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Abstract

We present an efficient and practical technique for dynamically maintaining an authenticated dictio-
nary. The main building blocks of our scheme are the skip list data structure and cryptographic associa-
tive hash functions. Applications of our work include certificate revocation in public key infrastructure
and the the publication of data collections on the Internet.

1 Introduction

We present an efficient and practical data structure for dynamically maintaining an authenticated dictionary.
Applications of our work include certificate revocation in public key infrastructure and the the publication
of data collections on the Internet.

1.1 Problem Definition

The problem we address involves three parties: a trusted source, an untrusted directory, and a user. The
sourcedefines a finite setS of elements that evolves over time through insertions and deletions of items.
The directory maintains a copy of setS. It receives time-stamped updates from the source together with
update authentication information, such as signed statements about the update and the current elements of
the set. Theuserperforms membership queries on the setSof the type “is elemente in setS?” but instead of
contacting the source directly, it queries the directory. The directory provides the user with a yes/no answer
to the query together withquery authentication information, which yields a proof of the answer assembled
by combining statements signed by the source. The user then verifies the proof by relying solely on its trust
in the source and the availability of public information about the source that allows to check the source’s
signature. The data structure used by the directory to maintain setS, together with the protocol for queries
and updates is called anauthenticated dictionary[17]. Figure 1 shows a schematic view of an authenticated
dictionary.

The design of an authenticated dictionary should address the following goals:

• low computational cost:the computations performed internally by each entity (source, directory, and
user) should be simple and fast; also, the memory space used by the data structures supporting the
computation should be as small as possible;
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Figure 1: Authenticated dictionary.

• low communication overhead:source-to-directory communication (update authentication informa-
tion) and directory-to-user communication (query authentication information) should be kept as small
as possible;

• high security: the authenticity of the data provided by a directory should be verifiable with a high
degree of reliability.

We can formalize the above goals as the algorithmic problem of minimizing the following cost parame-
ters of an authenticated dictionary for setS.

1. space used by the data structure;

2. the time spent by the directory to perform an update initiated by the source;

3. size of the update authentication information sent by the source in an update (source-to-directory
communication);

4. time spent by the directory to answer a query and return the query authentication information as a
proof of the answer;

5. size of the query authentication information sent by the directory together with the answer (directory-
to-user communication);

6. time spent by the user to verify the answer to a query.

Authenticated dictionaries have a number of applications, including scientific data mining (e.g., genomic
querying [8] and astrophysical querying [11, 2, 12]), geographic data servers (e.g., GIS querying), third-
party data publication on the Internet [4], and certificate revocation in public key infrastructure [9, 15, 17,
1, 3, 7, 5].

In the third-party publication application [4], the source is a trusted organization (e.g., a stock exchange)
that produces and maintains integrity-critical content (e.g., stock prices) and allows third parties (e.g., Web
portals), to publish this content on the Internet so that it widely disseminated. The publishers store copies
of the content produced by the source and process queries on such content made by the users. In addition to
returning the result of a query, a publisher also returns a proof of authenticity of the result, thus providing
a validation service. Publishers also perform content updates originating from the source. Even so, the
publishers are not assumed to be trustworthy, for a given publisher may be processing updates from the
source incorrectly or it may be the victim of a system break-in.

In the certificate revocation application [9, 15, 17, 1, 3, 7, 5], the source is acertification authority
(CA) that digitally signs certificates binding entities to their public keys, thus guaranteeing their validity.
Nevertheless, certificates are sometimes revoked (e.g., if a private key is lost or compromised, or if someone
loses their authority to use a particular private key). Thus, the user of a certificate must be able to verify
that a given certificate has not been revoked. To facilitate such queries, the set of revoked certificates is
distributed tocertificate revocation directories, which process revocation status queries on behalf of users.
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The results of such queries need to be trustworthy, for they often form the basis for electronic commerce
transactions.

