and m is a positive
integer. It is well known that finite fields exist for any choice of prime p and integer m.

A standard technique in the development of symmetric-key systems has been to design
a cipher to be efficient on a particular type of platform. For example, the International
Data Encryption Algorithm [16] and RC5 [23] are designed to use operations that are
efficient on desktop-class microprocessors. In addition, the NIST/ANSI Data Encryption
Algorithm has been designed so that hardware realizations are particularly efficient
[21], [1].

We propose to take the same approach with public-key system design. ECCs provide
the user with a great deal of flexibility in the choice of system parameters. The underlying
assumption is that some choices of p and m of a finite field GF(pm) are a better fit for
a particular computer than others. The computer systems we are concerned with in this
contribution are the microprocessors found in workstations and desktop PCs.

Most of the previous work in this area focuses on two choices of p and m. The case
of p = 2 is especially attractive for hardware circuit design of finite field multipliers,
since the elements of the subfield GF(2) can be conveniently represented by the logical
values “0” and “1.” However, p = 2 does not offer the same computational advantages
in a software implementation, since microprocessors are designed to calculate results
in units of data known as words. Traditional software algorithms for multiplication in
GF(2m) have a complexity of cm2/w steps, where w is the processor’s word length
and c is some constant greater than 1. For the large values of m required for practical
public-key algorithms, multiplication in GF(2m) can be very slow.

Similarly, prime fields GF(p) also have computational difficulties on standard comput-
ers. For example, practical elliptic curve schemes fix p to be greater than 2160. Multiple
machine words are required to represent elements from these fields on general-purpose
workstation microprocessors, since typical word sizes are simply not large enough. This
representation presents two computational difficulties: carries between words must be
accommodated, and reduction modulo p must be performed with operands that span
multiple machine words.

Optimal Extension Fields (OEFs) as introduced in [3], are finite fields of the form
GF(pm), p > 2. OEFs offer considerable computational advantages by selecting p and
m specifically to match the underlying hardware used to perform the arithmetic. The
previous work in this area has focused on the application of OEFs to RISC workstations,
notably the DEC Alpha microprocessor.

This contribution extends the work in [3] by providing an efficient inversion algo-
rithm, improved formulas for extension field multiplication, a new algorithm for OEF
construction, tables of Type I and Type II OEFs, tables of the number of OEFs for �log p�
up to 57 of the required order for ECCs, as well as statistics on the existence of primes
in short intervals.

2. Previous Work

Previous work on optimization of software implementations of finite field arithmetic
has often focused on a single cryptographic application, such as designing a fast imple-
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mentation for one particular finite field. One popular optimization for ECCs involves
the use of subfields of characteristic 2. A paper by DeWin et al. [6] analyzes the use of
GF((2n)m), with a focus on n = 16, m = 11. This construction yields an extension field
with 2176 elements. The subfield GF(216) has a Cayley table of sufficiently small size
to fit in the memory of a workstation. Optimizations for multiplication and inversion in
such composite fields of characteristic 2 are described in [8].

Schroeppel et al. [24] report an implementation of an elliptic curve analogue of Diffie–
Hellman key exchange over GF(2155). The arithmetic is based on a polynomial basis
representation of the field elements. Another paper by DeWin et al. [7] presents a de-
tailed implementation of elliptic curve arithmetic on a desktop PC, with the focus on
its application to digital signature schemes. For ECCs over prime fields, their con-
struction uses projective coordinates to eliminate the need for inversion, along with a
balanced ternary representation of the multiplicand. The authors’ previous work in [2]
and [3] marks a departure from these methods and serves as a starting point for this new
research.

A great deal of work has been done in studying aspects of inversion in a finite field
especially since inversion is the most costly of the four basic operations. In the case
of prime fields, in [12], Knuth demonstrates that the Extended Euclidean Algorithm
requires 0.843 log2(s)+ 1.47 divisions in the average case, for s the element we wish to
invert. A great number of variants on Euclid’s algorithm have been developed for use in
cryptographic applications, as in [6], [17], and [24].

Itoh and Tsujii present an algorithm in [9] for multiplicative inversion in GF(qm) based
on the idea of reducing extension field inversion to the problem of subfield inversion.
Their method is presented in the context of normal bases, where exponentiation to the
qth power is very efficient.

In [8], a version of Itoh and Tsujii’s algorithm for inversion when applied to composite
Galois fields of characteristic 2 in a polynomial basis is described which serves as the
basis for our development of a variant of this method applied to OEFs.

Lee et al. [17] provide an implementation of OEFs using a choice of p less than 216.
The authors present a new inversion algorithm they call the Modified Almost Inverse
Algorithm (MAIA) which is especially suited for OEFs. Their choice of p of this size
allows for the use of look-up tables for subfield inversion.

Kobayashi et al. present in [13] a method of OEF inversion which is based on a
direct solution of a set of linear equations. The method is efficient for small values
of m.

3. Optimal Extension Fields

In the following, we define a class of finite fields, which we call an Optimal Extension
Field (OEF). To simplify matters, we introduce a name for a class of prime numbers:

Definition 1. Let c be a positive rational integer. A pseudo-Mersenne prime is a prime
number of the form 2n ± c, log2 c ≤ � 1

2 n�.

We now define an OEF:
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Definition 2. An Optimal Extension Field is a finite field G F(pm) such that:

1. p is a pseudo-Mersenne prime.
2. An irreducible binomial P(x) = xm − ω exists over GF(p).

The following theorem from [18] describes the cases when an irreducible binomial
exists:

Theorem 1. Let m ≥ 2 be an integer and ω ∈ GF(p)∗. Then the binomial xm − ω is
irreducible in GF(p)[x] if and only if the following two conditions are satisfied: (i) each
prime factor of m divides the order e of ω over GF(p), but not (p−1)/e; (ii) p ≡ 1 mod 4
if m ≡ 0 mod 4.

An important corollary is given in [11]:

Corollary 1. Let ω be a primitive element for GF(p) and let m be a divisor of p − 1.
Then xm − ω is an irreducible polynomial.

We observe that there are two special cases of OEF which yield additional arithmetic
advantages, which we call Type I and Type II.

Definition 3. A Type I OEF has p = 2n ± 1.

A Type I OEF allows for subfield modular reduction with very low complexity. For
ECCs in practice, particularly good choices of p are 231 − 1 and 261 − 1.

