
Efficient At-Most-Once Messages Based on

Synchronized Clocks

BARBARA LISKOV, LIUBA SHRIRA, and JOHN WROCLAWSKI

Massachusetts Institute of Technology

This paper describes a new at-most-once message passing protocol that provides guaranteed

detection of duplicate messages even when the receiver has no state stored for the sender, It also

discusses how to use at-most-once messages to implement higher-level primitives such as

at-most-once remote procedure calls and sequenced byte stream protocols. Our performance

measurernents indicate that at-most-once RPCS can be provided at the same cost as less desirable

forms of RPCS that do not guarantee at-most-once execution. Our method is based on the

assumption that clocks throughout the system are loosely synchronized. Modern clock synchro-

nization protocols provide good bounds on clock skew with high probability; our method depends

on the bound for performance but not for correctness.

Categories and Subject Descriptors: C.2 1 [Computer-Communication Networks]: Network

Architecture and Design—distributed networks, network communications, packet networks, store

and forward networks; C.2. 2 [Computer-Communication Networks]: Network Protocols —pro-

tocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: At-most-once message passing, message-passing protocols,

remote procedure calls, synchronized clocks

1. INTRODUCTION

In this paper we describe a new way of providing at-most-once delivery of

messages. Our method allows messages to be sent without prior communica-

tion (e.g., to set up a connection), yet it provides an absolute guarantee that

duplicate messages will be detected. It is based on loosely synchronized

clocks; because it depends on synchronized clocks, we refer to it as the

synchronized clock message protocol, or SCMP for short. SCMP can easily

tolerate the clock skews provided by existing clock synchronization protocols

[41; these skews are typically less than 100 milliseconds, even in a wide area

This research was supported in part by the Advanced Research Projects Agency of the Depart-

ment of Defense, monitored by the Office of Naval Research under contract NOO014-89-J-1988

and in part by the National Science Foundation under grant DCR-8822158.

Authors’ address: MIT Laboratory for Computer Science, 545 Technology Square, Cambridge,

Mass. 02139.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0362-5915/91/0500-0125 $01.50

ACM Transactions on Computer Systems, Vol. 9, No. 2, May 1991, Pages 125-142.

126 . Barbara Llskov et al

network. If the rare event of unsynchronized clocks does occur, the proto-

col continues to work correctly, although there may be a degradation of

performance.

SCMP is the first message-passing protocol to make use of synchronized

clocks to provide at-most-once delivery. It is interesting because it provides

at-most-once delivery at low cost. In addition, it can be used as a building

block for constructing higher-level protocols with desirable performance char-

acteristics. In particular, it can be used to implement at-most-once RPCS

efficiently, even in the case where a client communicates only occasionally

with each of many servers.

The paper is organized as follows. In Section 2 we describe SCMP and show

how it can be used to guarantee at-most-once delivery, discuss our clock

requirements and protocol parameter tradeoffs, and compare our technique to

the Delta-t message passing protocol [11]. In Section 3 we discuss how SCMP

can be used to provide higher-level primitives. The section describes an

implementation of at-most-once RPCS based on the SunRPC library [101,

compares the performance of this implementation with zero-or-more and

at-most-once RPCS already available in the SunRPC library, and compares

our RPC method with that of Birrell and Nelson [11. We conclude with a

summary of what we have accomplished.

2. AT-MOST-ONCE MESSAGE DELlVERY

Implementing at-most-once semantics is typically done by having each mes-

sage receiver maintain a table containing information about senders. When a

message arrives, if there is information about the sender in the table it is

used to determine whether or not the message is a duplicate. If there is no

information, there are two choices: either accept the message or reject it. If

the message is accepted, there is a chance of accepting a duplicate. This

chance can be made arbitrarily small by keeping information about senders

long enough. However, it is difficult to determine how long to keep this

information in the presence of sender retransmission and networks with

probabilistic delay.

The alternative of rejecting the message is safe; it guarantees that no

duplicates will ever be accepted. However, it gives rise to a problem. When a

message is sent, we want to be reasonably certain that the receiver will

accept it. Therefore we need to know that the receiver has information about

the sender in its table. If it is unlikely to have such information, e.g., because

this is the first time the sender has communicated with it in a while, then it

is necessary to set up the information before sending the message. This can

be done by means of a handshake in which a pair of messages is exchanged

between the sender and receiver in advance of the at-most-once message. If

the sender then sends many messages over the connection established by the

handshake, the cost of the handshake is amortized across all of them. If there

are only a few messages, the overhead is high relative to useful work. In the

worst case, the sender transmits only one message. Yet this case may be

quite common; it corresponds to a client that performs a single operation at

each of many servers.

ACM Transactions on Computer Systems, Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 127

The handshake between the sender and receiver could be avoided if there

were a way for a receiver to be sure a message was new in the absence of

information about the sender. Our scheme allows this to be done by using

time. The idea is that the receiver remembers all “recent” communications.

If a message from a particular sender is “recent”, the receiver will be able to

compare it with the stored information and decide accurately whether the

message is a duplicate. If the message from the sender is “old”, it will be

tagged as a duplicate even though it may not be, but this case is very

unlikely. Thus the system may occasionally mismark a nonduplicate but it

will never erroneously accept a duplicate.

