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Abstract. We construct efficient authentication protocols and message authentication
codes (MACs) whose security can be reduced to the learning parity with noise (LPN)
problem. Despite a large body of work—starting with the HB protocol of Hopper and
Blum in 2001—until now it was not even known how to construct an efficient authenti-
cation protocol from LPN which is secure against man-in-the-middle attacks. A MAC
implies such a (two-round) protocol.
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1. Introduction

Authentication is among the most basic and important cryptographic tasks. In the present
paper we construct efficient (secret key) authentication schemes from the assumption
that the learning parity with noise (LPN) problem is hard. Informally, this problem asks
to distinguish noisy inner products from random. We construct the first efficient message
authentication codes (MACs) from LPN, but also simpler and more efficient two-round
authentication protocols that achieve a notion called active security. Prior to our work, the
only known way to construct an LPN-based MAC was via a relatively inefficient generic
transformation [23] (that works with any pseudorandom generator), and all interactive
LPN-based protocols with security properties similar to our new protocol required at
least three rounds and had a loose security reduction. Our constructions and techniques
diverge significantly from prior work in the area and will hopefully be of independent
interest.

The pursuit of LPN-based authentication is motivated by two disjoint concerns, one
theoretical and one practical. On the theoretical side, the LPN problem provides an
attractive basis for provable security [3,5,6,27,32,41]. It is closely related to the well-
studied problem of decoding random linear codes, and unlike most number-theoretical
problems used in cryptography, the LPN problem does not succumb to known quan-
tum algorithms. On the practical side, LPN-based authentication schemes are strikingly
efficient, requiring relatively few bit-level operations. Indeed, in their original proposal,
Hopper and Blum [27] suggested that humans could perform the computation in their
provably secure scheme, even with realistic parameters.

Each of our theoretical and practical motivations, on its own, would be sufficiently
interesting for investigation, but together the combination is particularly compelling.
LPN-based authentication is able to provide a theoretical improvement in terms of prov-
able security in addition to providing better efficiency than approaches based on more
classical symmetric techniques that are not related to hard problems. Usually we trade
one benefit for the other, but here we hope to get the best of both worlds.

Before describing our contributions in more detail, we start by recalling authentication
protocols, the LPN problem, and some of the prior work on which we build.

Authentication Protocols. An authentication protocol is a (shared-key) protocol where
a prover P authenticates itself to a verifier V . We recall some of the common definitions
for security against impersonation attacks. A passive attack proceeds in two phases,
where in the first phase the adversary eavesdrops on several interactions between P and
V , and then attempts to cause V to accept in the second phase (where P is no longer
available). In an active attack, the adversary is additionally allowed to interact with P

in the first phase. The strongest and most realistic attack model is a man-in-the-middle

attack (MIM), where the adversary can arbitrarily interact with P and V (with polyno-
mially many concurrent executions allowed) and wins if it can make V accept in any
execution where at least one message was changed.

The LPN Problem. For τ < 1/2 and a vector x ∈ Z
ℓ
2, define the distribution �τ,ℓ(x) on

Z
ℓ
2×Z2 by (r, rTx+e), where r ∈ Z

ℓ
2 is uniformly random and e ∈ Z2 is selected accord-
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ing to Berτ , the Bernoulli distribution over Z2 with parameter τ (i.e., Pr[e = 1] = τ ).
The LPNτ,ℓ problem is to distinguish an oracle returning samples from �τ,ℓ(x), where
x ∈ Z

ℓ
2 is random and fixed, from an oracle returning uniform samples. It was shown by

Blum et al. [5] that this is equivalent to the search version of LPN, where one needs to
find x given oracle access to �τ,ℓ(x) (cf. [31, Thm.2] for precise bounds). We note that
the search variant of LPN is efficiently solvable when there is no noise (i.e., when τ = 0)
using Gaussian elimination, for this we just need ℓ samples with linearly independent r’s.
The best algorithms take time 2ℓ/ log ℓ when τ > 0 is treated as a constant [6–9,24,34,46].

Authentication Protocols from LPN. Starting with the work of Hopper and Blum [27],
several authentication protocols based on the LPN problem have been proposed. Their
original elegant protocol is simple enough for us to recall right away. The shared secret
key is a binary vector s ∈ Z

ℓ
2. The interaction consists of two messages. First V sends a

random challenge r ∈ Z
ℓ
2, and then P answers with the bit z = rTs + e, where e ∈ Z2

is sampled according to Berτ . Finally, the verifier accepts if z = rTs.
This basic protocol has a large completeness error τ (as V will reject if e = 1) and

soundness error 1/2 (as a random r, z satisfies rTs = z with probability 1/2). This can
be reduced via sequential or parallel composition. The parallel variant, denoted HB, is
illustrated in Fig. 1 (we represent several r with a matrix R and the noise bits are now
arranged in a vector e). The verifier accepts if at least a τ ′ fraction (where τ < τ ′ < 1/2)
of the n basic authentication steps is correct.

The two-round HB protocol is provably secure against passive attacks, but efficient
active attacks are known against it. This is unsatisfying because in several scenarios
an adversary will be able to mount an active attack. Subsequently, Juels and Weis [28]
proposed an efficient three-round variant of HB, called HB+, and proved it secure against
active attacks. Again the error can be reduced by sequential repetition, and as shown by
Katz, Shin and Smith via a non-trivial analysis, parallel repetition works as well [30,31].
The protocol (in its parallel repetition variant) is illustrated in Fig. 2.

Gilbert et al. [20] showed that HB+ can be broken by a MIM attack. Several variants
HB++ [11], HB∗ [16], HB-MP [37] were proposed to prevent the particular attack
from [20], but all of them were later shown to be insecure [21]. In [22], a variant HB#

was presented which provably resists the particular attack from [20], but was shown
susceptible to a more general MIM attack [38]. However, no improvements in terms
of round complexity, security or tightness of the reduction over HB+ were achieved:
Three-round protocols achieving active security

√
ε (assuming LPN is ε-hard) are the

state of the art.

Fig. 1. The HB protocol, secure against passive attacks.
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Fig. 2. The HB+ protocol, secure against active attacks.

1.1. Our Contribution

We provide new constructions of authentication protocols and even MACs from LPN.
Our first contribution is a two-round authentication protocol secure against active adver-
saries (this is mentioned as an open problem in [28]) which moreover has a tight security
reduction (an open problem mentioned in [31]). As a second contribution, we build two
efficient MACs and thus also get two-round authentication protocols secure against MIM
attacks, from the LPN assumption. Unlike some previous proposals, our constructions
are not ad hoc, and we give a reduction to the LPN problem. Our authentication protocol
is roughly as efficient as the HB+ protocol but has twice the key length. Our MACs per-
form roughly the same computation as the authentication protocol plus one evaluation
of a pairwise independent permutation of an ≈ 2ℓ-bit domain, where ℓ is the length of
an LPN secret.

Two-Round Authentication with Active Security. Our first contribution is a two-
round authentication protocol which we prove secure against active attacks assuming
the hardness of the LPN problem. Our protocol diverges considerably from all previous
HB-type protocols [22,27,28,31] and runs counter to the intuition that the only way
to efficiently embed the LPN problem into a two-round protocol is via an HB-type
construction.

We now sketch our protocol. In HB and its variants, the prover must compute LPN
samples of the form RT · s + e, where R is the challenge chosen by the verifier in the
first message. We take a different approach. Instead of sending R, we now let the verifier
choose a random subset of the bits of s to act as the “session key” for this interaction.
It represents this subset by sending a binary vector v ∈ Z

ℓ
2 that acts as a “bit selector”

of the secret s, and we write s↓v for the sub-vector of s which is obtained by deleting
all bits from s where v is 0. (E.g., if s = (1, 1, 1, 0, 0, 0)T, v = (0, 1, 1, 1, 0, 0)T then
s↓v = (1, 1, 0)T.) The prover then picks R by itself and computes noisy inner products
of the form RT · s↓v + e. Curiously, allowing the verifier to choose which bits of s to use
in each session is sufficient to prevent active attacks. We only need to add a few sanity
checks that no pathological v or R was sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [40]. In contrast
to the active attack security proof of HB+ [31], our proof does not use any rewinding
techniques. Avoiding rewinding has at least two advantages. First, the security reduction
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becomes tight. Second, the proofs also work in a quantum setting: Our protocol is secure
against quantum adversaries assuming LPN is secure against such adversaries. As first
observed by van de Graaf [43], classical proofs using rewinding in general do not trans-
late to the quantum setting (cf. [45] for a more recent discussion). Let us emphasize that
this only means that there is no security proof for HB+ in the quantum setting, but we
do not know if a quantum attack actually exists.

MAC and Man-in-the-Middle Security. In Sect. 4, we give two constructions of mes-
sage authentication codes (MACs) that are secure (formally, unforgeable under chosen
message attacks) assuming that the LPN problem is hard. It is well known that a MAC
implies a two-round MIM secure authentication protocol: The verifier chooses a random
message as challenge, and the prover returns the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC. That is, a
MAC tag is of the form φ = (R, z = RT · fs(m) + e), where the secret key derivation
function fs(m) ∈ Z

ℓ
2 first uniquely encodes the message m into v ∈ Z

2ℓ
2 of weight ℓ

and then returns s↓v by selecting ℓ bits from secret s, according to v. However, this
MAC is not secure: Given a MAC tag φ = (R, z) an adversary can ask verification
queries where it sets individual rows of R to zero until verification fails: If the last
row set to zero was the i th, then the i th bit of fs(m) must be 1.1 Our solution is to
randomize the mapping f , i.e., use fs(m, b) for some randomness b and compute the
tag as φ = π(R, RT · fs(m, b) + e, b), where π is a pairwise independent permutation
(contained in the secret key). We can prove that if LPN is hard then this construction
yields a secure MAC. (The key argument is that, with high probability, all non-trivial
verification queries are inconsistent and hence lead to reject.) However, the security
reduction to the LPN problem is quite loose, concretely, assuming the LPN problem is
ǫ hard and the adversary makes Q queries we get security of roughly Q

√
ǫ. Moreover,

there is a non-uniformity issue as we need to know ǫ, or at least have a good guess on it,
to achieve this bound (concretely, the optimal choice of parameter μ used in the protocol
depends on ǫ, cf. Corollary 4.3).

We also give another construction with a much tighter reduction and completely
uniform reduction achieving security roughly Qǫ. For this, we instantiate the above
MAC with a different secret key derivation function fs(m, b) = s0 + S · v (where
v = h(m, b) and h(·) is a pairwise independent hash). The drawback of our second
construction is the larger key size, as the secret key contains a matrix S ∈ Z

ℓ×μ
2 . The

security reduction uses a technique from [4,13] that we needed to adapt to the case of
LPN.2

1While we believe the above scheme would be secure in case verification queries are not allowed, this is
of limited interest in practice. Furthermore, the main technical difficulty in building an efficient MAC from
LPN seems to be ensuring the secret s does not leak from verification queries.

2An earlier version of this paper adapted a technique originally used by Waters [44] in the context of IBE
schemes that has been applied to lattice-based signature [10] and encryption schemes [1].
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Table 1. A comparison of our new authentication protocols with the HB, HB+ protocols and the classical
GGM construction.