Definition 4. A Type II OEF has an irreducible binomial xm − 2.

A Type II OEF allows for a reduction in the complexity of extension field modular
reduction since the multiplications by ω in Theorem 2 can be implemented using shifts
instead of explicit multiplications.

The range of possible m for a given p depends on the factorization of p − 1 due to
Theorem 1 and Corollary 1.

4. Basic OEF Arithmetic

This section describes the basic method for arithmetic in fields GF(pm), of which an
OEF is a special case. The operation of inversion is the most costly of the four basic
operations, and is thus treated separately in Section 5. In Section 6, improved multipli-
cation algorithms are introduced. The material of this section is described in [2] and [3],
and appears here solely for completeness of presentation.

An OEF GF(pm) is isomorphic to GF(p)[x]/(P(x)), where P(x) = xm +∑m−1
i=0 pi

xi , pi ∈ GF(p), is a monic irreducible polynomial of degree m over GF(p). In the
following, a residue class will be identified with the polynomial of least degree in this
class. We consider a standard (or polynomial or canonical) basis representation of a field
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element A(x) ∈ GF(pm):

A(x) = am−1xm−1 + · · · + a1x + a0, (1)

where ai ∈ GF(p). Since we choose p to be less than the processor’s word size, we can
represent A(x) with m registers, each containing one ai .

All arithmetic operations are performed modulo the field polynomial. The choice of
field polynomial determines the complexity of the modular reduction.

4.1. Addition and Subtraction

Addition and subtraction of two field elements is implemented in a straightforward
manner by adding or subtracting the coefficients of their polynomial representation and,
if necessary, performing a modular reduction by subtracting or adding p once from the
intermediate result.

4.2. Multiplication

Field multiplication can be performed in two stages: polynomial multiplication and
modular reduction. First, we perform an ordinary polynomial multiplication of two field
elements A(x) and B(x), resulting in an intermediate product C ′(x) of degree less than
or equal to 2m − 2:

C ′(x) = A(x)× B(x) = c′2m−2x2m−2 + · · · + c′1x + c′0; c′i ∈ GF(p). (2)

The schoolbook method to calculate the coefficients c′i , i = 0, 1, . . . , 2m−2, requires
m2 multiplications and (m − 1)2 additions in the subfield GF(p).

Second, in Section 4.3 we present an efficient method to calculate the residue C(x) ≡
C ′(x) mod P(x), C(x) ∈ GF(pm). Section 6 shows ways to reduce the number of
coefficient multiplications required.

Squaring can be considered a special case of multiplication. The only difference is
that the number of coefficient multiplications can be reduced to m(m + 1)/2.

In order to perform coefficient multiplications, we must multiply in the subfield.
Methods for fast subfield multiplication were noted in [3] and [19]. For the case of a
Type I OEF, we require a single integer multiplication to implement the subfield multiply,
whereas with a general OEF we require three.

4.3. Extension Field Modular Reduction

After performing a multiplication of field elements in a polynomial representation, we
obtain the intermediate result C ′(x). In general the degree of C ′(x) will be greater than
or equal to m. In this case we need to perform a modular reduction. The canonical
method to carry out this calculation is long polynomial division with remainder by the
field polynomial. However, field polynomials of special form allow for computational
efficiencies in the modular reduction.

Since monomials xm, m > 1, are obviously always reducible, we turn our attention
to irreducible binomials. An OEF has by definition a field polynomial of the form
P(x) = xm − ω. The use of an irreducible binomial as a field polynomial yields major
computational advantages as will be shown below. Observe that irreducible binomials
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do not exist over GF(2). Modular reduction with a binomial can be performed with the
following complexity:

Theorem 2. Given a polynomial C ′(x) over GF(p) of degree less than or equal to 2m−
2, C ′(x) can be reduced modulo P(x) = xm−ω requiring at most m−1 multiplications
by ω and m − 1 additions, where both of these operations are performed in GF(p).

A general expression for the reduced polynomial is given by

C(x) ≡ c′m−1xm−1 + [ωc′2m−2 + c′m−2]xm−2 + · · · + [ωc′m + c′0] mod P(x). (3)

As an optimization, when possible we choose those fields with an irreducible binomial
xm − 2, allowing us to implement the multiplications as shifts. OEFs that offer this
optimization are known as Type II OEFs.

5. OEF Inversion

The inversion algorithm for OEFs is based on the observation that the inversion algorithm
due to Itoh and Tsujii may be efficiently realized in the context of OEFs. In fact, we
show that the inversion method is particularly suited to finite fields in polynomial basis
that have a binomial as the field polynomial.

The Itoh and Tsujii Inversion (ITI) [9] reduces the problem of extension field inversion
to subfield inversion. This reduction relies on the definition of the norm function [18],
which states that for any element α ∈ GF(pm), α(pm−1)/(p−1) ∈ GF(p). In previous
reported applications of ITI [8], researchers have used look-up tables to perform the
subfield inversion. While this approach is efficient, it is also quite limited. For a choice
of p less than 216, tables easily fit in the storage of modern desktop PCs and workstations.
However, a choice of p of approximately 232 or 264 leads to tables which are simply
too large. Our implementation computes the subfield inverse using the Binary Extended
Euclidean Algorithm [22]. We show that an efficient implementation of this algorithm
is fast enough to make ITI suitable for OEFs.

We outline our version of the ITI here. Our objective is to find an element A−1(x)

such that A(x)A−1(x) ≡ 1 mod P(x). A high-level algorithmic description is given
as Algorithm 1. Capital letters denote extension field elements, while lowercase letters
denote subfield elements.

One method for evaluating the norm of an element is to apply the binary method
of exponentiation [12] or one of its improved derivatives [19]. Such straightforward
methods are very costly. Clearly, a faster method would be preferable. Fortunately, we
can use the Frobenius map to evaluate the norm function quickly.

5.1. Properties of the Frobenius Map on an OEF

Definition 5. Let α ∈ GF(pm). Then the mapping α→ α p is an automorphism known
as the Frobenius map.

As noted in [4], the i th iterate of the Frobenius map α→ α pi
is also an automorphism.