For such a scheme to work, receivers need to know whether a message is

“recent”. Our scheme accomplishes this by means of loosely synchronized

clocks. All nodes have clocks that with very high probability differ by no

more than some skew c. When a node sends an “at-most-once” message, it

timestamps the message with the current time of its clock. When the

message arrives at the receiver, it is considered recent if its timestamp is

later than the receiver’s local time minus a period p; otherwise it is old. The

parameter p is chosen to minimize the probability of erroneously discarding

late messages as duplicates; it is much larger than c. The characteristics of p

are discussed further in Section 2.4.

The remainder of this section discusses our protocol in more detail. As will

be discussed in Section 3, there maybe other messages in the system as well,

e.g., unreliable datagrams. We do not consider such messages here; in the

remainder of this section, “message” will always mean an “at-most-once”

message.

2.1 The Model and Assumptions

We are interested in a distributed collection of nodes connected by a network.

All nodles can communicate with one another by sending messages on the

network. Although the network might be a local area net, we are concerned

here with the more general case of a geographically distributed net such as

the Internet. Nodes may fail by crashing. The network may lose or duplicate

messages, or deliver them late or out of order; in addition it may partition so

that some nodes are unable to send messages to some other nodes temporar-

ily. As is usual in distributed systems, we assume failures are not Byzantine

[7]: we assume the nodes are fail-stop processors and the network will deliver

only uncorrupted messages.

A program running on the network consists of a collection of modules, each

of which resides entirely on a single node. Some modules are servers and

others are clients (some modules are both servers and clients). Clients send

messages to servers to request some service; servers accept such messages,

carry out the request, and sometimes return a response in a message to the

client. The exact form of a module is not of interest to us. In some systems, a

module is limited to doing one thing at a time; other systems support

concurrency within a module. Our mechanism supports both kinds of

systems.

ACM Transactions on Computer Systems, Vol. 9, No 2, May 1991

128 * Barbara Llskov et al

Some servers are resilient: they survive failures of their node. Resilience

requires access to a non-volatile storage medium. The storage need not be

located at the server’s node; instead it could be provided over the network by

a stable storage service [21.

Every node has a clock. As mentioned, we assume that the nodes’ clocks

are loosely synchronized with some skew ~; nodes ensure this by carrying out

a clock synchronization protocol. At least one practical clock synchronization

protocol exists [41. It synchronizes clocks of nodes on a geographically dis-

tributed network so that clocks are guaranteed with very high probability to

have a skew of less than a hundred milliseconds. The protocol does this at

low cost and low overhead. Synchronized clocks are useful for other purposes

than ours, e.g., for authentication [91 and for capabilities that expire. There-

fore, our protocol is merely another client of a service used by many parts of a

system. Our method is tolerant of all clock failures, although performance

may suffer if clocks get out of synch.

2.2 The SCMP Protocol

Every module G has a current time, G. time; this is read from the clock

belonging to its node. Every message m contains a timestamp, m. ts; this is

G.time of the sending module at the time m is created. Even though a

particular message may be duplicated either by the network or by the

software that carries out a higher-level protocol, all instances of the message

will contain the same m.ts.

Each message also contains a connection identifier, m. corm. However, as

opposed to other connection-based systems, this connection identifier is se-

lected by the client without consultation with the server. If a client has only

one outstanding message to a server at a time, its unique module identifier

can serve as the connection identifier. If it has many unrelated outstanding

messages, it should have a separate connection for each; this could happen,

for example, in a client that runs multiple concurrent threads. Thus, in

general, a connection identifier is a pair (module id, uid) where the uid is

unique relative to the module identifier of the client; the size of the uid field

depends on how many outstanding messages a system allows between a

client and a server. Note that a client can freely reuse connection ids; distinct

ones are needed only when concurrent communication with the same server

is occurring.

The connection id and the timestamp in the message together constitute a

unique message id, provided that the timestamps of all messages sent on that

connection are distinct. Time stamps should have fairly fine granularity (e. g.,

one millisecond) so that clients can send messages frequently. If the clock at

a client has coarser granularity than the timestamp granularity, the client

can maintain a counter for use as the low bits of the timestamp when

necessary, e.g., if it attempts to send multiple messages within one tick of its

clock.

Each server maintains a connection table, G. CT. This is a mapping from

connection ids to connection information. For the discussion in this section,

the only connection information of interest is the timestamp of the last

ACM Transactions on Computer Systems. Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 129

Initialization
When a server G IS first created, its connection table IS empty

and G upper IS set to the mmlmum of zero and G time - p

Processing of Message m by Server G
1 If there is an entry for m corm in G CT then

a. if m ts < G.CT[m corm] ts, flag the message as a possible duphcate

b else accept the message and set G. CT[m.connJ ts to m ts

2 Otherwise,

a. [f m ts < G.upper, flag the message as a possible duphcate

b else accept the message and set G.CT[m corm] ts to m ts.

Garbage Collection
Penodlcally, the server G removes entnes from G CT. Only entnes with

tlmestamps < G time p are removed. Then G upper IS set to the maximum

of Its former value and the bmestamps of the removed entr!es

Fig. 1. Processing at a nonresilient server

message accepted on that connection. Not all connections have an entry in

G. CT. G is free to remove an entry for connection C from its connection table

provided G. CT[C].ts < G.time – p. Here, p is the interval mentioned above

during which we retain connection information; see Section 2.4 for further

discussion.

A server also maintains an upper bound, G. upper, on the timestamps that

have been removed from the table, Since only old timestamps are removed

from the table, G.upper ~ G.time – ,0.

