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1 INTRODUCTION

The spatio-temporal pattern of Covid-19 infections, as for most infectious disease epidemics,
is highly heterogenous as a consequence of local variations in risk factors and exposures.
Consequently, the widely quoted national-level estimates of reproduction numbers are of lim-
ited value in guiding local interventions and monitoring their effectiveness. It is crucial for
national and local policy-makers, and for health protection teams, that accurate, well-calibrated
and timely predictions of Covid-19 incidences and transmission rates are available at fine spatial
scales. Obtaining such estimates is challenging, not least due to the prevalence of asymptomatic
Covid-19 transmissions, as well as difficulties of obtaining high-resolution and high-frequency
data. In addition, low case counts at a local level further confounds the inference for Covid-19
transmission rates, adding unwelcome uncertainty.

In this paper we develop a hierarchical Bayesian method for inference of transmission rates at
fine spatial scales. Our model incorporates both temporal and spatial dependencies of local trans-
mission rates in order to share statistical strength and reduce uncertainty. It also incorporates
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information about population flows to model potential transmissions across local areas. A simple
approach to posterior simulation quickly becomes computationally infeasible, which is problem-
atic if the system is required to provide timely predictions. We describe how to make posterior
simulation for the model efficient, so that we are able to provide daily updates on epidemic
developments.

The results can be found at our web site https://localcovid.info, which is updated daily to
display estimated instantaneous reproduction numbers and predicted case counts for the next
weeks, across local authorities in Great Britain. The codebase updating the web site can be found
at https://github.com/oxcsml/Rmap. We hope that our methodology and web site will be of inter-
est to researchers, policy-makers and the public alike, to help identify upcoming local outbreaks
and to aid in the containment of Covid-19 through both public health measures and personal
decisions taken by the general public.

2 DATA

Our model is applied to publicly available daily counts of positive test results reported under the
combined Pillars 1 (NHS and PHE) and 2 (commercial partners) of the UK’s Covid-19 testing
strategy.1 The data are available for 312 lower-tier local authorities (LTLAs) in England, 14 NHS
Health Boards in Scotland (each covering multiple local authorities) and 22 unitary local author-
ities in Wales, for a total of n = 348 local areas. The data are daily counts of lab-confirmed (PCR
swab) cases presented by specimen date, starting from 30 January 2020. The original data are from
the respective national public health authorities of England2, Scotland3 and Wales4 and we access
them through the DELVE Global Covid-19 Dataset5 (Bhoopchand et al., 2020). Due to delays in
processing tests, we ignore the last 7 days of case counts.

3 METHOD

Our method is based on an approach to infectious disease modelling using discrete renewal
processes. These have a long history, and have served as the basis for a number of recent stud-
ies estimating instantaneous reproduction numbers, (Cori et al., 2013; Flaxman et al., 2020;
Fraser, 2007; Wallinga & Teunis, 2004). See Bhatt et al. (2020) and references therein for his-
torical and mathematical background, as well as Gostic et al. (2020) for important practical
considerations.

Following Flaxman et al. (2020), we model latent time series of incidence rates via renewal
processes, and separate observations of reported cases using negative binomial distributions,
to account for uncertainties in case reporting, outliers in case counts, and delays between
infection and testing. We introduce a number of extensions and differences addressing issues
that arise for applications to modelling epidemics at local authority level rather than regional

