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Abstract—Large-scale component-based enterprise applica-
tions that leverage Cloud resources expect Quality of Service
(QoS) guarantees in accordance with service level agreements
between the customer and service providers. In the con-
text of Cloud computing, autoscaling mechanisms hold the
promise of assuring QoS properties to the applications while
simultaneously making efficient use of resources and keeping
operational costs low for the service providers. Despite the
perceived advantages of autoscaling, realizing the full potential
of autoscaling is hard due to multiple challenges stemming
from the need to precisely estimate resource usage in the
face of significant variability in client workload patterns. This
paper makes three contributions to overcome the general
lack of effective techniques for workload forecasting and
optimal resource allocation. First, it discusses the challenges
involved in autoscaling in the cloud. Second, it develops a
model-predictive algorithm for workload forecasting that is
used for resource autoscaling. Finally, empirical results are
provided that demonstrate that resources can be allocated and
deallocated by our algorithm in a way that satisfies both the
application QoS while keeping operational costs low.

Keywords-autoscaling; workload forecasting; predictive mod-
els.

I. INTRODUCTION

Large enterprise software systems such as (e.g., eBay,
Priceline, Amazon and Facebook), need to provide high
assurance in terms of Quality of Service (QoS) metrics such
as response times, high throughput, and service availability
to their users. Without such assurances, service providers
of these applications stand to lose their user base, and
hence their revenues. Typically customers maintain Service
Level Agreements (SLAs) with service providers for the
QoS properties. Failure to comply with satisfying these QoS
metrics leads to a major loss of revenue in the form of
decreased user base [1].

Catering to the SLA while still keeping costs low is
challenging for such enterprise systems due primarily to
the varying number of incoming customers to the system.
For example, consider Figure 1 which depicts a real-world
scenario wherein workload of the FIFA 1998 soccer world
cup website in the number of incoming clients to such
a website is highly varying depending upon a number of
factors such as time of day, day of week and other seasonal
factors. Such a workload is very typical of all commercial
websites and planning capacity for such workload is not
easy. Capacity could be planned for the average load as

shown in Figure 1 or for the peak load. Each approach has
its disadvantages, however.
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Figure 1. World Cup Soccer 1998 Workload

When planned for the average load, there is less cost
incurred due to less hardware used but performance will be a
problem when peak load occurs. Bad performance will dis-
courage customers and revenue will be affected. On the other
hand if capacity is planned for peak workload, resources will
remain idle most of the time. Autoscaling supported in Cloud
computing environments overcomes these challenges. Cloud
computing providers such as Amazon EC2 provide access
to hardware which can be allocated or deallocated at any
time. Images of client software can be created before hand
which can be loaded on to the machine. When not required,
the same machines can be released. Machine usage costs on
an hourly basis. Amazon EC2 provides an API which can
be used to automate this process.

A problem with such a resource allocation scheme is
the chance of thrashing where due to frequent variation of
workload, machines can be added and released on every
sample – a process that involves significant overhead as
described in Section III. A desirable solution would require
an ability to predict the incoming workload on the system
and allocate resources a priori. This capability in turn will
enable the application to be ready to handle the load increase
when it actually occurs. A corollary requirement is the need
to identify how many machines should actually be provi-
sioned and started to handle the predicted load. For example,
consider a situation where there are N number of machines
already running and handling M customers for a given
application. Suddenly, the number of customers increases
to M + 100 and processor utilization also increases in the
running nodes. Naturally, this situation requires increasing



the number of machines allocated, but how by how much is
unknown. Anything less will provide degraded performance;
anything more implies cost incurred by the customer for
resources not actually used by the application.

In summary, autoscaling the resources in a cloud environ-
ment is not an easy and straightforward task. Overcoming
these challenges will require algorithms which take into
account the following: (i) overheads related to state tran-
sition when number of resources are changed, (ii) ability
to accurately predict future workload, and (iii) compute the
right number of resources required for the expected increase
or decrease in workload. This paper describes a resource
allocation algorithm based on model predictive techniques
which allocates or deallocates machines to the application
based upon optimizing the utility of the application over a
limited prediction horizon.

