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Efficient attenuation of beam vibrations by inertial amplification✩
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bDepartment of Electrical Engineering, Centre for Acoustic-Mechanical Micro Systems, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

cDepartment of Mechanical Engineering, Section for Solid Mechanics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Abstract

We demonstrate efficient attenuation of flexural vibrations by attaching a simple inertial amplification (IA) mechanism to a slender

elastic beam. The mechanism generates enhanced inertial forces between two attachment points, which effectively counteracts the

elastic forces in the beam for certain anti-resonance frequencies. These anti-resonances may be generated in the low-frequency

range, even for a small added mass. Furthermore, the hybrid structures are shown to exhibit two neighbouring anti-resonance

dips providing wide and deep attenuation regions in the frequency domain. The obtained numerical results are validated with the

experimental data.

Keywords: Inertial amplification mechanism, Bending vibrations, Vibration attenuation

1. Introduction

The use of locally resonating structures for vibration mitiga-

tion has received great attention in literature within the last one

hundred years. The idea is based on the transfer of vibrational

energy to a resonator that vibrates with a frequency tuned to a

particular critical frequency of the main structure. The first at-

tempts to apply the concept, in the form of the so-called tuned

mass dampers (TMD), date back to 1909 in the work by Frahm

[1]. He applied the TMD’s to a ship in order to reduce its rolling

motion and hull vibrations. However, the first theoretical treat-

ment of the TMD was presented nearly 10 years later in 1928 by

Den Hartog and Ormondroyd [2]. In 1940, Den Hartog’s book

[3] was published, in which optimal tuning parameters were de-

rived and since then TMD’s, and dynamic vibration absorbers

in a more general framework, have been comprehensively stud-

ied by e.g. Randall [4], Warburton [5], Tsai and Lin [6], Connor

and more [7].

A main challenge when designing dynamic vibration ab-

sorbers is to obtain a wide region of vibration attenuation in the

low-frequency range. In principle, anti-resonances, and hence

vibration attenuation, can be created using a local resonance at

an arbitrary low frequency. However, in practice the lower limit

is bounded by spatial limitations and the width of the frequency

range affected by the resonator is severely restricted.

In 1967, Flannelly patented a device for attenuating vi-

brations called a ”Dynamic Antiresonant Vibration Isolator”

(DAVI) [8]. The device is similar to a single degree of free-

dom (sdof) mass-spring system, however rather than utilizing

springs, the mass is embedded between the main mass and the
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ground via a lever mechanism. The inertial force from the iso-

lation mass is amplified by the lever, and the system works as a

mechanical low-pass filter, effectively isolating the main mass

from ground vibrations above a particular filter frequency. Un-

like the usual spring-mass system, where the filter frequency is

governed by the stiffness and mass of the attached device, the

performance of the DAVI system is governed by the isolation

mass and lever ratio, both of which increases the inertial forces

generated by the device. The lack of an added spring means that

no additional resonances are created. This also implies that the

”effective” mass may be fairly large without having to use an

impractically large physical mass. In this way anti-resonance

frequencies in the low-frequency range are more feasible.

Based on an electrical-mechanical analogy, Smith developed

the ”inerter” in 2002 [9], which is the inertial equivalent of the

spring and dashpot. Work on the new device was apparently

motivated by an electrical analogy, but the working principle is

similar to Flannelly’s system. The inerter provides a force pro-

portional to the relative acceleration between two attachment

points for vibration isolation purposes. The invention has been

used in the suspension systems of Formula One cars, showing

practical applications and possibilities of the new device [10].

The concept of inertial amplification was also utilised by Yil-

maz and Kikuchi [11]. They employed periodically repeated

masses and levers to create multiple anti-resonance frequencies

and corresponding wide attenuation frequency bands. In the pa-

per, two different configurations of vibration isolators were in-

vestigated, showing possibilities for effective vibration attenua-

tion, i.e. deep and wide bands, in the low-frequency range. Fur-

ther works published by Yilmaz and collaborators [12, 13, 14]

show other applications of the inertial vibration isolation con-

cept. As an example, a two-dimensional lattice with an em-

bedded periodically repeated inertial mechanism is analysed in

Preprint submitted to European Journal of Mechanics - A/Solids April 3, 2018
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Yilmaz’s paper [12], where the potential of the inertial amplifi-

cation is presented.

Based on Yilmaz’s geometric design [12], the inertial am-

plification mechanism concept has been utilised by Frandsen

and collaborators in [15] in order to create low-frequency wide

band gaps for longitudinal waves in a continuous 1D rod. The

mechanism is attached periodically to the surface of the host

rod, keeping the structural functionality intact. The results il-

lustrate that the mechanism can indeed be used to attenuate

longitudinal vibrations by creating wide and deep band gaps

at low frequency with a relatively small added mass fraction.

The promising results combined with practical capabilities of

the mechanism have encouraged further research in this area.

In this paper a system similar to the one described in [15]

is considered, however, we will focus on the use of the iner-

tial amplification mechanism to attenuate bending vibrations,

since these are of fundamental importance in many engineer-

ing structures. In the paper [12] the transverse and longitudinal

vibrations have been considered simultaneously indicating the

the mechanism can work for vibrations in multiple dimensions.

Hence, we investigate the potential for the mechanism to atten-

uate bending vibrations of a continuous host beam, which will

potentially allow us to protect the structure against both longi-

tudinal and transverse vibrations.