Figure 1 describes the processing at servers that do not survive crashes

(resilient servers are described below). The algorithm works by determining

a per-connection bound that distinguishes “new” from “old”, or potentially

duplicate, messages, and comparing the timestamp of the newly arrived

message with that bound. If the messages’s connection has an entry in the

table G. CT, the bound is the timestamp of the most recent previously

accepted message. If there is no table entry, the global bound G.upper is

used. G.upper is an appropriate bound because if there is no information for

the connection in G. CT, this means the last message on the connection (if

any) contained a time stamp t ~ G.upper. Therefore, if a message arrives

whose timestamp is later than this, it must be a new message. Since

G.upper s G.time – p, we rule out (with high probability) the chance of

incorrectly flagging a message as a duplicate, provided p is large enough.

For servers that survive crashes, we need a way to determine whether a

message that arrives after crash recovery is a duplicate of a message that

arrived before the crash. We could accomplish this by keeping connection

information in stable storage [3] but this would be very inefficient, since each

change to the table would have to be recorded immediately on stable storage. 1

lWe consider here only crashes in which volatile memory is lost. If some volatile memory

survives, the connection table could be kept there, and the server crash would have no effect on

our algorithm. We conjecture that wholesale discarding of information in volatile memory after

a crash will become less common in the future as interest in fault-tolerant systems grows.

ACM Transactions on Computer Systems, Vol. 9, No 2, May 1991.

130 . Barbara Liskov et al.

Initialization
When a server G IS first created, Its connection table IS empty and

G upper IS set to the mwwmum of zero and G time p G time + ~ IS written to

stable storage and G latest IS set to this value

Processing of message m by server G
1 If m.ts > G latest, refuse the message since It IS too early

2 If there IS an entry for m corm m G CT fhen

a If m.tss G CT[m corm] ts, flag the message as a possible duplicate

b. else accept the message and set G CT[m corm] ts to m k

3 Otherwse,

a If m tss G upper, flag the message as a possible duphcate

b. else accept the message and set G,CT[m corm] ts to m ts

Maintaining Latest
Penodlcally G writes G time + ~ to stable storage and then sets G latest to this value

Garbage Collection
Penodlcally, the server G removes entries from G CT Only entries with

tlmestamps < G time p are removed Then G upper IS set to the maximum

of Ifs former value and the hmestamps of the removed entries

Crash Recovery
Intlallze G upper to be the value of G latest on stable storage Establish a new

G latest for use m accepting further messages The connection table IS empty

Fig 2. Processing at a resilient server

If the connection table does not survive the crash, we need a way of effec-

tively reinitializing it after a crash. We do this by using stable storage, but

we need write only a little information once in a while.

Our approach is to establish an estimate of the timestamp of the latest

message that may have been received before the crash. The idea is that

before the crash no message whose timestamp was greater than the estimate

was accepted. Therefore, any message after the crash whose time stamp is

greater than the estimate is not a duplicate and can be accepted. Messages

with timestamps less than or equal to the estimate might be duplicates, so

they must be flagged as such. Thus our plan is the following:

(1) Before the crash we must ensure that all accepted messages have time-

stamps less than the estimate that will be established should a crash

occur. This means we must enforce an upper bound on the timestamps of

accepted messages. We will refer to this bound as G. latest.

(2) After a crash we establish the estimate and use it to initialize G.upper.

The full algorithm carried out by a resilient server is in Figure 2. In step 1 of

message processing, we need not discard a message that arrives too early;

instead we can just delay processing of such a message.

We establish G.latest as follows: Periodically a server writes G.time + /3 to

stable storage; G. latest is the most recent value written to stable storage. /3

is some increment that ensures that we are unlikely to reject (or delay)

ACM Transactions on Computer Systems, Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 131

messages as arriving too early; it would be based on the clock skew e, the

time required to write to stable storage, and the frequency of writing. Stable

storage need only be written infrequently, for example, once every few

seconds in the background; so this work will not cause much of a drain on the

server. For many persistent servers, G.latest can simply be written to stable

storage as part of the records that are being written there anyway to record

information about the server’s persistent state,

The following alternative algorithm for maintaining G.latest is also possi-

ble. During normal processing, the server treats messages as too early if

m.ts > G.time + e, rather than keeping a separate value for G.latest. When

restarting after a crash, the server refuses all messages for a period of ~, then

sets G.upper to G.time and begins normal processing. This alternative elimi-

nates the need for stable storage, but it requires that clocks be monotonic,

and it will erroneously reject a large number of messages even after a long

crash.

2.3 Correctness

The following brief argument should convince the reader that SCMP properly

detects duplicates. Assume H sends a message m on connection C and assume

G receives multiple copies of m. We need to show that at most one copy is

accepted. We know G. CT[C] contained m.ts when the first copy of m was

accepted. By examination of the steps of the protocol, we can see that a later

copy of m will be flagged as a duplicate provided the value in G. CT[Cl is

greater than or equal to m.ts, or, if G. CT[C] does not exist, that G.upper is

greater than or equal to m.ts. These properties follow from the following

invariants:

Invariant 11: For any connection C, the value in G. CT[C] is monotoni-

cally increasing.

Invariant 12: At time t, G.upper is greater than or equal to the

timestamp m.ts of any message m that entered and left

G.CT before t.

Invariant 11 holds because SCMP modifies a connection table entry G. CT[Cl

either by overriding the previous value in the protocol step 2b, where the

timestamp is guaranteed to increase because of the test in step 2a, or by

writing into an empty entry in step 3b, where the increase is guaranteed

provided invariant 12 holds. Invariant 12 holds initially and is preserved by a

garbage collection step. It is also preserved across crashes. By step 1, we

know that any message m that enters G.CT before the crash has a timestamp

m.ts that is less than or equal to G.latest at the time m is accepted. Because

of the way G. latest is computed and the way G. upper is initialized after a

crash, we know that

G. latest ~reC,.~h s G. upperPO~tC,.,~

for all values of G.latest that existed before the crash. Therefore, invariant 12

is preserved by the crash recovery step.