The rest of the paper is organized as follows: Section II
compares related research to our work; Section III described
the challenges in workload prediction and relating it to
autoscaling; Section IV describes our solution approach;
Section V provides empirical evaluation of our algorithm;
and finally Section VI provides concluding remarks.

II. RELATED WORK

We have surveyed related work that investigates resource
allocation and workload prediction, which are geared to-
wards satisfying Cloud user requirements. We also focus
on related work on optimizing resources, which is geared
towards the Cloud provider. These dimensions of research
are most appropriate for the work presented in this paper.
(1) Heuristics-based virtual machine allocation and mi-
gration: Urgaonkar et. al. [2] have used virtual machines
(VM) to implement dynamic provisioning of multi-tiered
applications based on an underlying queuing model. For
each physical host, however, only a single VM can be
run. Wood et. al. [3] use a similar infrastructure as in [2].
They concentrate primarily on dynamic migration of VMs
to support dynamic provisioning. They define a unique
metric based on the consumption data of the three resources:
CPU, network and memory to make the migration decision.
Cunha et. al. [4] develop a comprehensive queuing model to
model virtual servers. They assign each class of jobs in an
application onto a virtual machine. They introduce a pricing
model which gives rewards for throughput to be within SLA
limits and penalty for throughput going above.
(2) Autonomic management of virtual computing envi-
ronment using control-theoretic approaches: Padala et.
al. [5] provide a control-theoretic solution where each tier
of the application is executed on each virtual machine.
Authors carry out black box profiling of the applications
and build an approximated model which relates performance
attributes such as response time to the fraction of processor
allocated to the virtual machine running the application.
Wang et. al. [6] describe a two-level control architecture for a

virtualized environment. A load balancing controller ensures
that the virtual machines are all load-balanced and the
response time of the applications in all the virtual machines
are the same. Moreno et. al. [7] recommend an architecture
for elastic management of cluster-based services. It consists
of a virtualized infrastructure layer that works with a VM
manager and a cloud service provider. This approach helps in
autoscaling resources with the least amount of perturbations
to the user. Waheed et. al. [8] propose a reactive algorithm
to allocate extra resources to a cluster farm when workload
increases, while Yang et. al [9] propose a profile-based
approach to the problem of just-in-time scalability in a cloud
environment.
Limitations in related work: The work in [2] and [3] do
not relate the placement mechanism to an overall utility
value to the Cloud provider. They attempt at increasing
the throughput of the application only. The applications
considered do not have multiple classes, which is unrealistic.
Although the work in [4] has a good utility model of the
data center and multiple classes are considered, they assign
every class onto a single virtual machine, which may not
be cost-effective in a situation where an application has
numerous classes. Although the utilization model given in
[10] maps resource utilization to application utility, finding
such a mapping is difficult [11]. Instead it is straightforward
to relate throughput with utility and then map resource
allocation to throughput. Such an approach, however, will
need a robust analytical model for relating throughput with
resource allocation.

III. CHALLENGES TO ELASTIC RESOURCE
PROVISIONING IN CLOUD ENVIRONMENTS

This section discusses the challenges to realizing elas-
tic resource provisioning in large-scale component-based
systems. Many of the challenges that are faced in elastic
resource provisioning using autoscaling can be highlighted
from the workload pattern in Figure 1.

A. Challenge 1: Workload Forecasting

The autoscaling strategy in a cloud environment will
involve the acquiring and release of resources as workload
imposed by the application changes with time. Both these
tasks require programming to an API. Releasing resources
is easy, however, acquiring resources incurs performance
overheads stemming due to the following reasons. First,
there is a need to make a call on the Cloud API which
starts the acquisition process. The machines will then be
needed to boot up with the specified image, the application
need to be started, and there also might be the need for state
update. Thus, it is desirable if the resources can be acquired
earlier than the time when workload actually increases. This
outcome can be possible only if the future workload can be
predicted, possibly using historical data. Section IV-A shows



our solution to predict workload in the next interval by using
the workload patterns up to the current interval.