1https://www.gov.uk/government/publications/coronavirus-covid-19-scaling-up-testing-programmes
2https://coronavirus.data.gov.uk
3https://publichealthscotland.scot/our-areas-of-work/sharing-our-data-and-intelligence/coronavirus-covid-19-data-
and-guidance/
4https://phw.nhs.wales/topics/latest-information-on-novel-coronavirus-covid-19/
5https://github.com/rs-delve/covid19_datasets
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or national levels. Firstly, we introduce dependencies between reproduction numbers across
neighbouring localities, in order to smooth estimates of reproduction numbers and statistical
strength across localities and time. We do this using a spatio-temporal Gaussian process (GP)
prior for the log-transformed reproduction numbers. Secondly, we model transmissions across
localities using a spatial meta-population model. Our meta-population model incorporates com-
muter flow data from the UK 2011 Census in order to capture stable patterns of heterogenous
cross-infection rates among local authorities, linked to typical commuter patterns. Human mobil-
ity patterns may also reflect the introduction of non-pharmaceutical interventions (NPIs), though
our model does not explicitly use real-time mobility data so cannot estimate the direct or indirect
effects of NPIs.

The model is implemented in the Stan probabilistic programming language (Carpenter
et al., 2017), which uses the No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014) for posterior
simulation. A number of modelling design choices as well as inference approximations are made
to improving mixing and computational efficiency. These are described in Appendix B.

3.1 Model overview

In this section we give an overview of our model, which we refer to as EpiMap. The model consists
of three layers: a latent Gaussian process over the log reproduction numbers, a meta-population
model for the epidemics across local areas and an observation model relating the size of the
epidemic with the observed number of positive tests in each day and area.

We first introduce some notations. We are interested in estimating the instantaneous repro-
duction numbers, Ri,t, across local areas in the United Kingdom (indexed by i) and across time
(indexed by t). For each local area i and day t, the observed daily Pillars 1+ 2 case counts are
denoted Ci,t. Let the unobserved daily infection (incidence) counts be Xi,t.

Starting with the observation model, we model the number of reported cases using a delay
distribution and an over-dispersed negative binomial observation model:

Ci,t|Xi,1∶t, 𝜙i ∼ NegBin(Vday_of_week(t)Ei,t, 𝜙i), Ei,t =
t∑

s=1
Xi,t−sDs, (1)

where Ds is the probability that an infected person gets tested and tests positive s days after infec-
tion and Ei,t is the expected number of positive test cases on day t in area i. NegBin(𝜇, 𝜙) is
the negative binomial distribution with mean 𝜇 and dispersion parameter 𝜙, while Vday_of_week(t)
models day-of-week variations in reported cases. Section 3.1.2 gives more details.

Assuming a homogeneously mixing population in each area, and interactions across areas
modelled using a cross-coupled meta-population model, we model the number of new infections
in each area as follows. Conditional on the history of infections, let

Zi,t =
t∑

s=1
Xi,t−sWs, (2)

be the infection load on day t caused by previous infections in area i, if each primary case pro-
duces one secondary case. Ws describes the generation distribution, and is the probability that a
secondary infection occurs s days after the primary infection. See Section 3.1.2 for more details on
how we parameterise Ws. These secondary infections can occur in area i, or in another area, for
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example due to individuals working in an area different from where they live. We model this with
a time-dependent flux matrix F(t)ji , which is interpreted as the probability that a primary case liv-
ing in area j infects a secondary case living in area i on day t. The resulting cross-coupled infection
load in area i is:

̃Zi,t =
n∑

j=1
F(t)ji Zj,t. (3)

We describe the meta-population model in further detail in Section 3.1.3, including how the flux
matrices are parameterised. We model the number of new infections on day t as,

Xi,t|Ri,t,X1∶n,1∶t−1 ∼ NegBin(Ri,t ̃Zi,t, 𝜓), (4)

where Ri,t ̃Zi,t is the force of infection in area i and day t, and 𝜓 is a dispersion parameter which
allows for over-dispersion. We expect this to be a better model for Covid-19 than using a Poisson
distribution in (4) due to super-spreading events. Note that if we used a Poisson then the secondary
infections resulting from a primary infection would have been modelled as conditionally iid given
the primary infection. The use of a negative binomial distribution instead introduces a positive
correlation among the secondary infections.

In order to make the posterior simulation computationally efficient using Stan, we approxi-
mated this with a positivised Gaussian distribution; see Appendix B.2.

