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Efficient assembly of nanopore reads via highly
accurate and intact error correction
Ying Chen1,14, Fan Nie2,14, Shang-Qian Xie3,4,14, Ying-Feng Zheng1,14, Qi Dai5,14, Thomas Bray6, Yao-Xin Wang5,

Jian-Feng Xing3,4, Zhi-Jian Huang 7,8,9, De-Peng Wang10, Li-Juan He1, Feng Luo 11✉, Jian-Xin Wang 2,12✉,

Yi-Zhi Liu1,13✉ & Chuan-Le Xiao 1✉

Long nanopore reads are advantageous in de novo genome assembly. However, nanopore

reads usually have broad error distribution and high-error-rate subsequences. Existing error

correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim

high-error-rate subsequences during error correction, which reduces both the length of the

reads and contiguity of the final assembly. Here, we develop an error correction, and de novo

assembly tool designed to overcome complex errors in nanopore reads. We propose an

adaptive read selection and two-step progressive method to quickly correct nanopore reads

to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore

reads. Our tool achieves superior performance in both error correction and de novo

assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human

genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the

human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore

reads can significantly reduce false positives in structure variation detection.
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R
econstructing the genome sequence of a species or indivi-
dual in a population is one of the most important tasks in
genomics1–3. Single-molecule sequencing (SMS) technolo-

gies, developed by Pacific Bioscience and Oxford Nanopore, yield
long reads that can significantly increase the number of solvable
repetitive genome regions and improve the contiguity of assem-
bly4–7. However, SMS reads usually have high error rates8. The
two strategies currently used for de novo genome assembly from
SMS reads are “correction then assembly” and “assembly then
correction.” Assemblers, such as Falcon9, Canu10, and MECAT11,
first correct SMS reads and then assemble the genome using
corrected reads. Conversely, assemblers, such as miniasm12,
Flye13, wtdbg214, Shasta15, Smartdenovo16, and Raven17, assem-
ble the genome using error-prone reads and then correct the
assembled genome. Due to the high computational cost of error
correction, the “correction then assembly” approach is usually
slower than the “assembly then correction” approach. However,
directly assembling the genome using error-prone SMS reads can
increase assembly errors in the genome sequence, which affects
the quality of reference genome and results in bias in downstream
analysis, especially in complicated genome regions10,18. On the
other hand, the “correction then assembly” approach can provide
highly continuous and accurate genome assemblies9–11.

The recently released R9 flow cell from Oxford Nanopore
technology can generate reads that are up to 1M in length and
with read N50 > 100 kb, which may significantly improve the
contiguity of assembly5–7,19. However, errors in nanopore reads
are more complex than those in PacBio reads20,21 (see “Results”).
Error correction tools in current assemblers were originally
designed for PacBio SMRT (Single Molecule, Real-time) reads
and cannot efficiently correct nanopore reads. For example,
correcting 30X coverage human nanopore reads using the error
correction tool in Canu requires 29 K central process unit (CPU)
hours19. Moreover, the average identity of reads corrected by
Canu is only 92%, which is far less accurate than that of corrected
PacBio SMRT reads. These high error rates in corrected nanopore
reads can introduce misassemblies. Furthermore, HERS in
nanopore reads are usually trimmed during error correction,
which reduces both the length of the original reads and contiguity
of final assembly.

In this work, we develop NECAT, an error correction and de
novo assembly tool designed to overcome the problem of com-
plex errors in nanopore reads. Unlike existing error correction
tools that iteratively correct nanopore reads, we develop a two-
step progressive method for nanopore read correction. In the first

step, NECAT corrects low-error-rate subsequences (LERS), while
in the second step, it corrects high-error-rate subsequences
(HERS), of the read. This progressive approach allows NECAT to
quickly correct nanopore reads, resulting in high accuracy of
corrected reads. Evaluated on seven data sets, NECAT is able to
obtain low average error rates (1.99–9.01%) and high percentages
(45.85–99.34%) of corrected reads having error rate < 5% error,
which are both significantly better than the results of Canu. To
fully take advantage of nanopore read length, we present a two-
stage assembler in NECAT, which constructs contigs using cor-
rected nanopore reads, and then bridges the contigs using original
raw reads. We also use an adaptive selection mechanism to
choose high-quality supporting reads for each read to be cor-
rected (template read) during error correction, and to select high-
quality overlaps for each read during the read-overlap step.
Comparing with “correct-then-assemble” assemblers, such as
Canu and Canu+ Smartdenovo (Canu+S), NECAT is 2.5–258
times faster, while maintaining a similar quality of assemblies.
Comparing with “assembly then correction” assemblers, such as
Flye, NECAT reports significantly smaller numbers of mis-
assemblies for the assemblies of complex genomes.

Results
Analysis of sequencing errors in nanopore reads. We analyzed
sequencing errors in nanopore reads of E. coli, S. cerevisiae, A.
thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii,
and H. sapiens (NA12878) (Supplementary Notes 1–5 and Sup-
plementary Tables 1–2). As shown in Supplementary Table 3, the
average error rates of nanopore reads for these eight species
ranged from 12.0% (for S. cerevisiae) to 20.1% (for A. thaliana).
Although the average error rates of nanopore reads are similar to
those of PacBio SMRT reads, error rates in nanopore reads are
more broadly distributed than those of PacBio SMRT reads. The
error rates of raw reads in the eight data sets used in our study
were broadly distributed between 7 and 50% and centralized
between 10 and 20% (Fig. 1A and Supplementary Table 3).

Next, we analyzed sequencing errors in each nanopore read.
We first aligned each read onto the reference genomes. We
partitioned each read into 500-bp long subsequences and counted
the alignment error rate of each subsequence. Our results show
that the error rates in each read are also broadly distributed
(Fig. 1B). Furthermore, on average, 3–23% of raw reads longer
than 10 kb have HERS with error rates > 50% (Supplementary
Table 3). Overall, nanopore reads produced by ultra-long library
preparation techniques have a higher percentage of reads with
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Fig. 1 Error characteristics of eight nanopore raw read data sets. A Error rate distribution of raw reads. B Error rates of subsequences in a nanopore read

(upper) and illustration of a high-error subsequence in the read (bottom). C The plot of percentage of raw reads with high-error-rate subsequences
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HERS than those produced by normal library preparation
techniques (23 vs. 3–11%). Additionally, the percentage of raw
reads with HERS increased as read length increased (Fig. 1C).
Especially, for reads produced by ultra-long reads library
preparation techniques, up to 45% of raw reads longer than 45
kb have HERS (Fig. 1C). The HERS in nanopore reads usually
force the error correction tool to break long reads into shorter
fragments, which eliminates the advantage of using long
nanopore reads for de novo assembly.