2. Modeling

A slender elastic beam structure with an inertial amplifica-

tion mechanism attached to the top of the beam, as illustrated

in Fig. 1, is considered. The mechanism is connected to the top

surface of the beam via hinges and has a moment-free connec-

tion at the top. This can physically be approximated by housing

and ball bearings, whereby the assumptions are not too restric-

tive. Furthermore, we assume that the connecting bars are rigid

and massless. The additional mass attached at the top generates

the inertial force. The elastic beam has the following parame-

Figure 1: The elastic beam with attached inertial amplification (IA) mechanism.

ters: Young modulus E, mass density ρ, thickness tb, width wb

and length L. The mechanism is described by the amplification

mass ma, initial angle θ1 and distance between natural axis of

the beam and center of the bearing hb.

2.1. Mechanism kinematics

The displacement of the attached mass is denoted by xm and

ym in the horizontal and vertical direction, respectively. Based

on the kinematics of the amplification mechanism, its motion

can be expressed by the vertical and longitudinal motion at the

attachment points, which is expressed in terms of vertical mo-

tion and rotation of the beam center line respectively: y1, y2, ϕ1,

ϕ2 as well as the initial angle θ1 and distance hb (see Fig. 2). The

equations for the displacement components are derived by geo-

metric considerations presented in Appendix A. The linearised

form of the equations is shown in Eq. (1a-b):

ym =
1

2
(y2 + y1) −

1

2
hb(ϕ1 − ϕ2) cot(θ1) (1a)

xm =
1

2
(−y2 + y1) tan(θ1) −

1

2
hb(ϕ1 + ϕ2) (1b)

Figure 2: The geometry in a bent configuration.

2.2. Mechanism equation of motion

The equation of motion for the beam with the attached mech-

anism is derived in two steps. First, we relate the acceleration

of the mass to the forces and moments transmitted at the attach-

ments points using Lagrange’s equation for the isolated inertial

amplification mechanism, as illustrated in Fig. 3, where the dis-

Figure 3: Mechanism with attachment point forces and moments.

tance hb represents the distance between the centreline of the

beam and the attachment of the mechanism on the surface of

the beam. The Lagrangian is given by:

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi

=
∂W

∂qi

(2)

where the Lagrangian L represents the difference between ki-

netic and potential energy, L = T − V and the work W de-

pends on the applied forces. The kinetic energy of the system

is expressed in terms of generalized coordinates qi, in this case:

y1(t), y2(t), ϕ1(t) and ϕ2(t) [16]. Motion of the ideal inertial

amplification mechanism only generates kinetic energy, given

by:

T =
1

2
ma(ẏ2

m + ẋ2
m) (3)

2
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where ma is the attached mass at the top of the mechanism. We

can now derive the corresponding relations and express these in

matrix form.
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(4)

where the factors mi are effective masses of the inertial amplifi-

cation mechanism and given as:

m1 =
1

4
ma

(

1 + tan(θ1)2
)

(5a)

m2 =
1

4
mahb (cot(θ1) + tan(θ1)) (5b)

m3 =
1

4
ma

(

1 − tan(θ1)2
)

(5c)

m4 =
1

4
mahb (cot(θ1) − tan(θ1)) (5d)

m5 =
1

4
mah2

b

(

1 + cot(θ1)2
)

(5e)

m6 =
1

4
mah2

b

(

1 − cot(θ1)2
)

(5f)

2.3. System equations of motion

The slender elastic beam is modelled using standard

Bernoulli-Euler beam theory. The inclusion of the mechanism

in the model is most conveniently done directly in a finite ele-

ment model of the beam where we can apply the forces and mo-

ments generated at the mechanism attachment points directly as

nodal loads. We use a standard one-dimensional beam element

with 4 degrees of freedom (d.o.f) - lateral translations: u1, u2

and rotations ψ1 and ψ2, where the rotation vector is normal to

xy-plane. Axial dofs are neglected. The equations of motion of

the discretized system then become:

Mü +Ku = F − v1P1y − v2M1 − v3P2y − v4M2 (6)

where u = {u1 ψ1 . . . un ψn}
T is the global vector of beam nodal

dof’s and vi = [0 . . . 1 . . . ]T denotes the index vectors, intro-

duced to apply the mechanism forces at the appropriate dof’s.

The matrices M and K represent the standard mass and stiff-

ness matrices for the beam, respectively. External forces are

contained in F. Considering the mechanism equation of motion

Eq. (4), the generalized displacements y1, ϕ1, y2 and ϕ2 can be

expressed as y1 = v1u, ϕ1 = v2u, y2 = v3u, ϕ2 = v4u and

introducing the v = [v1 v2 v3 v4], whereby Eq. (6) becomes

M̃ü +Ku = F (7)

M̃ =M + vMIAvT (8)

where the inertial amplification matrix MIA is the mass matrix

from Eq. (4). The contribution from the mechanism is included

in the appropriate degree of freedom by the influence vector v.

We will study the steady-state vibrations of the beam when

subjected to a time-harmonic force F = F0 cos(ωt) so that the

resulting equations are:

(−ω2M̃ +K)u0 = F0 (9)

where u0 is the corresponding vibration amplitude vector.

3. Analysis

In this section the effects of attaching the IA mechanism to

a steel beam with the parameters given in Tab. 1 is illustrated.

Fig. 4 shows the analysed system: a free-free beam with the IA

Table 1: Basic beam properties.

L [m] wb [m] tb [m] E [Pa] ρ [kg/m3]

0.5 0.05 0.005 2.1×1011 7850

mechanism attached is subjected to a vertical, time-harmonic

force in one end. The response is evaluated as the vertical vi-

bration amplitude at the other beam end.

Figure 4: Indication of key system parameters.