Construction Achieved security
notion

Rounds Complexity Key size Security

Communication Computation

HB [27] Passive 2 ℓ · n/c 	(ℓ · n) ℓ · c ε (tight)

HB+ [28] Active 3 ℓ · n · 2/ c 	(ℓ · n) ℓ · 2 · c
√

ε

AUTH

Sect. 3
Active 2 ℓ′ · n · (2 + γ )/c 	(ℓ′ · n) ℓ′ · 2(2 + γ ) · c ε (tight)

MAC1

Sect. 4.1
MIM from MAC 2 ℓ′ · n · (2 + γ )/c 	(ℓ′ · n) + PIP ℓ′ · 6(2 + γ ) · c

√
ε · Q (⋆)

MAC2

Sect. 4.2
MIM from MAC 2 ℓ · n/c 	(ℓ · n) + PIP ℓ · λ · c ε · Q

GGM [23] MIM from PRF 2 3 · λ 	(ℓ2 · λ) 	(ℓ) ε · Q · λ

The trade-off parameter c (1 ≤ c ≤ n) and the term PIP are explained in the “Communication versus key
size” paragraph below. The value ε refers to the hardness of the LPNτ,ℓ or SLPN∗

τ,L ,ℓ′ problem. In the last

(security) column, we ignore additive terms of the form Q · 2−	(n). (⋆) is a non-uniform reduction, see
discussion in Sect. 4

1.2. Efficiency

Table 1 shows a rough comparison of our new authentication protocols with the HB, HB+

protocols and, as a reference, also the protocol one gets by using the PRF constructed via
the classical tree-based GGM construction [23] when the underlying PRG is instantiated
with LPN. λ denotes a statistical security parameter, say λ = 80. Q denotes the total
number of queries made during the attack. The second row in the table specifies the
security notion that is (provably) achieved under the LPNτ,ℓ or “subset LPN" SLPN∗

τ,L ,ℓ′

assumption (all notions will be defined in Sect. 2.4). Typical parameters suggested for
HB type protocols [34] are ℓ = 768, τ = 0.05, at this level they estimate ε ≈ 2−80

security for LPNτ,ℓ, which is sufficient for schemes with a tight security reduction like
for passive security of HB or active security of our AUTH protocol (cf. the last column
in Table 1). The SLPN∗

τ,L ,ℓ′ assumption reduces to LPNτ,ℓ′−g with an additive loss of
Q/2g , so we should set ℓ′ ≈ ℓ + 80, say ℓ′ = 850.

The reduction for all these protocols (except GGM) loses an additional additive Q ·
2−	(n) term, where n is the number of repetitions required to amplify the security of a
basic protocol which only achieves constant soundness and security. The hidden constant
in 	(·) depends on τ and, for AUTH and MAC1, on another parameter γ > 0. An upper

bound on the 2−	(n) term for AUTH is 2e
−2( 1

2 − 1
2+γ

)2ℓ + 2e−2( 1
4 − τ

2 )2n (cf. Sect. 3.2),
to make this term < 2−80 it suffices to set n = 360 and γ = 0.75. Summing up, with
ℓ′ = 850, τ = 0.05, n = 360, γ = 0.75 we provably get around 80 bits security for
AUTH assuming LPN provides 80 bits security for ℓ = 786, τ = 0.05.

Computation complexity counts the number of binary operations over F2. Communi-
cation complexity counts the total length of all exchanged messages.3 The last row in the

3For MAC- and PRF-based constructions, we consider the communication one incurs by constructing
a MIM secure two-round protocol from the MAC (or PRF) by having the prover compute the MAC (PRF
output) on a random ρ-bit challenge message. If the adversary can observe Q executions and make q attempts
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table states the tightness of the security reduction, i.e., what exact security is achieved
(ignoring constants and higher order terms) assuming the LPNτ,ℓ problem is ε-hard.

The prover and verifier in the HB, HB+ and our new protocols have to perform 	(ℓ·n)

basic binary operations, assuming the LPNτ,ℓ problem (i.e., LPN with secrets of length
ℓ) is hard. This seems optimal, as 	(ℓ) operations are necessary to compute the inner
product which generates a single pseudorandom bit. We will thus consider an authenti-
cation protocol or MAC efficient, if it requires O(ℓ ·n) binary operations. Let us mention
that one gets a length-doubling PRG under the LPNτ,ℓ assumption with 	(ℓ2) binary
operations [17]. Via the classical GGM construction [23], we obtain a PRF and hence a
MAC. This PRF, however, requires 	(ℓ2 · λ) operations per invocation (where λ is the
size of the domain of the PRF) which is not very practical.

Communication Versus Key Size. For all constructions except GGM, there is a natural
trade-off between communication and key size, where for any constant c (1 ≤ c ≤ n),
we can decrease communication by a factor of c and increase key size by the factor c

(cf. Appendix A for how exactly this can be done). For the first three protocols in the
table, the choice of c does not affect the computational efficiency, but it does so for
the MAC based construction: To compute or verify a tag one has to evaluate a pairwise
independent permutation (PIP) on the entire tag of length l:=	(ℓ · n/c).

There are two standard ways how to construct a PIP π over F2l , which we briefly
review below together with their corresponding computational complexity:

• Define π(x):=a · x + b ∈ F2l for random a, b ∈ F2l . Thus the computational cost
of evaluating the PIP is one multiplication of two m bits values: Asymptotically,
such a multiplication takes only O(l log l log log l) time [18,42], but for small l

(like in our scheme) this will not be faster than using schoolbook multiplication,
which takes 	(l2) time.

• Define π(x):=A·x+b ∈ {0, 1}l , where we now interpret the input as an l-bit vector,
and where A is a Toeplitz matrix4 of dimension l and b is a random l-bit vector.
The product of any Toeplitz matrix with any vector takes time O(l log l) [2,29],
but note that the description of π now requires to store roughly 3l bits (whereas the
previous solution just requires 2l bits).

The PIP term in the table accounts for the above complexity. For parameters ℓ =
850, n = 360, γ = 0.75 as above and trade-off c = n (which minimizes the tag
length l) we get l ≈ 2400 (2(1 + γ )ℓ plus a statistical security parameter) for MAC1
and l ≈ 930 for MAC2 (ℓ plus a statistical security parameter). Hence, depending on
the parameters, the evaluation of the PIP may be the computational bottleneck of our
MACs.

Footnote 3 continued
to convince a verifier, the probability of a successful break is at most Q · q/2ρ (plus the security of the
MAC/PRF). As we define security for q = 1, setting ρ:=λ for our statistical security parameter λ = 80 is
sufficient. For the PRF-based construction an output length of λ is sufficient.

4Such a matrix is constructed by picking the entries of the first row and column uniformly at random from
{0, 1}, and then copying each value all along its corresponding diagonal.



Efficient Authentication from Hard Learning Problems 1245

1.3. Subsequent Work

An abridged version of this paper appeared as [33]. Our results inspired several follow-up
works on the problem of efficient authentication from hard learning problems. In [15],
Dodis et al. started a systematic study of randomized MACs and showed how to replace
the PIP from our MAC constructions with a pairwise independent hash function (lead-
ing to more efficient schemes). Heyse et al. [25] considered a variant of our actively
secure authentication protocol based on the Ring-LPN problem (introduced in [36])
which simultaneously achieves a very short key and low communication complexity.
The hardware efficiency and side-channel security of Lapin was analyzed in [19].

Lyubashevsky and Masny [35] built three-round authentication protocols from LPN
that are man-in-the-middle secure for sequential sessions. In [12], Cash et al. show how
to reduce the round complexity to two rounds via a generic transformation from active
security to sequential man-in-the-middle security.

2. Definitions

2.1. Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. For a, b ∈ R,
]a, b[= {x ∈ R ; a < x < b}. We denote the set of integers modulo an integer q ≥ 1
by Zq . We will use normal, bold and capital bold letters like x , x, X to denote single
elements, (column) vectors and matrices over Zq , respectively. X[i] denotes the i th
column vector of matrix X. x[i] denotes the i th element of vector x.

For a vector x ∈ Z
m
q , |x| = m denotes the length of x; wt(x) denotes the Hamming

weight of the vector x, i.e., the number of indices i ∈ {1, . . . , |x|} where x[i] 
= 0. For
v ∈ Z

m
2 we denote by v its inverse, i.e., v[i] = 1 − v[i] for all i . For two vectors v ∈ Z

ℓ
2

and x ∈ Z
ℓ
q , we denote by x↓v ∈ Z

wt(v)
q the vector (of length wt(v)) which is derived

from x by deleting all the bits x[i] where v[i] = 0. If X ∈ Z
ℓ×m
2 is a matrix, then X↓v

denotes the sub-matrix obtained by deleting the i th row if v[i] = 0. We also extend
Boolean operators to vectors, i.e., for two vectors x, y ∈ Z

m
2 we define x ∧ v = z ∈ Z

m
2

with z[i] = x[i] ∧ y[i] and x ∨ v = z ∈ Z
m
2 where z[i] = x[i] ∨ y[i].

A function in λ is negligible, written negl(λ), if it vanishes faster than the inverse
of any polynomial in λ. An algorithm A is probabilistic polynomial time (PPT) if A

uses some randomness as part of its logic (i.e., A is probabilistic) and for any input
x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps.

2.2. Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover P and a
verifier V , both PPT algorithms. Both hold a secret x (generated using a key generation
algorithm K executed on the security parameter λ in unary) that has been shared in an
initial phase. After the execution of the authentication protocol, V outputs either accept

or reject. We say that the protocol has completeness error α if for all secret keys x

generated by K(1λ), the honestly executed protocol returns reject with probability at
most α.
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Passive Attacks. An authentication protocol is secure against passive attacks if there
exists no PPT adversary A who can win the following game with non-negligible proba-
bility: In a first phase, we sample a key x ← K(1λ), and then A gets to see any number
of transcripts from the protocol execution between P(x) and V(x) (including V’s final
decision accept or reject). In a second phase, A interacts with V(x) and wins if the ver-
ifier outputs accept. Here, we only give the adversary one shot to convince the verifier.5

Active Attacks. A stronger notion for authentication protocols is security against active

attacks. Here, the second phase is the same as in a passive attack, but in the first phase,
the adversary A is additionally given access to P(x). For two-round protocols, there
is no difference between concurrent and sequential execution of the sessions with the
prover.

We say an authentication protocol is (t, Q, ε)-secure against active adversaries if
every adversary A, running in time at most t and making Q queries to the honest prover,
has probability at most ε to win the above game.

Man-in-the-Middle Attacks. The strongest standard security notion for authentication
protocols is security against man-in-the-middle (MIM) attacks. Here, the adversary can
interact concurrently in many sessions between the prover and the verifier. The adversary
gets to learn the verifier accept/reject decisions, and wins whenever it manages to let
the verifier accept in a session where it changed at least one of the messages sent by the
prover or the verifier. One can construct two-round authentication schemes which are
secure against MIM attacks from basic cryptographic primitives like MACs, which we
define next.

2.3. Message Authentication Codes

A message authentication code MAC = {K, T ,V} is a triple of algorithms with associ-
ated key space K, message space M and tag space T .

• Key Generation. The probabilistic key generation algorithm K takes as input a
security parameter λ ∈ N (in unary) and outputs a secret key K ∈ K.

• Tagging. The probabilistic authentication algorithm T takes as input a secret key
K ∈ K and a message m ∈ M and outputs an authentication tag φ ∈ T .

• Verification. The deterministic verification algorithm V takes as input a secret key
K ∈ K, a message m ∈ M and a tag φ ∈ T and outputs {accept, reject}.

If the T algorithm is deterministic, one does not have to explicitly define V , since it is
already defined by the T algorithm as V(K , m, φ) = accept iff T (K , m) = φ.

Completeness. We say that MAC has completeness error α = α(λ) if for all m ∈ M

and λ ∈ N

Pr[V(K , m, φ) = reject : K ← K(1λ);φ ← T (K , m)] ≤ α.

5By using a hybrid argument, one can show that this implies security even if the adversary can interact in
k ≥ 1 independent instances concurrently (and wins if the verifier accepts in at least one instance). The use
of the hybrid argument loses a factor of k in the security reduction.
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Fig. 3. Experiment Expuf-cma
MAC

(A, λ) defining uf-cma security of MAC.

Security. The standard security notion for a MAC is unforgeability under a cho-
sen message attack (uf-cma). Formally, this is the probability that the experiment
Expuf-cma

MAC (A, λ) of Fig. 3 outputs 1. The experiment features an adversary A that issues
tag queries on messages m, and verification queries on pairs (m, φ); the adversary is
successful if she ever asks a verification query (m, φ) that is accepted, for some message
m not previously asked to the tag oracle (i.e., A has found a valid forgery). We say that
MAC is (t, Q, ε)-secure against uf-cma adversaries if for any A running in time t , and
asking a total number of Q queries to her oracles, we have Pr[Expuf-cma

MAC (A, λ) = 1] ≤ ε.