Furthermore, error rates of nanopore reads sampled from
different genome locations shared the same distribution except
for those of A. thaliana, which showed slight variations among
genome locations (Supplementary Fig. 1). These results indicated
that nanopore sequencing errors did not show genome-location
bias. Therefore, a nanopore data set can contain both low- and
high-error-rate reads from the same location in a genome.

In summary, our analysis indicates that, unlike PacBio reads,
nanopore reads can contain HERS (especially in ultra-long raw
reads), and show broad-error-rate distribution among reads and
read subsequences.

Adaptive selection of supporting reads for error correction. To
correct a nanopore read, we first collected supporting reads that
overlap with it, then constructed the corrected read using a
consensus of multiple sequence alignment of overlapped reads.
An overlapping-error-rate threshold is usually set to select sup-
porting reads. Due to the broad distribution of sequencing error
rates among nanopore reads, it is difficult to select supporting
reads using a single global overlapping-error-rate threshold. Set-
ting a low overlapping-error-rate threshold, such as 0.3 used for
PacBio reads, does not generate enough supporting reads to
correct nanopore reads with high error rates (>20%); conse-
quently, numerous nanopore reads cannot be corrected. Con-
versely, setting a high overlapping-error-rate threshold (such as
0.6) results in markedly increasing false supporting reads, which
increases computational cost and reduces the accuracy of cor-
rected reads. Furthermore, the high overlapping-error-rate
threshold can increase the number of high-error-rate support-
ing reads for low-error-rate template reads. This results in cor-
recting low-error-rate template with high-error-rate supporting
reads, which greatly reduces the accuracy of corrected low-error-
rate reads.

To overcome the broad-error-rate distribution of nanopore
reads, we used two overlapping-error-rate thresholds to select
supporting reads after filtering via distance difference factor
(DDF) scoring11 and k-mer chaining22 (Online Methods). First,
we used a global overlapping-error-rate threshold to select
supporting reads. For all template reads, the overlapping error
rates of their support reads need to be less than this global
threshold. Therefore, the global threshold maintains the overall
quality of supporting reads. Based on experiments of error rate
distribution of raw reads (Fig. 1A), we set the global overlapping-
error-rate threshold to 0.5. Then, for each template read, we set
an individual overlapping-error-rate threshold. For each template
read, we selected 50 candidate reads with top DDF scores and
record the alignment differences between the 50 candidate reads
and the template read. Then, the individual overlapping-error-
rate threshold is set to be the average of alignment differences
minus five times their standard deviation (see “Methods”).

The candidate reads were filtered if their alignment error rates
were greater than either global or individual overlapping-error-
rate thresholds. For low-error-template reads, the individual
overlapping-error-rate threshold is less than the global threshold.
Conversely, for the high-error-rate template reads, the individual
overlapping-error-rate threshold is greater than the global

threshold. Using both global and individual overlapping-error-
rate thresholds, we were able to maintain the quality of
supporting reads for both low and high-error-rate template
reads, thereby improving the accuracy of corrected reads. High-
error-rate template reads that did not have enough supporting
reads were discarded without correction.

Progressive error correction of nanopore reads. The supporting
reads for error correction are selected according to the average
error rate of each template read. Since error rates for sub-
sequences of each nanopore read are also broadly distributed
(Fig. 2A), overlapping error rate between supporting reads and
HERS can exceed the global overlapping-error-rate threshold 0.5,
which can affect the accuracy of corrected subsequences. There-
fore, we developed a progressive method for correcting error-
prone nanopore reads in two steps (see “Methods”). We first
corrected LERS in a template read (Fig. 2B). Then, we corrected
HERS (Fig. 2C). In the first step, both corrected and uncorrected
subsequences were outputted as a corrected read for the next step.
After the first step, we corrected most nanopore reads to high
accuracy. This allowed us to obtain an increased number of low-
error supporting reads for high-error subsequences in the second
step, thereby helping to correct high-error subsequences. After
the second step, we outputted only the corrected subsequences. If
a subsequence in a template read could not be corrected in the
second step, it had either a high error rate or low coverage. Thus,
one template read could be broken into multiple corrected reads
after the second step.

After filtering the candidate reads using overlapping-error-rate
thresholds, we select at most 200 candidate reads with top DDF
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scores for each template read. Then, we performed local
alignment of candidate reads to the template read (Online
Methods). However, performing local alignments of supporting
reads to long-template reads is computationally expensive.
Although we selected 200 supporting reads for each template
read, it was unnecessary to align all these supporting reads when
there were enough reads available for error correction. Based on
our observation, 12 supporting reads are enough for correcting
the template read. Thus, we used a coverage count array (CCA) to
record the number of supporting reads that covered each base of
the template read during the local alignments. If a template read
is covered by 12 support reads, we did not perform local
alignments of the rest supporting reads to the template read
anymore (see “Methods”).

Progressive assembly of nanopore reads. The long length of
nanopore reads is a significant advantage for de novo genome
assembly. However, HERS inside long nanopore reads usually fail
to be corrected, leading to the splitting of long nanopore reads
into several shorter corrected reads. Using only corrected reads
for genome assembly abolishes the advantage presented by the
long length of nanopore reads. In this study, we developed a two-
step progressive genome assembler for nanopore reads. In the
first step, we generated high-quality contigs using the corrected
reads (Fig. 2D). In the second step, we bridged the contigs using
original nanopore reads to generate final scaffolds (Fig. 2E). The
lost contiguity in contigs, caused by HERSs in raw reads, is
thereby filled in the second step of the process. Therefore, genome
contiguity is improved by maximizing the usage of all raw reads.
Our two-step assembly process is similar to the process using
SMS reads for scaffolding23.

Meanwhile, even after error correction, sequencing error rates
of corrected nanopore reads (1.5–9%) are still higher than those
of corrected PacBio reads (<1%). The reads with high error rates
may lead to low-quality overlaps, which have lower identity
overlaps, long overhangs, and low-coverage subsequences. The
low-quality overlaps increase the difficulty of assembly and
introduce errors into assembly results. Therefore, to obtain high-
quality contigs, we needed to select high-quality overlaps between
corrected reads. Moreover, the error rates of corrected reads also
show a relatively broad distribution (Supplementary Note 6 and
Supplementary Table 4). Similar to the process used for selecting
supporting reads for error correction, we employed both global
and individual thresholds to overcome the broad-error-rate
distribution for the filtering of low-quality overlaps (see
“Methods”).