ACM Transactions on Computer Systems, Vol. 9, No. 2, May 1991.

132 0 Barbara Liskov et al.

Clock synchronization is used in the protocol to establish a system-wide

notion of “recent”, which is used to delete connection information from the

table, and as a consequence to flag incoming messages as possible duplicates.

The correctness of the protocol does not depend on clock synchronization but

its performance does. If clocks are synchronized, only messages that are very

late will actually be flagged as duplicates; otherwise, recent messages maybe

flagged in this way. If Gs clock is slow, Gs messages are more likeIy to be

flagged as duplicates by other modules; also G may refuse (or delay accept-

ing) other modules’ messages (since they are “too early”) and G may main-

tain connection information that is out of date. If G’s clock is fast, it is more

likely to flag messages from other modules as duplicates and its messages

may be refused or delayed as “too early”. Thus, in either case no duplicate

messages are accepted, but performance suffers because there is extra flag-

ging of duplicate messages and some out-of-date connection information may

be kept in connection tables.

The correctness of the protocol also does not depend on the monotonicity of

clocks (in the scheme in which G. latest is kept on stable storage). If a node’s

clock runs backwards, the only effect is that messages are likely to be flagged

as duplicates. A resilient server must be careful to ensure that the value of

G.upper after a crash is greater than any G.latest before the crash, but this is

easy to do. The server merely ensures that the value of G. latest on stable

storage is monotonic. The only time monotonicity might be violated is if

stable storage fails. But in this case, the server will have failed catastrophi-

cally since it has lost its persistent state.

2.4 The Parameter p

This section discusses the engineering tradeoffs that arise in setting the

value of p. The parameter p determines the time during which a message

will be considered recent, and consequently the length of time information

must be retained in the receiver’s connection table. Selection of a value for p

requires a compromise between the performance penalties associated with

overly large connection tables and the probability of erroneously marking

messages as duplicates.

The size of a receiver’s connection table is determined by the number of

recently active senders (which cause entries to be added to the table) and the

value of p (which determines when entries may be removed from the table).

Often, p can be made quite large with no noticeable penalty. When resources

are limited, it is desirable to limit p to keep table memory usage, paging

overhead, and search time low. This is particularly true when higher-level

protocols are also storing information in the connection table, leading to

larger entries. However, making p too small will reduce performance. We

consider here the determination of an appropriate minimum value for p.

We assume that the user of SCMP (e.g., a higher-level protocol such as

RPC) requires that messages from the sender be delivered to the receiver

with a probability P,.~. We further assume a network that, when handed a

datagram, will deliver at least one copy of it with probability P.et in time 6 or

less. If the raw network does not provide adequately reliable service, the

ACM Transactions on Computer Systems, Vol. 9, No. 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 133

higher-level protocol must implement an error recovery strategy involving

retransmission of failed datagrams. 2

The SCMP algorithm puts a bound on the time available to convey a

sender’s message to the recipient, If the message has not been delivered

successfully by Tt,~~~~it + p – ~, it might be flagged as a duplicate by the

receiver. The minimum value for p is the time necessary to deliver at least

one copy of the sender’s message with probability of P,,~, plus an adjustment

for clock skew. This value is determined by the characteristics of the network

and the error recovery algorithm of the higher-level protocol.

The determination of p is particularly simple when P.et > P,,~. Here the

sender will never need to retransmit a message. p can be based entirely on 6,

the delay of a single datagram in the network, and on c, and the simple

bound p > e + /i holds.

When P.,t < P,,~, the sender may have to retransmit the message to

achieve the desired reliability. If the sender might need to retransmit the

message up to N times, a bound on p is given by

p>~-t-~+RT(N)

where RT(N) is the time from when the message was first sent to the time

the Nth retransmission is sent.

A point to notice is that the server has control of the value of P and in fact

can use different p’s for different classes of clients. This classification can be

performed using hints from the clients themselves. Clients enclose a sug-

gested value for p in each message. The server sorts clients into classes based

on the client’s suggested value for p, and uses an appropriate actual value for

each of these classes. Alternatively, if a server is able to classify clients based

on the characteristics of the underlying communication path (e.g., using

information in the client ID), it could use larger p’s for clients on slower or

less reliable paths and smaller p’s for clients on better paths. Note that in

either case the server needs to maintain a different G.upper for each category

of clients. Otherwise, removal of table entries for clients which are using a

small p may raise G. upper excessively, leading to increased rejection of

messages from clients which are using a larger p. These strategies grant

clients with higher delivery requirements, or on Iow quality or long delay

paths, the extra time needed to reliably transmit a message, while minimiz-

ing the unnecessary use of resources by clients with lesser requirements.

The above analysis considers only transient failures in the network. Some

protocols support recovery from long-term network partition, recipient node

failure, and other statistically unlikely events by allowing the sender to

retransmit indefinitely, until communication is reestablished. This approach

does not always work with SCMP-based protocols, because after a time

retransmitted messages may become too old and will not be accepted by the

receiver. (Note that we cannot solve the problem by giving the message a

later timestamp since this can cause it to be accepted when it is actually a

‘Note that this analysis does not depend on the method of triggering retransmission, e.g.,

negative acknowledgment or timeout.