2.4. Hard Learning Problems

Let Berτ be the Bernoulli distribution over Z2 with parameter (bias) τ ∈ ]0, 1/2[ (i.e.,
Pr[x = 1] = τ if x ← Berτ ). For ℓ ≥ 1, Berℓτ denotes the distribution over Z

ℓ
2 where

each vector consists of ℓ independent samples drawn from Berτ . Given a secret x ∈ Z
ℓ
2

and τ ∈]0, 1
2 [ , we write �τ,ℓ(x) for the distribution over Z

ℓ
2 × Z2 whose samples are

obtained by sampling vectors r
$← Z

ℓ
2 and e

$← Berτ outputting (r, rT · x + e).

2.4.1. Learning Parity with Noise

The LPN assumption, formally defined below, states that it is hard to distinguish �τ,ℓ(x)

(with a random secret x ∈ Z
ℓ
2) from the uniform distribution on ℓ+1 bits denoted Uℓ+1.

Definition 2.1. (Learning Parity with Noise) The (decisional) LPNτ,ℓ problem is
(t, Q, ε)-hard if for every distinguisher D running in time t and making Q queries,

∣

∣

∣Pr
[

D�τ,ℓ(x) = 1; x
$← Z

ℓ
2

]

− Pr
[

DUℓ+1 = 1
]∣

∣

∣ ≤ ε.

It will sometimes be convenient to think of Uℓ+1 as LPN samples with uniform errors,
note that for any x, the distributions �1/2,ℓ(x) and Uℓ+1 are the same.

2.4.2. Subspace Learning Parity with Noise

We now define the (seemingly) stronger subspace LPN assumption (SLPN for short)
introduced in [40]. Here, the adversary can ask for inner products not only with the
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secret x, but with any affine function Ax + b of x where A can be any (adversarially
and adaptively chosen) matrix of sufficiently high rank. For minimal dimension d ≤ ℓ,
a secret x ∈ Z

ℓ
2 and any A ∈ Z

ℓ×ℓ
2 , b ∈ Z

ℓ
2 we define the distribution

Ŵτ,ℓ,d(x, A, b) =
{

⊥ if rank(A) < d

�τ,ℓ(A · x + b) otherwise

and let Ŵτ,ℓ,d(x, ·, ·) denote the oracle which on input A, b outputs a sample from
Ŵτ,ℓ,d(x, A, b).

Definition 2.2. (Subspace LPN) Let ℓ, d ∈ Z where d ≤ ℓ. The (decisional)
SLPNτ,ℓ,d problem is (t, Q, ε)-hard if for every distinguisher D running in time t and
making Q queries,

∣

∣

∣Pr
[

DŴτ,ℓ,d (x,·,·) = 1; x
$← Z

ℓ
2

]

− Pr
[

DUℓ+1(·,·) = 1
]∣

∣

∣ ≤ ε,

where Uℓ+1(·, ·) on input A, b outputs a sample of Uℓ+1 if rank(A) ≥ d and ⊥ otherwise.

The following proposition states that the subspace LPN problem mapping to dimen-
sion d + g is almost as hard as the standard LPN problem with secrets of length d,
the hardness gap being exponentially small in g. This proposition is a special case of
Theorem 1 from [40]. To be self-contained, we include a proof of this proposition, but
first we state a much simpler result, which will be used in the construction of our second
MAC, namely that the subspace LPN problem is exactly as hard as the LPN problem if
d = ℓ, i.e., the subspace must span the entire space.

Proposition 2.3. For any ℓ ∈ Z if the LPNτ,ℓ problem is (t, Q, ε)-hard then the

SLPNτ,ℓ,ℓ problem is (t ′, Q, ε)-hard where t ′ = t − poly(ℓ, Q)

Proof. Given a �τ,ℓ(x) sample (r, rTx + e), for any A, b where rank(A) = ℓ, we can
transform it into a Ŵτ,ℓ,ℓ(x, A, b) sample (r̂, r̂T(Ax + b) + e by setting r̂T = rTA−1

and outputting (r̂, rTx + e + r̂Tb). We now have

(r̂, rTx + e + r̂Tb) = (r̂, r̂TAx + e + r̂Tb) = (r̂, r̂T(Ax + b) + e)

It just remains to check that e and r̂ have the right distribution. The error e in the subspace
LPN sample is exactly the same value as in the LPN sample and thus also distributed as
Berτ . r̂T is uniform as required, to see this recall that r is uniform and A has full rank.
Using this transformation, we can use any distinguisher for SLPNτ,ℓ,ℓ from uniform to
distinguish LPNτ,ℓ from uniform with the same advantage. �

Proposition 2.4. For any ℓ, d, g ∈ Z (where ℓ ≥ d + g), if the LPNτ,d problem is

(t, Q, ε)-hard then the SLPNτ,ℓ,d+g problem is (t ′, Q, ε′)-hard where

t ′ = t − poly(ℓ, Q) ε′ = ε + Q/2g.
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Proof. Let D′ be an adversary with advantage ε′ for the SLPNτ,ℓ,d+g problem, from
this D′ we will construct an D with advantage ε ≥ ε′ − Q/2g for the LPNτ,d problem.
W.l.o.g., we assume that the oracle queries of D′ are of the form A, b with b = 0 since
(r̂, ẑ) �→ (r̂, ẑ + r̂Tb) reduces queries with arbitrary b to queries with b = 0.

Our D will transform the samples of the form (r, rTx + e) it gets (where e is either
sampled according to Berτ or uniform) into samples (r̂, r̂TAx̂ + e) for any A ∈ Z

ℓ×ℓ
2

of rank ≥ d + g. In particular, LPN samples are mapped to SLPN samples, and random
samples are mapped to random samples. For each of the Q queries made by D′, the
transformation will fail with probability at most 2−g , which is where the Q/2g loss in
distinguishing advantage comes from. We now formally define D.

Initially, D�δ,d (x) (where δ is either τ or 1/2) samples W
$← Z

ℓ×d
2 , w

$← Z
ℓ
2 which

(implicitly) defines the secret x̂ = Wx+w for the transformation. Now, D�δ,d (x) invokes
D′ and answers every query A of D′ as follows.

If rank(A) < d+g return ⊥ to D′. Otherwise, query the oracle �δ,d(x) to get a sample
(r, rT · x + e). Define the set S ⊆ Z

ℓ
2 of solutions to the system of linear equations:

S =
{

y : yTAW = rT
}

⊆ Z
ℓ
2

Note that if AW has rank d then S is non-empty. D samples r̂
$← S and outputs the

sample
(r̂, rTx + r̂TAw + e), (2.1)

Note that D runs in time t ′ (as it must invoke D′) plus some poly(ℓ, Q) overhead as
claimed. It remains to show that simulation performed by D is correct. This is shown in
the following claims.

Claim 2.5. If V = AW has (full) rank d, then r̂
$← S is uniformly random (given

A, W, w).

Proof of Claim. We show that for any v ∈ Z
ℓ
2, Pr[r̂ = v | W, A, w] = 2−ℓ. First,

as r ∈ Z
d
2 is uniform, Pr[vTAW = rT] = 2−d , if this does not hold, then v 
= r̂.

Otherwise, r̂ is sampled at uniform from an ℓ − d dimensional linear space, and thus
Pr[v = r̂ | vAW = rT] = 2d−ℓ. We get

Pr[r̂ = v | W, A, w] = Pr[vTAW = rT] Pr[v = r̂ | vTAW = rT] = 2−d2d−ℓ = 2−ℓ.

�

Claim 2.6. D perfectly simulates the distribution Ŵδ,ℓ,d+g(x̂, A) (where x̂ = Wx+w).

Proof of Claim. We can rewrite the samples of Eq. (2.1) as

(r̂, rTx + r̂TAw + e) = (r̂, r̂TAWx + r̂TAw + e)
(

since r̂ ∈ S
)

= (r̂, r̂TA(Wx + w) + e)

= (r̂, r̂TAx̂ + e)
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which is a sample from Ŵδ,ℓ,d+g(x̂, A) as required. �

Claim 2.7. The probability that the set S is empty is at most 2−g .

Proof of Claim. Recall that the set S can possibly be empty only when V = AW ∈
Z

ℓ×d
2 has rank less than d, where A ∈ Z

ℓ×ℓ
2 has rank ≥ d + g and W

$← Z
ℓ×d
2 .

Denote with �(d, g) the probability that a random matrix in Z
(d+g)×d
2 has rank less

than d. Since the matrix A has rank at least d + g, we can assume, without loss of
generality, that the first d + g rows of A are linearly independent. Since the matrix W

is random, the upper (d + g) × d matrix of V = AW is random in Z
(d+g)×d
2 and thus

it has rank less than d with probability at most �(d, g). We conclude that V has rank
strictly less than d exactly with the same probability. Using Lemma 4.20, we see that
this probability is bounded by 2−g .

Applying the union bound, we can upper bound the probability that for any of the
Q queries the matrix V = AW has rank less than d by Q · 2−g . This error probability
is thus an upper bound on the gap of the success probability ε′ of D′ and the success
probability ε we get in breaking LPN using the transformation.

Finally, we need to consider the fact that the queries A chosen by D′ are chosen
adaptively. To show that adaptivity does not help in picking an A where AW has rank
< d, we must show that the view of D′ is independent of W (except for the fact that so
far no query was made where rank(AW) < d). This holds as the secret x̂ = Wx + w

used in the simulation is independent of W as it is blinded with a uniform w. In fact, the
only reason we use this blinding is to enforce this independence. �

2.4.3. Subset Learning Parity with Noise

For some of our constructions, we will only need a weaker version of the SLPNτ,ℓ,d

problem that we call subset LPN. As the name suggests, here the adversary does not ask
for inner products with Ax + b for any A (of rank ≥ d), but only with subsets of x (of
size ≥ d). It will be convenient to explicitly define this special case. For x, v ∈ Z

ℓ
2, let

diag(v) ∈ Z
ℓ×ℓ
2 denote the matrix with v in the diagonal and zero elsewhere, and let

Ŵ∗
τ,ℓ,d(x, v):=Ŵτ,ℓ,d(x, diag(v)) =

{

⊥ if wt(v) < d

�τ,ℓ(x ∧ v) otherwise.

Definition 2.8. (Subset LPN) Let ℓ, d ∈ Z where d ≤ ℓ. The SLPN∗
τ,ℓ,d problem is

(t, Q, ε)-hard if for every distinguisher D running in time t and making Q queries,

∣

∣

∣Pr
[

D
Ŵ∗

τ,ℓ,d (x,·) = 1; x
$← Z

ℓ
2

]

− Pr
[

DUℓ+1(·) = 1
]∣

∣

∣ ≤ ε,

where Uℓ+1(·) on input v (where wt(v) ≥ d) outputs a sample of Uℓ+1 and ⊥ otherwise.

Remark 2.9. Ŵ∗
τ,ℓ,d(x, v) samples are of the form (r, rT

↓vx↓v + e) ∈ Z
ℓ+1
2 , where e

$←
Berτ . To compute the inner product only r↓v ∈ Z

wt(v)
2 is needed, the remaining bits
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r↓v ∈ Z
ℓ−wt(v)
2 are irrelevant. We use this observation to improve the communication

complexity (for protocols) or tag length (for MACs), by using “compressed” samples of
the form (r↓v, rT

↓vx↓v + e) ∈ Z
wt(v)+1
2 .

2.5. Hoeffding Inequality

We will several times use the following tail inequality known as Hoeffding’s inequality.

Theorem 2.10. [26] Let X1, X2, . . . , Xn be i.i.d. Bernoulli variables with Pr[X i =
1] = p and X =

∑n
i=1 X i (so E[X ] = np). Then, for ǫ ≥ 0,

Pr[X − np ≥ ǫn] ≤ e−2ǫ2n

Pr[|X − np| ≥ ǫn] ≤ 2e−2ǫ2n .

The above also holds if the X i are sampled without replacement.