Performance of NECAT error correction. We assessed the
performance of NECAT error correction using nanopore raw
reads of nine data sets: E. coli, S. cerevisiae, D. melanogaster, A.
thaliana, C. reinhardtii, O. sativa, S. pennellii, NA12878 (rel3,4),
and NA12878 (rel6) with respect to correction speed, corrected
data size, accuracy and continuity of corrected reads, as well as
the number of reads with HERS in corrected reads (Supple-
mentary Note 6). As shown in Table 1, NECAT correction speeds
were 2.1–16.5 times faster than those of Canu for nanopore reads
of these first seven data sets. The sizes of corrected reads for E.
coli, S. cerevisiae, D. melanogaster, A. thaliana, C. reinhardtii, O.
sativa, and S. pennellii were 102.2%, 83.4%, 90.6%, 92.5%, 100.3%,
100.7%, and 91.2% of their raw reads, respectively, while Canu
only corrected the longest 40X raw reads and obtained 15.9%,
39.8%, 57.7%, 84.1%, 31.1%, 24.0%, and 28.3% corrected reads
from their raw reads, respectively. For NA12878 (rel3,4) and
NA12878 (rel6), the sizes of NECAT-corrected reads were 95.1
and 79.5% of their raw reads.

NECAT was able to obtain high-accuracy corrected reads.
After the first step, average error rates for E. coli, S. cerevisiae, D.
melanogaster, A. thaliana, C. reinhardtii, O. sativa, and S.
pennellii data sets were 4.27%, 3.08%, 7.03%, 11.35%, 4.40%,
6.45%, and 9.23%, respectively; these were less than the average
error rates of reads corrected by Canu, which were 7.06%, 3.13%,
8.15%, 12.05, 5.35%, 7.99%, and 9.69%, respectively. After the
second step, average error rates for seven data sets were further
reduced to 2.23%, 1.53%, 4.89%, 9.01%, 1.99%, 4.66%, and 6.45%,
respectively. For NA12878 (rel3,4) and NA12878 (rel6), average
error rates of NECAT-corrected reads after the first step were 7.38
and 6.46%, while those after the second step were 7.38 and 6.28%.

The maximum overlapping error rate between corrected reads
is usually set to 10% during assembly. Thus, the higher the
percentage of corrected reads having <5% error, the more reads
can be used for assembly. As shown in Table 1, the percentages of
NECAT-corrected reads having error rate < 5% for the first seven
data sets were 99.34%, 95.04%, 72.03%, 45.85%, 95.18%, 74.62%,
and 63.04%, respectively, which were significantly higher than
those of reads corrected by Canu. For two NA12878 data sets, the
percentages of NECAT-corrected reads having an error rate of
<5% error were 77.60% and 75.45%, respectively.

The progressive correction strategy in NECAT also allowed us
to correct more HERS and maintain the contiguity of reads. N50s
for NECAT-corrected reads of the first seven data sets were
105.1%, 90.5%, 98.0%, 100.9%, 103.7%, 100.4%, and 96.0%,
respectively, of N50s for their corresponding raw reads, indicating
that NECAT could preserve the contiguity of raw reads.
Conversely, N50s for the reads corrected by Canu were 91.9,
30.4, 85.8, 91.8, 99.0, 97.7, and 87.3% of the corresponding raw
reads, which was less than those of NECAT-corrected reads.
Another evidence that progressive correction strategy in NECAT
can improve the correction of HERS is that the number of reads
with HERS has been reduced. After two-step correction using
NECAT, the numbers of reads containing HERS in the seven
corrected data sets were 1, 268, 3481, 7158, 278, 3511, and 5445,
respectively, while Canu-corrected data sets had 1, 4820, 6523,
8722, 726, 4413 and 5511 reads containing HERS. These results
indicate that NECAT outperformed Canu in correcting sequen-
cing errors in nanopore raw reads. For two NA12878 data sets,
the N50s of NECAT-corrected reads were 106.7% and 121.7% of
their raw reads, and the numbers of reads containing HERS were
53,130 and 64,210, respectively.

Performance of NECAT de novo assembler. We compared
NECAT with two widely used correct-then-assemble pipelines:
Canu and Canu+ S, as well as an assemble-then-correct pipeline
(Flye) for de novo assembly of nanopore reads (Supplementary
Note 7). We assembled genomes of E. coli, S. cerevisiae, A.
thaliana, D. melanogaster, C. reinhardtii, O. sativa, and S. pen-
nellii using the longest 40X reads of each data set, and assembled
35X nanopore data for the human NA12878 genome using
NECAT only.

As shown in Table 2, NECAT was 6.5–258.2 times faster than
Canu, while showing 6.3–577.5 times speedup during the
assembly step. Canu employs a high overlapping threshold
(14.4%) in its overlapIncore tool for nanopore reads (a low
threshold of 6% is used for assembling PacBio reads), which may
greatly increase the time cost of local alignments. The Canu+ S
pipeline replaces the assembly step of Canu with Smartdenovo,
which significantly reduces running time. NECAT was still
2.5–57.0 times faster than Canu+ S on seven data sets. The high
accuracy of corrected reads outputted by NECAT allowed us to
use a more rapid overlapping approach. Compared with Flye,
NECAT was 1.1–1.8 times faster than Flye on data sets of A.
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thaliana, D. melanogaster, C. reinhardtii, O. sativa, and S.
pennellii, and was 224.8 and 21.2 times faster than Flye on data
sets of E. coli and S. cerevisiae, but Flye was 3.8 times faster than
NECAT on data set NA12878 (rel6).

We then assessed the quality of assembled contigs with respect
to assembly size, number of contigs, NG50, NGA50, number of
misassemblies, QV, and gene completeness. As shown in Table 2,
four assemble pipelines had similar overall performance, while
each assembler had its strong points. Canu+ S reported a
significantly smaller number of contigs for A. thaliana, D.
melanogaster, and S. pennellii while NECAT reported a
significantly smaller number of contigs for O. sativa and human.
NECAT reported significantly higher NG50 for D. melanogaster,
O. sativa, and S. pennellii, and Flye reported the higher NG50 for
NA12879 (rel6). NECAT reported higher NGA50 for E. coli, O.
sativa, S. pennellii, and Flye reported the higher NG50 for
NA12879 (rel6). Both NECAT and Flye reported much higher
NG50 and NGA50 of NA12878 than those reported by Canu.
NECAT reported significantly smaller numbers of misassemblies
for both human assemblies, while Canu+ S and Flye reported a
smaller number of misassemblies for D. melanogaster and Canu
reported a significantly smaller number of misassemblies for A.
thaliana.