B. Challenge 2: Identify Resource Requirement for Incom-
ing Load

Figure 1 plots the number of customers who use the
system every hour. Since the number of customers vary
every hour, the number of resources required also varies. The
required number of resources is a function of the number
of customers, the nature of the application, and also the
type of calls that each customer makes on the application.
The resources required need to be estimated properly so
that they can be provisioned within the cloud infrastructure.
The resource estimation also needs to be very accurate.
If it is not accurate then there is the potential of under-
or over-provisioning of resources, each of which has its
pitfalls. Section IV-B describes our solution to determine
the accurate number of resources needed.

C. Challenge 3: Resource Allocation while Optimizing Mul-
tiple Cost Factors

To optimize resource usage and/or minimize idle re-
sources, an ideal solution is to define a time interval and
change resources as many times as possible as workload
changes. In the limit this interval could be made infinites-
imally small and resources are changed continuously in
accordance with the change in load, assuming we can always
at least over estimate the load. This extreme will obviously
ensure that the optimum number of resources are always
used. Obviously, such as scheme is not possible since chang-
ing resources is not spontaneous. Challenge 1 highlights
the overhead in allocating a resource. Thus, scaling up or
down resources also involves cost and needs to be optimized.
Section IV-C describes our approach to avoid thrashing and
system instability by planning a resource allocation strategy
based on a limited future horizon.

IV. AUTO-SCALING RESOURCES USING LOOK-AHEAD
OPTIMIZATIONS

Control theory offers a promising methodology to address
the challenges described in Section III. It allows systemati-
cally solving a general class of dynamic resource provision-
ing problems using the same basic control concepts, and to
verify the feasibility of a control scheme before deployment
on the actual system. In more complex control problems
a pre-specified plan called the feedback map becomes in-
flexible and does not adapt well to constantly changing
operating conditions. Therefore, researchers have studied
the use of more advanced state-space methods adapted
from model predictive control [12] and limited look-ahead
supervisory control [13] to manage such applications [14]–
[16]. These methods offer a natural framework to accom-
modate the above-described system characteristics, and take

into account multi-objective non-linear cost functions, fi-
nite control input sets and dynamic operating constraints
while optimizing application performance. The autonomic
approach proposed in [16], [17] describes a hierarchical
control based framework to manage the high level goals for
a distributed computing system by continuous observation
of the underlying system performance. The key differences
between these previous works and our work is in the nature
of the performance models.

The autoscaling algorithm presented in this paper does
not use a reactive strategy. Instead it provides a predictive
solution leveraging concepts proposed by Sherif, et. al. [18],
[19], which is applicable to systems that exhibit a hybrid
behavior comprising both discrete-event and continuous dy-
namics and have a possibly large but finite set of control
options. Formally, it has been shown before in the literature
that dynamics of such systems can be captured using the
model of switching hybrid systems. It is known that for such
systems a multi objective control problem can be solved by
using a limited look-ahead controller algorithm [18], [19],
which is a type of model predictive control. This is done
by selecting actions that optimize system behavior over a
limited prediction horizon.

The rest of this section describes our approach and shows
how we resolve the three challenges described in Section III.

A. Workload Prediction

To apply model predictive control ideas to the problem
discussed in this paper we predict the workload on the appli-
cation and estimate the system behavior over the prediction
horizon using a performance model. The optimization of
the system behavior is carried on by minimizing the cost
incurred to the application. This cost is a combination of
various factors such as cost of SLA violations, leasing cost
of resources and a cost associated with the changes to the
configuration. The advantage of such a method is that it can
be applied to various performance management problems
from systems with simple linear dynamics to complex ones.
The performance model can also be varied and corrected
with system dynamics as conditions in the environment like
workload variation or faults in the system change.