In this paper, we present a new scheme for authenticated dictionaries, based on the skip list data struc-
ture and on commutative collision-resistant hash functions. Our data structure is efficient and secure. It
matches the theoretical performance parameters of the best previous approaches that attempt to optimize
simultaneously all the above performance measures. In addition, our algorithms are simpler to implement
and deploy in practical applications. With our technique, the computations performed by the user are very
simple and can be easily done on devices with limited memory and computing power, such as PDAs, smart
cards, and cellphones.

1.2 Previous and Related Work

In this section, and throughout the rest of this paper, we denote withn the current number of elements of the
setSstored in the authenticated dictionary.

Previous work on authenticated dictionaries has been conducted primarily in the context of certificate
revocation. The traditional method for certificate revocation (e.g., see [9]) is for the CA (source) to sign
a statement consisting of a timestamp plus a hash of the set of all revoked certificates, calledcertificate
revocation list(CRL), and periodically send the signed CRL to the directories. A directory then just forwards
that entire signed CRL to any user who requests the revocation status of a certificate. This approach is secure,
but it is inefficient, for it requires the transmission of the entire set of revoked certificates for both source-
to-directory and directory-to-user communication. This scheme corresponds to an authenticated dictionary
where both the update authentication information and the query authentication information has sizeΘ(n).
Because of the inefficiency of the underlying authenticated dictionary, CRLs are not a scalable solution for
certificate revocation.

Micali [15] proposes an alternate approach, where the source periodically sends to each directory the
list of all issued certificates, each tagged with the signed time-stamped value of a one-way hash function
(e.g., see [19]) that indicates if this certificate has been revoked or not. This approach allows the system to
reduce the size of the query authentication information toO(1) words: namely just a certificate identifier and
a hash value indicating its status. Unfortunately, this scheme requires the size of the update authentication
information to increase toΘ(N), whereN is the number of all nonexpired certificates issued by the certifying
authority, which is typically much larger than the numbern of revoked certificates.

The hash treescheme introduced by Merkle [13, 14] can be used to implement a static authenticated
dictionary, which supports the initial construction of the data structure followed by query operations, but not
update operations (without complete rebuilding). A hash treeT for a setS stores the elements ofSat the
leaves ofT and a valueh(v) at each nodev, defined as follows:

• if v is a leaf,h(v) = x, wherex is the element stored atx;

• else (v is an internal node),h(v) = f (h(u),h(w)), whereu andw are the left and right child ofv,
respectively, andf is a collision-resistant cryptographic hash function, such as MD5 or SHA1.

The authenticated dictionary forSconsists of the hash treeT plus the signature of a statement consisting of
a timestamp and the valueh(r) stored of the rootr of T. An elementx is proven to belong toSby reporting
the values stored at the nodes on the path inT from the node storingx to the root, together with the values
of all nodes that have siblings on this path. Each node in this collection must be identified as a left or right
child, and the path given in order, so that the user can recompute the root’s hash value and compare it to
the current signed value. It is important that all this order and connectivity information be presented to the
user, for without it the user would have great difficulty recomputing the hash value for the root. This hash
tree scheme can be extended to validate that an itemx is not in S by keeping the leaves ofT sorted and
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then returning the leaf-to-root paths, and associated hash values, for two elementsy andz such thaty andz
are stored at consecutive leaves ofT andy < x < z, or (in the boundary cases)y is undefined andz is the
left-most leaf orz is undefined andy is the right-most leaf. Again, the user is required to know enough about
binary trees to be able to verify from the topology of the two paths thaty andz are stored at consecutive
leaves.

Kocher [10] also advocates a static hash tree approach for realizing an authenticated dictionary, but
simplifies somewhat the processing done by the user to validate that an item is not in the setS. In his
solution, the leaves of the hash tree store the intervals defined by the consecutive elements in the sorted
sequence of the elements ofS. A membership query for an itemx always returns a leafv and and the
interval [y,z] stored atv such thaty≤ x < z, together with the path fromv to the root and all sibling hash
values for nodes along this path. The user validates this path by recomputing the hash values of the nodes
in this path, keeping track of whether nodes are left children or right children of their respective parents.
Although there is a minor extra overhead of now having to have a way of representing−∞ and+∞, this
method simplifies the verification for the case when an item is not inS (which will usually be the case in
certificate revocation applications). It does not support updates of the setS, however.