Fig. 5 shows the FRF of the vertical beam tip response for

the IA parameters seen in Tab. 2, where Mb denotes the to-

tal mass of the host beam. The presence of anti-resonances is

noted as sharp dips in the FRF. Especially the presence of two

neighbouring anti-resonances without an in-between resonance

peak is noteworthy, since this increases the bandwidth of the

attenuation effect significantly. This effect has previously been

demonstrated for other IA devices, e.g., in [12, 9, 15]. Next,

Table 2: IA parameters corresponding to the FRFs in Fig. 5.

θ1 [rad] ma/Mb [%] lm/L [m] hb [m]

π/24.7 20 1 0.013

0 200 400 600 800 1000

Frequency [Hz]

-20

-15

-10

-5

0

lo
g

|D
| 
[m

]

Figure 5: Sample FRF plot illustrating the basic behaviour including double

anti-resonance dips.

we make a numerical investigation of the system performance

when the mechanism parameters are varied using the simple

model derived in the previous section. We will later compare

the results using the idealized conditions (e.g. massless, rigid

3
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mechanism bars) to a 3D ANSYS model with realistic material

parameters.

3.1. Effect of added mass

Consider the beam with the parameters in Tab. 1 and a mech-

anism with dimensions given in Tab. 3. Increasing the amplifi-

Table 3: IA parameters corresponding to the FRFs in Fig. 6.

θ1 [rad] lm/L hb [m]

π/21 0.85 0.013

cation mass is a simple way to boost the inertia force generated

by the mechanism, hence it is expected that this will extend gap

width and decrease the affected frequency as well. The plots of

the FRF’s for different values of the mass ratio µ = ma/Mb are

illustrated in Fig. 6.

0 200 400 600 800 1000

Frequency [Hz]

-20

-15

-10

-5

0

lo
g
|D

| 
[m

]

a) µ = 0.03

0 200 400 600 800 1000

Frequency [Hz]

-20

-15

-10

-5

0

lo
g
|D

| 
[m

]

b) µ = 0.06

0 200 400 600 800 1000

Frequency [Hz]

-20

-15

-10

-5

0

lo
g
|D

| 
[m

]

c) µ = 0.12

0 200 400 600 800 1000

Frequency [Hz]

-20

-15

-10

-5

0

lo
g
|D

| 
[m

]

d) µ = 0.21

Figure 6: Effect of varying the mass ratio µ.

It can be seen in Fig. 6 that the effect of µ on the FRF is

non-trivial, but generally double-dip anti-resonances are cre-

ated at lower frequency for larger µ leading to corresponding

frequency ranges with vibration attenuation. For µ = 0.06 large

vibration attenuation is found between the third and fourth res-

onance frequency in the range from approximately 450 − 800

[Hz], whereas for µ = 0.21 a frequency range between 100−250

[Hz] with strong attenuation is created between the first and sec-

ond resonance. The non-trivial dependency on µ is highlighted

by the more limited effect noted for the intermediate value of

µ = 0.12, however it should be noted that the third resonance

peak is practically removed.

3.2. Effect of mechanism width

The location of the attachment points has a significant im-

pact on the amplification effectiveness. The system is analysed

for four cases with different relative length of the mechanism

l = lm/L, and the general IA parameters given in Tab. 4.

Table 4: IA parameters corresponding to the FRFs in Fig. 8.

θ1 [rad] ma/Mb [%] hb [m]

π/21 20 0.013

The inertial amplification effect is heavily influenced by the

rotation at the attachment points. This can be seen in Eq. (4)-

(5), where the dominating terms are related to cross-section

rotation. Considering the mechanism being originally devel-

oped for longitudinal motion, this is not surprising, since cross-

section rotation leads to longitudinal motion of the outermost

fiber of the beam. Hence, maximal (out of phase) rotation at the

two attachment points will maximize efficiency of the mecha-

nism. Furthermore, the attachment points determine the length

of the mechanism lm, which also has an impact on the perfor-

mance metrics, i.e. the bandwidth and level of attenuation. It is

expected that the effectiveness generally increases with a longer

mechanism length due to the increased lever-arm for the inertial

force. This is illustrated in Fig. 7 that shows the first bending

mode of vibration for a freely suspended beam with an attached

symmetric mechanism. Here it is seen how the distance lm func-

tions as a lever arm for the forces P which together with the

moments M act against the elastic forces in the beam.

Fig. 8 shows the FRF for the systems with attached symmet-

ric mechanisms with different lengths lm.

Figure 7: Illustration of the system near the fundamental mode of vibration.
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d) l = 0.55
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c) l = 0.75
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b) l = 0.85
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]

a) l = 1

Figure 8: FRFs for varying internal length l = lm/L
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It can be seen, that the attenuation efficiency of the system

increases with increasing length ratio l. For l = 1 and l = 0.85,

the low-frequency anti-resonances are observed, which disap-

pear with decreasing relative length. This behaviour is in line

with above expectation, and shows the importance of the lever

arm.

For all above analysed cases it is observed that broadband

gaps associated with the double-dip anti-resonances occur af-

ter odd-numbered vibration modes. This behaviour is related to

the shape of the vibration form and the symmetric configura-

tion of the system with the additional mass located at midpoint.

For even-numbered modes, the attachment points of the mecha-

nism rotate in phase, which leads to insignificant motion of the

additional mass, hence, no or small inertial force is generated.

3.3. Effect of bearing height

The bearing height, hb, also has significant influence on the

attenuation features of the inertial amplification mechanism.

It works as a lever which transforms the internal force of the

mechanism mass to moments at the attachment nodes. Thus

with increasing distance hb the moment increases too. Fig. 9

presents the FRF for the system with the parameters of the IA

mechanism given in Tab. 5.

Table 5: IA parameters corresponding to the FRFs in Fig. 9.