3.1.1 Latent GP

With low case counts, inferring Ri,t over small local areas can lead to high uncertainty. A standard
Bayesian hierarchical modelling approach is to borrow strength across different local areas and
across different time points. We use GPs to do so; namely, for area i and time t we model:

Ri,t = exp(Si,t + Ui,t), (5)

where S∶,∶ is a GP with a separable Matern(1/2) kernel6:

Cov(Si,s, Sj,t) = (𝜎spatial)2 exp(−||yi − yj||∕𝜌spatial − ||s − t||∕𝜌time), (6)

and Ui,∶ are independent copies of a GP with Matern(1/2) kernels:

Cov(Ui,s,Ui,t) = (𝜎local)2 exp(−||s − t||∕𝜌time). (7)

Here, yi and yj are the geographical centres of areas i and j, respectively, s and t are daily indices for
each Monday, and we assume that the instantaneous reproduction numbers are constant within
each week (taken to be Monday to Sunday). Note that our prior covariances in Equations (6) and
(7) enjoy a Kronecker structure across the space and time dimensions, which allows for efficient
computations (see Section B.1). In the temporal case, which is one-dimensional, the GP prior with
the Matern(1/2) kernel is equivalent to an AR(1) process with zero mean. We also considered
Matern(3∕2), Matern(5∕2) and squared-exponential covariance kernels, which produced similar
inferences.

6We use ‘:’ to indicate the set of variables where the corresponding index ranges over all values.
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The hyperparameters of the spatio-temporal GP are: scale parameters 𝜎

spatial and 𝜎

local

and length-scale parameters 𝜌spatial and 𝜌

time. We place independent truncated normal priors
+(0, 0.5) over the scale parameters. For the length scale parameters, we have found that if we
inferred these along with the rest of the random variables in the model, the posterior distribution
places mass on large spatial length scales and short temporal length scales. This has an unde-
sirable over-generalisation effect, and we believe this behaviour is due to model misspecification
with respect to the length scale parameters. Instead we selected these using an initial cross vali-
dation run optimising for performance of forecasted case counts three weeks into the future, and
selected 𝜌spatial = 10km and 𝜌temporal = 200 days.

3.1.2 Observation and infection model

Weekly variations are modelled using multiplicative factors in (1), with a uniform prior over pos-
itive vectors of length 7 and sums to 7. Following Flaxman et al. (2020) we use an over-dispersed
negative binomial observation model (1), with a broad half normal prior for the dispersion param-
eters,𝜙i ∼+(0, 5) iid. The neg_binomial_2 parameterisation in Stan uses a mean parameter 𝜇, an
inverse-dispersion parameter c, and variance 𝜇 + 𝜇2∕c. We use a different parameterisation, and
set c = 𝜇∕𝜙, where 𝜙 is a dispersion parameter. This gives a variance of (1 + 𝜙)𝜇 and probability
mass function:

p(x|𝜇, 𝜙) =

(
x + 𝜇∕𝜙 − 1

x

)(
𝜙

1 + 𝜙

)x( 1
1 + 𝜙

)
𝜇∕𝜙

. (8)

This parameterisation naturally emphasises the infinite divisibility of the negative binomial, that
is, if Y1, … ,Ym are independent negative binomial random variables with means 𝜇1, … , 𝜇m
and the same dispersion parameter 𝜙, then

∑m
i=1Yi is also negative binomially distributed with

mean
∑m

i=1𝜇i and dispersion 𝜙, a sensible choice in cases where we believe counts are sums of
independent random events.

The infection-to-test delay distribution Ds is a convolution of two delay distributions:
an incubation period distribution, and a symptom-onset-to-test distribution. Following Bi
et al. (2020), we use a LogNormal(𝜇, 𝜎2) distribution for the incubation period, where 𝜇 has
a 95% confidence interval (CI) of (1.44, 1.69) and mode 1.57, and 𝜎

2 has 95% CI of (0.56,
0.75) with mode 0.65. This results in a median of 4.8 days and a 90% confidence interval of
(1.64,14.04) days for the incubation period, and we assume an additional 2-day delay to get
tested.