Using techniques from incremental cryptography, Naor and Nissim [17] dynamize hash trees to support
the insertion and deletion of elements. In their scheme, the source and the directory maintain identically-
implemented 2-3 trees. Each leaf of such a 2-3 treeT stores an element of setS, and each internal node stores
a one-way hash of its children’s values. Hence, the source-to-directory communication is reduced toO(1)
items, since the source send insert and remove instructions to the directory, together with a signed message
consisting of a timestamp and the hash value of the root ofT. A directory responds to a membership query
for an elementx as follows: if x is in S, then the directory supplies the path ofT from the leaf storingx
to the root, together with all siblings of nodes on this path; else (x is not in S), the directory supplies the
leaf-to-root paths from two consecutive leaves storingy andz such thaty < x < z, together with all siblings
of the nodes on these paths. By tracing these paths, the user can recompute the hash values of their nodes,
ultimately recomputing the hash value for the root, which is then compared against the signed hash value
of the root for authentication. One can apply Kocher’s interval idea to this scheme as an alternative way of
validating items that are not in the dictionaryS. There are nevertheless some drawbacks of this approach.
Dynamic 2-3 trees are not trivial to program correctly, as it is. In addition, since nodes in a 2-3 tree can have
two or three children, one must take special care in the structuring of the query authentication information
sent by the directory to the user. Namely, all sibling nodes returned must be classified as being left children,
middle children (if they exist), or right children. Recomputing the hash value at the root requires that a user
be able to match the computation done at the source as regards a particular leaf-to-root path.

Other certificate revocation schemes based on variations of hash trees have been recently proposed
in [3, 5], as well, but do not deviate significantly from the above approaches.

1.3 Summary of Results

We introduce an efficient and practical authenticated dictionary scheme, which factors away many of the
complications of the previous schemes while maintaining their asymptotic performance properties. Our
approach is based on two new ideas. First, rather than hashing up a dynamic 2-3 tree, we hash in a skip
list [18]. This choice has two immediate benefits:

• It replaces the complex details of 2-3 trees with the easy-to-implement details of skip lists.

• It allows us to avoid the complication of storing intervals at leaf nodes [10], and instead allows us to
return to the intuitive concept of storing actual items at the base nodes.

Second, we introduce the use of commutative hashing as a means to greatly simplify the verification process
for a user, while retaining the basic security properties of signing a collection of values via cryptographic

4



hashing. We summarize the asymptotic performance of our scheme in Table 1. Our methods therefore
match the asymptotic performance of the Naor-Nissim approach [17], while simplifying the details of an
actual implementation of a dynamic authenticated dictionary. Indeed, we show that the verification process
for a user can now be simplified to a straightforward iterative hashing of a sequence of numbers, with no
regards to notions such as leaf-to-root paths or left, middle, or right children. If the hash of this sequence
matches the signed hash of the entire skip list, then the result (either a membership or its converse) is
validated.

method space update time update info query time query info verify time
CRL’s O(n) O(n) O(n) O(n) O(n) O(n)

Micali [15] O(N) O(N) O(N) O(N) O(1) O(t)
Naor-Nissim [17] O(n) O(logn) O(1) O(logn) O(logn) O(logn)

Our scheme O(n) O(logn) O(1) O(logn) O(logn) O(logn)

Table 1: Comparison of the main authenticated dictionary schemes with our new scheme. We usen to denote
the size of the dictionary,t to denote the number of updates since a queried element has been created, andN
to denote the size of the universe the elements of the dictionary come from. The time and information size
bounds for our scheme are expected with high probability, while they are worst-case for the other schemes.