θ1 [rad] ma/Mb [%] lm/L [m]

π/21 11 0.85

0 200 400 600 800 1000

Frequency [Hz]

-20
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-10

-5

0

lo
g
|D

| 
[m

]

a) hb = 0.013 [m]
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b) hb = 0.018 [m]
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]

c) hb = 0.023 [m]
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|D

| 
[m

]

d) hb = 0.035 [m]

Figure 9: Comparison different values of bearing height parameter hb.

When comparing Fig. 9a) and Fig. 9b) the effect of the en-

hanced inertial force due to increased height hb is observed, i.e.

a new double-peak dip has appeared and the two existing dips

are further separated. Further increasing the value of parameter

hb improves performance but does not produce the significant

effects seen for the initial increment.

3.4. Comparison to a standard vibration absorber

The performance of the designed mechanism with the pa-

rameters given in Tab. 6 is now compared to a standard vibra-

tion absorber with comparable parameters. Both systems are

attached to the beam with parameters presented in Tab. 7 The

Table 6: IA parameters corresponding to the FRFs in Fig. 12.

θ1 [rad] ma/Mb [%] lm/L hb [m]

π/72 8.5 0.87 0.023

Table 7: Beam properties corresponding to the FRFs in Fig. 12.

L [mm] wb [mm] tb [mm] E [Pa] ρ [kg/m3]

0.9 0.05 0.005 2.1×1011 7875

performance of the standard system is presented for two tuning

cases. The first is when the local resonator generates the anti-

resonance frequency between the 1st and 2nd mode. For the

second case, the system is tuned to get the same anti-resonance

in 225 [Hz] as for the IA. Both cases with the parameters given

in Figs. 10 and 11. The FRFs for two cases are presented in

Figure 10: Location of the local resonator on the beam- case no. 1.

Figure 11: Location of the local resonator on the beam- case no. 2.

0 50 100 150 200 250 300

Frequency [Hz]

-14

-12

-10

-8

-6

-4

-2

0

lo
g

|D
| 
[m

]

Local resonator- case 1

Local resonator- case 2

Mechanism- rigid bars

Figure 12: Comparison FRFs of the local resonator to the inertial amplifier.

Fig. 12. It is seen that the standard dynamic absorber is able

to create the gap at low-frequency, however, with a narrower

5
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frequency range of attenuation. This is even more evident in

case no. 2 (Fig. 12), where we can observe a wide gap gener-

ated by the IA, extended between 90 − 290 [Hz]. Conversely,

the local resonator gap extends between 160 to 260 [Hz], i.e.,

the range is 50% narrower. Apart from its higher efficiency, the

proposed mechanism contains multiple parameters that can be

tuned, providing a larger design flexibility, along with the fact

that the IA attenuates multiple modes.

Thus, for this idealized example the inertial amplification

mechanism provides improved efficiency, i.e. wide and multi-

ple gaps in the FRF, when compared to the classical local res-

onance system. This supports previous results and conclusions

[15, 11, 17].

4. Finite element validation

A model of the inertial amplification mechanism is im-

plemented in the commercial FE-software Ansys. The host

beam as well as the bars of the system are modelled by three-

dimensional beam elements - BEAM188. The two-noded ele-

ment is based on Timoshenko beam theory which includes shear

deformations. The bars are connected with the beam using rev-

olution joints in order to obtain rotationally free connections.

The distance hb which corresponds to the dimension of a hous-

ing bearing is modelled as a very stiff and massless beam in

order to avoid local bending. The masses of elements such as:

ball bearing, hinges and housing bearing are implemented as

the point masses at corresponding nodes [18].

For all following cases a time-harmonic excitation force

(with an arbitrary amplitude set to F = 100 N) is applied at the

first node (at the left beam end) in the vertical direction and the

response of the system is measured at the last node (the vertical

vibration amplitude at the right beam end).

The mechanism is always attached with the widest possible

distance lm/L = 0.87 in the numerical analysis. This partic-

ular value is limited by the restrictions related to the physical

model of the system, presented in the next section. The widely

attached mechanism has been shown to affect the first bend-

ing mode the most, whereby the lowest anti-resonances can be

obtained. The host beam has the material parameters given in

Tab. 7. When Young’s modulus of the connecting bars is set to

a realistic values, their flexibility becomes influential. Fig. 13

illustrates the FRFs for both rigid and realistic connecting bars,

for the mechanism parameters in Tab. 8. Rigid bars are obtained

by setting Eb = 1 × 1020 [Pa].

Table 8: IA mechanism parameters - case no. 1.

θ1 [rad] ma/Mb [%] lm/L hb [m]

π/44 8.5 0.87 0.012

Fig. 13 shows that for the case with rigid bars, two wide gaps

are obtained: the first double-dip gap is approximately within

the range 130−290 [Hz] and the second gap is located between

310 − 590 [Hz]. When using true physical bar parameters the

high-frequency gap disappears but the first remains and displays
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rigid bars

bars with E
b
=2.3×1011

Figure 13: FRF’s of the refined model, hb = 0.012 [m], θ1 = π/44 [rad] - case

no. 2.

two dips in the range 120−270 [Hz] and generally even though

discrepancies between the FRFs are present, similar trends are

observed. Fig. 14 illustrates the deformation shapes of the sys-

tem at a number of specific frequencies in order to illustrate the

reasons for the discrepancies.

a) Ω = 80 [Hz], displacement scale ×5

b)Ω = 200 [Hz], displacement scale ×50

c) Ω = 400 [Hz], displacement scale ×50

d) Ω = 790[Hz], displacement scale ×300

Figure 14: Deflection of the mechanism with non-rigid bars.

Comparing the plots in Fig. 14 it can be clearly seen that the

vibration amplitude of the bars increases significantly for 400

[Hz], corresponding to their fundamental natural frequency,

whereby the system actually works by local resonance. This

results in the observed resonance peak in the FRF for the sys-

tem with physical parameters in Fig. 13.