ACM Transactions on Computer Systems, Vol. 9, No. 2, May 1991.

134 . Barbara Liskov et al

duplicate.) When such a message is rejected, a higher-level failure recovery

mechanism must be used. We are explicitly trading simplicity in the common

case (no handshaking on normal connection startup) for somewhat more

complexity in the unusual case of a long-term failure.

In fact, however, the algorithm performs well in the case of a receiver

crash. We would like to accept as many messages as possible after the

restart, even those older than G.time – p. The reason for this is that p is

based only on the expected delay in delivering messages in the absence of a

long-term failure. Things are different when the receiver has crashed; the

sender might keep trying to send the message for a period much longer

than p.

If the crash duration is very brief, many of these messages will have

timestamps less than t ~,, the time at which the crash occurred. Here storing

G.latest on stable storage is not much help, since G.latest will usually be

greater than or equal to t ~,. We would be able to accept such messages only

by having the missing connection table information.

Typically, however, crashes last a long time relative to the length of time

senders remain interested in messages. Therefore a much more likely case is

that all messages of interest have timestamps substantially greater than t ~,.

For such crashes, our scheme of reinitializing G.upper from the G.latest

stored on stable storage periodically will allow us to accept virtually all

messages of interest. In particular, even in the worst case we will accept all

messages sent after tC, + ~. (Recall that G.time + f? is written to stable

storage periodically.)

To ensure that the algorithm works properly immediately after a restart, it

is necessary to avoid removing entries from the table until sufficient time has

passed to process all pending messages. Otherwise, if a message with a recent

timestamp is removed, G.upper will be adjusted upwards, and messages with

older time stamps will no longer be accepted.

We can reduce the number of unnecessary message rejections caused by a

crash by increasing the frequency with which we write to stable storage and

the amount of information we write. We are again encountering here the

common tradeoff between optimizing for the normal case and for recovery.

We chose a method that has essentially no impact on normal case behavior,

since writing to disk every few seconds is not much of a drain, and could even

be combined with other information that the server must write. Alterna-

tively, every change to the connection table could be recorded on stable

storage; this would ensure that a crash causes no erroneous rejections, but

would slow down normal processing substantially.

2.5 Comparison with Delta-t

The Delta-t protocol [11, 12] also implements at-most-once messages without

requiring connection setup. Our work is closely related to Delta-t; the key

difference is that our method does not require the network to enforce a

maximum lifetime on messages,

Delta-t works by allowing the transmitter of a message to specify a bound

on the lifetime of transmitted messages. Each message initially contains this

ACM Transactions on Computer Systems, Vol. 9, No. 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 135

bound as one of its fields. Routing nodes within the message’s path decre-

ment this field by the amount of time they spend processing the message. If

the result is negative, the message is discarded. Otherwise, the message is

forwarded with the decremented bound. End nodes, as well as routing nodes,

must participate in the packet lifetime bounding algorithm, due to queueing

delays at both endpoints and message retransmission at the sender. Note

that the algorithm must account for the time a message spends transiting

data links, as well as the time spent in queues at the various nodes.

Servers maintain information about a received message until the remain-

ing lifetime of the message has expired. The server need not check for

duplicates after this point because they are assumed to be discarded by the

switching nodes. Note that Delta-t relies on a property closely related to clock

synchronization, since it requires that the clocks of all switching nodes run at

the same rate.

Both Delta-t and our protocol work by enforcing a maximum message

lifetime, thus limiting the time connection state information must be stored

at the receiver. Our protocol enforces this lifetime with an algorithm in

which all work is done at the end nodes, while Delta-t relies on both the

end nodes and the network to enforce message lifetimes using a per-hop

algorithm.

We believe our protocol is preferable to Delta-t for several reasons:

(1) Our protocol is purely end-to-end, while Delta-t requires cooperation from

the network. We can make do with very simple switching nodes. The

switching nodes in Delta-t are more complicated since they must bound

the maximum packet lifetime. In particular, nodes in a network where

the links have unpredictable delays must carry out a separate and

somewhat complex link-transit-time protocol [81.

(2) Our protocol provides better performance than Delta-t. The reason for

this is that the mechanism used to maintain state between the client and

server is an inexpensive out-of-band clock synchronization algorithm,

rather than an in-band maximum packet lifetime algorithm involving all

nodes in the net.

(3) Our protocol is fail-safe. The Delta-t protocol will fail if clock rates at the

different nodes vary by too much or the link transit time of a message is

underestimated, since then there is a chance of a duplicate arriving at a

server after information about the earlier copy of the message has been

discarded.

3. HIGHER-LEVEL PROTOCOLS

In this section, we discuss how SCMP can be used to implement higher-level

protocols. The SCMP protocol can be viewed as a filter that receives messages

from a network and passes them up to a higher-level tagged as either “new”

or “duplicate”. Higher-level protocols use new messages to initiate actions

such as establishing a connection in TCP or starting an RPC call. They may

either discard duplicate messages or use them to initiate a recovery action,

such as retransmitting a result or sending an acknowledgment.

ACM Transactions on Computer Systems, Vol. 9, No 2, May 1991.

136 . Barbara Liskov et al.