Our update info size is actually about logn bits, which we can encode in a single word (since logn bits
is needed just to store the value ofn). We provide the details of our method in the sections that follow. We
begin by reviewing the skip list data structure and how it can be used to maintain a dictionary of elements
subject to insertions, deletions, and searches. We also describe an implementation of our approach in Java,
and some promising benchmarking data on its performance.

2 Skip Lists

Theskip listdata structure [18] is an efficient means for storing a setSof elements from an ordered universe.
It supports the following operations:

• find(x): determine whether elementsx is in S.

• insert(x): insert elementx into S.

• delete(x): remove elementx from S.

2.1 Definition

A skip list stores a setS of elements in a series of linked listsS0, S1, S2, . . ., St . The base list,S0, stores
all the elements ofS in order, as well as sentinels associated with the special elements−∞ and+∞. Each
successive listSi , for i ≥ 1, stores a sample of the elements fromSi−1. The method used to define the sample
from one level to the next determines the kind of skip list being maintained. The default method is simply
to choose each element ofSi−1 at random with probability 1/2 to be in the listSi . But one can also define a
deterministic skip list [16], which uses simple rules to guarantee that between any two elements inSi there
are at least 1 and at most 3 elements ofSi−1. In either case, the sentinel elements−∞ and+∞ are always
included in the next level up, and the top level,t, is maintained to beO(logn). In both the deterministic and
the randomized versions, the top level is guaranteed to contain only the sentinels. We therefore distinguish
the node of the top listSt storing−∞ as thestart node s.
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An element that exists inSi−1 but not inSi is said to be aplateauelement ofSi−1. An element that is
in bothSi−1 andSi is said to be atower element inSi−1. Thus, between any two tower elements, there are
some plateau elements. In deterministic skip lists, the number of plateau elements between two towers is at
least one and at most three. In randomized skip lists, the expected number of plateau elements between two
tower elements is one. (See Figure 2.)
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Figure 2: Example of a skip list.

For each nodev of list Si , we denote with elem(v) the element stored atv. Also, we denote with down(v)
the node inSi−1 belowv, which stores the same element asv, unlessi = 0, in which case down(v) = null .
Similarly, we denote with right(v) the node inSi immediately to the right ofv, unlessv is the sentinel storing
+∞, in which case right(v) = null .

2.2 Search

To perform a search for elementx in a skip list, we begin at the start nodes. Let v denote the current node
in our search (initially,v = s). The search proceeds using two actions,forward hopanddrop down, which
are repeated one after the other until we terminate the search.

• Hop forward: We move right along the current list until we find the node of the current list with largest
element less than or equal tox. That is, while elem(right(v)) < x, we updatev = right(v)

• Drop down: If down(v) = null , then we are done with our search: the nodev stores the largest element
in the skip list less than or equal tox. Otherwise, we updatev = down(v).

The outer loop of the search process continues while down(p) 6= null , performing inside the loop one hop
forward followed by one drop down. After completing such a sequence of hops forward and drops down, we
ultimately reach a nodev with down(v) = null . If, at this point, elem(v) = x, then we have found elementx.
Otherwise,v is the node of the base list with the largest element less thanx; likewise, in this case, right(v)
is the a node of the base list with the smallest element greater thanx, that is, elem(v) < x < elem(right(v)).

Figures 3–4 show examples of searches in the skip list of Figure 2.
In a deterministic skip list, the above searching process is guaranteed to takeO(logn) time. Even in a

randomized skip list, it is fairly straightforward to show (e.g., see [6]) that the above searching process runs
in expectedO(logn) time, for, with high probability, the heightt of the randomized skip list isO(logn) and
the expected number of nodes visited on any level is three. Moreover, experimental studies (e.g., see [18])
have shown that randomized skip lists often outperform 2-3 trees, red-black trees, and other deterministic
search tree structures.

Performing updates in a skip list is also quite simple.
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Figure 3: Search for element 39 in the skip list of Figure 2. The nodes visited and the links traversed
are drawn with thick lines. This successful search visits the same nodes as the unsuccessful search for
element 42.