In our strategy, workload prediction is needed to estimate
the incoming workload of the system for future time periods.
Thankfully a number of techniques already exist in literature
that can be applied for forecasting the traffic incident on
a service. We used a second order autoregressive moving
average method (ARMA) filter for the workload shown in
Figure 1. The equation for the filter used is given by

λ(t+1) = β×λ(t)+γ×λ(t−1)+(1−(β+γ))(λ(t−2)) (1)

The value for the variables β and γ are given by the values
0.8 and 0.15, respectively. Figure 2 shows the predicted
workload compared to the actual workload.
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Figure 2. Predicted vs. actual workload shown over a single look-ahead
horizon.

B. Performance Model

The next challenge we resolve is identifying resource
requirements for the predicted workload. The right number
of resources is the one that will provide the desired response
times (or other performance metrics) of the applications. For
the above look-ahead framework we focus on response times
of the application under different hardware configurations.
The workload used in this work is the number of users
currently in the system. It also depends upon what each
user does. For example, some users could be browsing
while some users could be entering data in a form. In our
prior work [20] we have used Customer Behavior Modeling
Graphs (CBMG) to model the overall behavior of customers.
A CBMG is built from a log of previous customer behavior
and computes the probability of a typical user to visit each
page. Using this information, we can calculate the number
of visits to a single page from the total number of customers
in the system. The number of visits to each page helps in
calculating the average load on each page.

Our prior work also developed analytical models to ac-
curately estimate response times, which are used in Algo-
rithm 1. This algorithm accepts the amount of workload
given by a vector of client populations, each member
representing the number of clients in each job class. The
number of machines provided, the service demand of the
components and the think time for clients is also given
as input. Algorithm 1 initially creates a default placement
strategy whereby it places each tier of the application onto
a particular machine. Purposefully we start off with a low
number of machines (2) and gradually increase the load
to identify the right number of resources required. This
approach helps to avoid a situation where we need to reduce
the number of machines (M − 1) on each iteration, the
algorithm makes a call onto the Mean Value Analysis (MVA)
algorithm. The MVA returns the utilization of each tier
which can be used to find the bottleneck machine (the
machine with the highest utilization). The tier present in that

machine is then replicated and placed in a new machine
which is introduced in that iteration. In this manner, the
iteration continues until the total number of machines equal
the given maximum machines.

Algorithm 1: Response Time Analysis (RTA)
Input:
Ld Predicted Workload
Hw Total Machines available
SD Service Demand for the job classes
Z Think Time

Output:
Response Time R← Vector of response times for all job classes

1begin
2 // start with one machine per tier (2 in this case)
3 M = 2;
4 while M <= Hw do
5 // Get response time and server utilization by running MVA on

analytical model presented in [20]
6 [R, U] = MVA (SD, Ld, Z);
7 i = maxUtil (U); // Get the index of the bottleneck tier
8 // Add a machine and replicate tier i on it to balance the load
9 M = M + 1

10 M ← i

C. Optimizing Resource Provisioning
To optimize resource usage and minimize idle resources,

the best way would be to define a time interval and change
resources as many times as possible as workload changes.
In the limit this interval could be made infinitesimally small
and resources are changed continuously, however, as noted
earlier such an extreme solution is not feasible. The intuition
therefore is to identify the right number of time intervals
in which to make these adjustments with the requirement
that the time interval is neither too small nor too large. Our
solution works on the principles of receding horizon control
also known as look-ahead optimization [19].