This phenomenon is accurately described in Yilmaz and Hul-

bert’s paper [13], which states that the inertial amplification ef-

fect will be dominating if the IA-antiresonance is below the lo-

cal resonance frequency of the mechanism. The authors show

this by changing the stiffness of their IA and analysing the width

and depth of the inertial amplification induced gaps.

The analysis of the system focuses on low-frequency gaps,

between the 1st-2nd and 2nd-3rd modes which are below 400

[Hz], thus the local resonance of the mechanism is not an issue
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in the most analysed cases.

The results obtained by Ansys are compared with the FRFs

obtained using the simple model. It is expected that profiles

of the curves should match closely for the cases with rigid

bars, but also with the physical parameters of the bars included,

the corresponding FRF’s should show similar trend in low fre-

quency range. Hence, the plots are limited up to 300 [Hz] and

illustrated in Figs. 15 through 17. Moreover, in the graphs, the

natural frequencies of the pure beam are marked by the gray

dotted lines in order to see the impact of the mechanism on the

resonance peaks of the pure beam. Analyses are performed for

three different setups of the attached mechanism, with the pa-

rameters given in Tab. 9.

Table 9: IA parameters corresponding to the FRFs in Fig. 15-17.

θ1 [rad] ma/Mb [%] lm/L hb [m]

1st case π/44 8.5 0.87 0.012

2nd case π/72 8.5 0.87 0.023

3rd case π/33 8.5 0.87 0.023
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Figure 15: Comparison between Matlab and Ansys solutions: hb = 0.012 [m],

θ = π/44 [rad].
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Figure 16: Comparison between Matlab and Ansys solutions: hb = 0.023 [m],

θ = π/72 [rad].
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Figure 17: Comparison between Matlab and Ansys solutions: hb = 0.023 [m],

θ = π/33 [rad].

It is noted that with rigid bars the results obtained by both

methods match well and justifies the use of the simple model

in the initial design phase for the experiments. Considering the

mechanism with real material parameters, it can be seen that

the response curve in Fig. 17 has nearly the same profile as the

one for the system with the rigid bars. In Figs. 15 and 16 for

systems with Eb = 2.3× 1011 [Pa], the gaps are found in almost

identical frequency ranges in comparison to the response curves

for the mechanism with the rigid bars. This further supports the

argument for using the simple model in the initial design phase.

It is also observed in Fig. 15 that due to the vibration of the

bars the sharp dips do not occur for the mechanism with real

material parameters.

In Fig. 16 around 33 [Hz], FRF’s obtained by Ansys and

the simple model show somewhat different trends. The anti-

resonance dips in the simple model function are sharp with a

significant distance between them in comparison to a single,

rounded dip seen in the Ansys simulation. This can be ex-

plained by the axial deformations present in FE model, but

omitted in the simple model. Considering both attachment

points of the mechanism, the magnitude of the axial deforma-

tion at the first one is about 6 times smaller than the transverse

deformation. For the second point, this proportion increases to

70. As it can be seen, the deformations in the two directions

have different orders of a magnitude, but still the axial compo-

nent might affect the results since the energy associated with

the axial direction requires much less deformation to be signifi-

cant in comparison to the transverse deformation. Furthermore,

this phenomenon is amplified for the small angle θ1 as in this

particular case, for which the mechanism generates a large axial

force along the beam.

5. Experimental setup

Based on the parameter analysis of the mechanism, a 3D

model of the system is created in a CAD software, illustrated

Fig. 18. System parameters are chosen to create large vibra-

tion attenuation in the challenging low-frequency range with

a moderate amount of added mass. The prior analysis has

shown that low-frequency gaps are observed for mass ratio

µ = 0.06 thus, the restriction is made to maintain a ratio be-

tween µ = 0.06 − 0.15. The designed test rig, illustrated in

7



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Figure 18: Inertial amplification mechanism - isometric view.

Fig. 19, is used for experimental modal analysis. The beam is

excited by a modal hammer at one end of the beam and the re-

sponse is measured by an accelerometer at the second end. The

impulse excitation allows to examine the response in a wide fre-

quency range. This type of test is simple and fast, therefore it is

possible to investigate the mechanism for many different con-

figurations. As it can be seen in Fig. 19 the beam with the at-

tached mechanism hangs on two rubber bands. This attachment

imitates the free-free boundary conditions. The accelerometer

is mounted beneath the beam at the measurement point and the

excitation force is applied on the top surface of the beam. The

tests are analysed using Brüel & Kjaer digital frequency anal-

yser [19]. The hardware schematics is illustrated Fig. D.30.

The four FRF’s in the previous chapter, obtained by numeri-

cal analysis in Ansys, are now compared to relevant experimen-

tal results in Figs. 20 through 22. Setup data are presented in

Tab. 9.

Figure 19: Experimental test rig.
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Figure 20: FRFs for 1st case.
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Figure 21: FRFs for 2nd case.
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Figure 22: FRFs for 3rd case.
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It is noted that for all investigated cases in the frequency

range 0 − 20 [Hz] the differences between numerical and

experimental curves are significant. The experimental FRFs

have a number of resonance peaks within this range, which is

attributed to the resonance frequencies of the rubber bands.

As demonstrated in Figs. 20-22, discrepancies between the

numerical and experimental FRFs are primarily found at the

anti-resonance frequencies. The experimental curves mostly

present a rather flat behaviour in the attenuated zones, as op-

posed to the dips found in the numerical results. These discrep-

ancies might be due to measurement inaccuracies or nonlinear

effects such as backlash and friction, since sliding bearings are

used in the inertial mechanism. Furthermore, due to the system

construction, the backlash is additionally amplified for small

angle θ1. For the all considered set-ups, this angle is relatively

small, what might lead to observed discrepancies.