22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

v1

v2

v3

v4

v5v6

v7

Figure 4: Search for element 17 in the skip list of Figure 2. The nodes visited and the links traversed
are drawn with thick lines. This successful search visits the same nodes as the unsuccessful search for
element 18.

2.3 Insertion

To insert a new elementx, we begin, as we would in a search, at the start nodes. Indeed, we proceed by
performing a search for elementx. In addition, each time we perform a hop forward or drop down from the
current nodev, we push a reference tov in a stack,A, indicating if this was a hop forward or a drop down.
Once the search stops at a nodev of the base levelS0, we insert a new node intoS0 right afterv and store
there the elementx. In a deterministic skip list we then use the stackA (with pop operations) to update the
skip list as necessary to maintain the size rules for plateau nodes between towers. In a randomized skip list,
we determine which lists should contain the new elementx by a sequence of simulated random coin flips.
Starting withi = 0, while the coin comes up heads, we use the stackA to trace our way back to the position
of list Si+1 where elementx should go, add a new node storingx to this list, and seti = i +1. We continue
this insertion process until the coin comes up tails. If we reach the top level with this insertion process, we
add a new top level on top of the current one. The time taken by the above insertion method isO(logn),
worst-case for a deterministic skip list, and with high probability for a randomized skip list.

2.4 Deletion

To delete an existing elementx, we begin by performing a search for a fictitious element smaller thanx but
larger than any element ofS less thanx. As in the insertion case, we use a stackA to keep track of the nodes
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encountered during the search. The search ends at a nodev on the bottom level such that elem(right(v)) = x.
(If this is not the case, then there is no elementx in the skip list and we should signal an error.) We remove
right(v) from the base level and, using the stackA, we remove all the nodes on higher levels that contain the
elementx. The time taken by the above removal method isO(logn), worst-case for a deterministic skip list,
and with high probability for a randomized skip list.

3 Commutative Hashing

For this paper, we view a cryptographic hash function as a function that takes two integer arguments,x and
y, and maps them to an integerh(x,y) that is represented using a fixed numberk of bits (typically fewer
than the number of bits ofx andy). Intuitively, h(x,y) is a digest for the pair(x,y). We can also use the
hash functionh to digest a triple,(x,y,z), ash(x,h(y,z)). Likewise, we can useh to digest larger sequences.
Namely, to digest a sequence(x1,x2, . . . ,xm) we can computeh(x1,h(x2, . . .h(xm−2,h(xm−1,xm)) · · ·)).

3.1 Collision Resistance

The reason that cryptographic hash functions are useful for the task of authenticating dictionary responses
is that given a pair(a,b) it is difficult to find a pair(c,d) 6= (a,b) such thath(a,b) = h(c,d). The concept
of difficulty here is that it is computationally intractable to find such a pair(c,d) independent of the specific
values fora and b. The valueT, of time steps needed to compute such a colliding pair, should depend
only on the number of bits in the hash value forh’s range, andT should be so large as to be an infeasible
computation for even a supercomputer to perform. This property ofh is known ascollision resistance.

To simplify the verification process that a user has to do in our authenticated dictionary scheme, we
would like a cryptographic hash function that has an additional property. We want a hash functionh that is
commutative, that is,h(x,y) = h(y,x), for all x andy. Such a function will allow us to simplify verification,
but it requires that we modify what we mean by acollision resistanthash function, for the conditionh(x,y) =
h(y,x) would normally be considered as a collision. We therefore say that a hash function iscommutatively
collision resistantif, given (a,b), it is difficult to compute a pair(c,d) such thath(a,b) = h(c,d) while
(a,b) 6= (c,d) and(a,b) 6= (d,c).

3.2 A Candidate Construction

Given a cryptographic hash functionf that is collision resistant in the usual sense, we construct a candidate
commutative cryptographic hash function,h, as follows:

h(x,y) = f (min{x,y},max{x,y}).