We consider the action of an arbitrary iterate i of the Frobenius map on an arbitrary
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element of GF(pm): A(x) = ∑
aj x j , for aj ∈ GF(p). We know by Fermat’s Little

Theorem that a p
j ≡ aj mod p. Thus the aj coefficients are fixed points of Frobenius map

iterates and we can write

Api
(x) ≡ am−1x (m−1)pi + · · · + a1x pi + a0 mod P(x). (4)

Now we need to consider the elements which are not kept fixed by the action of the
Frobenius map: (x j )p, 0 < j < m. We can express these as x jp. However, this expression
is always a polynomial with a single nonzero term due to the following theorem (see
also [13]):

Theorem 3. Let P(x) be an irreducible polynomial of the form P(x) = xm − ω over
GF(p), e an integer, x ∈ GF(p)[x]. Then

xe ≡ ωq xs mod P(x), (5)

where s ≡ e mod m with q = (e − s)/m.

Proof. First, we observe that xm ≡ ω mod P(x). Now,

xe = xqm+s, (6)

where q and s are defined above. Then

xe = xqm xs ≡ ωq xs mod P(x). (7)

We have the following corollary which is of especial interest in our case of applying
iterates of the Frobenius map:

Corollary 2.

(x j )pi ≡ ωq x j mod P(x), (8)

where x j ∈ GF(p)[x], i is an arbitrary positive rational integer, and other variables
are defined in Theorem 3.

Proof. Since P(x) is an irreducible binomial, by Theorem 1, each prime divisor
of m divides (p − 1), which implies p = (p − 1) + 1 ≡ 1 mod m. Thus s ≡ j pi ≡
j mod m.

Note that all x jpi
, 1 ≤ j, i ≤ m−1, in (4) can be precomputed if P(x) is given. Given

the above, to compute (aj x j )pi
we need only a single subfield multiplication. Thus, we

can raise A(x) to the pi th power using only m − 1 subfield multiplications if we make
use of Corollary 2 and the precomputed values of x jp, 1 ≤ j ≤ m − 1.

For example, consider p = 231 − 1, P(x) = x6 − 7. Using Corollary 2, we can
precompute the values needed for the subfield multiplications for both the p and p2

case. These are found in Table 1.
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Table 1. Precomputed inversion constants for GF((231−1)6) with field
polynomial P(x) = x6 − 7.

x p mod P(x) ≡ 1513477736x x p2
mod P(x) ≡ 1513477735x

x2p mod P(x) ≡ 1513477735x2 x2p2
mod P(x) ≡ 634005911x2

x3p mod P(x) ≡ −1x3 x3p2
mod P(x) ≡ x3

x4p mod P(x) ≡ 634005911x4 x4p2
mod P(x) ≡ 1513477735x4

x5p mod P(x) ≡ 634005912x5 x5p2
mod P(x) ≡ 634005911x5

5.2. Itoh and Tsujii Inversion for OEFs

Returning now to the problem of inverting nonzero elements in an OEF, recall that we
observed α(pm−1)/(p−1) ∈ GF(p). We begin with a simple algebraic substitution:

A−1(x) = (Ar )−1(x)Ar−1(x), r = pm − 1

p − 1
. (9)

Algorithm 1 describes the procedure for computing the inverse according to (9). In
the following, we address the individual steps of the algorithm.

The core of the algorithm is an exponentiation to the r th power. We have the following
power series representation for r :

r = pm−1 + pm−2 + · · · + p + 1. (10)

Thus, we have the p-adic representation r−1 = (11 . . . 10)p. To evaluate our expression
in (9), we require an efficient method to evaluate Ar−1(x). For a given field, r−1 will be
fixed. Thus, our problem is to raise a general element to a fixed exponent. One popular
method of doing this is an addition chain.

From analogous results in [8] and [9], we see that using such an addition chain
constructed from the p-adic representation of r − 1 requires

�log2(m − 1)� + Hw(m − 1)− 1 general multiplications

+�log2(m − 1)� + Hw(m − 1) Frobenius maps, (11)

where Hw is the Hamming weight of the operand.
Given the inversion constants in Table 1, we can now present an addition chain for this

field. We compute Ar−1(x) as shown in Algorithm 2. In this algorithm, all exponents
are understood to be expressed in base p for clarity. This example requires three expo-
nentiations to the pth power, one exponentiation to the p2th power, and three general
multiplications, as predicted by (11).

Algorithm 1. Optimal Extension Field Inversion

Require: A(x) ∈ GF(pm)∗
Ensure: A(x)B(x) ≡ 1 mod P(x), B(x) =

∑
bi xi

B(x)← A(x)

Use an addition chain to compute B(x)← B(x)r−1

c0 ← B(x)A(x)

c← c−1
0

B(x)← B(x)c
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Algorithm 2. Addition Chain for Ar−1 in GF((231 − 1)6)

Require: A ∈ GF(pm)∗
Ensure: B ≡ Ar−1 mod P(x)

B ← Ap = A(10)

B0 ← B A = A(11)

B ← B p2

0 = A(1100)

B ← B B0 = A(1111)

B ← B p = A(11110)

B ← B A = A(11111)

B ← B p = A(111110)

We observe that A(x)r is always an element of GF(p) due to the form chosen for r .
Thus, to compute its inverse according to (9), we use a single-precision implementation
of the Binary Extended Euclidean Algorithm. At this point in our development of the
OEF inversion algorithm, we have computed A(x)r−1 and (A(x)r )−1. Multiplying these
two elements gives A(x)−1 and we are done.

In terms of computational complexity, the critical operations are the computations of
A(x)r−1 and c−1

0 . To compute A(x)r−1, we require �log2(m − 1)� + Hw(m − 1) − 1
general multiplications and �log2(m−1)�+Hw(m−1) exponentiations to a pi th power.
Since the computation of c0 results in a constant polynomial, we only need m subfield
multiplications and a multiplication by ω, as given in the following formula, where we
take A(x) =∑

ai xi and B(x) =∑
bi xi :

c0 = ω(a1bm−1 + · · · + am−1b1)+ (a0b0).

Further, in the last step of Algorithm 1, since c is also a constant polynomial, we only
need m subfield multiplications.