Similarly, we parameterise the generation distribution Ws as a Gamma distribution whose
shape parameter has mode 2.29 with (1.77, 3.34) 95% CI, and whose rate parameter has mode
0.36 with (0.26, 0.57) 95% CI. This corresponds to the serial interval parameter distributions
from Bi et al. (2020); we note that the serial interval is often used as an accessible proxy for
the unobserved generation distribution (Cori et al., 2013). For both Ds and Ws, we aggregate
predictions and inferences from 10 bootstrapped runs of our model, each with independently
sampled LogNormal and Gamma parameters respectively. This is equivalent to a nested
Monte Carlo approximation to a cut or modular model (Carmona & Nicholls, 2020; Jacob
et al., 2017; Plummer, 2015). We found this to be crucial to avoiding overconfident predictions for
Rt estimates.

For the dispersion paramter 𝜓 , we use a weakly informative prior 𝜓 ∼+(0, 2.5).
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3.1.3 Meta-population model

Our final extension relaxes the assumption in many infectious disease models, that the epidemic
is evolving in a homogeneously mixing population in an area, with no significant transmissions
from other areas. While this might be sensible in large regions or countries, it is not a
sensible assumption for modelling multiple small areas with likely a significant number of
cross-area transmissions. To address these transmissions, we describe a simple cross-coupled
meta-population extension, given by Equations (3) and (4).

In the following we describe how to parameterise the flux Fji, which describes the chance that,
if a primary case living in area j infects a secondary case, the secondary case will live in area i. One
sensible choice, if the data were available, would be to use real-time data on the actual volume
of travel between each pair of areas. Such data are unfortunately not publicly available, and in
any case the relationship between the volume of travel and the number of transmissions is not
straightforward due to heterogeneity in the population.

We use commuting flow data from the 2011 Census7 to parameterise a weekly varying flux
matrix. First, the data give, after some preprocessing, a matrix M such that for each pair of areas
i and j the number of individuals who live in area j and commute to work in area i is Mji. Let Pj
be the population of area j. We take Mjj to be the population who commute within their own area
or who do not commute, so

∑
i Mji = Pj. We consider three types of transmissions: an individual

living in area j infecting another individual in area j (e.g. household transmissions), an individual
living in area j working in area i infecting one living in area i, and an individual living in area i
being infected while working in area j. These three types of transmissions can be described using
three flux matrices:

Fid
ji = 𝛿ji Ffwd

ji =
Mji

∑
k Mjk

Frev
ji =

Mij
∑

k Mkj
, (9)

where 𝛿ji = 1 if j = i and 0 otherwise. Then, we parameterise the overall flux matrix during week
t using a convex combination of Fid, Ffwd, and Frev,

F(t) = 𝛼tFid + (1 − 𝛼t)(𝛽Ffwd + (1 − 𝛽)Frev), (10)

with 𝛼t ∈ (0, 1) governing the amount of mixing across areas on week t (roughly the proportion
of the population working from home), and 𝛽 ∈ (0, 1) governing the amount of home-to-work
versus work-to-home transmissions. We use a uniform prior over 𝛽 and a weekly AR(1) prior
for the log-odds, specifically 𝛼t = 1∕(1 + exp(−𝜇

𝛼
+ 𝜎

𝛼
At)) where the AR(1) process is given

by A1 ∼ (0, 1), At|At−1 ∼
(
𝛿
𝛼
At−1,

√
1 − 𝛿2

𝛼

)
, with weakly informative hyperpriors 𝜇

𝛼
∼

 (0, 0.5), 𝜎
𝛼
∼+(0, 0.5), while the hyperprior 𝛿

𝛼
∼[0,1](1, 1 − e−0.25) is a weakly informative

prior on the time scale of the AR(1) process centred around 4 weeks.