This function is clearly commutative.
Its collision resistance derives from the collision resistance off . Specifically, given(a,b), consider the

computational difficulty of finding a pair(c,d) such thath(a,b) = h(c,d) while (a,b) 6= (c,d) and(a,b) 6=
(d,c). Without loss of generality, let us assume thata< b. If finding a collision pair(c,d) is computationally
feasible forh, then this immediately implies (by a simple reduction) that it is computationally feasible to
find numbersc andd such thatf (a,b) = f (c,d) and(a,b) 6= (c,d) or f (a,b) = f (d,c) and(a,b) 6= (d,c).
In either case we would have a collision in the usual cryptographic sense. Thus, iff is collision resistant in
the usual sense, thenh is commutatively collision resistant.

In the next section we show how to use a commutative cryptographic hash function to accumulate effi-
ciently the values of a dictionary that are stored in a skip list.
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4 Authenticated Dictionary Based on a Skip List

Let h be a commutative cryptographic hash function. Our authenticated dictionary for a setSconsists of the
following components:

• A skip list data structure storing the items ofS.

• A collection of valuesf (v) that label each nodev of the skip list, computed accumulating the elements
of Swith the hash functionh, as discussed below.

• A statement signed by the source consisting of the timestamp of the most recent labelf (s) of the start
node of the skip list.

We useh to compute the labelf (v) of each nodev in the skip list, except for the nodes associated with
the sentinel value+∞. The valuef (s) stored at the start node,s, represents a digest of the entire skip list.
Intuitively, each labelf (v) accumulates the labels of nodes belowv possibly combined with the labels of
some nodes to the right ofv.

4.1 Hashing Scheme

For each nodev we define labelf (v) in terms of the respective values at nodesw = right)(v) and u =
down(v). If right(v) = null , then we definef (v) = 0. The definition off (v) in the general case depends on
whetheru exists or not for this nodev.

1. u = null , i.e.,v is on the base level:

(a) If w is a tower node, thenf (v) = h(elem(v),elem(w)).
(b) If w is a plateau node, thenf (v) = h(elem(v), f (w)).

2. u 6= null , i.e.,v is not on the base level:

(a) If w is a tower node, thenf (v) = f (u).
(b) If w is a plateau node, thenf (v) = h( f (u), f (w)).

We illustrate the flow of the computation of the hash values labeling the nodes of a skip list in Figure 5.
Note that the computation flow defines a directed acyclic graph, not a tree.

4.2 Updates

The source maintains its own copy of the authenticated dictionary, and updates the authenticated dictionary
of the directory by specifying the operation performed (insertion/deletion) and the elementx involved, plus
the following authentication information:

• a signed statement consisting of a timestamp and the new hash value of the start nodes;

• if the skip list is randomized, the random bits used by the source in the update, which areO(logn)
with high probability.

After performing the update in the skip list, the hash values must be updated to reflect the change that has
occurred. In either an insertion or deletion, the stackA (see Sections 2.3–2.4) comes to our aid, to make the
updating simple. For the nodes stored in the stackA (and possibly their right neighbors) are precisely the
nodes whose hash values have changed. Thus, we can simple pop off nodes from the stackA and recompute
the f (v) labels for each one (plus possibly thef labels forv’s right neighbor, if that node stores the elementx
that is being inserted or deleted, as the case may be). The additional computational expense needed to update
all these values is proportional to the number of elements inA; hence, it is expected with high probability to
beO(logn) in a randomized skip list and is guaranteed to beO(logn) in a deterministic skip list.
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Figure 5: Flow of the computation of the hash values labeling the nodes of the skip list of Fig. 2. Nodes
where hash functions are computed are drawn with thick lines. Also, please note that the arrows denote the
flow of information, not pointer values in the data structure.