The desirable effect of the inertial amplification mechanism

is most clearly illustrated in Fig. 21. Consider the blue numer-

ical and red experimental curve. For the numerical FRF the

double-dip gap is observed in range 20 − 90 [Hz]. The similar

phenomena can be seen in the experiments, which shows mul-

tiple dips in the same range. This indicates efficient operation

of the mechanism and its ability to create gaps formed by mul-

tiple anti-resonance dips. In both cases the first mode is shifted

to the left, hence the gap is relatively wide (70 [Hz]). More-

over, the 3rd resonance peak for experimental case is moved to

the right but not as significantly as predicted by the numerical

simulation.

5.1. Mechanism parameters variation

The experimental setup is used to demonstrate the effect of

the important parameters of the system, i.e., the neutral axis

distance hb, the initial angle θ1 and the location of the attach-

ment points. Due to the construction of the mechanism, it was

impracticable to vary each parameter individually while keep-

ing all others constant, e.g., changing the internal length of the

mechanisms affects the angle θ1. During the experiment, the

parameter h1 (see Fig. 23), was used as a control parameter in

order to keep the different parameters as constant as possible.

The variation in added mass due to different lengths of the car-

bon connecting rods was deemed insignificant and disregarded.

Figure 23: Mechanism geometry including control parameter h1.

Fig. 24 shows FRF’s in terms of the normalized acceleration

of the beam tip in the frequency range up to 100 [Hz] when

varying angle the θ1. Attention is given to low-frequency range

near the first natural frequency.
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θ1 = 3.23

θ1 = 4.7

Figure 24: Angle θ1 variation.

It can be seen in Fig. 24 that the low-frequency attenuation

properties appear to increase for decreasing angle θ1. A de-

crease of the angle to θ1 = 3.23◦ affects the first resonance peak

of the system, moving it to the left, hence a wider and deeper

attenuation band is observed.

Fig. 25 illustrates the effect of varying the height parameter

hb. The analysis of the distance hb is ambiguous due to the

mentioned physical limitations of the system. To obtain repre-

sentative results, the chosen FRFs correspond to system setups

with θ1 approximately kept constant, i.e. 2.5◦ and 2.64◦. For

those cases, it can be clearly observed that the vibration filter-

ing properties of the mechanism increased for hb = 23 mm.
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Frequency [Hz]
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10
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hb = 12, θ1 = 2.64

hb = 23, θ1 = 2.5

Figure 25: Bearing height hb variation.

The analyses of the mechanism parameters presented in

Figs. 24 and 25 support the analytical predictions and numerical

results presented earlier.

Fig. 26 shows the experimental FRFs when we decrease the

relative length l of the mechanism as well as for the pure beam.

Once more, there is a slight variation of the initial angle for the

each setup, but still the desirable effect is visible.
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Figure 26: Effect of the mechanism width variation.

It can be seen in Fig. 26 that increasing the relative internal

length increases the attenuation efficiency of the system. Fur-

thermore, it can be observed that the FRF’s approach that of the

pure beam when the length of the mechanism decreases.

Many effects contribute to the observed discrepancies be-

tween experimental and numerical results. In the derived model

it is assumed that the mechanism vibrates only in the xy−plane,

and consequently, that there no motion in z − direction. How-

ever, for all configurations a lateral motion of the amplification

mechanism was observed. The lateral vibrations are attributed

to the excitation mechanism. It is very difficult to impact the

beam ideally in the center and there will always be an offset

leading to a twisting motion. Additionally, the rubber bands

do not provide the pure parallel support as it was assumed in

numerical calculations. Furthermore energy dissipation due to

friction between mechanical parts is a source of discrepancy. In

the numerical model this effect is not included and in order to

minimize the effect, the rotational joints were thoroughly lubri-

cated in order to decrease friction as much as it possible. This

lubrication however, does not reduce the possible backlash that

might occur in such bearings.

6. Conclusion

The attenuation of flexural vibrations in an elastic beam using

an inertial amplification mechanism has been investigated by

numerical and experimental means. It was demonstrated that

the designed mechanism could create wide and deep gaps in the

frequency response functions of the continuous beam. The gaps

are generated by the inertial force that is created between two

attachment points and is proportional to their relative difference

in accelerations. We utilise a design similar to what is used

in [12, 15], as a light-weight attachment to a continuous host

structure similar to [15], rather than as a backbone component

of a lattice structure as in [12]. This allows the mechanism to

be applied directly to surfaces of structures without disturbing

the functionality or integrity of the host structure.

The IA has been compared to the standard local resonator in

order to benchmark its performance. For the system analysed

in Fig. 12 the former generates wider and deeper gaps for the

same amount of added mass.

The prominent effect of the designed system is presented in

Fig. 21, where we can see the multiple anti-resonance frequen-

cies between 1st and 2nd mode within the experimental FRF.

This clearly illustrates the possibilities of the mechanism to

generate gaps in the low-frequency range for a small amount

of added mass. Fig. 21 also serves as validation of the numeri-

cal results.

In future work the attenuation of transverse vibrations in the

elastic beam could be applied to more advanced structures, e.g.,

plates. Moreover, as it was mentioned a similar system config-

uration [15] was analysed with success for mechanical filtering

of longitudinal vibrations. This leads to the idea of using the

same mechanism for attenuating both longitudinal and trans-

verse vibrations. Finally, the dependency on relative motion

between two points also means that a similar mechanism might

be used effectively as an internal component of e.g. airplane

wings or wind turbine towers.