3. Two-Round Authentication with Active Security

In this section, we describe our new two-round authentication protocol and prove its
active security under the hardness of the SLPN∗

τ,2ℓ,d problem, where d = ℓ/(2 + γ ) for
some constant γ > 0.

• Public Parameters. The authentication protocol has the following public parame-
ters, where τ, τ ′ are constants and ℓ, n depend on the security parameter λ.6

ℓ ∈ N length of the secret key s ∈ Z
2ℓ
2

τ ∈ ]0, 1/2[ parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require ℓ ≥ 2n)

• Key Generation. Algorithm K(1λ) samples s
$← Z

2ℓ
2 and returns s as the secret

key.
• Authentication Protocol. The two-round authentication protocol with prover Pτ,n

and verifier Vτ ′,n is given in Fig. 4.

Theorem 3.1. For any constant γ > 0, let d = ℓ/(2 + γ ). If the SLPN∗
τ,2ℓ,d prob-

lem is (t, nQ, ε)-hard, then the authentication protocol from Fig. 4 is (t ′, Q, ε′)-secure

against active adversaries, where for constants cγ , cτ > 0 that depend only on γ and

τ , respectively,

t ′ = t − poly(Q, ℓ) ε′ = ε + Q · 2−cγ ·ℓ + 2−cτ ·n = ε + Q · 2−	(n).

6The acceptance threshold τ ′ below can be any value in-between τ and 1/2. As we set it closer to 1/2,
the soundness error increases while the completeness error decreases. For concreteness, we set τ ′ exactly
in-between τ and 1/2.
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Fig. 4. Two-round protocol AUTH with active security from the LPN assumption.

The protocol has completeness error 2−c′
τ ·n + 2n−ℓ ∈ 2−	(n) (as ℓ ≥ 2n) where c′

τ > 0
depends only on τ .

3.1. Proof of Completeness

We first bound the completeness error α of the authentication protocol. For any n ∈ N,
τ ∈]0, 1/2[, let

ατ,n := Pr[wt(e) > n · τ ′ : e
$← Bern

τ ]
(Thm.2.10)

≤ e−2(1/4−τ/2)2n def= 2−c′
τ ·n (3.1)

denote the probability that n independent Bernoulli samples with bias τ contain more
than a τ ′:=1/4 + τ/2 fraction of 1’s (i.e., n(1/4 + τ/2) − nτ = n(1/4 − τ/2) more
than the expected number).

The verifier performs the following two checks. In the first verification step, the
verifier rejects if the random matrix R does not have full rank. By Lemma 4.20 (cf.
Appendix B), the probability of this event is ≤ 2n−ℓ. Now, let e:=z + RT · s↓v denote
the noise added by Pτ,n . Then, in the second verification step, the verifier rejects if
wt(e) > n · τ ′. From Eq. (3.1), we have that this happens with probability ατ,n . It
follows that α ≤ 2n−ℓ + 2−c′

τ ·n .

3.2. Proof of Security

We first define some more terms that will be used later in the security proof. For a
constant γ > 0, let d = ℓ/(2 + γ ) (as in Theorem 3.1). Let α′

ℓ,d denote the probability
that a random substring of length ℓ chosen from a string of length 2ℓ with Hamming
weight ℓ, has a Hamming weight less than d = ℓ/(2 + γ ). Using the Hoeffding bound,
we see there is a constant cγ > 0 s.t.

α′
ℓ,d

(Thm.2.10)
≤ 2e

−2
(

1
2 − 1

2+γ

)2
ℓ def= 2−cγ ·ℓ. (3.2)

For τ ′ = 1/4 + τ/2, let α′′
τ ′,n denote the probability that a random bitstring y ∈ Z

n
2 has

Hamming weight wt(y) ≤ n · τ ′. From the Hoeffding bound, it follows that there exists
a constant cτ > 0 (only depending on τ ), such that (below we use 1/2−τ ′ = 1/4−τ/2)
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α′′
τ ′,n :=2−n ·

⌊n·τ ′⌋
∑

i=0

(

n

i

)

(Thm.2.10)
≤ 2e

−2
(

1
4 − τ

2

)2
n def= 2−cτ ·n . (3.3)

We now prove security of the authentication protocol. Consider an oracle O which is
either the subset LPN oracle Ŵ∗

τ,2ℓ,d(x, ·) or U2ℓ+1(·), as defined in Definition 2.8. We

will construct an adversary BO that uses A (who breaks the active security of AUTH

with advantage ε′) in a black-box way such that:

Pr[BŴ∗
τ,2ℓ,d (x,·) = 1] ≥ ε′ and Pr[BU2ℓ+1(·) = 1] ≤ α′′

τ ′,n + Q · α′
ℓ,d .

Thus BO can distinguish between the two oracles with advantage ε:=ε′ − Q · α′
ℓ,d −

α′′
τ ′,n = ε + Q · 2−cγ ·ℓ + 2−cτ ·n as claimed in the statement of the theorem. Below we

define BO.

Setup Initially, BO samples

x∗ $← Z
2ℓ
2 , v∗ $←

{

y ∈ Z
2ℓ
2 : wt(y) = ℓ

}

.

The intuition of our simulation below is as follows. Let us first assume
O is a subset LPN oracle Ŵ∗

τ,2ℓ,d(x, ·) with secret x. To simulate the
prover during the first phase we have to produce answers φ = (R, z)

to each query v ∈ {y ∈ Z
2ℓ
2 : wt(y) = ℓ} issued by A. The simulated

answers will have the same distribution as the answers of an honest
prover Pτ,n(s ∈ Z

2ℓ
2 ) where

s = (x∗ ∧ v∗) + (x ∧ v∗). (3.4)

Thus one half of the bits of s come from x∗, and the other half come
from the unknown secret x (for which we use the oracle O). In the
second phase, we give A the challenge v∗. As s↓v∗ = (x∗ ∧ v∗)↓v∗ =
x∗
↓v∗ is known, we will be able to verify if A did output a valid answer.

On the other hand, if O is the uniform oracle U2ℓ+1(·), then after the
interaction with the prover we will show that s↓v∗ = (x∗ ∧ v∗)↓v∗ is
information theoretically hidden, and thus A cannot succeed except
with exponentially small probability.

First phase In the first phase BO invokes A who expects access to Pτ,n(s ∈ Z
2ℓ
2 ).

We now specify how BO samples the answer φ = (R, z) to a query
v ∈ {y ∈ Z

2ℓ
2 : wt(y) = ℓ} made by A. Let

u∗:=v ∧ v∗ u:=v ∧ v∗.

1. BO queries its oracle n times on the input u. If the oracle’s output is ⊥
(this is the case if wt(u) < d), then BO outputs 1 and stops. Otherwise,
let R̂1 ∈ Z

2ℓ×n
2 , z1 ∈ Z

n
2 denote the n outputs of the oracle.
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2. Sample R̂0
$← Z

2ℓ×n
2 and set z0 = R̂T

0 · (x∗ ∧ u∗).
3. Return φ = (R = R̂↓v ∈ Z

ℓ×n
2 , z = z0 + z1 ∈ Z

n
2), where R̂ is uniquely

determined by requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.

Second phase Eventually, A enters the second phase of the active attack expecting a
challenge from Vτ ′,n(s ∈ Z

2ℓ
2 ).

1. BO forwards v∗ as the challenge to A.
2. A answers with some (R∗, z∗).
3. BO checks if

rank(R∗) = n and wt(z∗ + R∗T · x∗
↓v∗) ≤ n · τ ′. (3.5)

The output is 1 if both checks succeed and 0 otherwise.

Claim 3.2. Pr[BU2ℓ+1(·) = 1] ≤ α′′
τ ′,n + Q · α′

ℓ,d .

Proof of Claim. Recall that we defined B such that it will output 1 and stop in the first
phase of the experiment whenever it receives ⊥ as output from its oracle. We defined
U2ℓ+1(·) to output ⊥ if it is queried on an input u = v ∧ v∗ where wt(u) < d. Since

v∗ $← {y ∈ Z
2ℓ
2 : wt(y) = ℓ}, for any v, the probability that wt(v ∧ v∗) < d is (by

definition) α′
ℓ,d as defined in Eq. (3.2). Using the union bound, we can upper bound the

probability that wt(v ∧ v∗) < d for any of the Q different v’s chosen by the adversary
in the first phase as Q · α′

ℓ,d .
If we did not output 1 in the first phase and in the second phase R∗ does not have

full rank then B outputs 0 by definition. Therefore, we now consider the case where
rank(R∗) = n.

The answers φ = (R, z) that the adversary A obtained from BU2ℓ+1(·) in the first
phase are independent of x∗ (i.e., z = z0 + z1 is uniform as z1 is uniform). Since x∗

↓v∗
is uniformly random and R∗ has full rank, the vector

y:=R∗T · x∗
↓v∗ + z∗

is uniformly random over Z
n
2 . Thus the probability that the second verification in Eq. (3.5)

does not fail is Pr[wt(y) ≤ n · τ ′] = α′′
τ ′,n . �

Claim 3.3. Pr[BŴ∗
τ,2ℓ,d (x,·) = 1] ≥ ε′

Proof of Claim. We will show that B outputs 1 with probability ≥ ε′ if the subset LPN
oracle accepts subsets of arbitrary small size (and does not simply output ⊥ on inputs v

where wt(v) < d), i.e.,
Pr[BŴ∗

τ,2ℓ,0(x,·) = 1] ≥ ε′. (3.6)

This then implies the claim using

Pr[BŴ∗
τ,2ℓ,d (x,·) = 1] ≥ Pr[BŴ∗

τ,2ℓ,0(x,·) = 1]
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which holds as the oracles Ŵ∗
τ,2ℓ,d(x, ·) and Ŵ∗

τ,2ℓ,0(x, ·) behave the same except on inputs
v with wt(v) < d in which case the former outputs ⊥, and B will then immediately
output 1.

Equation (3.6) holds as:

• The answers φ = (R, z) that B
Ŵ∗

τ,2ℓ,0(x,·) gives to A’s queries in the first phase of
the attack have exactly the same distribution as what A would get when interacting
with an honest prover Pτ,n(s ∈ Z

2ℓ
2 ) where the “simulated” secret s is defined in

Eq. (3.4).
To see this, recall that on a query v from A, adversary B

Ŵ∗
τ,2ℓ,0(x,·) must compute n

SLPN samples (R̂, z = R̂T · (s ∧ v) + e) and then forward the compressed version
of this samples to A (that is, (R, z = RT · s↓v + e) where R = R̂↓v, cf. Remark
2.9). We next show that the z computed by B indeed has exactly this distribution. In
the first step, B queries its oracle with u = v ∧ v∗ and obtains noisy inner products
(R̂1, z1) with the part of s↓v that contains only bits from x, i.e.,

z1 = R̂T
1 · (x ∧ u) + e = R̂T

1 · (s ∧ u) + e.

In the second step, B samples n inner products (R̂0, z0) (with no noise) with the
part of s↓v that contains only bits from the known x∗, i.e.,

z0 = R̂T
0 · (x∗ ∧ u∗) = R̂T

0 · (s ∧ u∗).

In the third step, B then generates (R̂, R̂T · (s ∧ v) + e) from the previous values
where R̂ is defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u + u∗, we get

z = z0 + z1

= R̂T
0 · (s ∧ u∗) + R̂T

1 · (s ∧ u) + e

= R̂T · (s ∧ v) + e.

• The challenge v∗ sent initially to A is uniformly random and therefore has the same
distribution as a challenge in an active attack.

• B
Ŵ∗

τ,2ℓ,0(x,·) outputs 1 if Eq. (3.5) holds, which is exactly the case when A’s response
to the challenge was valid. By assumption this probability is at least ε′.