4.3 Query and Verification

The verification of the answer to a query is simple, thanks to the use of a commutative hash function. Recall
that the goal is to produce a verification that some elementx is or is not contained in the skip list. In the case
when the answer is “yes,” we verify the presence of the element itself. Otherwise, we verify the presence of
two elementsx′ andx′′ stored at consecutive nodes on the bottom levelS0 such thatx′ < x < x′′. In either
case, the query authentication information is a single sequence of values, together with the signed timestamp
and valuef (s).

Let P(x) = (v1, · · · ,vm) be the sequence of nodes that are visited when searching for elementx, in reverse
order. In the example of Fig. 3, we haveP(39) = P(42) = (v1, · · · ,v11), and in the example of Fig. 4, we
haveP(17) = P(18) = (v1, · · · ,v7) Note that by the properties of a skip list, the sizem of sequenceP(x) is
O(logn) with high probability. We construct from the node sequenceP(x) a sequenceQ(x) = (x0, · · · ,xp)
of values using the method given in Figure 6.

The computation of the sequenceP(x) can be easily done by pushing into a stack the nodes visited while
searching for elementx. When the search ends, the stack contains the nodes ofP(x) ordered from top to
bottom. Using this stack, we can construct sequenceQ(x) by following the method of Figure 6, where the
nodes ofP(x) are obtained by popping them from the stack, one at a time.

We recall from Section 2 that nodev1 stores eitherx (for a “yes” answer) or the largest element less
thanx (for a “no” answer). In the first case (v1 storesx), the directory returns as part of the authentication
information for the membership ofx in S the sequenceQ(x), as illustrated in Figures 7 and 8. In the second
case (v1 does not storex), let w1 be the node to the right ofv1, andz be the node to the right ofw1, if any;
we further distinguish three subcases:

1. w1 is a tower node: sequenceQ(x) is returned, as illustrated in Figure 7;

2. w1 is a plateau node andz1 is a tower node: the sequence(elem(z),elem(w1)) ·Q(x) is returned, where
· denotes concatenation;

3. w1 is a plateau node andz1 is a plateau node: the sequence( f (z),elem(w1)) ·Q(x) is returned, as
illustrated in Figure 8.

In either case, the user verifies the answer by simply hashing the values of the returned sequence in the
given order, and comparing the result with the signed valuef (s), wheres is the start node of the skip list. If
the two values agree, then the user is assured of the validity of the answer at the time given by the timestamp.
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w1← right(v1)
if w1 is a plateau nodethen

x0← f (w1)
else

x0← elem(w1)
end if
x1← x
j← 1
for i← 2, · · · ,m−1 do

wi ← right(vi)
if wi is a plateau nodethen

j ← j +1
if wi 6= vi−1 then

xj ← f (wi)
else

if vi is in the base listS0 then
xj ← elem(vi)

else
ui ← down(vi)
xj ← f (ui)

end if
end if

end if
end for
p← j

Figure 6: Computation of the sequenceQ(x) = (x0, · · · ,xp) from the node sequenceP(x) = (v1, · · · ,vm).

Note that our scheme requires only the repeated accumulation of a sequence of values with a hash
function. Unlike the previous best hash tree schemes [15], there is no need to provide auxiliary information
about the order of the arguments to be hashed at each step, as determined by the topology of the path in a
hash tree.

5 Implementation

We have developed a prototype implementation in Java of an authenticated dictionary based on skip lists.
We use six interfaces combine to describe our authenticated dictionary system. Three relate to querying,
and three relate to modifying an authenticated dictionary.

At the heart of the query system is theAuthenticatedDictionary interface, which describes membership
queries made by a user. It allows the user to retrieve the query authentication data, represented by an instance
of theBasis interface, and to request data to be used to initialize a new directory. It also declares the principal
query method,contains. Thecontains method takes a single parameter, the element, and returns an instance
of theAuthenticResponse interface that may be used to verify whether or not the element is contained in
the dictionary.