As mentioned earlier, our at-most-once messages are not intended to re-

place other low-level communication primitives. Instead, we assume that

there are also unreliable datagrams or some similar primitive. Higher-level

communication primitives are implemented out of a combination of data-

grams and at-most-once messages. Typically, at-most-once messages are used

to start the protocol associated with a higher-level primitive; the remainder

of the protocol makes use of data~ams. Thus the RPC protocol discussed

below uses an at-most-once message for the (first part of the) call; the reply

and control messages are sent using UDP [51. Similarly, we could implement

connection-based protocols like TCP [61 by having the first message from the

client to the server be an at-most-once message; all other messages would be

datagrams. This would allow us to piggyback the connection setup on the

first message to be exchanged over the connection. The client could choose

the connection id, and all messages on the connection would contain this id.

In addition, messages on the connection would be distinguished by sequence

number in the usual way. When initializing a streaming protocol in this

fashion, the client may wish to send several messages in the sequence before

receiving the initial reply from the server. It is important in this case that

the SCMP algorithm be applied only to the first message in the sequence.

The reason for this is that SCMP is sensitive to message reordering; if two

SCMP messages sent on the same connection are received in reverse order,

acceptance of the second message will cause the first message to be rejected

as a duplicate when it arrives.

The use of SCMP is most interesting when the client uses a connection

very little, since in this case we gain the most from avoiding extra messages

for connection setup. RPC is an example of this kind of communication,

especially in the case where clients call servers only occasionally. Below we

present an implementation of at-most-once RPC using SCMP and then com-

pare our implementation with that of Birrell and Nelson [1]. At-most-once

semantics for RPCS means that a call is guaranteed to be executed at most

once even when failures occur such as a crash of the receiving module; it is

desirable because it provides proper semantics even when calls are not

idempotent.

3.1 An Example: At-Most-Once RPC Implementation

We have added an SCMP-based at-most-once RPC implementation to the

widely used SunRPC library [101, which currently supports UD1’- and TCP-

based RPC protocols. Sun’s UDP-based protocol provides zero-or-more seman-

tics, which gives only weak guarantees about how many times a call is

executed: even when a call terminates normally, it may have been executed

more than once. Sun’s TCP-based protocol provides at-most-once call execu-

tion when there are no crashes; in the case of a crash, however, a call can be

run more than once. Our protocol provides at-most-once semantics even

across crashes. Measurements indicate that we can provide at-most-once

semantics at about the same cost as the UDP-based SunRPC, and with

significantly better performance than the TCP-based SunRPC in the case of

clients calling servers occasionally.

ACM TransactIons on Computer Systems, Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 137

Our at-most-once RPC provides reliable delivery: a client can depend on the

protocol to deliver the call message provided the server is accessible to the

client, and similarly the protocol guarantees to deliver the reply, It is

implemented by using an at-most-once message for the call message, and

UDP datagrams for the reply and control messages. This protocol is opti-

mized for the common case of mostly-reliable networks and heavily loaded

servers. 3 Since SunRPC modules are single-threaded, we use a connection

identifier consisting simply of a unique identifier for the client; the client uid

and timestamp provide the unique call id. We support only calls that fit in a

single UDP message. However, these messages can contain up to 64K bytes.

The client makes an RPC by sending a CALL message to the server. When

the call has been executed, results are returned to the client in a REPLY

message. When there are no failures, only these two messages are needed for

an RPC that does not take long for a server to execute, although the client

may optionally send a REPLY-ACK message to inform the server that it has

received the reply. To ensure reliability, clients retransmit CALL messages

on a periodic basis; the server responds with an ACK message if it receives a

duplicate call, or a REPLY if the results have already been computed. (If the

client learns from such an ack that the server has received the CALL

message, subsequent retransmissions send a truncated message that contains

only the connection and call ids.) If several retransmissions have occurred

without a response from the server, the client times out the call.

The server maintains state for each active connection in a connection table.

Each table entry e contains:

–The server state e. state for this connection, one of IDLE, COMPUTING or

REPLYING.

—A message timestamp e. msg. timestamp, which records the timestamp in

the most recently received CALL message.

–If the state of the connection is REPLYING, the server’s reply to the most

recently processed call and a reply timestamp e. reply .time, which records

the time the reply was first transmitted.

Processing on the server side is described by Figure 3. The server starts

performing a call when a CALL message tagged as new by the SCMP

algorithm is received from a client. While the server is performing the call, a

duplicate CALL message triggers the transmission of an ACK message to the

client. When the server completes the call, it sends the results to the client in

a REPLY message, and saves them in its connection table, If the server

receives a duplicate CALL message at this point, it retransmits the reply. If a

new CALL message is received, the server discards any stored reply and

begins processing the new call. If a REPLY-ACK message is received, the

stored reply is discarded, and the connection returns to the IDLE state.

Periodically the server connection table is garbage collected. COMPUTING

‘In other situations, different choices would be better than ours. The result would be a family of

RPC protocols.

ACM Transactions on Computer Systems, VO1 9, No. 2, May 1991

138 0 Barbara Liskov et al

Initialization and Crash Recovery

(Re)lmtlahze SCMP algorithm as m Figure 2.