This concludes the proof of Eq. (3.6). �

3.3. Avoiding Checking

One disadvantage of the protocol in Fig. 4, compared to HB style protocols, is the neces-
sity to check whether the messages exchanged have the right form: the prover checks
if v has weight ℓ, while the verifier must make the even more expensive check whether
R has full rank. We note that it is possible to eliminate these checks by blinding the
exchanged messages v and z using random vectors bv ∈ Z

2ℓ
2 and bz ∈ Z

n
2 , respectively,

as shown in Fig. 5. The analysis of this protocol is similar as for the protocol in Fig. 5,
we thus just sketch a proof emphasizing the differences.
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Fig. 5. By blinding the values v, z with secret random vectors bv, bz we can avoid checking whether wt(v) = ℓ

and rank(R) = n as in the protocol from Fig. 4.

The setup phase is as before, except that B apart from x∗ and v∗ also samples random
bv and bz. In the first phase BO will answer A’s queries as before, except that we
use v + bv instead of v and finally also add bv to the answer (just so when O is an
SLPN oracle we get the same distribution as in the protocol). Also the second phase is
identical, except that we use the challenge v∗ + bv (so the actual subset used to answer
the challenge is v∗ + bv + bv = v∗).

Let α∗
ℓ,d denote the probability that a random string of length ℓ has Hamming weight

less than d, then we have Pr[BU2ℓ+1(·) = 1] ≤ α′′
τ ′,n + Q · α∗

ℓ,d , this is basically as
in Claim 3.2, except that α′

ℓ,d is replaced with α∗
ℓ,d . As bv is uniformly random, the

probability that wt((v + bv) ∧ v∗) < d is α∗
ℓ,d (in which case the oracle will output ⊥),

using the union bound this will not happen in any of the Q queries except with probability
at most Q ·α∗

ℓ,d . In this argument we also must use the fact that the answers that B sends
to A are uniformly random, and thus do not leak any information about bv (except from
what can be deduced from the fact that B has not already output 1 and stopped). If we
come to the second phase, the probability that A comes up with a valid answer (R∗, z∗)
is at most α′′

τ ′,n as at this point bz, and thus also the string w =
(

z + RT · (s ∧ v∗)
)

+bz,
is uniformly random given A’s view, which implies that Pr[wt(w) > n · τ ′] ≤ α′′

τ ′,n .

The proof that Pr[BŴ∗
τ,2ℓ,d (x,·) = 1] ≥ ε′ is almost analogous to the proof of Claim 3.3.

4. Message Authentication Codes

In this section, we construct two message authentication codes whose security can be
reduced to the LPN assumption. Our first construction is based on the two-round authen-
tication protocol from Sect. 3. We prove that if the LPN problem is ε-hard, then no
adversary making Q queries can forge a MAC with probability more than 	(

√
ε · Q).

The construction is somewhat non-uniform as to achieve this security, one must set a
parameter in the construction as a function of ε (cf. Remark 4.4). Our second construc-
tion has no such issues and achieves better security 	(ε · Q). The efficiency of this
construction is similar to that of the first construction, but a larger key is required.

4.1. First Construction

Recall the two-round authentication protocol from Sect. 3. In the protocol the verifier
chooses a random challenge subset v. To turn this interactive protocol into a MAC, we
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will compute this v from the message m to be authenticated as v = C(h(m, b)), where
h is a pairwise independent hash function, b ∈ Z

ν
2 is some fresh randomness and C is

some encoding scheme. The code C is fixed and public, while the function h is part of
the secret key. The authentication tag φ is computed in the same manner as the prover’s
answer in the authentication protocol. That is, we sample a random matrix R ∈ Z

ℓ×n
2

and compute a noisy inner product z:=RT · s↓v + e, where e
$← Bern

τ . We note that
using (R, z, b) as an authentication tag would not be secure, and we need to blind these
values. This is done by applying a pairwise independent permutation (PIP) π—which
is part of the secret key—to (R, z, b) ∈ Z

ℓ×n+n+ν
2 .

Remark 4.1. In the construction it is sufficient to just use almost pairwise independent
functions and permutations. In fact, if the message space M is a priory unbounded,
we have to settle for almost pairwise independence (as the description of a pairwise
independent h is linear in the length of the inputs it can process).

Construction. The message authentication code MAC1 = (K, T ,V) with associated
message space M is defined as follows:

• Public Parameters. MAC1 has the following public parameters.7

ℓ, τ, τ ′, n as in the authentication protocol from Sect. 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Z

μ
2 → Z

2ℓ
2 encoding, where ∀ y 
= y′ ∈ Z

μ
2 we have wt(C(y)) = ℓ and

wt(C(y) + C(y′)) ≥ 0.9ℓ.

• Key Generation. Algorithm K(1λ) samples s
$← Z

2ℓ
2 , a pairwise independent

hash function h : M × Z
ν
2 → Z

μ
2 and a pairwise independent permutation π over

Z
ℓ×n+n+ν
2 . It returns K = (s, h, π) as the secret key.

• Tagging. Given secret key K = (s, h, π) and message m ∈ M, algorithm T

proceeds as follows.

1. R
$← Z

ℓ×n
2 , b

$← Z
ν
2, e

$← Bern
τ

2. v:=C(h(m, b)) ∈ Z
2ℓ
2

3. Return φ:=π(R, RT · s↓v + e, b)

• Verification. On input a secret key K = (s, h, π), message m ∈ M and tag φ,
algorithm V proceeds as follows.

1. Parse π−1(φ) as (R ∈ Z
ℓ×n
2 , z ∈ Z

n
2, b ∈ Z

ν
2). If rank(R) 
= n, then return

reject

2. v:=C(h(m, b))

3. If wt(z + RT · s↓v) > n · τ ′ return reject, otherwise return accept

7The code C can be constructed as follows. We first sample a random matrix C ∈ Z
μ×ℓ
2 and map y ∈ Z

μ
2

to C(y) = (c ∈ Z
ℓ
2, c′ ∈ Z

ℓ
2) where c = CT · y and c′ = c. A random code C has high distance with high

probability and C(y) = (c, c′) has weight exactly ℓ.
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Theorem 4.2. For μ = ν ∈ N, a constant γ > 0 and d:=ℓ/(2+γ ), if the SLPN∗
τ,2ℓ,d

problem is (t, nQ, ε)-hard then MAC1 is (t ′, Q, ε′)-secure against uf-cma adversaries,

where for constants cγ , cτ > 0 that depend only on γ and τ , respectively, and for

Q = Qtag + Qvrfy,

t ′ ≈ t, ε = min

{

ε′/2 − Q2

2μ
,

ε′

2μ+1 − Qtag · 2−cγ ·ℓ − Qvrfy · 2−cτ ·n
}

.

MAC1 has completeness error 2−c′
τ ·n + 2n−ℓ ∈ 2−	(n) where c′

τ > 0 depends only on

τ .

Corollary 4.3. Choosing μ s.t. 2μ = 4Q2

ε′ in the above theorem, we get ε =
min{ε′/4, ε′2/8Q2 − Q · 2−	(n)}. The second term is the minimum here, and solving

for ε′ gives

ε′ ≤ 3Q ·
√

ε + Q · 2−	(n). (4.1)

Remark 4.4. (about μ) Note that to get security as claimed in the above corollary, we
need to choose μ as a function of Q and ε such that 2μ ≈ 4Q2/ε′ for ε′ as in Eq. (4.1).
Of course we can just fix Q (as an upper bound to the number of queries made by
the adversary) and ε (as our guess on the actual hardness of SLPN∗

τ,2ℓ,d ). But a too
conservative guess on μ (i.e., choosing μ too small) will result in a construction whose
security is worse than what is claimed in the above corollary. A too generous guess on
the other hand will make the security reduction meaningless, though we do not have any
attacks on the MAC for large μ.

We now give some intuition for the proof of Theorem 4.2. Every query (m, φ) to V

and query m to T defines a subset v (as computed in the second step in the definitions
of both V and T ). We say that a forgery (m, φ) is “fresh” if the v contained in (m, φ) is
different from all v’s contained in all the previous V and T queries. The proof makes a
case distinction and uses a different reduction for the two cases where the first forgery
found by the adversary is more likely to be fresh, or more likely to be non-fresh. In both
cases we consider a reduction BO which has access to either a uniform oracle O = U or
a subset LPN oracle O = Ŵ∗. Adversary BO uses an adversary A who can find forgeries
for the MAC to distinguish those cases and thus break the subset LPN assumption. In
the first case, where the first forgery is likely to be non-fresh, we can show (using the
fact that a pairwise independent permutation is used to blind the tag) that if BO’s oracle
is O = U , even a computationally unbounded A cannot come up with a message/tag
pair (m, φ) that contains a non-fresh v. Thus we can distinguish the cases O = U and
O = Ŵ∗ by just observing if A ever makes a V query (m, φ) that contains a non-fresh
v (even without being able to tell if (m, φ) is valid or not).

If the first forgery found by A is more likely to be fresh, we can use a similar argu-
ment as in the proof of our authentication protocol in the last section. An additional
difficulty here is that the reduction has to guess the fresh v ∈ Z

2ℓ
2 (for which there are 2μ

possibilities) contained in the first forgery and cannot choose it itself as in the protocol.
This is the reason why the reduction loses a factor 2μ.
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Proof of Theorem 4.2. The proof of completeness is essentially the same (and we get
exactly the same quantitative bound) as the proof of completeness for the protocol in
Fig. 4 as claimed in Theorem 3.1.

We now prove security. As in the theorem statement, we set μ = ν (but for clarity we
will keep the different letters μ for the range of h and ν for the length of the randomness).
Let A be an adversary running in time t ′ that breaks the uf-cma security of MAC1 in
the experiment Expuf-cma

MAC1,A,λ
with advantage ε′. Let Qtag and Qvrfy denote the number

of queries that A makes to the tag and verification oracles, respectively, such that Q =
Qtag + Qvrfy. We assume that A never makes the same verification query twice (since
V is deterministic, repeating queries gives no additional information to A) and also
that she never makes a verification query (m, φ) where φ was received as the output
from the tag oracle on input m. Since the completeness error of MAC1 is 2−	(n), this is
basically without loss of generality (as the answer would almost certainly be accept).
Every verification query (m, φ) and tag query m define a subset v (as computed in step
2. in the definitions of both V and T ).

By definition, in the uf-cma experiment, with probability ε′ the adversary A at some
point makes a verification query (m, φ) where (i) φ was not received as output on a tag
query m, and (ii) V(K , m, φ) = accept. We say that such a forgery (m, φ) is “fresh” if
the v defined by (m, φ) is different from all v’s defined by all the previous verification
and tag queries. Let Efresh denote the event that the first forgery found by A is fresh. We
will consider the two cases where Pr[Efresh] > ε′/2 and Pr[Efresh] ≤ ε′/2 separately.

The case Pr[Efresh] ≤ ε′/2. Given A, we will construct an adversary BO
1 who can dis-

tinguish O = Ŵ∗
τ,2ℓ,ℓ(s, ·) from O = U2ℓ+1(·) (as in Definition 2.8) with advantage

ε′/2 − Q2

2μ
. (4.2)

BO
1 samples π, h (but not s) as defined by K. Next, it invokes A (who expects to attack

MAC1 with a key (s, h, π)) answering its queries as follows:

• Tag queries. If A makes a tag query m, then BO
1 does the following:

1. Sample b
$← Z

ν
2 and compute v:=C(h(m, b)).

2. Query the oracle O for n times on input v: for i = 1, . . . , n let (R[i], z[i]) $←
O(v).

3. Return φ:=π(R, z, b) where R = [R[1], . . . , R[n]] and z = [z[1], . . . , z[n]]
to A.

• Verification queries. If A makes a verification query (m, φ), BO
1 simply answers

with reject.

If any tag or verification query contains a v which has appeared in a previous query, BO
1

outputs 1 and 0 otherwise. (Note that BO
1 can compute the value v in a verification query

as it knows π, h.)

Claim 4.5. If O = Ŵ∗
τ,2ℓ,ℓ(s, ·), then BO

1 outputs 1 with probability ≥ ε′/2.
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Proof of Claim. The answers to the tag queries of A computed by BO
1 have exactly the

same distribution as in the uf-cma experiment (where the secret key is (s, h, π)). (Note
that each tag query yields a vector v with hamming weight exactly ℓ.) The answers to
the verification queries (which are always reject) are correct as long as A does not query
a valid forgery. The probability that the first valid forgery found by A is not fresh is
ε′ − Pr[Efresh] ≥ ε′ − ε′/2 ≥ ε′/2, which is thus a lower bound on the probability that
BO

1 outputs 1. �

Claim 4.6. If O = U2ℓ+1(·), then BO
1 outputs 1 with probability < Q2/2μ.