Appendix A. Mechanism kinematics

The vertical and horizontal displacements of the attachment

points 1 and 2 due to the rotation of the beam cross section (see

Fig. A.27) are described by:

x1 = hb sin(ϕ1) (A.1)

y01 = hb cos(ϕ1) (A.2)

x2 = hb sin(ϕ2) (A.3)

y02 = hb cos(ϕ2) (A.4)

Figure A.27: The geometry after bending.

The attachment points move horizontally due to the cross

section rotation. However, their total vertical displacements yii

are the results of an independent vertical displacements of the

beam yi and the vertical displacements y0i due to cross section

rotation:

y11 = y01 − hb + y1 (A.5)

y22 = y02 − hb + y2 (A.6)

As illustrated in Fig. A.29 the displacement of the additional

mass in the vertical direction ym is expressed as a difference

between its initial height h1 and the height in the bent config-

uration h2. The horizontal displacement xm is determined, see

Eq. (A.8), by geometric relations seen in Fig. A.28 such that:

ym = h2 − h1 (A.7)

xm = a21 − x1 −
a1

2
(A.8)
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Figure A.28: Inertial mechanism in initial position and after bending.

Figure A.29: Dimensions of the structure after bending.

In order to express ym and xm by the known variables, the

calculation of the additional parameters based on Figs. A.28

and A.29 is required. The span of the attaching points in the

initial state is:

a1 = 2l cos(θ1) (A.9)

for the bent state it becomes:

a2 = a1 + x1 − x2 (A.10)

and the following geometric relations illustrated in Fig. A.29:

α = arctan

(

y2 − y1

a2

)

(A.11)

p =
a2

cos(α)
(A.12)

β = arccos

(

p

2l

)

(A.13)

θ2 = α + β (A.14)

h21 = l sin(θ2) (A.15)

it leads to:

h2 = h21 + y1 (A.16)

h1 = l sin(θ1) (A.17)

a21 = l cos(θ2) (A.18)

Substituting Eq. (A.9)-A.18 into Eq. (A.7), the displacement

components of the mass take full form as follow:

ym = hb cos(ϕ1) − hb + y1 − l sin(θ1)

+ l sin

(

arctan

(

hb cos(ϕ2) + y2 − hb cos(ϕ1) − y1

2l cos(θ1) + t sin(ϕ1) − hb sin(ϕ2)

)

+ arccos
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(A.19)

xm = −l cos(θ1) − hb sin(ϕ1)

+ l cos

(

arctan

(

hb cos(ϕ2) + y2 − hb cos(ϕ1) − y1
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(A.20)

We consider linear motion, thus the equations ym and xm are

linearised. It is assumed that the rotation angles ϕ1 and ϕ2 are

relatively small so functions cos(ϕi) = 1 and sin(ϕi) = ϕi.

ym = y1 − l sin(θ1) + l sin

(

arctan
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(A.21)

xm = −l cos(θ1) − hbϕ1

+ l cos
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(A.22)

We can assume that the fractional term inside the square

root vanishes for small displacements, y1 and y2, since

(y2 − y1)2 << (2l cos(θ1) + hbϕ1 − hbϕ2)2 thus Eqs. (A.21)
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and (A.22) become:

ym = y1 − l sin(θ1) + l sin

(

arctan

(

y2 − y1

2l cos(θ1) + hbϕ1 − hbϕ2

)

+ arccos

(

(2l cos(θ1) + hbϕ1 − hbϕ2)

2l

))

(A.23)

xm = −l cos(θ1) − hbϕ1 + l cos

(

arctan

(

y2 − y1

2l cos(θ1) + hbϕ1 − hbϕ2

)

+ arccos

(

(2l cos(θ1) + hbϕ1 − hbϕ2)

2l

))

(A.24)

The trigonometric functions arctan and arccos which appear in

the derivation of the displacement components are linearised

by means of multiple variable Taylor series for arguments: y1,

y2, ϕ1 and ϕ2, expanding all of them near the zero point. Thus

Eqs. (A.23) and (A.24) are expressed by:

ym = y1 − l sin(θ1) + l sin

(

y2 − y1

2l cos(θ1)
+ θ1 −

hb

2l sin(θ1)
(ϕ1 − ϕ2)

)

(A.25)

xm = −l cos(θ1) − hbϕ1

+ l cos

(

y2 − y1

2l cos(θ1)
+ θ1 −

hb

2l sin(θ1)
(ϕ1 − ϕ2)

)

(A.26)

Using once again Taylor expansion for the same arguments

as above, here for the non-linear sin and cos function in

Eqs. (A.25) and (A.26), finally the linearised displacement

components are given as:

ym =
1

2
(y2 + y1) −

1

2
hb(ϕ1 − ϕ2) cot(θ1) (A.27)

xm =
1

2
(−y2 + y1) tan(θ1) −

1

2
hb(ϕ1 + ϕ2) (A.28)

Appendix B. Governing equations

For the considered mechanism only kinetic energy exists and

is given by:

T =
1

2
ma(y2

m + x2
m) =

1

2
ma















(

1

2
ẏ2 +

1

2
ẏ1 −

hb(ϕ̇1 − ϕ̇2)

2 tan(θ1)

)2

+

(

1

2
tan(θ1)(−ẏ2 + ẏ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)2














(B.1)

Finding all terms of Lagrange equation:

∂L

∂ẏ1

=
1

2
ma

[

1

2
ẏ2 +

1

2
ẏ1 −

hb(ϕ̇1 − ϕ̇2)

2 tan(θ1)

+

(

1

2
tan(θ1)(−ẏ2 + ẏ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)

tan(θ1)

] (B.2)

∂L

∂ẏ2

=
1

2
ma

[

1

2
ẏ2 +

1

2
ẏ1 −

hb(ϕ̇1 − ϕ̇2)