Each exponentiation to a pi th power requires m − 1 subfield multiplications. Each
general polynomial multiplication requires m2 +m − 1 subfield multiplications includ-
ing those for modular reduction. Thus a general expression for the complexity of this
algorithm in terms of subfield multiplications is

#SM = [�log2(m − 1)� + Hw(m − 1)](m − 1)

+ [�log2(m − 1)� + Hw(m − 1)− 1](m2 + m − 1)+ 2m. (12)

The subfield inverse may be computed by any method. Since elements of the subfield
fit into a single register, any method for single-precision inversion may be used. Our
experience indicates that the Binary Extended Euclidean Algorithm is the superior choice
for p ≈ 231 and p ≈ 261 or greater. Of course, for smaller choices of p, one may use a
precomputed table of subfield inverses.

Finally we note that for small values of m, in particular m = 3, the direct inversion
method in [13] requires somewhat fewer subfield multiplications. However, a subfield
inverse is also required.

6. Fast Polynomial Multiplication

Polynomial multiplication is required to implement both the elliptic curve group op-
eration and the algorithm for inversion given in Section 5. In this section we give a
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method to reduce the complexity of polynomial multiplication. The method is related
to Karatsuba’s method [12], but is optimized for multiplication of polynomials with 3i
coefficients, for i a positive integer. We observe that OEFs with m = 3 and m = 6 are
well suited for 64-bit and 32-bit processors, respectively. For polynomial degrees that
are relevant for ECCs, we show that on Intel microprocessors, this method yields a 10%
reduction in the time required for the overall scalar multiplication.

6.1. Polynomials of Degree 2

Consider the degree-2 polynomials

A(x) = a2x2 + a1x + a0,

B(x) = b2x2 + b1x + b0.

The product of A(x) and B(x) is given by

C ′(x) =
4∑

i=0

c′i x
i = A(x)B(x)

= [a2b2]x4+[a2b1+a1b2]x3+[a2b0+a1b1+a0b2]x2+[a1b0+a0b1]x+[a0b0].

Using the schoolbook method for polynomial multiplication, we require nine inner prod-
ucts. However, we can derive a more efficient method. We define the following auxiliary
products:

D0 = a0b0,

D1 = a1b1,

D2 = a2b2,

D3 = (a0 + a1)(b0 + b1),

D4 = (a0 + a2)(b0 + b2),

D5 = (a1 + a2)(b1 + b2).

We can construct the coefficients of C ′(x) from the Di terms using only additions and
subtractions:

c′0 = D0,

c′1 = D3 − D1 − D0 = (a0b0 + a0b1 + a1b0 + a1b1)− a1b1 − a0b0,

c′2 = D4 − D2 − D0 + D1 = (a0b0 + a2b0 + a0b2 + a2b2)− a2b2 − a0b0 + a1b1,

c′3 = D5 − D1 − D2 = (a1b1 + a1b2 + a2b1 + a2b2)− a1b1 − a2b2.

c′4 = D2.

Thus, the only multiplications that are needed are in the Di products. The complexity of
this method is

#MUL #ADD

Schoolbook 9 4
New 6 6+ 7 = 13
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where we treat subtractions as additions. Thus, with this method, we are able to trade
multiplications for additions and subtractions. On most microprocessors, the operation
of addition is much faster than multiplication. However, on digital signal processors, for
example, the number of cycles required for a multiplication is often the same as that
required for an addition. It is useful, then, to develop a simple timing model for both
multiplication methods.

Let r = TMUL/TADD on a given platform, where TMUL and TADD are the time required
for a subfield multiplication and a subfield addition, respectively. We first analyze the
schoolbook method of polynomial multiplication. The time complexity of this algorithm
is given by

TSB = 9TMUL + 4TADD = (9r + 4)TADD. (13)

Then the time complexity of the Karatsuba variant is given by

TK = 6TMUL + 13TADD = (6r + 13)TADD. (14)

Given these relationships, it is useful to consider for which values of r this method is
of advantage. Specifically, we want the values of r for which TSB > TK.

TSB > TK,

(9r + 4)TADD = (6r + 13)TADD,

r = 3.

As a rough guideline we can conclude that this new method is of advantage when the
ratio of multiplication time to addition time is greater than or equal to 3. Of course, when
using a superscalar processor, the value of r may depend not only on the cycle counts for
multiplication and addition, but also on the data flow dependencies in the code. Some
processors may have multiple functional units available to compute additions and only
one multiplier, for instance. On such a system, if it is possible to utilize all functional
units fully, the operation of addition in effect is speeded up by the ability to perform
additions in parallel. This is true even if a multiplication and addition each consume the
same number of cycles. The possibility of instruction-level parallelism must be taken
into account when determining a suitable value for r .

6.2. Polynomials of Degree 5

Given the above algorithm to compute the product of polynomials of degree 2, we can
formulate a procedure to compute the product of polynomials of degree 5. This algorithm
combines the degree-2 method in Section 6.1 with a single iteration of the Karatsuba
method [12]. As above, we consider the general polynomials:

A(x) =
5∑

i=0

ai x
i = (a5x2 + a4x + a3)x3 + (a2x2 + a1x + a0) = Ah(x)x3 + Al(x),

B(x) =
5∑

i=0

bi x
i = (b5x2 + b4x + b3)x3 + (b2x2 + b1x + b0) = Bh(x)x3 + Bl(x).
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In this way, we decompose each degree-5 polynomial into two degree-2 polynomials
in the indeterminate x3. We define the auxiliary products:

E0(x) = Al(x)Bl(x),

E1(x) = (Ah(x)+ Al(x))(Bh(x)+ Bl(x)),

E2(x) = Ah Bh .

Then our product C ′(x) is given by

C ′(x) = E2(x)x6 + [E1(x)− E0(x)− E2(x)]x3 + E0(x). (15)

As above, the only multiplications required are in the auxiliary products Ei . The
key idea is to compute E0(x), E1(x), and E2(x), with the method for multiplication of
degree-2 polynomials described in Section 6.1.

We observe that there is some overlap which must be resolved between E2(x)x6,
[E1(x)− E0(x)− E2(x)]x3, and E0(x). E2(x)x6 is an expression of the form α10x10 +
α9x9 + α8x8 + α7x7 + α6x6, while [E1(x) − E0(x) − E2(x)]x3 has the form β7x7 +
β6x6 + β5x5 + β4x4 + β3x3, and we have to compute two subfield additions to obtain
the result. A similar situation arises with [E1(x)− E0(x)− E2(x)]x3 and E0(x). Thus
in total we require four subfield additions to construct the result on top of the 10 subfield
subtractions needed for [E1(x)− E0(x)− E2(x)].