Proof of Claim. The answers that A obtains on a tag query m from B
U2ℓ+1(·)
1 (i.e.,

π(R, z, b) where R, z, b are sampled uniformly) are uniformly random, and in particular
independent of h or π . The answers to verification queries are always reject and thus
contain no information about h, π either. Then, we have that vi = v j (where vi =
C(h(mi , bi )) is defined by the i th tag or verification query) iff h(mi , bi ) = h(m j , b j ).
We will upper bound the probability of such a collision, which then is also an upper
bound on the probability that BO

1 outputs 1. A makes a total of Q queries. Assume that
up to the (i − 1)th query, all the v’s were distinct.

If the i th query is a tag query mi , a fresh bi is sampled which will collide with a
previous b j ( j < i) with probability at most (i − 1)/2ν . Assuming no such collision
happened, the probability that h(mi , bi ) = h(m j , b j ) for any j < i can be upper

bounded by (i − 1)/2μ (here we use the fact that the answers that A gets from B
U2ℓ+1(·)
1

are uniformly random, and thus A has no information about the function h).
If the i th query is a verification query (mi , φi ), then using the fact that π is a pairwise

independent permutation (and A has no information about it) we get that π−1(φi ) =
(Ri , zi , bi ) contains a bi which will collide with a previous b j ( j < i) where φ j 
= φi

with probability at most (i − 1)/2ν . If we have no such collision, then also (mi , bi ) 
=
(m j , b j ) for all j < i as for j where φi = φ j we must have that mi 
= m j .8 If
(mi , bi ) 
= (m j , b j ) for all j < i we can again upper bound the probability that
h(mi , bi ) = h(m j , b j ) for some j < i by (i − 1)/2μ.

We showed that for the i th query (no matter if it is a tag or verification query) the
probability that h(mi , bi ) = h(m j , b j ) for some j ≤ i is at most (i−1)

2ν + (i−1)
2μ . Taking the

union bound over all i, 1 ≤ i ≤ Q, we can upper bound the probability that h(mi , bi ) =
h(m j , b j ) for any i 
= j as

∑Q
i=1

(

(i−1)
2ν + (i−1)

2μ

)

≤ Q2/2μ (recall that μ = ν) as

claimed. �

The case Pr[Efresh] > ε′/2. In this case, A will make tag/verification queries, where
with probability > ε′/2, at some point she will make an accepting verification query
(m, φ) that defines a fresh v. We now construct an adversary BO

2 that uses A as a black-
box, and can distinguish O = Ŵ∗

τ,2ℓ,d(s, ·) from O = U2ℓ+1(·) (as in Definition 2.8)

8Recall that we assume that A does not repeat queries and does not ask verification queries (m, φ) if φ

was the output of a tag query m.
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with advantage
ε′

2μ+1 − Qtag · α′
ℓ,d − Qvrfy · α′′

τ ′,n . (4.3)

The construction of BO
2 is very similar to the adversary B that we constructed in the

proof of Theorem 3.1 (where we proved that the authentication protocol in Fig. 4 is
secure against active attacks). The queries to the prover in the first phase of an active
attack directly correspond to tag queries. However, we now have to additionally answer
verification queries (we will always answer reject). Furthermore, we cannot choose the
challenge v∗. Instead, we will simply hope that (in the case where O = Ŵ∗

τ,2ℓ,d(s, ·))
the v contained in the first valid verification query (i.e., forgery) that A makes is fresh
(which by assumption happens with probability ε′/2). Moreover, we will hope that it is
the unique v∗ (out of 2μ possible ones) for which BO

2 can verify this. This gives us a
distinguishing advantage of nearly (ε′/2)/2μ = ε′/2μ+1 as stated in Eq. (4.3). We do
lose an additional additive term Qtag ·α′

ℓ,d as there is an exponentially small probability
that the transformation of subspace LPN samples to tag queries will fail, and moreover an
exponentially small term Qvrfy ·α′′

τ ′,n which accounts for the probability that A correctly
guesses an accepting tag even in the case where O = U2ℓ+1(·).

BO
2 samples π, h (but not s) as defined by K, and y∗ $← Z

μ
2 , s∗ $← Z

2ℓ
2 . Let

v∗:=C(y∗). Next, BO
2 invokes A and answers its queries as follows (the intuition for the

sampling below is given in the proof of Claim 4.8).

• Tag queries. The answer φ to a tag query m ∈ M is computed by BO
2 as follows:

1. Sample b
$← Z

ν
2 and compute v:=C(h(m, b)).

Let u:=v ∧ v∗ and u∗:=v ∧ v∗.
2. For i = 1, . . . , n, let (R′[i], z′[i]) $← O(u), R′′[i] $← Z

2ℓ
2 and z′′[i]:=〈R′′[i], s∗∧

u∗〉. Define R = [R[1], R[2], . . . , R[n]] and z = [z[1], . . . , z[n]] where
R[i]:=(R′[i] ∧ u + R′′[i] ∧ u∗)↓v and z[i] := z′[i] + z′′[i].

3. Return φ:=π(R, z, b) to A.

• Verification queries. If A makes a verification query (φ, m), then BO
2 always answers

reject, but also makes the following check:

1. Parse y:=π−1(φ) as [R ∈ Z
ℓ×n
2 , z ∈ Z

n
2, b ∈ Z

ν
2] and compute v:=C(h(m, b)).

2. If v 
= v∗, processing this query is over, otherwise go to the next step.
3. If rank(R) = n and wt(RT · s∗

↓v∗ + z) ≤ n · τ ′ (i.e., we have a forgery) output 1
and stop.

If A has finished its queries, BO
2 stops with output 0.

Claim 4.7. If O = U2ℓ+1(·), then BO
2 outputs 1 with probability ≤ Qvrfy · α′′

τ ′,n +
Qtag · α′

ℓ,d .

Proof of Claim. The proof of this claim is almost identical to the proof of Claim 3.2,
except that here we have an additional factor Qvrfy as we have to take the union bound
over all Qvrfy queries, whereas in Claim 3.2 the adversary was (by definition of an active
attack) only allowed one guess. �
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Claim 4.8. If O = Ŵ∗
τ,2ℓ,d(s, ·), then BO

2 outputs 1 with probability ≥ ε′

2μ+1 .

Proof. The proof of this claim is similar to the proof of Claim 3.3. That is, one shows
that B2 with oracle access to Ŵ∗

τ,2ℓ,0(s, ·) (i.e., the subset LPN oracle accepts subsets of
arbitrarily small size) perfectly simulates the experiment and thus receive a fresh forgery
from A with probability at least ε′/2. Unlike in Claim 3.3, here B2 will only be able to
recognize a fresh forgery if it is using a v that is equivalent to v∗, this accounts for the
extra 2−μ factor. �

Summing up, using A we can break the subset LPN assumption with advantage which
is given either by Eq. (4.2) or Eq. (4.3), i.e.,

ε = min

{

ε′/2 − 2Q2

2μ
,

ε′

2μ+1 − Qtag · α′
ℓ,d − Qvrfy · α′′

τ ′,n

}

.

�

4.2. Second Construction

We now give the construction of another MAC based on the hardness of the LPN prob-
lem. The main difference from MAC1 from the last subsection is the way we generate
the values s(v). In the new construction we define s(v) = s0 + S · v, where S ∈ Z

ℓ×μ
2

and s0 ∈ Z
ℓ
2 are both part of the secret key. Moreover, in the computation of a tag, the

output is masked via another vector s′
0 ∈ Z

n
2 that is also included in the secret key. The

construction borrows ideas from [4] that we needed to adapt to the case of LPN.

Construction. The message authentication code MAC2 = (K, T ,V) with associated
message space M is defined as follows:

• Public Parameters. MAC2 has the following public parameters.

ℓ, τ, τ ′, n as in the authentication protocol from Sect. 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness

• Key Generation. Algorithm K(1λ) samples S
$← Z

ℓ×μ
2 , s0

$← Z
ℓ
2, s′

0
$← Z

n
2 and

chooses an almost pairwise independent hash function h : M × Z
ν
2 → Z

μ
2 \ {0},

as well as a pairwise independent permutation π over Z
ℓ×n+n+ν
2 (cf. Remark 4.1).

It returns K = (S, s0, s′
0, h, π) as the secret key.

• Tagging. Given secret key K = (S, s0, s′
0, h, π) and message m ∈ M, algorithm

T proceeds as follows.

1. R
$← Z

ℓ×n
2 , b

$← Z
ν
2, e

$← Bern
τ

2. v:=h(m, b)

3. s(v):=s0 + S · v

4. Return φ:=π(R, s′
0 + RT · s(v) + e, b)
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• Verification. On input a secret key K = (S, s0, s′
0, h, π), message m ∈ M and tag

φ, algorithm V proceeds as follows.

1. Parse π−1(φ) as (R ∈ Z
ℓ×n
2 , z ∈ Z

n
2, b ∈ Z

ν
2). If rank(R) 
= n, then return

reject

2. v:=h(m, b)

3. s(v):=s0 + S · v

4. If wt(z + s′
0 + RT · s(v)) > n · τ ′ return reject, otherwise return accept

Theorem 4.9. For μ = ν ∈ N, if the SLPNτ,ℓ,ℓ problem is (t, nQ, ε)-hard (by Propo-

sition 2.3 this problem is as hard as LPNτ,ℓ), then MAC2 is (t ′, Q, ε′)-secure against

uf-cma adversaries, where for constants cτ , c′
τ > 0 that depend only on τ , and for

Q = Qtag + Qvrfy,

t ′ ≈ t ε = min

{

ε′/2 − Q2

2μ
,

ε′

8μQvrfy
− Qvrfy · (2−c′

τ ·n + 2−cτ ·n)

}

.

MAC2 has completeness error 2−c′
τ ·n + 2n−ℓ.

We now give intuition for the proof of Theorem 4.9. Similar to the proof of Theo-
rem 4.2, we distinguish fresh and non-fresh forgeries. Here the new and interesting case
is when the first forgery found by the adversary is fresh. In the analysis we move to a
mental experiment where tags computed by the tag oracle are uniform and independent
from the secret key. The technical heart of the proof is to show that such a modification
defines an indistinguishable distribution, assuming that the standard LPN assumption
holds. More in detail, consider the two experiments defined in Fig. 6. In the “real exper-
iment,” the answers from the Eval(v) oracle have the same distribution as the values
(R, z) from a tag on message m such that h(m, b) = v; in the “random experiment,”
the answers from the Eval(v) oracle are uniform. Oracle Chal(R∗, v∗), which can be
queried at most once, essentially corresponds to the output of a verification query on a
fresh forgery (m∗, φ∗), such that h(m∗, b∗) = v∗. The lemma below states that it is hard
to distinguish the two cases. Its proof uses a hybrid technique from [4,13].

Lemma 4.10. Let ℓ, μ, n, τ ∈ N. Assume that the LPNτ,ℓ problem is (t, nQ, ε)-hard.

Then, for all adversaries B running in time t ′ ≈ t , and asking Q queries to the Eval(·)
oracle, we have that

∣

∣

∣Pr
[

Expreal
ℓ,μ,n,τ (B)) = 1

]

− Pr
[

Exprand
ℓ,μ,n,τ (B)) = 1

]∣

∣

∣ ≤ 4με.

Proof. We start by making a syntactical change in the real experiment. Let S =
(S[ j]) j∈[μ], with S[ j] ∈ Z

ℓ
2. One can show that there exist vectors s j,k ∈ Z

ℓ
2 for j ∈ [μ]

and k ∈ {0, 1} such that

s(v) = S · v + s0 =
μ

∑

j=1

s j,v[ j].
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Fig. 6. Experiments Expreal
ℓ,μ,n,τ

(B) and Exprand
ℓ,μ,n,τ (B) . The boxed statement redefining z is only executed

in Exprand
ℓ,μ,n,τ

.