4 EMPIRICAL EVALUATIONS

In this section, we report some empirical evaluations of our model, which we call EpiMap. We
compared two variants of EpiMap: one which models each local area separately from the rest

7https://census.ukdataservice.ac.uk/use-data/guides/flow-data.aspx
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(hence no meta-population model nor spatial component of GP), and the other the full model.
For the full model we have found that the inferences are sensitive to the length scale of the spatial
GP, and so we compared the full model with varying spatial length scales and with no spatial GP
component. To account for uncertainty in the serial interval and incubation period distributions,
we ran EpiEstim with 10 instantiations of these distributions with parameters drawn iid from
the posterior distributions reported in Bi et al. (2020), and averaged the posterior predictive
distributions over these. This procedure can be interpreted as nested Monte Carlo for a cut distri-
bution where we specified the prior for these parameters but disallow the model from updating
the prior to a posterior (Plummer, 2015). We also compared against EpiEstim (Cori et al., 2013)
and EpiNow2 (Abbott et al., 2020). We compared these methods on simulated data and on pre-
dicting future case counts in British local authorities. We also report estimates of Rt at regional
and national levels.

4.1 Simulation data

One sanity check of our method is to fit the models to simulated data for which we know the
underlying Rt, and check how well our models can recover this. In this section we do just this,
and compare the results with a number of other common methods.

The simulation model we use is exactly the generative model we described. We use the median
distribution parameters given by Bi et al. (2020) for the serial interval and incubation period. We
assume the delay distribution is the incubation period distribution plus a fixed reporting delay of
2 days.

The data are simulated by taking initial real case data from Oxford and the four surround-
ing LTLAs up to 14 March 2020, and from that point simulating new cases using the model.
The main unspecified parameter is the Rt in each region over time. An Rt curve was manu-
ally designed in order to give a double peak epidemic similar in nature to the pattern seen
across the United Kingdom, with case numbers in the regions roughly similar. The same Rt
curve was shared across the LTLAs. Additionally we use 50:50 flux proportions of the forward
and reverse commuter flow data, with a constant 𝛼t of 0.45. These choices of parameters are
somewhat arbitrary and were chosen to give qualitatively sensible epidemic curves. To these sim-
ulated data we fit the two variations of our model, with the full model using a temporal length
scale of 200 days and a range of spatial length scales between 1 and 100 km. The results can be
seen in Figure 1. Plots showing the full sweep of spatial length scales for EpiMap can be found
in Section C.1.

4.2 Predicting future case counts

Next, we evaluate the methods’ predictions of future case counts by comparing them to true
case counts. In addition to measuring predictive performance, we also assess the model’s uncer-
tainty calibration by comparing the coverage probability of its prediction intervals with the
actual, achieved (empirical) coverage. We first picked four well-separated dates: 12 October
2020, 23 November 2020, 21 December 2020 and 18 January 2021. For each date, we used
the 15 preceding weeks of data for inference and evaluated predictions of case counts for the
subsequent 3 weeks. These assessment periods were chosen to cover a range of situations
from relatively stable transmission rates (during lockdown in January) to drastic changes in
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F I G U R E 1 Top: Estimated median, 50% (inner) and 95% (outer) credible intervals of the posterior
predictive distributions for Ci,t, along with observed case counts. Credible intervals to the right of the vertical line
are future predictions. For EpiMap, we include the day-of-week variation in expected cases in the model, but plot
the predictive distributions without this variation for clarity. EpiEstim does not model dependence of Rt over
time, so we used the last inferred Rt distribution for future predictions. Bottom: Estimated median, 50% (inner)
and 95% (outer) credible intervals of Rt for the methods, along with the true Rt (piecewise constant blue line)
used to create the simulated epidemic. Plots shown only for Oxford, those for the four surrounding local
authorities are given in Section C.1. EpiEstim estimates are more variable because of the higher variation in
observed case counts Ci,t as compared to the latent infection counts Xi,t, and because it does not model
dependence of Rt over time. We used the last inferred Rt distribution for future predictions for EpiEstim. [Colour
figure can be viewed at wileyonlinelibrary.com]