As above, we consider the complexity of this algorithm:

#MUL #ADD

Schoolbook 62 = 36 (6− 1)2 = 25
New 3× 6 = 18 3× 13+ (3+ 3)+ (5+ 5)+ 4 = 59

Similarly, we solve for r to determine the break-even point:

TSB > TADD,

(36r + 25)TADD = (18r + 59)TADD,

r = 34
18 ≈ 2.

Thus we see that the break even point is lower for degree-5 polynomials than for
degree-2 polynomials. Our computational experiments indicate that on a 233 MHz
Pentium/MMX, use of this polynomial multiplication procedure yields a 20% speedup
over the time required for a polynomial multiplication using the schoolbook method.
Use of this procedure yields a 10% speedup in the overall scalar multiplication time.

7. Implementation Results

One of the most important applications of our technique is in elliptic curve cryptosystems,
where Galois field arithmetic performance is critical to the performance of the entire
system. We show that an OEF yields substantially faster software finite field arithmetic
than those previously reported in the literature.
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We implemented our algorithms on two platforms. One platform is the DEC Alpha
21064 and 21164A workstations. These RISC computers have a 64-bit architecture.
Thus a good choice for p would be 261 − 1 with an extension degree m = 3. This
implementation is written in optimized C. In addition, we found that the performance
of the subfield inverse depended heavily on the organization of branches in the code.
A reduction in the number of branches at the expense of copying data proved to be
effective in reducing run time. For the DEC Alpha implementation, using our polynomial
multiplication formulas presented in Section 6 yields a 30% speedup on the 21164A and
a 25% speedup on the 21064. Thus, the times reported here for the operations that rely
on multiplication use the methods from Section 6.

In addition, we implemented our algorithms on a 233 MHz Intel Pentium MMX
using Microsoft Visual C++ version 6.0. This computer has a 32-bit architecture. Thus
a good choice for p would be 231 − 1 with an extension degree m = 6. The Pentium
implementation is entirely in C. Because of the larger extension degree required on the
Pentium, we observe a roughly 20% speedup due to the formulas in Section 6, which is
reflected in the timings reported here.

For our implementation of scalar multiplication, we used the sliding window method
with a maximum window size of 5. In addition, we used nonadjacent form balanced
ternary to represent the multiplicand. To represent the coordinates of points on the curve,
we used an affine representation since inversion in an OEF can be performed at moderate
cost. In contrast, previous work [3] has reported performance numbers using projective
coordinates to represent points, thereby avoiding the need to perform inversion.

In order to obtain accurate timings, we executed full scalar multiplication with random
multiplicand 1000 times, observed the execution time, and computed the average.

The other arithmetic operations for which we report timings were executed 1 million
times. Tables 2 and 3 shows the result of our timing measurements.

We observe that the ratio of multiplication time to inversion time is highly platform-
dependent. On the Alpha 21064, we see a ratio of approximately 5.3. On the Alpha
21164A, we have a ratio of approximately 7.9. On the Intel Pentium, we have a ratio
of 5.5. In each of these cases, the ratio is low enough to provide improved performance
when compared with a projective space representation of the curve points.

As a final remark, we observe that for some processors it may be still be advantageous
to use projective coordinates to represent elliptic curve points and thus postpone field

Table 2. OEF arithmetic timings on DEC Alpha microprocessors for the field GF((261−1)3)

with field polynomial P(x) = x3 − 5.

Alpha 21064, 150 MHz Alpha 21164A, 600 MHz
(µsec) (µsec)

Schoolbook multiplication 3.67 0.48
Karatsuba-variant multiplication 2.77 0.34
GF(p) inverse 8.13 1.81
GF(pm) inverse 14.6 2.68
Affine EC addition 26.1 4.45
Affine EC doubling 30.5 4.79
Affine point multiplication 6.57 msec 1.06 msec
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Table 3. OEF arithmetic timings on Intel microprocessors for the
field GF((231 − 1)6) with field polynomial P(x) = x6 − 7.

Pentium/MMX, 233 MHz
(µsec)

Schoolbook multiplication 5.82
Karatsuba-variant multiplication 4.60
GF(p) inverse 4.15
GF(pm) inverse 25.3
Affine EC addition 44.8
Affine EC doubling 52.4
Affine point multiplication 11.4 msec

inversions in the elliptic curve group operation until the end of the computation. Consider
the 500 MHz Alpha 21264, which has a fully pipelined integer multiplier [5]. This hard-
ware improvement dramatically improves the time for an extension field multiplication
from 0.34 µsec to 0.18 µsec, despite the fact that our 21164A test system is clocked
at 600 MHz while our 21264 test system runs at only 500 MHz. This architectural im-
provement does not speed the Binary Extended Euclidean Algorithm however, so the
time for an extension field inversion is only slightly improved from 2.68 µsec to 2.44
µsec. In this case the ratio of multiplication to inversion time grows to 13.5. Thus, our
best result on the 500 MHz Alpha 21264 of 0.75 msec for a full scalar multiplication
is achieved using projective coordinates. This result once again confirms our thesis that
to achieve optimal performance for an elliptic curve cryptosystem, one must tailor the
choice of algorithms and finite fields to match the underlying hardware.

8. OEF Construction and Statistics

In the above sections we have shown that OEFs can offer particular advantages in arith-
metic performance when compared with other approaches. It is useful, then, to ask how
to construct an OEF and how many OEFs exist of various types. It turns out that OEF
construction may be done in an efficient manner using a relatively simple algorithm. We
provide statistics on the number of OEFs that exist for various choices of n, and tables
of OEFs which may be used in applications.

8.1. Type II OEF Construction Algorithm

Constructing an OEF for a particular application is an essentially straightforward process.
Let n, c, m, and ω be positive rational integers. Then we require a prime p = 2n ± c,
an extension degree m, and a constant ω such that these parameters form an irreducible
binomial xm − ω over GF(p).