This form of controller, iteratively solves an optimiza-
tion problem, Costopt starting from t0, over a predefined
horizon (t = 1...N ) taking into account current and future
constraints. Once a feasible sequence is found, only the
first input in the sequence is applied and the rest are
discarded. Effectively, the optimization search results in the
construction of a tree with branching factor K and N + 1
levels. Here K is the total number of finite input choices.
Formally, at time t0, given state xt0

Costopt = min{Cost({xt}, {ut})} {} denotes a set
xt+1 = f(xt, ut), t = t0, · · · , tN−1

ut ∈ Ufinite input choices
XN is the set of final goal states

Cost({xt}, {ut}) = (

t=t0+N−1∑
t=t0+1

J(x(t), u(t))

where J is a utility function

A sequence {ut} = {u0, · · · , uN−1} and{xt} =
{x0, · · · , xN−1} are the feasible input sequence and the



resulting states that trace a path from the root to the lead
node in this search tree such that the net cost across the sum
of all branches is minimum and the leaf node is closest to
the final destination state.

Given that this method needs finite input choices, we use
a finite range of machines that can be increased, decreased,
or kept the same. The next challenge is the choice of the
look-ahead period. A small look-ahead period will neglect
trends, while a very large period will increase computational
complexity and lead to a larger prediction error, which will
yield any control decision ineffective. Thus, the number
of look-ahead periods need to balance out the different
tradeoffs.

To implement the receding horizon control algorithm in
our setting we make the following observations. The actual
algorithm is not described here because the implementation
requires recursive data structures and is difficult to describe
in the limited space available.

Number of Look-ahead steps N
SLA response time bound R∗

State Variable Machines Used, M
Control Options u, range of change

Workload W
Service Demand for the job classes SD

Thinktime Z
Cost Function Equation 5

State Advance Function Equation 2

Our algorithm uses the receding horizon control and
iterates over the number of look-ahead steps and calculates
the cumulative costs. For every future time step, it computes
the cost of selecting each possible resource allocation. To
compute the cost of a particular allocation, it uses Algo-
rithm 1 to compute the estimated response time for that
particular machine configuration. Once the response time is
calculated, it is used to calculate the cost of the allocation
which is a combination of how far the estimated response
time is from the SLA bounds, cost of leasing additional
machines and also a cost of re-configuration.

Wt = β ×Wt−1 + γ ×Wt−2 + (1− β − γ)×Wt−3 (2)
Mt =Mt−1 + ut (3)

Rt = ResponseT imeAnalysis(Wt,Mt, SD,Z) (4)

The cost of reconfiguration is computed based on the
number of machines that need to updated. Obviously re-
configuration will incur some costs and thus the algorithm
will try to reduce the amount of reconfiguration. Each of
these cost components will have weights attached to them
which may be varied depending on the type of application
and its requirements. Applications are required to specify
which factors are more important to them, and our auto-
scaling algorithm will honor these specifications in making
the decisions. Section V illustrates different behaviors re-
sulting from different choices for these weights.

V. EXPERIMENTAL EVALUATION

This section presents results evaluating our look-ahead
algorithm. We first show how the algorithm determines the
number of resources to be allocated in a just-in-time manner
so that the overall cost is minimized. Next, the effects of
different cost weightage is studied.1 This study is important
since different applications may impose different weightage
combinations. The data used in this study is acquired from
the 1998 soccer world cup web site shown in Figure 1.
We use the number of customers visiting that site as an
indication of the amount of workload that typically can be
experienced by such a globally popular topic.

A. Just-in-time Resource Allocation

To evaluate the strength of our just-in-time resource
allocation, we have used a cost function shown in Equation 5
comprising the three components. Recall that the three com-
ponents of the cost function refer individually to the penalty
for violation of SLA bounds, cost of leasing a machine,
and cost of reconfiguring the application when machines are
either leased or released. Each of these components has a
weight attached to it and the system can be made to always
minimize a certain component by increasing the attached
weight to it to an arbitrary high value. Table I describes the
components of the cost function.