The connection table CT IS empty

Process Incoming CALL Messages

1 Apply SCMP algorithm to message, tagging It as NEW or DUPLICATE

If message IS NEW and there IS no connection table entry,

one IS created by SCMP

2 If message IS NEW

discard stored reply, If any.

set server connection state e state to COMPUTING

set e msg_tlmestamp to the tlmestamP In the messa9e

begin user-level computation of results

3 Otherwse (message IS a DUPLICATE)

If no connection table entry, Ignore message

If state IS COMPUTING, send ACK

If state IS REPLYING, retransmit stored reply

Process completion of user-level computation

Transmit REPLY message to cllent

Set state to REPLYING

Store results m appropriate connection table entry e

Store current time G time m e reply_tlme

Process Incoming REPLY-ACK messages

Delete stored reply mformatlon, If any

Set state to IDLE

Garbage collection

Examme each entry e In the connection table

1 If state IS COMPUTING, do nothing

2 If state IS IDLE or REPLYING.

dwcard the entry If e repkhrne < G tlrne P’

Set G upper to the maximum of Its former value and

e msg_tlmestamp of the removed entry

Fig. 3. Processing of RPCS at the server

connection entries are never deleted. IDLE and REPLYING connection en-

tries may be deleted whenever the reply timestamp e .reply.time is older

than G.time – p’;entries are deleted when the table is almost full. Here p’is

chosen to be the maximum of two values, the period p specified by the SCMP

algorithm, and a constant K selected to ensure a high probability of the client

receiving the reply if it is still interested in the result. We use a value of five

minutes for both p and ~, based on the characteristics of our client retrans-

mission algorithm and the nominal value of two minutes for 8 in the internet

protocol suite. Note that G.upper is set using the client’s call time, not the

reply time, since our only concern is recognizing duplicates of the call. Since

we do not remove connection table entries unless the table is almost full, we

retain them for a long period after recovering from a crash. This provides us

with a sufficient period to accept any pending messages as discussed in

Section 2.4.

ACM TransactIons on Computer Systems, Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 139

30 1

25

20

15

10 tj 9.62 ms
~ 11.05ms

~ 9.66 ms

5

0 1 t 1
TCP

Fig. 4. Performance when a client makes multiple calls to a server.

We compared the performance of our RPC protocol with both UDP and

TCP-based protocols by running two experiments. Our measurements were

obtained by making null calls between server and client modules running on

DEC IVlicroVax 3 processors under Berkeley Unix 4.3. The nodes were

connected by an Ethernet. Our first experiment compared the performance of

the three RPC mechanisms while performing a sequence of 1000 calls from a

single client to a single server. The results are -presented in Figure 4, which

shows results obtained from three different runs for each protocol. The data

were obtained at times when the load on the network was low. As can be

seen, SCMP-based RPC performs comparably to UDP-based RPC, and better

than TCP-based RPC. This experiment shows that our protocol does not

impose any significant overhead cost over UDP in the case where a client

makes many calls to the same server.

Our second experiment compared the performance of the protocols while

performing calls from a thousand different clients to the same server; in this

experiment each client made exactly one call to the server. This experiment

simulates the situation of interest: a system of many clients and servers,

where clients talk to servers only occasionally. The results are shown in

Figure 5. In this case we can see that the cost of our protocol remains similar

to the UDP-based RPC, but the cost of the TCP-based RPC grows dramati-

cally because of the need to establish a new connection for each call.

3.2 Discussion of Birrell and Nelson’s RPCS

The RPC implementation of Birrell and Nelson [1] is a simple mechanism

that (almost) supports at-most-once semantics. In this section we describe

their method and discuss its behavior in the presence of late messages and

failures. We also discuss how SCMP can be used with their method to provide

truly at-most-once semantics.

A call message in the Birrell and Nelson mechanism contains a client uid,

a sequence number, and an “incarnation number” for the server. The client

uid and sequence number together constitute the unique call id; each

ACM Transactions on Computer Systems, Vol 9, No. 2, May 1991

140 . Barbara Llskov et al.

25 j $ 2315ms

a

15

10
/

~ IlcMrns

TCP

1 56 ms

Fig. 5. Performance when clients make occasional calls to a server

succeeding call must have a larger sequence number. When the server has

performed a call, it sends a reply message to the client. The client must then

send an acknowledgment message for the reply to the server. The next call

can serve as this ack; if there is no next call, an explicit ack is needed.

A server maintains a connection table that stores the sequence number of

the most recent call from a client, and also the reply message for the last call

until it is ack’d. When an explicit ack arrives, the connection becomes “idle”.

Information about an idle connection is retained for some period of time u

chosen to be substantially larger than the maximum expected delay in the

network. Provided a client never sends a call message after it has sent an ack

for that call, it is highly unlikely that a duplicate call message will be

received after the connection information is discarded.

When a call message arrives at a server, the following occurs:4

(1) The incarnation number in the message is checked against the server’s

number; if they do not match, the message is rejected.

(2) If the server’s connection table contains an entry for the client, the

message’s sequence number is compared with that in the table. If the

message’s number is greater than that in the table, it is accepted and its

number stored in the table; otherwise it is rejected.

(3) If there is no entry in the table, the message is accepted. An entry is

created for the client and the message’s sequence number is stored in it.

The incarnation number in the message will match that at the server

provided the server has not crashed (and recovered) since the client obtained

the incarnation number (by “binding” to the server). In this case, the client’s

message will be accepted unless information in the table indicates that it is

4This description is simplified For example, we ignore the techniques used to generate client

retransmission,

ACM lt’ransactlons on Computer Systems, Vol 9, No 2, May 1991

Efficient At-Most-Once Messages Based on Synchronized Clocks . 141

old. When the incarnation numbers match, the protocol does not accept

duplicates provided the network never delivers late messages; otherwise, the

message accepted in step 3 may be a duplicate. As mentioned, for some

networks (e.g., local area networks) there can be no late messages; however,

for wide area networks, late messages are possible, although rare.

Our protocol does not use incarnation counts and does not require the

initial handshake needed by the Birrell and Nelson protocol to obtain an

incarnation number before communicating with a server. A handshake is

sometimes needed anyway as part of a higher-level binding step, but our

protocol avoids this overhead when binding is not required, as in the case of

well-known servers or messages forwarded through a well-known address.