Theorem 1 gives us the necessary and sufficient conditions on these parameters. For
simplicity of presentation, we present an algorithm to construct a Type II OEF, fixing
ω = 2. Even with this restriction, OEFs are plentiful. This algorithm is an improve-
ment over that found in [2] since Algorithm 3 can be used to find all Type II OEFs
exhaustively.
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Algorithm 3. Type II Optimal Extension Field Construction Procedure

Require: n given, low, high bounds on bit length of field order
Ensure: p, m define a Type II Optimal Extension Field with field order between 2low and 2high

c← 1
for log2 c ≤ � 1

2 n�
p← 2n − c
if p is prime then

factor p − 1
ord2← the order of 2 ∈ GF(p)

for m ← 2 to 32 do
if m ∗ n ≥ low and m ∗ n ≤ high then

BadMValue← 0
for each prime divisor d of m do

if d � | ord2 then
BadMValue← 1
Break

end if
end for
if BadMValue = 0 then

if m ≡ 0 (mod 4) then
if p ≡ 1 (mod 4) then

return p, m
end if

else
return p, m

end if
end if

end if
end for

end if
c← c + 2

end for

The algorithm proceeds by finding pseudo-Mersenne primes and then checking possi-
ble extension degrees m for the existence of a binomial. For our application, word size n
will be chosen based on the attributes of the target microprocessor. Typical microproces-
sor word sizes lie between 8 and 64 bits, while a commonly used upper bound for field
orders used in elliptic curve cryptography is 2256. It suffices for this application, then,
to search for m up to 32, allowing for the largest possible field order with the smallest
typical word size.

We present results from the use of this algorithm to construct tables in the Appendix.
Let c and n be positive rational integers. Algorithm 3 finds OEFs with primes of the
form 2n − c; a trivial change finds OEFs with primes of the form 2n + c, if such a field
is required. In addition, minor changes to this algorithm will produce Type I OEFs or
general OEFs.

A practical implementation of this algorithm would be greatly improved by using sieve
methods rather than simply testing consecutive integers for primality. The algorithm is
presented in this form for clarity.

The most time consuming part of this algorithm is the factorization of p− 1. For our
implementation which produced the results in the Appendix, we used trial division with
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small integers of the form±1(mod 6) to extract small factors and Pollard’s Rho Method
to recover the remaining factors. This factorization is needed only to compute the order
of 2. To our knowledge, it is an open problem to devise a method to compute this order
without the full factorization of p − 1.

8.2. Statistics on the Number of OEFs

We implemented Algorithm 3 on a variety of high-end RISC workstations including
DEC Alphas and Sun Sparc Ultras, with an aim toward counting the number of Type II
OEFs of approximate order between 2130 and 2256. The results from this computation
are found in Tables 5–7.

8.3. Statistics on the Number of Pseudo-Mersenne Primes

Many interesting open questions exist in analytic number theory concerning the existence
of primes in short intervals. We denote the number of primes not exceeding x as π(x).
One result in [10] shows that

π(x)− π(x − x23/42) > (x23/42)/(100 log x). (16)

However, to determine the number of pseudo-Mersenne primes, we need a result con-
cerning the intervals π(2n)− π(2n − 2(1/2)n) and π(2n + 2(1/2)n)− π(2n), about which
nothing appears to be known as of this writing [15]. It is important to note that this
question concerning the number of primes in a short interval also arises in choosing an
elliptic curve over any finite field for cryptographic use.

Since there are no known results of this type which apply to our case of pseudo-
Mersenne primes, we explicitly computed the number of primes for 2n ± c, where
7 ≤ n ≤ 58 and log2 c ≤ � 1

2 n�. The results are found in Table 4.

8.4. Tables of Type I and Type II OEFs

The Appendix contains tables of OEFs for use in practical applications. Table 8 provides
all Type I OEFs for 7 ≤ n ≤ 61. For each choice of n and a sign for c, where possible
we provide three Type II OEFs, preferably with nm ≈ 160, 200, 240, respectively, in
Table 9. We observe that due to the fast subfield multiplication available with Type I OEFs,
these offer computational advantages on many platforms when compared with Type II
OEFs. This is true since although a Type II OEF has ω = 2 and thus implements the
multiplications required for extension field modular reduction with shifts, a Type I OEF
requires only one multiplication for each subfield multiply. Since subfield multiplication
is by far the most often used operation, speedups here are most dramatic.

9. Conclusion

In this paper we have extended the work on OEFs by introducing an efficient algorithm
for inversion. The use of this algorithm allows for an affine representation of the ellip-
tic curve points which is more efficient than the previously reported projective space



Efficient Arithmetic in Finite Field Extensions 169

representation. In addition, we have provided formulas for fast polynomial multiplica-
tion which are particularly suited to extension degrees of the form 3i . Finally, we have
included tables of OEFs for reference and use in implementation.
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Appendix. Tables

Table 4. Number of pseudo-Mersenne primes, 2n ± c, log2 c ≤ �(n/2)�.

n 2n − c 2n + c n 2n − c 2n + c

7 1 1 33 2886 2852
8 2 4 34 5667 5477
9 3 2 35 5379 5263

10 5 5 36 10413 10503
11 4 3 37 10197 10254
12 7 9 38 19799 19812
13 6 7 39 19461 19502
14 11 12 40 37798 37871
15 9 13 41 36743 36902
16 21 30 42 71805 72138
17 19 20 43 70257 70325
18 38 42 44 137313 137285
19 40 29 45 134641 134452
20 70 77 46 263004 263544
21 65 70 47 257295 258091
22 129 137 48 504634 504016
23 117 131 49 493785 494248
24 251 249 50 969072 967704
25 240 258 51 947752 948011
26 477 455 52 1863100 1860984
27 434 452 53 1826661 1826485
28 871 840 54 3586713 3585449
29 839 811 55 3521537 3520704
30 1578 1565 56 6920100 7131669
31 1527 1542 57 6794704 6792475
32 2931 2958 58 13351601 13351850
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Table 5. Number of Type II OEFs of order between 2130 and 2256, 7 ≤ n ≤ 10.

m

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 32

7 1 1
8 3 1 2 3
9 1 1 1 1

10 1 3 1 1 1 1 3

Table 6. Number of OEFs of order between 2130 and 2256, 11 ≤ n ≤ 18.

m

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

11 2 1 3 2 1 1
12 3 1 1 1 3 2 1
13 2 1 2 1 1 2 1 2 2
14 4 1 4 2 4 1 8 6
15 8 1 3 3 1 1 7
16 19 5 1 4 6 4 4 14
17 10 14 3 4 4 4 4 3
18 17 25 7 7 3 5 5
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Table 7. Number of OEFs of order between 2130 and 2256, 19 ≤ n ≤ 55.