This is obtained by letting s0 =
∑μ

j=1 s j,0, and S[ j] = s j,1−s j,0. Furthermore, choosing
the s j,k uniformly at random yields uniformly distributed values S, s0.

Let G0 be identical to the “real experiment” Expreal
ℓ,μ,n,τ (B), with the difference that at

the beginning of the experiment we sample the vectors si, j (as defined above) uniformly
at random, instead of sampling (S, s0), and later those vectors are used to define s(v).
Clearly, G0 is identically distributed to the “real experiment.”

We prove the lemma by considering a sequence of intermediate games, starting with
game G0. The games are shown in Fig. 7. Note that in Game G1,0 the value s′

0 is computed

as RF0(⊥), where ⊥ is the empty string, that always outputs the same vector s′
0

$← Z
ℓ
2.

Therefore, we have

Claim 4.11. Pr[G0 = 1] = Pr[G1,0 = 1].

The next claim shows that any two adjacent hybrid games are indistinguishable, if the
LPN assumption holds.

Claim 4.12. For all i ∈ {1, . . . , μ − 1}, there exists a distinguisher D, with running

time similar to that of B, such that

∣

∣

∣Pr
[

D�τ,ℓ(s) = 1; s
$← Z

ℓ
2

]

− Pr
[

DUℓ+1 = 1
]∣

∣

∣≥
1

2

∣

∣Pr
[

G1,i+1 = 1
]

−Pr
[

G1,i = 1
]∣

∣ .

Proof. Fix some particular i ∈ [μ − 1], and let Q be the total number of queries that
B asks to the Eval(·) oracle. Distinguisher DO will ask nQ queries to its oracle O(·),
where O is either equal to �τ,ℓ(s) or to Uℓ+1. Looking ahead, distinguisher D will start

by sampling a bit b
$← {0, 1} as its guess for v∗[i + 1] and defining the random function

RFi+1(·) recursively as

RFi+1(v[1 . . . i + 1]) =
{

RFi (v[1 . . . i]) if v[i + 1] = b

RFi (v[1 . . . i]) + RF′
i (v[1 . . . i]) otherwise

(4.4)
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Fig. 7. Hybrid experiments G0,G0, G1,i and G2 in the proof of Lemma 4.10. Here RFi : {0, 1}i → Z
ℓ
2

is a random function, and v[1 . . . i] ∈ Z
i
2, for i ∈ [μ], is the i th prefix of vector v ∈ Z

μ
2 .

where RF′
i : {0, 1}i → Z

ℓ
2 is another random function (to be determined). One can

verify that, in case RFi (·) is a random function, so is RFi+1(·). A formal description of
D follows:

1. At setup D does the following:

• Sample b
$← {0, 1} and set Qv:=∅.

• Choose all the vectors s j,k
$← Z

ℓ
2 at random (for all j ∈ [μ] and k ∈ {0, 1}),

except for si+1,1−b which is implicitly set to be the vector s from the LPN oracle.
• Query the O(s) oracle for nQ times, obtaining answers (R j , z′

j ) j∈[Q]; let Li be
an initially empty list.

2. Upon input a query v to oracle Eval(·), distinguisher D does the following:

• Update Qv:=Qv ∪ {v}.
• If v[i + 1] = b, sample R

$← Z
ℓ×n
2 and e

$← Bern
τ , compute z =

RFi (v[1 . . . i]) + RT · (
∑μ

j=1 s j,v[ j]) + e, and return (R, z).
• Else, in case v[i + 1] = 1 − b, check whether there exists an entry of the form

(v[1, . . . , i], (R j , z′
j )) in the list Li , for some j ∈ [Q]. If this is the case, let

(R, z′):=(R j , z′
j ), otherwise let (R, z′):=(R j , z′

j ) for the next (in lexicographic
order) not already used LPN sample, and add (v[1, . . . , i], (R j , z′

j )) to the list
Li . Define

z = RFi (v[1 . . . i]) + RT ·
μ

∑

j=1
j 
=i+1

s j,v[ j] + z′

and return (R, z).

3. Upon input query (R∗, v∗) to oracle Chal(·), distinguisher D does the following:
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• In case v∗[i + 1] 
= b, abort.
• Else, define s(v∗) =

∑μ
j=1 s j,v∗[ j].

• Return z∗ = R∗T · s(v∗) + RFi (v
∗[1 . . . i]).

4. Upon input the decision bit d from B, distinguisher D returns d ∧ (v∗ 
∈ Qv).

Suppose that D correctly guessed v∗[i +1], which happens with probability 1/2. Note
that in this case D simulates perfectly the answer of the Chal(·) oracle (as it knows
si+1,b). It remains to analyze the distribution of oracle Eval(·). Below we argue that,
depending on the value of v[i + 1], the distribution will either equal that of Gi or Gi+1,
with random functions RFi+1 as defined in Eq. (4.4). In case v[i + 1] = b, then the
distribution is equal to that of both Gi and Gi+1 (which is the same, as in this case
RFi+1(v[1 . . . i + 1]) = RFi (v[1 . . . i])). In case v[i + 1] = 1 − b, we consider two
cases depending on whether the oracle O(s) outputs LPN samples or uniform samples.
In the first case, we have z′ = RT · si+1,1−b + e and thus the answer

z = RFi (v[1 . . . i]) + RT ·
μ

∑

j=1
j 
=i+1

s j,v[ j] + RT · si+1,1−b + e

= RFi (v[1 . . . i]) + RT ·
μ

∑

j=1

s j,v[ j] + e,

is distributed like in game Gi . In the second case, we have z′ = RT · si+1,1−b + e + u

(for a uniform u
$← Z

n
2). Thus, the answer z computed by D is distributed like in Gi+1

with random function RF′
i (v[1 . . . i]) = u and RFi+1 defined as in Eq. (4.4). Note that

RF′
i is well defined, i.e., the value RF′

i (v[1, · · · i]) does not get overwritten in case the
Eval(·) oracle is queried on two different v, v′ that are equal in the first i positions (this
is because the reduction keeps track of which LPN sample is associated to each of the
vectors v[1 . . . i], using the list Li ). The claim follows. �

Claim 4.13. Pr[G1,μ = 1] = Pr[G2 = 1].

Proof. The claim follows from the fact that in G1,μ all outputs computed via Eval(·)
are masked by RFμ(v) and thus are independent of s j,k . Hence, the output of Chal(·)
is uniform.

Finally, we make all steps in reverse order to re-obtain the initial distribution in the
Eval(·) oracle. The proof of the following claim is analogous to the one of Claim 4.12
and is therefore omitted.

Claim 4.14. For all i ∈ {1, . . . , μ − 1}, there exists a distinguisher D, with running

time similar to that of B, such that

∣

∣

∣Pr
[

D�τ,ℓ(s) = 1; s
$← Z

ℓ
2

]

− Pr
[

DUℓ+1 = 1
]∣

∣

∣

≥ 1

2

∣

∣

∣Pr [G2 = 1] − Pr
[

Exprand
ℓ,μ,n,τ (B) = 1

]∣

∣

∣ .
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The statement of Lemma 4.10 now follows by putting together Claims 4.11—4.14. �

We now turn to the proof of Theorem 4.9.

Proof of Theorem 4.9. The proof of the completeness error is similar to the schemes
before and is therefore omitted. As for security, let A be an adversary that successfully
forges in the uf-cma experiment with probability ε′. Assume that A asks a total of
Q = Qtag + Qvrfy queries, where Qtag (resp., Qvrfy) stands for the total number of
queries asked to the tag (resp., verification) oracle.

We make the same conventions and the definition of freshness as in the proof of The-
orem 4.2 and consider the two cases Pr[Efresh] ≤ ε′/2 and Pr[Efresh] > ε′/2 separately.

The case Pr[Efresh] ≤ ε′/2. We now give the description of BO
1 attacking the SLPNτ,ℓ,ℓ

problem, i.e., BO
1 can distinguish O = Ŵτ,ℓ,ℓ(s, ·, ·) from O = Uℓ+1(·, ·) with advantage

ε′/2 − Q2

2μ
. (4.5)

Adversary BO
1 samples π, h, S, s′

0 (but not s0) as defined by K and B
$← Z

ℓ×μ
2 . Next, it

implicitly defines s0 as s0 = s, where s is only implicitly defined through Ŵτ,ℓ,ℓ(s, ·, ·).
It is easy to see that with this setup of K = (S, s0, s′

0, h, π) we have that, for each
v ∈ Z

μ
2 \ {0},

s(v) = s0 + S · v = s + S · v. (4.6)

Note that S · v is known to B1. Adversary BO
1 cannot evaluate s(v) but looking ahead,

it will use its oracle O to answer A’s queries as follows.

• Tag queries. If A makes a tag query for message m ∈ M, then BO
1 does the

following:

1. Samples b
$← Z

ν
2 and compute v:=h(m, b).

2. Query the oracle O on (I, S · v) for n times to obtain (R, z′): for i = 1, . . . , n

let (R[i], z′[i]) $← O(I, S · v). Here I is the identity matrix.
3. Return φ:=π(R, s′

0 + z′, b).

• Verification queries. If A makes a verification query (m, φ), BO
1 simply answers

with reject.

Finally, if any tag or verification query contains a v which has appeared in a previous
query, BO

1 outputs 1 and stops. Otherwise, it outputs 0. Note that if O = Ŵτ,ℓ,ℓ(s, ·, ·),
then BO

1 perfectly simulates the T (K , ·) algorithm, as z′[i] = R[i]T(I ·s+S ·v)+e[i] =
R[i]T · s(v) + e[i].

The following two claims are the analogs of Claim 4.5 and 4.6, respectively. Their
proofs are essentially the same and are therefore omitted.

Claim 4.15. If O = Ŵτ,ℓ(s, ·, ·), then BO
1 outputs 1 with probability ≥ ε′/2.

Claim 4.16. If O = Uℓ+1(·, ·), then BO
1 outputs 1 with probability <

Q2

2μ .
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The case Pr[Efresh] > ε′/2. We will use games, denoting by Gi the output of the i th

game. Game G0 runs the uf-cma security experiment Expuf-cma
MAC2,A,λ

and defines the output
as 1 iff event Efresh holds. By definition we have Pr[G0 = 1] = Pr[Efresh] > ε′/2.
Throughout the rest of the proof, if in the game A finds a forgery, and the first forgery
is fresh, we will denote with ·∗ the values associated with this first forgery. In particular,
v∗ is the v-value computed to evaluate the verification query on (m∗, φ∗). Note that,
by definition, v∗ is fresh, i.e., it is different from all the v-values from previous tag
and verification queries. Without loss of generality, we assume that after G0 processes a
verification query with respect to v∗, as defined above, the random variable corresponding
to the outcome of the game is defined and the experiment stops without processing any
further query. For simplicity, we also assume that the answer to all verification queries
(m, φ) before the forgery is found is reject, unless the pair (m, φ) was returned by the
tag oracle (in which case we assume the answer is always accept); this results in a loss
of at most Qvrfy ·α in the final bound, where α:=2n−ℓ +2−c′

τ ·n is the completeness error
of MAC2.

Consider games G1, . . . , GQvrfy
where game G j is identical to G0, but allows the

adversary A to ask only j verification queries. Define E
j

fresh to be the event that in G0
the j th verification query is the one where the first fresh forgery is found; this means that
all previous verification queries are either rejected, or relative to a pair (m, φ) previously
returned by the tag oracle. Since, for j ∈ {1, . . . , Qvrfy}, all the events E

j

fresh are disjoint,

and additionally Pr[G j = 1] ≥ Pr[E
j

fresh], we have:

ε′/2 < Pr [Efresh] = Pr [G0 = 1] = Pr

⎡

⎣

Qvrfy
⋃

j=1

E
j

fresh

⎤

⎦ =
Qvrfy
∑

j=1

Pr
[

E
j

fresh

]

≤
Qvrfy
∑

j=1

Pr
[

G j = 1
]

. (4.7)

In the remainder of the proof, we will upper bound Pr[G j = 1], for all j ∈ {1, . . . , Qvrfy}.
As a first step, consider a modified version G′

j of Game G j where the tag oracle internally

uses uniform z ∈ Z
n
2 , instead of z = s′

0 + RT · s(v), to generate tag φ on message m.