For most species, the four pipelines reported similar values of
QV and gene completeness. For O. sativa, the low gene
completeness of all four assemblies was due to their low qualities,
even after polishing. The Canu reported higher gene complete-
ness for NA12878(rel3,4) (86.3%). Although QVs of polished
assemblies were similar, the distributions of error were different.
For example, the mismatches and indels per 100 kbp in Canu
NA12878 (rel3,4) assembly were 202 and 153, while those in
NECAT NA12878 (rel3,4) assembly were 134 and 210.

Next, we assessed the effect of contig bridging in NECAT
assembly. As shown in Table 3, the number of contigs was
significantly reduced in the assembly of A. thaliana, D.
melanogaster, C. reinhardtii, O. sativa, S. pennellii, and H. sapiens
genomes after contig bridging of raw reads. For S. cerevisiae, D.
melanogaster, C. reinhardtii, S. pennellii, and human NA12878,
contig bridging also increased the NG50s and NGA50s of
assemblies. These results indicate that contig bridging can
improve the contiguity of assembly.

We further compared NECAT assembler with other widely
used assemble-then-correct assemblers: miniasm, Smartdenovo,
wtdbg2, Flye, Raven, and Shasta (Supplementary Text 1 and
Note 7). NECAT has similar time costs as those assemble-then-
correct assemblers, but obtains better assembly results, especially
for complex genomes (Supplementary Text 1). We also validated
our assemblies by comparing them to reference genomes. The
qualities of NECAT-generated assemblies were comparable to
those of the other correct-then-assemble pipelines and better than
assemble-then-correct assemblers (Supplementary Text 2). We
also tested hybrid strategies to show the correctness and
effectiveness of the error correction and assembly steps of
NECAT. These strategies combine either the error correction step
of NECAT with the assembly steps of Canu, Smartdenovo, and
Flye, respectively, or the error correction step of Canu with the
assembly step of Smartdenovo, Flye, and NECAT. The results of
the comparison are described in Supplementary Text 3.

De novo genome assembly of retinoblastoma cell line WERI.
To further evaluate the performance of NECAT in large-genome
assembly, we sequenced a cell line called WERI, which is derived
from human retinoblastoma24. We generated 210 Gb (82-folds)
of raw reads from three flowcells using Nanopore PromethION.

Table 1 Performance comparison of nanopore read error correction.

Data sets Pipeline Size (g)/time (h)/

speed (g/h)

Error rate (%) ≤5%(%) N50 N75 Read number

with HERS

E. coli raw reads 1.38/–/– 17.8 0.01 41,074 35,484 121

Canu 0.22/1.63/0.14 7.06 20.45 37,747 32,127 1

NECAT 1.41/0.76/1.86 2.23 (4.27) 99.34 (80.51) 43,140 37,502 1

S. cerevisiae raw reads 5.48/–/– 12 1.61 34,668 28,152 7589

Canu 2.18/30.83/0.071 3.13 87.3 10,554 4567 4820

NECAT 4.57/3.90/1.17 1.53 (3.08) 95.04 (88.09) 31,364 24,480 268

D. melanogaster raw reads 8.30/–/– 16.2 2.3 17,730 13,621 12,438

Canu 4.79/18.10/0.26 8.15 57.57 15,220 10,658 6523

NECAT 7.52/4.20/1.79 4.89 (7.03) 72.03 (64.18) 17,369 13,104 3481

A. thaliana raw reads 3.08/–/– 20.1 1.57 23,386 16,253 14,483

Canu 2.59/12.07/0.22 12.05 8.09 21,472 13,133 8722

NECAT 2.85/1.33/2.14 9.01 (11.35) 45.85 (25.67) 23,600 15,944 7158

C. reinhardtii raw reads 14.84/–/– 15 1.16 54,409 46,812 4231

Canu 4.61/59.40/0.078 5.35 76.05 53,891 45,934 726

NECAT 14.89/11.53/1.29 1.99 (4.40) 95.18 (82.13) 56,427 48,708 278

O. sativa raw reads 63.40/–/– 15.6 0.49 56,325 50,847 24,205

Canu 15.23/43.20/0.35 7.99 44.42 55,010 49,612 4413

NECAT 63.83/18.95/3.37 4.66 (6.45) 74.62 (51.49) 56,573 51,141 3511

S. pennellii raw reads 132.74/–/– 18.49 1.7 24,801 22,226 127,808

Canu 37.53/88.8/0.42 9.69 34.04 21,653 19,364 5511

NECAT 121.07/137.77/0.88 6.45 (9.23) 63.04 (38.77) 23,810 21,480 5445

NA12878 (rel3,4) raw reads 106.52/–/– 18.50 0.67 12,196 7209 286,641

NECAT 101.28/34.65/2.92 5.04 (7.38) 77.60 (34.33) 13,018 7883 53,130

NA12878 (rel6) raw reads 123.80/–/– 12.08 8.91 13,630 7984 315,117

NECAT 98.36/39.35/2.49 6.28 (6.46) 75.45 (77.24) 14,839 9638 64,210

Size is the total number of base pairs in corrected reads. Time is the running time of correction tools, and the speed is the size/time. Error rate denotes the mean error rate of raw reads and corrected

reads; ≤5% denotes the percentage of reads with <5% error rate in total corrected read, values in the bracket are results of NECAT after the first correction; N50 and N75 are the length of reads that

reached the 50 and 75% of the total length of all reads; read number with HERS denotes the number of reads that with at least one HERS (more than 50% error in the 500 bp window). The reads used in

evaluating the last three metrics (N50, N75, and read number with HERS) of NECAT were corrected from the longest 40× of the raw data set that was selected by Canu by default, see Supplementary

Note 6 for details.
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The WERI genome assembled by NECAT has an N50 of 28M.
To the best of our knowledge, this is the best N50 value for the
assembly of the human genome using the general library of the
nanopore sequencing platform.