m

n 3 4 5 6 7 8 9 10 11 12 13

19 9 21 25 4 3 6 4
20 22 39 48 12 14 13
21 18 35 50 15 11 13
22 40 41 66 89 33 29
23 43 35 56 83 31 20
24 77 72 126 160 48
25 76 68 124 156 47
26 183 179 133 219 342
27 177 139 125 218 286
28 333 287 259 422 559
29 329 279 240 404
30 617 512 479 790
31 615 529 432 755
32 1180 946 824 1442
33 1424 1136 977 766
34 2813 2180 1857 1561
35 2636 2126 1755 1483
36 5154 4149 3359 2967
37 5095 4139 3429
38 9871 7911 6599
39 9749 7771 6380
40 18864 15179 12499
41 18533 14656 12286
42 36074 28817 23951
43 35215 27905
44 91499 68735 55042
45 89336 67300 53918
46 175514 131656 105347
47 172251 128937 102966
48 336066 252095 201375
49 329827 247247 197553
50 645703 483609 387502
51 315731 236628 189774
52 1241533 931675
53 1218801 913858
54 2391808 1792593
55 2347560 1760093
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Table 8. Type I OEFs for 7 ≤ n ≤ 61.

n c m mn ω

7 −1 21 147 3
7 −1 27 189 3
8 1 32 256 2

13 −1 13 169 2
13 −1 10 130 17
13 −1 13 169 17
13 −1 14 182 17
13 −1 15 195 17
13 −1 18 234 17
16 1 16 256 2
17 −1 9 153 3
17 −1 10 170 3
17 −1 15 255 3
19 −1 7 133 3
19 −1 9 171 3
31 −1 6 186 7
31 −1 7 217 7
61 −1 3 183 37

Table 9. Type II OEFs.

n c p m nm n c p m nm

7 +3 131 25 175 12 −3 4093 18 216
7 +3 131 26 182 12 -39 4057 13 156
8 −5 251 25 200 12 +15 4111 15 180
8 −15 241 25 200 12 +37 4133 16 192
8 −15 241 27 216 12 +63 4159 21 252
8 +1 257 32 256 13 −1 8191 13 169
8 +15 271 25 200 13 −13 8179 18 234
8 +15 271 27 216 13 −21 8171 19 247
9 −3 509 16 144 13 +17 8209 19 247
9 +9 521 25 225 13 +27 8219 14 182
9 +11 523 18 162 13 +29 8221 12 156
9 +11 523 27 243 14 −3 16381 12 168

10 −3 1021 16 160 14 −3 16381 14 196
10 −3 1021 20 200 14 −3 16381 18 252
10 −11 1013 23 230 14 +67 16451 14 196
10 +7 1031 25 250 14 +69 16453 12 168
10 +27 1051 14 140 14 +69 16453 18 252
10 +27 1051 25 250 15 −19 32749 12 180
11 −19 2029 13 143 15 −19 32749 16 240
11 −19 2029 16 176 15 −75 32693 11 165
11 −19 2029 18 198 15 +3 32771 10 150
11 +5 2053 16 176 15 +21 32789 14 210
11 +5 2053 18 198 15 +21 32789 16 240
11 +21 2069 22 242 16 −15 65521 9 144
12 −3 4093 16 192 16 −15 65521 13 208

(continued)
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Table 9 (continued).

n c p m nm n c p m nm

16 −15 65521 15 240 24 +117 16777333 8 192
16 +45 65581 10 160 25 −61 33554371 6 150
16 +45 65581 12 192 25 −61 33554371 10 250
16 +45 65581 15 240 25 −91 33554341 8 200
17 −13 131059 9 153 25 +35 33554467 6 150
17 −31 131041 13 221 25 +69 33554501 8 200
17 −61 131011 15 255 25 +69 33554501 10 250
17 +29 131101 9 153 26 −27 67108837 8 208
17 +29 131101 12 204 26 −45 67108819 6 156
17 +99 131171 13 221 26 −45 67108819 9 234
18 −11 262133 13 234 26 −45 67108819 9 234
18 −35 262109 11 198 26 +69 67108933 6 156
18 −93 262051 9 162 26 +69 67108933 8 208
18 +3 262147 9 162 27 −79 134217649 9 243
18 +9 262153 11 198 27 −187 134217541 6 162
18 +93 262237 13 234 27 −231 134217497 7 189
19 −19 524269 8 152 27 +45 134217773 8 216
19 −19 524269 12 228 27 +53 134217781 6 162
19 −27 524261 10 190 27 +53 134217781 9 243
19 +21 524309 8 152 28 −57 268435399 7 196
19 +53 524341 12 228 28 −165 268435291 6 168
19 +81 524369 13 247 28 −165 268435291 9 252
20 −3 1048573 8 160 28 +3 268435459 6 168
20 −3 1048573 12 240 28 +3 268435459 9 252
20 −5 1048571 10 200 28 +37 268435493 8 224
20 +13 1048589 8 160 29 −3 536870909 7 203
20 +33 1048609 11 220 29 −3 536870909 8 232
20 +57 1048633 9 180 29 −43 536870869 6 174
21 −19 2097133 8 168 29 +39 536870951 5 145
21 −19 2097133 12 252 29 +39 536870951 7 203
21 −61 2097091 10 210 29 +117 536871029 8 232
21 +59 2097211 10 210 30 −35 1073741789 7 210
21 +77 2097229 8 168 30 −35 1073741789 8 240
21 +77 2097229 12 252 30 −83 1073741741 5 150
22 −3 4194301 9 198 30 +7 1073741831 5 150
22 −27 4194277 8 176 30 +7 1073741831 7 210
22 −57 4194247 7 154 30 +85 1073741909 8 240
22 +15 4194319 9 198 31 −19 2147483629 6 186
22 +85 4194389 8 176 31 −19 2147483629 8 248
22 +85 4194389 11 242 31 −85 2147483563 7 217
23 −27 8388581 10 230 31 +45 2147483693 8 248
23 −61 8388547 9 207 31 +209 2147483857 7 217
23 −157 8388451 7 161 31 +245 2147483893 6 186
23 +11 8388619 7 161 32 −5 4294967291 5 160
23 +11 8388619 9 207 32 −17 4294967279 7 224
23 +15 8388623 11 253 32 −99 4294967197 8 256
24 −3 16777213 8 192 32 +15 4294967311 5 160
24 −63 16777153 7 168 32 +61 4294967357 8 256
24 −75 16777141 10 240 32 +75 4294967371 6 192
24 +75 16777291 6 144 33 −49 8589934543 7 231
24 +75 16777291 10 240 33 −301 8589934291 5 165