Thus, in the absence of crashes, both protocols have problems with late

messages. However, they fail in different ways: our protocol fails by rejecting

a possible nonduplicate, while theirs fails by accepting a possible duplicate.

Now we consider the case of crashes. The Birrell and Nelson protocol

guarantees that crashes will not lead to duplicate messages being accepted.

However, it does so at the cost of a handshake: the client must exchange

messages to obtain the correct incarnation id before sending the call. Our

mechanism also does not accept duplicates across crashes, but does not

require the handshake. Both systems will reject nonduplicates. However, we

will reject fewer messages: only those messages that were sent at approxi-

mately the time of the crash are rejected. By contrast, Birrell and Nelson will

reject all messages with the previous incarnation id, both old and recent.

An alternative to our implementation is to use the SCMP algorithm within

the Birrell and Nelson method to provide fail safe behavior. This is accom-

plished by timestamping their call and ack messages; the timestamp would

be included in these messages as a separate field. Each time the client sends

a call or ack, it puts its current time in the message; thus retransmitted call

messages for the same RPC would contain different timestamps. When an

ack is received, its timestamp is stored in the connection table entry. The

entry can be removed, and G. upper updated, after a time period approxi-

mately equal to the maximum expected delay in the network. Call messages

on connections without an entry in the table are handled according to our

algorithm. No duplicates will be accepted with this method provided the

timestamps in call messages for an RPC are always less than those of acks

for that RPC or call messages for later RPCS, This approach still requires

incarnation numbers, but has the advantage over our approach that clients

can retry calls indefinitely until a server responds, which would be helpful,

for example, in the case of a long-lasting network partition.

4. CONCLUSIONS

This paper has shown how to implement at-most-once message delivery

without connection setup by using loosely-synchronized clocks. The method is

fail safe: it never delivers a duplicate message. It may incorrectly reject a

nonduplicate, but this is highly unlikely, even when there are node crashes.

The protocol is superior to the Delta-t protocol because it is a purely end-to-end

method that does not require support from the routing network.

ACM Transactions on Computer Systems, Vol 9, No. 2, May 1991.

142 . Barbara Liskov et al

We also discussed how at-most-once messages can be used to implement

high-level communication primitives, and described such an implementation

for at-most-once RPCS based on the SunRPC library. Our performance data

indicate that we can provide at-most-once RPCS at the same cost as zero-

or-more RPCS. Our method outperforms at-most-once RPCS based on proto-

cols such as TCP that use extra communication to establish connections,

especially in the case where clients talk to servers only occasionally.

Our method relies on clock synchronization. We believe that systems of the

future will provide synchronized clocks since they are useful for many

different reasons; our protocol is just another client of this service. Existing

clock synchronization protocols guarantee with very high probability a clock

skew of less than a hundred milliseconds even in a wide area network, and

they do so at low cost. Since the synchronization guarantee is probabilistic, it

is better not to rely on it for correctness, however. The correctness of our

scheme does not depend on clocks being synchronized. We do depend on

synchronization for good performance; this is a comfortable assumption

because of the high probabilities.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the useful comments made by many,

including David Gifford, Karen Sollins, David Tennenhouse, and the

referees,

REFERENCES

1. BIRRELL, A. D., AND NELSON B. J. Implementing remote procedure calls ACM Trans.

Comput. Syst. 2, 1 (Feb. 1984), 39-59.

2. DANIELS, D. S., SPECTOR, A. Z., AND THOMPSON, D. S. Distributed logging for transaction

processing. In ACM Special Interest Group on Management of Data 1987 Annual Conference.

ACM SIGMOD (San Francisco, May 1987), 82-96.

3. LAMPSON, B. W., AND STURGIS, H. E. Crash recovery in a distributed data storage system.

Tech. Rep., Xerox Research Center, Palo Alto, Calif., 1979.

4. MILLS, D. L. Network time protocol (Version 1) specification and implementation.

DARPA-Internet Rep. RFC 1059.1988.

5. POSTEL, J. User datagram protocol. DARPA-Internet RFC 768.1980.

6. POSTEL, J. DoD standard transmission control protocol. DARPA-Internet RFC 793 1981.

7, SCHLICHTING, R. D., AND SCHNEIDER, F. B. Fail-stop processors: An approach to designing

fault-tolerant computing systems. ACM Trans. Comput. Syst. 1, 3 (1983), 222-238.

8. SLOAN, L. Mechanisms that enforce bounds on packet lifetimes. ACM Trans. Cornput. Syst.

1, 4 (Nov. 1983), 311-330.

9. STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I Kerberos: An authentication service for

open network systems. Tech. Rep. Project Athena, MIT, Cambridge, Mass., Mar. 1988.

10. SUN MICROSYSTEMS, INC. RPC: Remote Procedure Call Protocol Specification, Version 2.

DARPA-Internet RFC 1057.1988

11. WATSON, R. W. Timer-based mechanisms in reliable transport protocol connection manage-

ment. Cornput. Networks 5, 1 (Feb. 1981), 47-56.

12. WATSON, R. W. The Delta-T transport protocol: Features and experience. In Proceedings of

the 14th Conference on Local Computer Networks Ott. 1989, IEEE Society Press, 399-407.

Received March 1990; revised February 1991; accepted February 1991

ACM Transactions on Computer Systems, Vol. 9, No 2, May 1991.