Claim 4.17.

∣

∣

∣Pr[G j = 1] − Pr[G′
j = 1]

∣

∣

∣ ≤ 4με, for all j ∈ {1, . . . , Qvrfy}.

Proof. Fix a value of j ∈ {1, . . . , Qvrfy}. We prove something stronger, namely that
the distributions induced by G j and G′

j are computationally close, within distance 4με.
Assume the contrapositive, namely that there exists a distinguisher D that can distinguish
games G j and G′

j . We build an attacker B (running D) such that

∣

∣

∣Pr
[

Expreal
ℓ,μ,n,τ (B) = 1

]

− Pr
[

Exprand
ℓ,μ,n,τ (B) = 1

]∣

∣

∣ > 4με,

contradicting Lemma 4.10. Adversary B works as follows:
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1. At the beginning B samples h, π (but not S, s0, s′
0).

2. Upon input a query m to the tag oracle, B does the following:

• Sample a random b
$← Z

ν
2 and compute v = h(m, b).

• Query v to oracle Eval(·), obtaining a pair (R, z), and forward φ = π(R, z, b)

to D.

3. Upon input a verification query (m, φ) to the verification oracle, B does the fol-
lowing:

• First check whether (m, φ) is equal to one of the tags previously returned to D;
if this is the case answer with accept.

• Otherwise, check whether (m, φ) is the j th verification query; if this is not the
case, then answer with reject.

• Else, (m, φ) is the j th verification query; call it (m∗, φ∗). Let (R∗, z∗, b∗) =
π−1(φ∗), compute v∗ = h(m∗, b∗) and forward (R∗, v∗) to oracle Chal(·)
obtaining a vector z′. Check that wt(z′ + z∗) ≤ n · τ ′; if this is the case return
accept to D, otherwise return reject.

4. Finally B outputs whatever D does.

For the analysis, note that B runs in time similar to that of D. By inspection, one can verify
that in case B is running in the “real experiment” or in the “random experiment,” the
simulation of the tag queries provided by B is distribute like in G j or in G′

j , respectively.
Finally, all verification queries before the j th query are either answered with accept

(in case they are identical to a previously simulated tag), or with reject (otherwise);
this is consistent with both games G j and G′

j . The j th verification query is fresh by
definition and is simulated using the answer from the Chal(·) oracle, so it has the right
distribution. The claim follows. �

Claim 4.18. Pr[G′
j = 1] ≤ α′′

τ ′,n , for all j ∈ {1, . . . , Qvrfy}.

Proof of Claim. Fix a value of j ∈ {1, . . . , Qvrfy}. If R∗ does not have full rank then
the experiment outputs 0 by definition. So from now we only consider the case where
rank(R∗) = n. In Game G′

j , the values (R, z) the adversary A obtains from the tag
oracle are independent of the secrets (S, s0, s′

0). Since s(v∗) is uniformly random and

R∗ has full rank, the vector x:=s′
0 +R∗T · s(v∗)+z∗ is uniformly random over Z

n
2 . Thus

the probability that the second verification wt(z∗ + s′
0 + R∗T · s(v∗)) ≤ n · τ ′ passes is

Pr[wt(x) ≤ n · τ ′] = α′′
τ ′,n = 2−	(n). �

Summing up, in the case Pr[Efresh] > ε′/2 (combining the bounds in Claim 4.17—
4.18 together with Eq. (4.7)), we can use A to break the LPN assumption with advantage

ε′
8μQvrfy

− Qvrfy · (α + α′′
τ ′,n). On the other hand in the case Pr[Efresh] ≤ ε′/2, we have

an advantage as given in Eq. (4.5). Thus

ε = min

{

ε′/2 − Q2

2μ
,

ε′

8μQvrfy
− Qvrfy · (α + α′′

τ ′,n)

}

.

�
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Appendix 1: Extensions

In this section we discuss some extensions of the protocols we presented in Sects. 3 and
4.

Trading Key Size for Communication Complexity

A disadvantage of the schemes proposed in this paper is their large communication
complexity. For example, in the authentication protocol from Sect. 3 the prover has to
send the entire ℓ × n matrix R to the verifier. Similarly, in the MACs from Sect. 4, the
tag is computed by permuting a string of the form (R, RT · s(m) + e, b), where again R

is an ℓ × n matrix.
We now explain a simple tradeoff that is originally due to Gilbert et al. [22]. Consider
the authentication protocol from Sect. 3. Let 1 ≤ c ≤ n be an integer parameter and
let ns :=c and nr :=n/c. The idea is to use a larger secret matrix S ∈ Z

2ℓ×ns

2 (instead of

just one vector s) and a smaller random matrix R ∈ Z
ℓ×nr

2 (instead of R ∈ Z
ℓ×n
2 ). The

resulting protocol is illustrated in Fig. 8. Similar extensions can be easily derived for the
MACs of Sect. 4, where the tradeoff is more important due to the pairwise independent
permutation π which is the computational bottleneck of the protocol. See Table 1 for a
comparison of the resulting complexities. The proof of Theorems 3.1, 4.2 and 4.9 can
be adapted to show the same security and completeness results.

An Alternative Two-Round Authentication Protocol

In this section we describe an alternative two-round authentication protocol and sketch
the proof of its active security under the hardness of the SLPNτ,ℓ,ℓ problem. The differ-
ence with the scheme from Sect. 3 is the way the session key s(v) is computed. Whereas
in the AUTH protocol from Fig. 4 the session key is computed as s(v) = s↓v, in the new
protocol it is computed as s(v) = Mvs0 + s1, where Mv ∈ Z

ℓ×ℓ
2 is the matrix represen-

Fig. 8. A generalization of the protocol from Fig. 4 where we trade a larger key (which now is a matrix

S ∈ Z
2ℓ×ns
2 ) for lower communication and randomness complexity. The protocol is as secure as the protocol

from Fig. 5 (which is the special case where nr = n and ns = 1) with n = nr · ns .
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Fig. 9. Two-round protocol AUTH2 with active security from the LPN assumption.

tation of a finite field multiplication with v (see definition below), and (s0, s1) ∈ Z
ℓ
2 is

the secret key.

Definition 4.19. For c ∈ Z
ℓ
2, let Mc ∈ Z

ℓ×ℓ
2 denote the matrix of the linear map

implementing the finite field multiplication with c when interpreted as an element in
F2ℓ .9

The statement below follows directly from the properties of finite fields:

for all distinct vectors a, b ∈ Z
ℓ
2, Ma − Mb is an invertible matrix. (4.8)

The mapping ϕ(c) = Mc is called encoding with full-rank differences in [10]. An explicit
construction was given in [14].
We are now ready to define the modified authentication protocol. Even though the pro-
tocol is less efficient than AUTH, it has a considerably simpler proof.

• Public Parameters. The authentication protocol has the following public parame-
ters, where τ, τ ′ are constants and ℓ, n depend on the security parameter λ.

ℓ ∈ N length of the secret keys s0, s1 ∈ Z
ℓ
2

τ ∈ ]0, 1/2[ parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ ℓ/2)

• Key Generation. Algorithm K(1λ) samples s0, s1
$← Z

ℓ
2 and returns (s0, s1) as

the secret key.
• Authentication Protocol. The two-round authentication protocol with prover Pτ,n

and verifier Vτ ′,n is given in Fig. 9.

We now sketch the reduction from the SLPNτ,ℓ,ℓ assumption. It is similar to the one of
Theorem 3.1, with a slightly different setup of adversary B. Let s be the secret of the
SLPN oracle. In the reduction, B first samples a random v∗ ∈ Z

ℓ
2 that will be used as

the challenge and implicitly defines the secret key (s0, s1) as

s0 := s

s1 := −Mv∗s + c,

9This representation is unique once the irreducible polynomial f defining F2ℓ = F2[x]/( f ) is fixed.
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for c
$← Z

ℓ
2. This way we have

s(v) =
{

(Mv − Mv∗)s + c v 
= v∗

c v = v∗,

where Mv − Mv∗ is guaranteed to be an invertible matrix by Eq. (4.8). This way, all
adversarial queries v 
= v∗ made in the first phase can be answered by returning (R, z)

obtained from the SLPN oracle (by calling it with the parameters SLPN(Mv −Mv∗ , c).
As in the proof of Theorem 3.1, the one challenge verification query corresponding to
v∗ can be correctly answered with accept or reject as s(v∗) does not depend on s. This
way all answers z in the first phase can be switched from real to random, without the
adversary noticing it under the SLPN assumption. Once all answers in the first phase
are uniform and independent of the secret key, one can again argue that the adversary
has no chance in winning the second phase.

Generalization to LWE

All the protocols presented in this paper are based on the hardness of the LPN problem.
A natural generalization of this problem is the learning with errors (LWE) problem [41].
The most appealing characteristic of this problem is that it enjoys for certain parame-
ters a worst-case hardness guarantee [39,41]. We informally recall the LWE problem
below. Let q ≥ 2 be a prime and denote with Gauq,τ the so-called discretized nor-
mal error distribution parametrized by some τ ∈]0, 1[. This distribution is obtained by
drawing x ∈ R from the Gaussian distribution of width τ (i.e., x is chosen with prob-
ability 1

τ
exp(−πx2/τ 2)) and outputting ⌊q · x⌉ mod q. For a random secret s ∈ Z

ℓ
q ,

the (decisional) LWEq,τ,ℓ problem is to distinguish samples of the form (r, rT · s + e)

from uniformly random samples in Z
ℓ
q × Zq , where r

$← Z
ℓ
q , e

$← Gauq,τ and all the
operations are performed modulo q. The subspace/subset version of the LWE problem
can be defined exactly in the same fashion as for LPN (cf. Definition 2.2). It was showed
in [40] that the subspace/subset LWE problems are equivalent to the LWE problem.
All the protocols in this paper can be generalized to Zq and proven secure under the
hardness of the subset LWE assumption (and hence the standard LWE assumption).
This requires us to sample all the elements from Zq (instead of Z2), replace Berτ with
Gauq,τ and perform all the operations involved modulo q. We need also to specify how
to replace the verification steps involving the computation of Hamming weights wt(·).
Given a vector e ∈ Z

n
q sampled from Gaun

q,τ (where e has the form z − RT · s↓v mod q

for an honest execution of the protocol from Sect. 3 or z − RT · s(v) mod q for the
schemes from Sect. 4), this can be done by checking that the (squared) Euclidean norm
of e, i.e., the quantity ‖e‖2:=

∑n
i=1|e[i]|2, does not exceed n

⌊ q
2

⌋

·τ ′ (which will happen
with overwhelming probability by the standard tail bound on Gaussians).
The change in domain from Z2 to Zq buys us security based on a different assumption,
which is known to be equivalent (for a proper choice of parameters) to the hardness
of well-studied (worst-case) lattice problems. This comes at the price of a higher com-
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putational complexity, which may be a problem in the context of resource bounded
devices.

Appendix 2: A Technical Lemma

Lemma 4.20. For n, d ∈ Z, let �(n, d) denote the probability that a random matrix

in Z
(n+d)×n
2 has rank less than n, then

�(n, d) ≤ 2−d .

Proof. Assume we sample the n columns of a matrix M ∈ Z
(n+d)×n
2 one by one. For

i = 1, . . . , n let Ei denote the event that the first i columns are linearly independent,
then

Pr[¬Ei |Ei−1] = 2i−1

2n+d
= 2i−1−n−d

as ¬Ei happens iff the i th column (sampled uniformly from a space of size 2n+d ) falls
into the space (of size 2i−1) spanned by the first i − 1 columns. We get further

�(n, d) = Pr[¬En] =
n

∑

i=1

Pr[¬Ei |Ei−1] =
n

∑

i=1

2i−1−n−d ≤ 2−d .

�
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