transmission rates due to NPIs (during December period). Note that since the methods do not
model drastic changes arising from NPIs changing, we expect them to perform poorly during
such periods. In addition to the variants of EpiMap, EpiEstim and EpiNow2, we also included
two simple baselines: ‘zero’ which predicts zero cases for all dates and LTLAs, and ‘last case
count’ which predicts using the case count on the last day of the 15-week inference period for
each LTLA.

Figure 2 shows log(RMSE + 1) between predicted and true case counts. More precisely, the
RMSE is separately computed for each LTLA’s predictions over the test period, then we average
the resulting log(RMSE + 1) across LTLAs. The log transformation is so that results are not
dominated by areas with much higher case counts. EpiMap variants usually perform the best
or competitively at predicting the true case counts. The positive impact of modelling cross-area
dependencies is observed, since EpiMap (single area) tends to slightly underperform the other
variants of EpiMap. Moreover, the predictive performance of EpiMap is dependent on, though
not very sensitive to, the choice of 𝜌spatial. Note that for the start date 21 December 2020, all
models perform worse relative to other dates. This is because of significant changes in the dynam-
ics of Covid-19 spread due to changing NPIs over the Christmas period, information that is not
incorporated into any of these models.
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F I G U R E 2 A comparison of models for predicting future case counts over a 3-week period. Each model is
fitted on 15 weeks of data and makes predictions for the following 3 weeks. Zero means predicting counts of 0,
while Last case count means using the case count on the last available date for predictions. [Colour figure can be
viewed at wileyonlinelibrary.com]

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage

0.0

0.2

0.4

0.6

0.8

1.0

A
ch

ie
v
ed

co
v
er

ag
e

Predictions start date:
12 October 2020

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage

Predictions start date:
 23 November 2020

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage

Predictions start date:
21 December 2020

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage

Predictions start date:
18 January 2021

EpiEstim

EpiNow2

EpiMap (single area)

EpiMap (no spatial)

EpiMap ( 𝜌
spatial = 1 km)

EpiMap ( 𝜌
spatial = 5 km)

EpiMap ( 𝜌
spatial = 10 km)

EpiMap ( 𝜌
spatial = 20 km)

EpiMap ( 𝜌
spatial = 50 km)

EpiMap ( 𝜌
spatial = 100 km)

F I G U R E 3 Reliability curves assessing the uncertainty estimates produced by models. Each model yields
percentiles of its case count posterior predictive distribution. The curves show the portion p̂ of predictions (across
dates and lower-tier local authorities) for which the true case count is less than the pth percentile ĉp of the model
(y-axis) versus p (x-axis). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3 assesses the quality of the uncertainty estimates produced by the models using reli-
ability curves. Each model outputs percentiles of the posterior predictive distribution of case
counts. Let ĉp be the pth percentile produced by a model for a given date and LTLA. Ideally,
we expect that the percentage of dates and LTLAs for which the true case count c is less than
or equal to ĉp, is approximately p. In other words, the actual, empirical coverage of the pth per-
centile (y-axis of Figure 3) will ideally be equal to the target coverage p (x-axis of Figure 3),
yielding a reliability curve close to y = x. We observe that EpiMap’s uncertainty estimates gen-
erally capture the underlying case counts distribution well, though with some variation across
start dates and model configurations. EpiNow2 usually performs similar to the well-performing
configurations of EpiMap. EpiEstim’s uncertainty estimates are overconfident as indicated by
the flatter-shaped curves. For the first three start dates, EpiMap (single area) and models with
small 𝜌spatial yield better uncertainty estimates. For 21 December 2020, the concave shape of
the reliability curves indicates that models are overestimating case counts, which is consis-
tent with the fact that stricter NPIs curbed case counts while the models predicted case counts
would increase assuming no changes in spread dynamics. For 18 January 2021, larger 𝜌spatial