(continued)
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Table 9 (continued).

n c p m nm n c p m nm

33 −301 8589934291 6 198 41 +299 2199023255851 5 205
33 +29 8589934621 5 165 42 −11 4398046511093 4 168
33 +29 8589934621 6 198 42 −53 4398046511051 5 210
33 +35 8589934627 7 231 42 −333 4398046510771 5 210
34 −113 17179869071 5 170 42 +75 4398046511179 6 252
34 −113 17179869071 7 238 42 +87 4398046511191 5 210
34 −165 17179869019 6 204 42 +165 4398046511269 4 168
34 +153 17179869337 7 238 43 −67 8796093022141 4 172
34 +339 17179869523 6 204 43 −117 8796093022091 5 215
34 +417 17179869601 5 170 43 +29 8796093022237 4 172
35 −31 34359738337 7 245 43 +293 8796093022501 5 215
35 −61 34359738307 6 210 43 +603 8796093022811 5 215
35 −499 34359737869 4 140 44 −495 17592186043921 5 220
35 +53 34359738421 5 175 44 −539 17592186043877 4 176
35 +53 34359738421 6 210 44 −597 17592186043819 3 132
35 +53 34359738421 7 245 44 +21 17592186044437 3 132
36 −117 68719476619 6 216 44 +21 17592186044437 4 176
36 −189 68719476547 7 252 44 +55 17592186044471 5 220
36 −243 68719476493 4 144 45 −55 35184372088777 3 135
36 +117 68719476853 4 144 45 −81 35184372088751 5 225
36 +117 68719476853 6 216 45 −139 35184372088693 4 180
36 +175 68719476911 7 252 45 +59 35184372088891 5 225
37 −123 137438953349 4 148 45 +165 35184372088997 4 180
37 −141 137438953331 5 185 45 +179 35184372089011 3 135
37 −201 137438953271 5 185 46 −21 70368744177643 3 138
37 +9 137438953481 5 185 46 −333 70368744177331 5 230
37 +29 137438953501 4 148 46 −635 70368744177029 4 184
37 +29 137438953501 5 185 46 +127 70368744177791 5 230
38 −45 274877906899 6 228 46 +165 70368744177829 3 138
38 −107 274877906837 4 152 46 +165 70368744177829 4 184
38 −153 274877906791 5 190 47 −115 140737488355213 4 188
38 +7 274877906951 5 190 47 −127 140737488355201 5 235
38 +13 274877906957 4 152 47 −541 140737488354787 3 141
38 +117 274877907061 6 228 47 +5 140737488355333 3 141
39 −19 549755813869 4 156 47 +5 140737488355333 4 188
39 −67 549755813821 5 195 47 +273 140737488355601 5 235
39 −91 549755813797 6 234 48 −59 281474976710597 4 192
39 +23 549755813911 5 195 48 −93 281474976710563 3 144
39 +45 549755813933 4 156 48 −165 281474976710491 5 240
39 +149 549755814037 6 234 48 +61 281474976710717 4 192
40 −195 1099511627581 4 160 48 +75 281474976710731 3 144
40 −195 1099511627581 5 200 48 +235 281474976710891 5 240
40 −195 1099511627581 6 240 49 −81 562949953421231 5 245
40 +15 1099511627791 5 200 49 −123 562949953421189 4 196
40 +141 1099511627917 4 160 49 −139 562949953421173 3 147
40 +141 1099511627917 6 240 49 +69 562949953421381 4 196
41 −21 2199023255531 5 205 49 +69 562949953421381 5 245
41 −75 2199023255477 4 164 49 +191 562949953421503 3 147
41 −133 2199023255419 6 246 50 −27 1125899906842597 4 200
41 +125 2199023255677 4 164 50 −51 1125899906842573 3 150
41 +197 2199023255749 6 246 50 −113 1125899906842511 5 250

(continued)



Efficient Arithmetic in Finite Field Extensions 175

Table 9 (continued).

n c p m nm n c p m nm

50 +159 1125899906842783 3 150 54 −195 18014398509481789 4 216
50 +205 1125899906842829 4 200 54 +159 18014398509482143 3 162
50 +337 1125899906842961 5 250 54 +373 18014398509482357 4 216
51 −139 2251799813685109 4 204 54 +477 18014398509482461 4 216
51 −237 2251799813685011 5 255 55 −55 36028797018963913 3 165
51 −397 2251799813684851 3 153 55 −67 36028797018963901 4 220
51 +21 2251799813685269 4 204 55 −99 36028797018963869 4 220
51 +65 2251799813685313 3 153 55 +11 36028797018963979 3 165
51 +165 2251799813685413 4 204 55 +461 36028797018964429 4 220
52 −183 4503599627370313 3 156 55 +629 36028797018964597 4 220
52 −395 4503599627370101 4 208 56 −27 72057594037927909 4 224
52 −635 4503599627369861 4 208 56 −57 72057594037927879 3 168
52 +21 4503599627370517 3 156 56 −147 72057594037927789 4 224
52 +21 4503599627370517 4 208 56 +81 72057594037928017 3 168
52 +37 4503599627370533 4 208 56 +177 72057594037928113 3 168
53 −145 9007199254740847 3 159 56 +201 72057594037928137 3 168
53 −315 9007199254740677 4 212 57 −13 144115188075855859 3 171
53 −339 9007199254740653 4 212 57 −195 144115188075855677 4 228
53 +5 9007199254740997 4 212 57 −363 144115188075855509 4 228
53 +41 9007199254741033 3 159 57 +35 144115188075855907 3 171
53 +341 9007199254741333 4 212 57 +141 144115188075856013 4 228
54 −33 18014398509481951 3 162 57 +189 144115188075856061 4 228
54 −131 18014398509481853 4 216 57 +701 144115188075856573 4 228
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