We aligned the WERI assembly to human reference genome
hg38 using MUMmer (v4.0)25. The dot-plot figure shows that the
WERI assembly is structurally consistent with the reference
genome except for minor structural variations (Supplementary
Note 8 and Supplementary Fig. 2) and the tiling figure shows the
continuity of the assembly (Fig. 3). We also used bowtie226 to
align an Illumina data set for the WERI cell line onto a WERI
assembly and hg38 human reference genome. The mapping rate

of the WERI assembly (99.1%) was better than that of the hg38
human reference genome (98.0%).

We then identified and validated structural variants (SVs) in
the WERI assembly. We detected 11,725 SVs (≥10 bp) in the
WERI assembly by aligning it to the hg38 human reference
genome using MUMmer (v4.0). We also detected SVs from raw
nanopore long reads and Illumina short reads for the WERI cell
line using Sniffles27 and LUMPY28, respectively (Supplementary
Note 8). In all, 7210 SVs are detected using both WERI assembly
and raw nanopore reads, while only 1117 SVs are detected using
both WERI assembly and NGS (Supplementary Fig. 3 and
Supplementary Data 1). Furthermore, we can find 90% of unique

Table 2 The quality and performance of long-read assembly with NECAT.

Genome Pipeline Assembly

size (Mb)

Contig NG50 (Kb) NGA50 (Kb) MA/

local MA

QV (pre-/

post-polish)

BUSCO Correct/contig/

total time

E. coli Ref. 4.6 1 4642 – – –/– – –/–/–

Canu 4.6 1 4601 3335 2/18 18.0/22.1 18.4% 26.1/698.1/724.2

Canu+ S 4.6 1 4630 3287 3/2 18.6/22.2 19.8% 26.1/8.0/34.1

Flye 4.6 1 4622 3071 2/2 20.2/22.6 20.2% –/–/630.4

NECAT 4.6 1 4595 3984 2/3 18.5/22.3 19.8% 1.6/1.2/2.8

S. cerevisiae S228C 12.2 17 924 – – –/– – –/–/–

Canu 12.7 26 814 703 38/33 22.3/28.5 98.5% 493.3/1029.9/1523.2

Canu+ S 12.4 19 815 705 34/29 22.7/28.9 98.2% 493.3/38.4/531.7

Flye 12.3 26 943 706 21/26 21.8/29.0 98.5% –/–/197.8

NECAT 12.3 19 937 708 26/35 23.1/29.0 98.3% 4.4/4.9/9.3

A. thaliana TAIR10 119.7 7 23,460 – – –/– – –/–/–

Canu 113.4 288 6523 445 478/1152 15.6/19.5 98.5% 193.1/1229.9/1423.0

Canu+ S 115.6 44 11,071 527 576/1170 15.9/19.6 98.8% 193.1/125.9/319.0

Flye 126.6 154 12,043 627 1085/1962 16.8/18.5 98.7% –/–/59.4

NECAT 122.9 136 11,157 582 886/1304 16.0/18.9 98.8% 19.8/28.0/47.9

D. melanogaster dm6 143.7 1870 25,287 – – –/– – –/–/–

Canu 146.8 499 3509 3240 1307/678 20.2/22.2 91.3% 289.6/1259.2/1548.8

Canu+ S 135.8 162 14,456 6473 587/333 20.8/23.2 91.6% 289.6/294.4/584.0

Flye 139.9 593 11,925 5129 558/749 21.4/22.5 89.9% –/–/127.9

NECAT 143.0 277 18,072 6323 1117/1333 20.2/22.3 92.0% 37.7/32.7/70.4

C. reinhardtii Ref. v5.5 111.1 53 7784 – – –/– – –/–/–

Canu 116.4 93 4564 739 853/2269 19.3/22.2 97.9% 950.4/17,369.6/

18,320.0

Canu+ S 109.7 46 4498 713 655/1629 20.1/23.0 97.7% 950.4/816.0/1766.4

Flye 112.9 65 6573 831 764/2029 21.6/23.6 98.4% –/–/185.8

NECAT 113.4 54 6169 732 831/2273 19.8/22.4 98.0% 54.8/47.0/101.8

O. sativa Ref.v4.0 382.8 15 30,829 – – –/– – –/–/–

Canu 383.9 385 5041 2253 474/8334 15.9/15.9 58.6% 2768.0/16,800.0/

19,568.0

Canu+ S 366.4 229 3586 1832 394/5116 16.3/16.3 59.2% 2768.0/1926.3/4694.3

Flye 380.7 249 3552 2213 573/1742 16.4/16.3 59.2% –/–/817.6

NECAT 373.1 120 9650 3311 479/4873 16.0/16.3 58.4% 186.9/330.3/517.2

S. pennellii Ref 915.6 899 2522 – – –/– – –/–/–

Canu 961.8 2010 1664 797 5614/15,301 –/20.3 97.1% 5733.1/15,398.4/

21,131.5

Canu+ S 915.6 899 2522 – – –/– 97.2% 5733.1/2510.2/8243.3

Flye 1026.0 3180 1971 651 8504/

10,726

16.0/18.5 96.7% –/–/3590.8

NECAT 991.8 1344 4802 992 5813/12,592 15.2/17.3 95.5% 799.6/2434.1/3233.7

NA12878

(rel3,4)

Ref38 3272.1 639 145,139 – – –/– – –/–/–

Canu 2759.0 2337 5691 3368 1977/25,179 15.4/24.5 86.3% –/–/60,000.0

NECAT 2798.4 1494 14,066 9538 964/4591 16.6/24.6 74.9% 2217.6/5904.0/8121.6

NA12878 (rel6) Flye 2867.0 3309 28,407 16,640 4054/7258 22.9/24.2 74.6% –/–/2500.0

NECAT 2846.9 1047 20,913 13,441 948/1467 23.1/24.4 74.5% 2518.4/6900.4/9418.8

“Assembly size” is the total number of base pairs in all contigs generated by assemblers. “NG50” indicates that 50% of reference genome size was contained in contigs having length≥ n. “NGA50” is

NG50 of aligned blocks that contigs are broken into at mis-assembly breakpoints. “MA/local MA” are the numbers of misassemblies and local misassemblies evaluated by QUAST. “QV” is defined as

