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Abstract 

 

Light sheet fluorescence microscopy is able to image large specimen with high 

resolution by imaging the samples from multiple angles. Multi-view deconvolution can 

significantly improve the resolution and contrast of the images, but its application has 

been limited due to the large size of the datasets. Here we present a Bayesian-based 

derivation of multi-view deconvolution that drastically improves the convergence time 

and provide a fast implementation utilizing graphics hardware. 

 
Modern light sheet microscopes1,2,3 are able to acquire large, developing specimens with high 

temporal and spatial resolution typically by imaging them from multiple directions (Fig 1a). The 

low photodamage offered by a light sheet microscope’s design allows the recording of massive, 

time-lapse datasets that have the potential to enable the reconstruction of entire lineage trees of 

the developing specimen. However, accurate segmentation and tracking of nuclei and cells in 

these datasets remain a challenge because image quality is limited by the optical properties of 

the imaging system and the compromises between acquisition speed and resolution. 

Deconvolution utilizes knowledge about the optical system to substantially increase spatial 

resolution and contrast after acquisition. An advantage unique to light sheet microscopy and in 

particular to Selective Plane Illumination Microscopy (SPIM), is the ability to observe the same 

location in the specimen from multiple angles which renders the ill-posed problem of 

deconvolution more tractable4-10. 

 

Richardson-Lucy (RL) deconvolution11,12 (Suppl. Note Chapter 1, 2) is a Bayesian-based 

derivation resulting in an iterative expectation-maximization (EM) algorithm5,13 that is often 

chosen for its simplicity and performance. Multi-view deconvolution has previously been derived 

using the EM framework5,9,10, however the convergence time of the algorithm remains orders of 

magnitude longer than the time required to record the data. We address this problem by 

deriving an optimized formulation of Bayesian-based deconvolution for multiple view geometry 

that explicitly incorporates conditional probabilities between the views (Fig. 1b,c) and combine it 

with Ordered Subset Expectation Maximization (OSEM)6 (Fig. 1d) achieving significantly faster 

convergence (Fig. 1d,e,f).  

 

Bayesian-based deconvolution models images and point spread functions (PSFs) as probability 

distributions. The goal is to estimate the most probable underlying distribution (deconvolved 

image) that explains best all observed distributions (views) given their conditional probabilities 

(PSFs). We first re-derived the original Richardson-Lucy deconvolution algorithm and 

subsequently extended it to multiple-view geometry yielding 
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where  denotes the deconvolved image at iteration r,  the input views, both as 

functions of their respective pixel locations  and , while  denotes the individual 

PSFs (Suppl. Note Chapter 2, 3). Equation 1 denotes a classical RL update step for one view; 

equation 2 illustrates the combination of all views into one update of the deconvolved image 

(Suppl. Video 1). Our equation suggests a multiplicative combination, in contrast to maximum-

likelihood expectation-maximation5 that combines RL updates by addition. We prove that 

equation 2 also converges to the Maximum-Likelihood (ML) solution (Suppl. Note Chapter 4), 

while it is important to note that the ML solution is not necessarily the correct solution if 

disturbances like noise or misalignments are present in the input images. Importantly, previous 

extensions to multiple views5,6,7,8,9,10 are based on the assumption that the individual views are 

independent observations (Suppl. Fig. 2). Assuming independence between two views implies 

that by observing one view, nothing can be learned about the other view. We show that this 

independence assumption is not required to derive equation 2. Thus our solution represents 

the first complete derivation of Richardson-Lucy multi-view deconvolution based on probability 

theory and Bayes’ theorem. 

 

As we do not need to consider views to be independent, we next asked if the conditional 

probabilities describing the relationship between two views can be modeled and used in order to 

improve convergence behavior (Suppl. Note Chapter 7). Assuming that a single photon is 

observed in the first view, the PSF of this view and Bayes’ theorem can be used to assign a 

probability to every location in the deconvolved image having emitted this photon (Fig. 1b). 

Based on this probability distribution, the PSF of the second view directly yields the probability 

distribution describing where to expect a corresponding observation for the same fluorophore in 

the second view (Fig. 1b). Following this reasoning, we argue that it is possible to compute an 

approximate image (‘virtual’ view) of one view from another view provided that the PSF’s of both 

views are known (Fig. 1c). 

 

We use these ‘virtual’ views to perform intermediate update steps at no additional computational 

cost, decreasing the computational effort approximately 2-fold (Fig. 1d and Suppl. Note 

Chapter 7). The multiplicative combination (equation 2) directly suggests a sequential 

approach, where each RL update (equation 1) is directly applied to  (Suppl. Fig. 2). This 

sequential scheme is equivalent to the OSEM6 algorithm and results in a 13-fold decrease in 

convergence time. This gain increases linearly with the number of views6 (Fig. 1d and Suppl. 

Fig. 4). The new algorithm also performs well in the presence of noise and imperfect point 

spread functions (Suppl. Fig. 7,8,9). To further reduce convergence time we introduce ad-hoc 

simplifications (optimization I & II) for the estimation of conditional probabilities that achieve up 

to 40-fold improvement compared to deconvolution methods that assume view independence 

(Fig. 1d,e,f, Suppl. Fig. 4, Suppl. Note Chapter 10). If the input views show very low signal-to-

noise ratio (atypical for SPIM) the speed-up is preserved but the quality of the deconvolved 

image is reduced. Our Bayesian-based derivation does not assume a specific noise model but it 

is in practice robust to Poisson noise, which is the dominating source of noise in light-sheet 

microscopy acquisitions (Suppl. Fig. 6,7). As a compromise between quality and speed we use, 

if not stated otherwise, the intermediate optimization I for all deconvolution experiments on real 

datasets. 
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for potential noise in the input images we added an option for Tikhonov regularization20 

(Supplementary Fig. 7,8). The deconvolution can be processed on the entire image at once for 

optimal performance or in blocks to reduce the memory requirements. The only free parameter 

of the method that must be chosen by the user is the number of iterations for the deconvolution 

process (Supplementary Fig. 4,5). We facilitate this choice by providing a debug mode 

allowing the user to inspect all intermediate iterations and identify optimal tradeoff between 

quality and computation time. For a typical multi-view acquisition comprising 6–8 views we 

suggest between 10-15 iterations. 