Cost =Wr×(Rsla−R)+Wc×Mk+Wf×‖(Mk −Mk−1)‖
(5)

Table I
COMPONENTS OF COST FUNCTION

Component Description Unit
Wr Penalty for SLA violation $/sec
Wc Cost of Leasing a Machine per hour $/machine
Wf Cost of reconfiguring application $/machine
Rsla SLA given response time sec
R Maximum response time of application sec
Mk Number of machines used in the kth interval Numeric

Mk−1 Number of machines used in the k − 1th interval Numeric

For this experiment, the weights on each component of the
cost function is the same, which means all factors are equally
important. Figure 3 shows how the look-ahead algorithm
determines changes in the resources required as the incoming
load changes. The computation is done on the basis of
predicted workload which is done with the help of the
ARMA filter given in Equation 1. Figure 3 clearly shows that
the base resources required are 2 machines and it increases to
3 or 4 when the load is increased. The prediction of the look-
ahead algorithm based on a selected number of time intervals
closely matches the incoming load. It prescribes resource
increase whenever there is high load and less resources when
there is less load. Thus Figure 3 shows the effectiveness of

1Due to space restrictions we are unable to showcase a variety of different
configurations.



the look-ahead algorithm and how it can save cost while also
assuring that the performance of the application is assured.
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Figure 3. Just-in-time Resource Allocation with Changing Load

B. Resource Usage under Different Cost Priorities

The results in this section demonstrate the alloca-
tion/deallocation of resources stemming from using different
cost ratios among the three competing factors in the cost
function of Equation 5. The resource allocation determined
by our algorithm in the different time intervals will depend
upon the weights assigned to the various components of the
cost function. The rest of the section studies the different
trends of resource allocation and how they are influenced
by the varying weights of the cost function.

1) SLA violation against Resource Cost: We first show
the results when considering the effect of SLA violation
against cost of resources, i.e., the ratio of the cost of SLA
violation against the cost of machines are varied while the
application reconfiguration cost is assumed to be zero. We
assume that the application can be easily reconfigured with
varying machines. The ratio of SLA penalty to machine cost
is varied from 4 : 1 (which means SLA violation is higher
priority than cost of the machine) to 1 : 13 (which means
that the machine cost is higher priority than SLA violation).

Figures 4, 5 and 6 show how the resources are allocated
every hour over the entire time period. The corresponding
cost values are also shown in the bottom graph for each
of these figures. The intervals over which there are SLA
violations are also shown. The algorithm always tries to
keep the cost to a minimum. It is seen that there is signifi-
cant difference in resource allocation between the different
configurations. An application with high SLA violation
penalty has stronger performance assurance whereas one
with low SLA penalty has lesser performance assurance.
The priorities of the application determine the difference
in resource allocation. For a low performance assurance and
high machine cost, the number of machines used is only 2
over the entire time interval. The cost of machines exceeds
the cost of SLA violations and such a configuration will
have to tolerate a number of SLA violations (Figure 4).

Contrary to this configuration, for an application that can
tolerate some SLA violations (medium SLA violations),
Figure 5 shows how there are many intervals in which 3
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Figure 4. Resource Allocation for Low SLA Violation Cost and High
Machine Cost
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Figure 5. Resource Allocation for Medium SLA Violation Cost

machines are used. This balances the cost of machines and
cost of SLA violations. For the highly assured application of
Figure 6, there is much variation in resource usages with a
number of intervals having 3 machines and also some having
4 machines. Here the priority is in assuring performance and
the cost of machines is much lower.

Finally, Figure 7 shows the distribution of number of
machines required for a variety of systems ranging from
highly assured systems (ratio of SLA violation penalty to
machine cost being 4 : 1) to very weakly assured systems
(ratio of SLA violation penalty to machine cost being
> 1 : 13). In this figure, each point on the X-axis is a
ratio of cost of SLA violation to the cost of machine. The
Y-axis plots the number of intervals in which each type of