10´ log10ð
100kbp

# mismatches per 100 kbpþ # indels per 100 kbp
Þ, where “# mismatches per 100 kbp” and “# indels per 100 kbp” are evaluated by QUAST. “BUSCO” is gene completeness evaluated by BUSCO. All the

pipelines were tested on the same computer with a 2.0 GHz CPU and 3 T GB RAM of memory. For the first five data sets, we ran all the pipelines on our computer with 32 threads; the correction and

contig computational time of the pipelines were recorded. For O. sativa, S. pennellii, and the human data set, we ran all pipelines on our computer with 64 threads, and correction and contig computational

time were recorded. The S. pennellii assemblies of Canu and Canu+ Smartdenovo were acquired from https://www.plabipd.de/portal/solanum-pennellii, NG50 of which were longer than those

generated by us. The S. pennellii assembly of Canu+ Smartdenovo was used as the reference genome, and therefore its metrics NGA50, MA, and QV are not evaluated. The NA12878 (rel3,4) assembly

and running time of Canu were acquired from public paper. The NA12878 (rel6) assembly and running time of Flye were acquired from https://github.com/fenderglass/Flye.
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small SVs (<1000 bp) that were detected using nanopore raw
reads in the WERI assembly, indicating that the assembly can
reduce false positives for small SVs (<1000 bp) (Supplementary
Data 1).

Next, we examined genes associated with the identified SVs.
We found 2843 annotated genes associated with 7210 SVs
identified using both WERI assembly and raw nanopore reads.
Two hundred and nine of 2843 genes are reported in
Phenolyzer29 and are associated with retinoblastoma (Supple-
mentary Data 2). Among 66 genes, the gene PRKCB, which is
scored as high as 0.8901 in Phenolyzer29, was reported to be
involved in retinoblastoma protein phosphorylation30. Among
the 209 genes, there are eight genes (AATF, PRKCB, PRMT2,
FRK, PIK3R1, CUX1, RAC2, and IGF1) with a Phenolyzer score
> 0.5, and six of eight genes are associated with retinoblastoma as
reported in PubMed. These results indicate that NECAT can
provide high-quality assembly for reliable identification of SVs.

Discussion
Currently, applying nanopore reads in genomic studies is difficult
because of the complex errors within these reads. In this study,
our analyses have shown that nanopore reads contain HERS, and
errors are broadly distributed among nanopore reads and in
subsequences of a read. This broad error distribution complicates
the selection of supporting reads during the error-correcting
process. In traditional error correction methods, the threshold
used to select supporting reads can be set too strict or too lenient;
the former cannot select enough supporting reads for correction,
while the latter generates too many low-quality reads that affect
the accuracy of corrected reads. Furthermore, traditional error
correction methods cannot correct the high-error subsequences
in nanopore reads and generally break nanopore reads into
multiple short corrected reads.

In this study, we developed NECAT, which includes methods
such as progressive error correction, adaptive supporting reads
and alignment selection, and two-stage assembly, to overcome the
errors characteristic of nanopore reads. The error correction tool
in NECAT, which is 2.1–16.5 times faster than that of Canu, can
correct nanopore reads to high accuracy while maintaining the

contiguity of nanopore reads. The whole pipeline is at least 2.5
times faster than other correct-then-assemble pipelines with
enhanced or comparable assembly performance. The high per-
formance shown by NECAT suggests that the high error rate of
nanopore reads can be overcome by the development of algo-
rithms with respect to error characteristics.

Structural variations identified via raw nanopore reads usually
have a high false-positive rate. Here, we show that these false
positives can be reduced considerably by using a high-quality
assembly of nanopore reads for detection of structural variation.
Our results show that NECAT is a useful tool for error correction
and assembly of nanopore reads, and for the detection of struc-
tural variation.

Methods
The architecture of NECAT. The NECAT pipeline was designed as a high-
performance assembler for nanopore reads. To overcome the high error rate of
nanopore reads, we developed several methods, including progressive error cor-
rection, adaptive supporting reads and read overlaps selection, and two-step
assembly. The NECAT pipeline contains four modules (Supplementary Fig. 4):
preprocessing, correction, trimming, and assembly. The preprocessing module
filters short and ill-formed reads. The correction module uses a progressive strategy
to correct nanopore reads in two steps. The trimming module removes low-quality
subsequences from corrected reads. The assembly module builds a string graph to
assemble the genome in two steps. These four modules can be run in series to finish
the assembly or can be operated independently. Currently, NECAT is the most
efficient tool for assembling large genomes using nanopore reads.

Progressive error correction of nanopore reads. The broad distribution of
sequencing error rates among nanopore reads, and within a single nanopore raw
read, is the reason why traditional iterative error correction methods usually fail
with nanopore data. In this study, we developed a method for correcting nanopore
reads. Our progressive error correction method involves two steps. First, we correct
the LERS in a read. Then, we correct the HERS in that read using a more sensitive
approach. Both steps include the same four sub-steps: (1) selection of candidate
reads, (2) determination of alignment-quality threshold, (3) selection of matched
reads, and (4) correction of the read. The sub-steps 1, 2, and 4 are the same for
both steps. We use different methods to select matched reads for each read to be
corrected (template read) in the sub-step 3 of the two steps. In the first step, we use
a strict selection method to choose matched reads for the low-error-rate portions of
the template read. In the second step, we use a lenient method to choose matched
reads for the high-error-rate portions of the template read.

Table 3 Performance of de novo assemblies before and after the bridging step of NECAT.

Species Stats Contig Assembly

size (Mb)

Max (Kb) NG50 (Kb) MA/local MA NGA50 (Kb) QV

E. coli Before 1 4.6 4587 4587 2/10 3977 17.7

After 1 4.6 4595 4595 2/3 3984 18.5

S. cerevisiae Before 20 12.3 1530 816 28/29 596 22.3

After 19 12.3 1529 937 26/35 708 23.1

A. thaliana Before 150 122.9 14,556 11,150 800/1284 535 15.7

After 136 122.9 14,567 11,157 886/1304 582 16.0

D. melanogaster Before 320 143.0 14,923 9612 1120/1424 4930 19.4

After 277 142.8 21,505 18,072 1117/1333 6323 20.2

C. reinhardtii Before 64 113.3 8997 5515 838/2345 706 19.3

After 54 113.4 9014 6169 831/2273 732 19.8

O. sativa Before 154 372.2 22,009 9241 466/7765 3206 15.5

After 120 373.1 22,094 9650 479/4873 3311 16.0

S. pennellii Before 1604 991.9 22,857 3704 5762/13,324 927 15.1

After 1344 991.8 22,879 4802 5813/12,592 992 15.2

NA12878 (rel3,4) Before 2151 2791.6 50,857 11,980 811/6716 8334 16.0

After 1494 2798.4 73,248 14,066 964/4591 9538 16.6

NA12878 (rel6) Before 1604 2848.6 95,968 18,488 809/1514 12,079 22.6

After 1047 2846.9 95,975 20,913 948/1467 13,441 23.1

“Contig” is the total number of contigs in assembly. “Assembly size” is the total number of base pairs in assembly. “Max” is the length of the largest contig. “NG50” indicates that 50% of reference

genome size was contained in contigs having length≥ n. “NGA50” is NG50 of aligned blocks that contigs are broken into at mis-assembly breakpoints. “MA/local MA” are the numbers of misassemblies

and local misassemblies evaluated using QUAST. “QV” is defined as 10 ´ log10ð
100kbp