 

One of the challenges in image deconvolution is to arrive at the correct solution quickly without 

compromising quality. We have achieved significant improvement in convergence time over 

existing methods by exploiting conditional probabilities between views in a multi-view 

deconvolution scenario, while producing visually identical or improved results at SNR’s typical 

for light-sheet microscopy (Fig. 2e,f and Suppl. Fig. 6c-h). We have further implemented the 

algorithm as an open source GPU accelerated software in Fiji where it synergizes with other 

related plugins into an integrated solution for the processing of multi-view light sheet microscopy 

data of arbitrary size.  
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Figure 1 Principles and performance (a) The basic layout of a light sheet microscope capable of 

multi-view acquisitions. (b) Illustrates the idea of ‘virtual views’. A photon detected at a certain 

location in a view was emitted by a fluorophore in the sample; the point-spread function assigns 

a probability to every location in the underlying image having emitted that photon. Consecutively, 

the point-spread function of any other view assigns to each of its own locations the probability to 

detect a photon corresponding to the same fluorophore. (c) Shows an example of an entire 

‘virtual view’ computed from observed view 1 and the knowledge of PSF1 and PSF 2. (d) 

Compares the convergence time of the different Bayesian-based methods. We used a known 
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ground truth image (Supplementary Fig. 5) and let all variations converge until they reach 

precisely the same quality. Note that the increase in computation time for an increasing number 

of views of the combined methods (black) is due to the fact that with an increasing number of 

views more computational effort is required to perform one update of the deconvolved image 

(Supplementary Fig. 4) (e) Compares the convergence times for the same ground truth image 

of our Bayesian-based methods to other optimized multi-view deconvolution algorithms5,6,7,8. 

Note that part of the huge difference to OSEM and SGP is the result of not optimized IDL code. 

(f) Compares the corresponding number of iterations in comparison to other optimized multi-

view deconvolution algorithms. Note that the Java and IDL implementation of OSEM perform 

almost identically. 

 

 
Figure 2 Deconvolution of simulated three dimensional multi-view data. (a) On the left 3d 

rendering of a computer generated volume resembling a biological specimen. Red line marks 

the vedge removed from the volume to show the content inside. On the right sections through 

the generated volume in lateral direction (as seen by the SPIM camera, top) and along the 

rotation axis (bottom). (b) The same slice as in (a) with illumination attenuation applied (left), 

convolved with PSF of a SPIM microscope (middle) and image simulated using a poisson 

process (right). The bottom right panel shows the unscaled simulated light sheet sectioning data 

along the rotation axis. (c) Slices from view one and three of the seven views generated from 

(a) by applying processes pictured in (b) and rescaling to isotropic resolution. These seven 

volumes are the input to the fusion and deconvolution algorithms quantified in (d) and visualized 

in (e). (d) plots the cross-correlation of deconvolved and ground truth data as a function of the 

number of iterations for MAPG and our algorithm with and without regularization. The inset 

compares the computational time (both algorithms were implemented in Java to support partially 

overlapping datasets, Suppl. Fig. 17). (e) slices equivalent to (c) after content based fusion 

(first column), MAPG deconvolution (second column), our approach without regularization (third 
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column) and with regularization (fourth column, lambda=0.004). (f) shows areas marked by 

boxes in (b,c,e) at higher magnification.  

 

 
Figure 2 Application to biological data (a) Comparison of reconstruction results using content-

based fusion (upper row) and multi-view deconvolution (lower row) on a 4-cell stage C. elegans 

embryo expressing PH-domain-GFP fusion marking the membranes. Dotted lines mark plots 

shown in (b), white arrows mark PSFs of a fluorescent bead before and after deconvolution. (b) 

Line plot through the volume along the rotation axis (yz), typically showing lowest resolution in 

light sheet acquisitions. Contrast along the line is locally normalized. Signal-to-noise is 

significantly enhanced, arrows mark points that illustrate increased resolution. (c,d) show cut 

planes through a blastoderm stage Drosophila embryo expressing His-YFP in all cells. White 

boxes mark areas magnified in (e). Detailed comparison of computation times for this dataset is 

shown in Fig 1e. (e) Magnified view on small parts of the Drosophila embryo. Left panel shows 

one of the directly acquired views, right panel shows a view along the rotation axis usually 

characterized by the lowest resolution. (f,g) Comparison of the deconvolved image data to the 

input data of a fixed C. elegans larvae in L1 stage expressing LMN-1-GFP (green) and stained 

with Hoechst (magenta). (f) Single slice through the deconvolved dataset, arrows mark 4 

locations of transversal cuts shown below. The cuts compare two orthogonal input views (0, 90 

degrees) with the deconvolved data. Note that no input view offers high resolution in this 

orientation approximately along the rotation axis. (g) The first row of the left box shows a 

random slice of a view in axial orientation marking the worst possible resolution of the 

microscope. The second row shows an input view in lateral orientation, i.e. the best possible 

resolution achieved by the microscope. The third row shows the corresponding deconvolved 

image. The box on the right shows a random slice through the nervous system. Note that the 

alignment of the C. elegans L1 dataset was refined using nuclear positions as described in 

Supp. Note Chapter 15. 
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