Figure 6. Resource Allocation for High SLA Violation Cost



machine is used. For example, for the point corresponding to
cost ratio of 1:4, 359 intervals use 2 machines and the other
143 intervals use 3 machines. The ratio of SLA violation
cost to machine cost increases as we move further down the
X-axis. The figure shows the use of more 3 machines than 2
machines as we move to the right. This outcome is because
the relative cost of machines decreases to the right and the
penalty of SLA violation increases.
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2) Including the Cost of Reconfiguration: Figure 6
showed how resource allocation is done when there is high
SLA violation cost compared to machine cost. For this
configuration, in every interval, the mean response time
is below the SLA bound and the machines are allocated
whenever they are needed. A machine is released again since
there is cost of machine but only making sure that the SLA
is maintained. When there is a cost of reconfiguration intro-
duced, the algorithm will resist the changing of resources.
This phenomenon can be related to inertia in physical bodies.
Inertia resists changes to its current physical condition such
as a body in rest resists movement while a body in motion
resists slowing down. Thus the cost of reconfiguration will
similarly resist the dynamic nature of resource allocation.

Higher this cost, higher will be its resistance to the
changes. This cost is expressed as the third component of
Equation 5. The weight Wf represents the level of inertia
and it is multiplied by the change level which is the number
of machines allocated or released. Initially when a small
amount of reconfiguration cost is introduced, it does not
effect much as shown in Figure 8. The resource allocation
is similar to Figure 6. There are small deviations, where the
spikes in resource changes are a little wider in Figure 8 than
in Figure 6. This is due to the inertia in change introduced
due to some cost associated with change.

The effect of the cost of reconfiguration is more pro-
nounced when it is prioritized slightly higher. Figure 9 shows
a distinct change in resource allocation over the hourly
intervals compared to Figures 6 or 8. In Figure 9, the
number of machines increases to 3 at around the 40th hour
and remains steady. Somewhere around the 350th hour it
increases to 4 machines since the workload increased at that
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Figure 8. High SLA violation with Low Reconfiguration cost

time. Subsequent to that, the workload decreased but the ma-
chines were never released since the cost of reconfiguration
is considered much higher compared to the cost of machines.
The changes of the machines around 40 and 350 hours was
warranted because of the high SLA violation cost and the
machines were never released even though the workload
lessened since the cost of reconfiguration was higher.
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Figure 9. High SLA violation with Medium Reconfiguration cost
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Figure 10. High SLA violation with High Reconfiguration cost

This behavior of resisting change is further pronounced in
Figure 10 where there is even higher cost of reconfiguration.
Here again there is an increase of machines to 3 at around the
40 hour mark and the machine is never released. The change
to 4 machines which was seen in Figure 9 does not occur
here because the cost of reconfiguration is much higher that
the cost of SLA violation. Thus even though there is SLA



violation, it is only of a short duration (the peak workload
around 350 hour) and is of lesser cost than the cost of
changing resources. That the SLA violation near 300 hour
was of a short duration can be understood from Figure 8
where there is a very short spike of machine allocation to 4
around that time. When the cost of reconfiguration becomes
high, the look-ahead algorithm decides not to expend in the
extra cost of reconfiguration to cover up that short SLA
violation.

VI. CONCLUSION

Autoscaling of resources helps Cloud service providers
operating modern day data centers to support maximal num-
ber of customers while assuring customer QoS requirements
in accordance with service level agreements, and keeping
cost of using resources low for customers. However, current
autoscaling mechanisms require user input and programming
of APIs to adjust resources as workloads change. Reactive
scaling of resources imposes performance overheads while
also making the programming of Cloud infrastructure te-
dious. To address these problems, this paper describes a
look-ahead resource allocation algorithm based on model-
predictive control which predicts future workload based on
a limited horizon and adjusts resources allocated to users
ahead-of-time. Empirical results evaluating our approach
shows significant benefits both to Cloud users and providers.
The work presented demonstrates the feasibility of our
approach in the context of small number of machines used.
Our future work will explore the scalability of our algorithms
in the context of modern day workloads and large number of
resources, which are typical of contemporary applications.
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