An instance ofAuthenticResponse has a method,subject, to determine the element of the query for
which the response is issued, and a method,subjectContained, to determine whether or not the element is
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Figure 7: The query authentication information for the presence of element 39 (and for the absence of
element 42) consists of the signed time-stamped valuef (v11) of the source element and the sequence
(44,39,38, f (w3), f (u4), f (u6), f (w7), f (u8), f (u,4), f (u10)). The user recomputesf (v11) by accumulat-
ing the elements of the sequence with the hash functionh, and verifies that the computed value off (v7)
is equal to the value signed by the source. Please note that, as in Figure 5, the arrows denote the flow of
information, not pointer values in the data structure.
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contained by the dictionary. There is also a method for determining whether or not the response is valid,
calledvalidatesAgainst, which takes an instance ofBasis as its parameter. If the user trusts that the data
stored in the instance ofBasis has not been tampered with, and ifvalidatesAgainst returnstrue, then the
user may trust that the values returned bysubject andsubjectContained are correct.

The data represented by theBasis andAuthenticResponse are implementation-dependent. In our system,
which uses commutative hashing and skip lists, the basis isf (s), that is, the label of the start nodes of
the skip list. The instance ofAuthenticResponse for a contains query with parameterx is a sequence of
values computed from the skip list includingx if x is contained in the dictionary, or containing the values
immediately less than and immediately greater thanx in the dictionary, ifx is not contained. To verify the
response, the user checks to see that the appropriate values are in the sequence, and then uses the hashing
function to recomputef (s). If the recomputed value off (s) matches the value in the basis, then the response
is valid. Otherwise, it is not.

The three interfaces involved in modifying an authenticated dictionary system include an interface to
allow trusted entities to add or remove items from the dictionary, an interface for use in initializing the di-
rectories (mirror instances of the data structure), and an interface for transmitting to the directories updates
based on changes made by the trusted source. The first interface is namedSourceAuthenticatedDictionary,
and has two methods:insert andremove. Both methods have a single parameter, the element, and return an
instance of the third interface,Update. Copies of theUpdate instance may be sent to directories in order to
inform them of changes in the contents of the dictionary. TheUpdate interface contains anexecute method
that carries out the action of the update on a directory, so the only method in theMirrorAuthenticatedDic-
tionary interface is the one used to initialize a new directory.

Because specific implementations of authenticated dictionary systems restrict the types of data that may
be stored in the dictionaries, thecontains method ofAuthenticatedDictionary, as well as theinsert and
remove methods ofSourceAuthenticatedDictionary and theinitialize method ofMirrorAuthenticatedDic-
tionary may throw exceptions if the user attempts to insert incompatible data. Also, if a directory is not
fed instances ofUpdate in the order in which they were generated at the source, exceptions may arise,
depending upon specific implementations.

We have conducted a preliminary experiment on the performance of our data structure on randomly
generated sets of 128-bit integers ranging in size from 100,000 to 700,000. For each operation, the average
was computed over 30,000 trials. The experiment was conducted on a 440MHz Sun Ultra 10 with 256M
of memory running Solaris. The Java Virtual Machine was launched with a 200M maximum heap size.
Cryptographic hashing was performed using the standard Java implementation of the MD5 algorithm.

The results of the experiment are summarized in Figure 9. Note that validations, insertions and deletions
take less than 1ms, while queries take less than 0.1ms. We note that a simple ratio test, comparing the
running timet(n) in milliseconds of an operation to the function log2n, estimates the ratiot(n)/ log2n as
0.005 for queries, 0.04 for validations, and 0.05 for insertions and deletions. Thus, we feel the use of skip
lists and commutative hashing is a scalable solution for the authenticated dictionary.

6 Conclusion

We have presented an efficient and practical technique for realizing an authenticated dictionary. Our methods
achieve asymptotic performance bounds that match those of previous schemes, but do so using simpler
algorithms. We are able to retain the basic security properties of the previous schemes but make the dynamic
maintenance of an accumulated dictionary more practical, particularly for contexts where user computations
must be performed on simple devices, such as PDAs, smart cards, or cellphones.
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