2 tan(θ1)

−

(

1

2
tan(θ1)(−ẏ2 + ẏ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)

tan(θ1)

] (B.3)

∂L

∂ϕ̇1

=
1

2
ma

















−

(

1
2
ẏ2 +

1
2
ẏ1 −

hb(ϕ̇1−ϕ̇2)

2 tan(θ1)

)

hb

tan(θ1)

−

(

1

2
tan(θ1)(−ẏ2 + ẏ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)

hb

]

(B.4)

∂L

∂ϕ̇2

=
1

2
ma

















(

1
2
ẏ2 +

1
2
ẏ1 −

hb(ϕ̇1−ϕ̇2)

2 tan(θ1)

)

hb

tan(θ1)

−

(

1

2
tan(θ1)(−ẏ2 + ẏ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)

hb

]

(B.5)

then substituting them to Eq. (2), one obtains

1

2
ma

[

1

2
ÿ2 +

1

2
ÿ1 −

hb(ϕ̈1 − ϕ̈2)

2 tan(θ1)

+

(

1

2
tan(θ1)(−ÿ2 + ÿ1) −

1

2
hb(ϕ̈1 + ϕ̈2)

)

tan(θ1)

]

= P1y

(B.6)

1

2
ma

[

1

2
ÿ2 +

1

2
ÿ1 −

hb(ϕ̈1 − ϕ̈2)

2 tan(θ1)

−

(

1

2
tan(θ1)(−ÿ2 + ÿ1) −

1

2
hb(ϕ̈1 + ϕ̈2)

)

tan(θ1)

]

= P2y

(B.7)

1

2
ma

















−

(

1
2
ÿ2 +

1
2
ÿ1 −

hb(ϕ̈1−ϕ̈2)

2 tan(θ1)

)

hb

tan(θ1)

−

(

1

2
tan(θ1)(−ÿ2 + ÿ1) −

1

2
hb(ϕ̇1 + ϕ̇2)

)

hb

]

= M1

(B.8)

1

2
ma

















(

1
2
ÿ2 +

1
2
ÿ1 −

hb(ϕ̈1−ϕ̈2)

2 tan(θ1)

)

hb

tan(θ1)

−

(

1

2
tan(θ1)(−ÿ2 + ÿ1) −

1

2
hb(ϕ̈1 + ϕ̈2)

)

hb

]

= M2

(B.9)

and rearranging equations

1

4
ma

[

(1 + tan(θ1)2)ÿ1 − hb

(

1

tan(θ1)
+ tan(θ1)

)

ϕ̈1

+(1 − tan(θ1)2)ÿ2 + hb

(

1

tan(θ1)
− tan(θ1)

)

ϕ̈2

]

= P1y

(B.10)

1

4
ma

[

(1 − tan(θ1)2)ÿ1 − hb

(

1

tan(θ1)
− tan(θ1)

)

ϕ̈1

+(1 + tan(θ1)2)ÿ2 + hb

(

1

tan(θ1)
+ tan(θ1)

)

ϕ̈2

]

= P2y

(B.11)
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1

4
ma

[

hb

(

− tan(θ1) +
1

tan(θ1)

)

ÿ1 − h2
b

(

1 +
1

tan(θ1)2

)

ϕ̈1

+hb

(

tan(θ1) −
1

tan(θ1)

)

ÿ2 + h2
b

(

1 −
1

tan(θ1)2

)

ϕ̈2

]

= M1

(B.12)

1

4
ma

[

−hb

(

tan(θ1) +
1

tan(θ1)

)

ÿ1 − h2
b

(

1 −
1

tan(θ1)2

)

ϕ̈1

+hb

(

tan(θ1) +
1

tan(θ1)

)

ÿ2 + h2
b

(

1 +
1

tan(θ1)2

)

ϕ̈2

]

= M2

(B.13)

leads to the governing equations of the system:

m1ÿ1 − m2ϕ̈1 + m3ÿ2 + m4ϕ̈2 = P1y (B.14)

−m4ÿ1 + m5ϕ̈1 − m4ÿ2 + m6ϕ̈2 = M1 (B.15)

m3ÿ1 − m4ϕ̈1 + m1ÿ2 + m2ϕ̈2 = P2y (B.16)

m4ÿ1 + m6ϕ̈1 + m4ÿ2 + m5ϕ̈2 = M2 (B.17)

where the m1, m2,...,m8 are effective masses of the internal am-

plification mechanism.

Appendix C. Parameters of the carbon fibre tubes

Table C.10: Properties of the Carbon Tube

Outside diameter 10.0 [mm]

Inside diameter 8.0 [mm]

Weight per m 43.7 [g] per meter

Length 750 [mm]

Structural material T300 carbon fibres

Matrix Epoxy resign

Carbon content Approximately 60%

Young modulus 230 [GPa]

Ultimate tensile strength 1600 − 2300 [MPa]

Fibre density 1.4 − 1.8 [g/cm3]

Resin glass transition Tg 170◦C

Appendix D. Technical data of the experimental equipment

Figure D.30: Experimental setup.

Table D.11: Brüel & Kjaer digital frequency analyser.

Components Type Serial No.

Modal hammer 8206 57983

Force transducer 8200 −

Charge converter 2646 −

Accelerometer 4397 10113

Generator module 3160 − A042 3160−106220
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Highlights: 

 

•  An inertial amplification mechanism for attenuation of beam vibrations is analyzed. 

 

•  The mechanism generates multiple anti-resonance dips in the low-frequency range. 

 

•  Improved efficiency in comparison to a classical local resonance system. 

 

•  The obtained numerical results are validated with the experimental data. 
 
 