# mismatches per 100 kbpþ # indels per 100 kbp
Þ, where “# mismatches per 100 kbp” and “# indels per 100 kbp” are evaluated

by QUAST.
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The selection of candidate reads. For each template read, we selected candidate
reads that had overlap with that read. For each pair of reads, we first used the
DDF11 to select a seed k-mer pair with the highest score, which served as a reliable
start position for local alignment. However, the wide distribution of error rates
decreases the sensitivity of the DDF score for two k-mer pairs that are far apart;
this may introduce false positives (Supplementary Fig. 5A). To remove false
positives, we gathered all k-mer pairs that support the seed k-pair during DDF
scoring. We sorted all k-mer pairs, including the seed k-mer pair, with respect to
their positions and then chain them together22. The chaining process examines the
relative positions of k-mer pairs and helps to filter out false positives (Supple-
mentary Fig. 5B). We then updated the DDF score of the seed k-mer pair with
remaining k-mer pairs, which further improved the sensitivity of candidate
selection. We recorded the positions of the first and last k-mer pairs in the chain as
the approximate mapped positions of candidate read. These two positions, together
with the DDF score of the seed k-mer pair, were used for further filtering of
redundant candidates and identifying HERS.

Determination of individual alignment-quality threshold for each template

read. We selected high-quality supporting reads that were used for the correction
of each template read. However, broad-error-rate distribution makes it difficult to
use a single global threshold for the selection of supporting reads. Besides setting a
global overlapping-error-rate threshold to 0.5, we also computed a local individual
overlapping-error-rate threshold for each template read. For each template read, we
used 50 candidate reads with top DDF scores for local alignments. If a local
alignment contained more than 60% of template or candidate read length, we
recorded the alignment, and the difference between template and candidate read. If
we had n(0≤ n≤ 50) recorded alignments and their differences are d1; d2; ¼ ; dn ,
we computed their average difference d0 ¼

Pn
i¼1 di=n and standard deviation

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðdi � d0Þ

2
q

. Then, we set the alignment-quality threshold as

d ¼ d0 � 5D. This threshold provided a lower alignment-quality bound for low-
error-template reads.

Selection of matched reads. For each read template, we selected at most 200
candidate reads with top DDF scores for local alignment. We used different
alignment methods in the first and second steps. In the first step, we used a
blockwise alignment algorithm for aligning supporting reads to the template read.
We performed local alignment from the seed k-mer pair in both directions. Thus,
we first obtained two semi-global alignments, and then the two alignments were
merged into one. Starting from the seed k-mer pair, we partitioned both template
and candidate reads into equal-sized blocks 500 bp in length. We then used the
Edlib algorithm31 to successively align each pair of blocks. The aligning process was
terminated if the alignment error between a pair of blocks was >50%, or if the
alignment algorithm reached the end of a template or candidate read. Because
blockwise alignment terminated when either block from template or candidate had
a high error rate, we could only obtain alignment between LERS in this step.

In the second step, we used multiple alignment methods to obtain long
alignments between templates and candidate reads. We first used the blockwise
approach to align the candidate reads to a template. If blockwise alignment
terminated early due to the presence of a high-error-rate region inside the template
or candidate read, we used the DALIGN algorithm32 to realign the candidate read
to the template. However, alignments produced via DALIGN, running with a large
difference threshold of 0.5, were usually too coarse. To refine the alignment result
of DALIGN, we then used the Edlib algorithm to perform a global alignment on
the mapped subsequences output by DALIGN to get a more correct alignment.

Performing a local alignment of supporting reads to a template is
computationally expensive, especially for long-template reads. Usually, only dozens
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Fig. 3 Continuity analysis of the assembly of WERI cell line using nanopore reads. Human chromosomes are painted with assembled contigs using the

ColoredChromosomes package. Alternating shades indicate adjacent contigs (each vertical transition from gray to black represents a contig boundary or

alignment breakpoint).
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of alignments are enough for the error correction. Thus, it is unnecessary to align
all 200 candidate reads if we have enough supporting reads for error correction.
Here, we used a CCA, which is an integer array possessing the same length as that
of template read, to record the number of candidate reads that cover each base of
the template read. Before aligning a candidate read to the template read, we
examined the values of CCA elements between the mapped positions for the
approximate start and end of candidate read on a template. If all these values were
greater than a user set threshold C, we would know that the corresponding region
in template read has been covered by enough candidate reads and there was no
need to perform the local alignment of this candidate read. If the alignment
difference was less than the alignment-quality threshold d, we would increase every
value of CCA between the start and end template mapped positions by 1. We used
a default value of 12 for threshold C.

Correction of nanopore reads. After selecting the matched candidate reads, we
used the FALCON-sense consensus algorithm9 to correct each subsequence of the
template read that was covered by enough candidate reads. In the first step, we
replaced these subsequences with corrected subsequences. Then, we output the
whole template, including corrected subsequences and uncorrected subsequences,
as a corrected read for the next step. HERS was corrected in the next step. In the
second step, we only output corrected subsequences, meaning that one template
may produce more than one corrected read. If a subsequence in a template read
was not able to be corrected in the second step, it either had a too high error rate or
low coverage.

Trimming of low-quality subsequences. Long nanopore reads may still contain
HERS even after error correction, which can greatly affect the quality of assembly.
Thus, low-quality subsequences need to be trimmed before assembly. We only
selected 40X coverage longest corrected reads for trimming and future assembly.
First, we performed pairwise alignment on selected nanopore reads using the
trimming module of MECAT11. Because even corrected nanopore reads could have
a relatively high error rate, we used the sensitive DALIGN algorithm to replace the
original diff algorithm in the MECAT trimming module before performing local
alignments. After pairwise alignment, we gathered high-quality overlaps with more
than 90% identity for each read. If every residue of a read was covered by at least
one overlap, the read was designated as a complete read. On the other hand, if there
were subsequences without overlap coverage in a read, we trimmed it to its longest
covered subsequence, which was called a trimmed read.

After trimming, the reads were usually subjected to another pairwise alignment.
Our experiments showed that <10% of corrected reads were trimmed, therefore, it
was unnecessary to pairwise align 90% of untrimmed reads. Thus, we stored
complete reads and trimmed reads separately after trimming. Pairwise alignments
were only performed between complete reads and trimmed reads, and between
trimmed reads. The results of these pairwise alignments, together with complete
reads, trimmed reads, and results of original pairwise alignments between complete
reads, were fed into the assembly module.

De novo assembly of nanopore reads. Although the long length of nanopore
reads helps improve genome assembly, the relatively high error rate of these reads
rendered genome assembly difficult. Here, we developed an assembly tool, which is
particularly useful for nanopore reads because it can overcome the high error rate
of these reads. Our assembly module in NECAT consists of three steps: filtering of
low-quality read overlaps, contig assembly, and contig bridging. We used multiple
quality-control measures to filter out low-quality overlaps between nanopore reads.
Then, we constructed a directed string graph and solved the graph to generate
contigs. Finally, we bridged the contigs using original reads to generate the final
scaffolds.

Filtering of low-quality read overlaps. Low-quality overlaps complicate assembly
and introduce errors into assembly results. In NECAT, we used multiple thresholds
to control the identity, overhang, and coverage of overlaps to filter out low-quality
overlaps. For each read, we determined the coverage of each base according to its
overlaps. Then, we calculated the minimum coverage (cmin), maximum coverage
(cmax) of bases, as well as the difference between minimum coverage and maximum
coverage (cdiff). If its cmin was less than the predefined threshold, min_coverage, or
cmaxwas larger than the predefined threshold, max_coverage, or cdiffwas larger than
the predefined threshold, max_diff_coverage, the read and its overlaps were
removed. The details on coverage threshold settings are provided in Supplementary
Note 9. Because of broad error distribution among different reads, we used both
global and local threshold, instead of a single global threshold, for quality control of
overlap identity and overhang. For a high-quality read, the average quality of its
overlaps was higher than the global average; therefore, we set the local threshold to
filter out overlaps having relatively low quality. For a low-quality read, the average
quality of its overlaps was lower than the global average; we then used the global
threshold to filter out low-quality overlaps for that read. This strategy allowed us to
filter out overlaps with relatively low quality for each read, and to maintain the
overall quality of all the overlaps. Details on setting global and local thresholds for
overlap identity and overhang are provided in Supplementary Note 9.

Contig assembly. Next, we constructed a directed string graph and removed
transitive edges using Mayer’s algorithm33. We marked the best out-edge and the
best in-edge of each node based on overlap lengths of the edges. The edges that
were not marked as best out-edge or best in-edge were removed34. We also
removed ambiguous edges (tips, bubbles, and spurious links) in the graph. We then
identified linear paths from the graph and generate contigs. When there was a
branch, we broke the path to generating multiple contigs, which could reduce the
possibility of mis-assembly.

Contig bridging. During error correction, long reads with high-error subsequences
were cut into multiple shorter reads, which eventually led to the discontinuity of
contigs. It is possible to relink contigs using long raw reads23,35. First, we aligned
the long raw reads to contigs. Two contigs could have an overlap that had low
quality; this overlap was filtered before the construction of a string graph. A raw
read could either fill the gap between two contigs, which was then called a gap read,
or overlap with the overlap of two contigs, which was then called an overlapped
read. For each raw read, we recorded the gap or overlap length between the
mapped positions on the ends of the two contigs. For each pair of contigs, the raw
reads connecting them were grouped as those connecting in the same orientation
or those connecting in different orientations. In each orientation group, we clus-
tered the raw reads based on their gap/overlap lengths. If the difference between the
gap/overlap lengths of two raw reads was less than a threshold (default value is
1000 bp), we assigned them into the same cluster. And we assigned a score to each
raw read, which was the sum of the products of identity and length of overlaps
between the raw read and the pair of contigs. The read cluster with the largest sum
of scores was chosen as the link for the contig pair.

After identifying links between contig pairs, we created a string graph in which
contigs were nodes, and links between the contigs were edges. The weight of each
edge was set to the link score. We simplified the graph again by removing transitive
edges. Then, we traversed the graph and identified linear paths as the final contigs.
A raw read from the link was selected to fill the gap between contigs.

Error distribution analysis. We analyzed error distribution in nanopore data sets
for E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, and S.
pennellii. Our results indicated that the sequencing error rate of nanopore reads was
high at 10–20%, which helped us refine our algorithm for the NECAT platform and
provided insights into why the existing correction algorithms were not suitable for
the correction of nanopore reads. Details are provided in Supplementary Note 5.

Evaluation. We compared our error correction tool with those provided in Canu.
We also systematically evaluated the assembly tools provided in NECAT by
comparing them with those of Canu, Canu+ S, and Flye. Details of these com-
parisons are reported in Supplementary Notes 6, 7, and 10.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
We used nine data sets to evaluate the performance of NECAT. Among these data sets,

those for Saccharomyces cerevisiae, Oryza sativa, and Homo sapiens (the WERI human

retinoblastoma cell line) were generated using our in-house sequencing, while the other

four were obtained from public websites. The details on the data used in this study are

reported in Supplementary Notes 1–4. All data that support the findings of this study are

available on https://github.com/xiaochuanle/necat and http://www.tgsbioinformatics.

com/necat/. The nanopore whole-genome sequencing data sets of Saccharomyces

cerevisiae, Chlamydomonas reinhardtii, Oryza sativa, and Human retinoblastoma cell line

WERI from this study have been deposited in the Genome Sequence Archive of BIG Data

Center, Beijing Institute of Genomics (BIG, http://gsa.big.ac.cn), Chinese Academy of

Sciences, with Project Accession No. “PRJCA003787” and GSA Accession Nos.

“CRA003449,” “CRA003450,” and “HRA000410.”

Code availability
All codes that support the findings of this study are available on https://github.com/

xiaochuanle/necat and http://www.tgsbioinformatics.com/necat/.
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