perform best, likely because the prevailing national lockdown in that period meant that spread
dynamics were more uniform across areas. Additional results are in Appendix C.2, including
loss and reliability curves stratified by week during the 3-week prediction period and individual
LTLA losses.
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F I G U R E 4 Regional estimates of cases and Rt over the time period December 2020 to April 2021. Our
model inferences are plotted in dark blue on both cases and Rt plots, and additionally for case plots the true cases
are plotted in light blue. Our model projections for cases and Rt, as well as 50% & 95% credible intervals, are
plotted in grey. [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Regional estimates

While our model operates at the level of local authorities, we can estimate Rt’s at coarser spa-
tial scales by aggregating inferences across multiple local areas. Specifically, given a region r
consisting of a set of areas and a time period w, we estimate

Rr,w =
∑

i∈r,t∈w Ri,t ̃Zi,t
∑

i∈r,t∈w
̃Zi,t

. (11)

This definition is consistent with Ri,t when r = {i} and w = {t}, and interprets Rr,w as a summary
statistic of the average number of secondary infections per primary infections over the region and
time period.

Figure 4 shows the posterior distributions of Rr,w, for the London NHS region, England,
Scotland and Wales, and for each week in the December 2020 to March 2021 period, produced
by the full EpiMap model with spatial length scale of 20 km, using data available on 15 March
2021. Corresponding plots for other English NHS regions can be found in Appendix C.3. Figure 4
shows sensible credible intervals both during the modelled 15-week time period and subsequent
3-week forecasts. In this example, we see that our model projects an increasingly uncertain size
of epidemic in Scotland in the near future, with a non-negligible probability of Rt being above 1
in Scotland and Wales on 15 March 2021, whereas other regions are projected to have stable or
shrinking epidemics.

5 DISCUSSION

We have proposed a hierarchical Bayesian approach to model epidemics at fine spatial scales,
which incorporates movement of populations across local areas as well as spatiotemporal borrow-
ing of strength. Empirical results suggest that our model can be a useful tool for policy-makers to
locate future epidemic hotspots early, in order to direct resources such as surge testing as well as
targeted local transmission reduction measures.
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As with other methods that infer the extent of epidemics through identified cases alone,
the main limitations of this work are due to the provenance of the Pillars 1+ 2 case data.
Firstly, there can be substantial selection bias in the population who get tested, leading to
discrepancies between reported cases and the true size of the epidemic. In addition, the
amount of testing may change over time, for example, due to localised testing or limited sup-
plies of testing kits, potentially leading to spurious temporal patterns (Omori et al., 2020).
Finally, case data are only reported for the combined Pillars 1 and 2 of the UK’s testing
regime. These correspond to different sectors of society at different points of an infection,
with different delay distributions between infection and getting tested. Moreover, the pro-
portion of tests under each pillar has been changing systematically since Pillar 2 testing
began.

Our model is the result of a number of modelling choices, and can be improved in a num-
ber of ways. Firstly, our aim is to track local reproduction numbers and provide nowcasting of
epidemic development in local areas, rather than understanding how NPIs affect transmission
rates. This lead to our choice of a nonparametric GP prior for the reproduction numbers, rather
than a generalised linear model relating transmission rates to NPIs. It is possible to extend our
model to model effect of NPIs as in Flaxman et al. (2020). It also lead to our choice not to explic-
itly model the susceptible population, since it impacts the model just via lowered transmission
rates.

Secondly, our model uses only Pillars 1+ 2 case data, which as noted above have biases
that are not well understood. This affects our confidence in the inferred local transmis-
sion rates and forecasts. Further, in our model we assumed that positive test cases corre-
spond 1-1 to infections, which in fact does not hold due to asymptomatic infections. We
can correct for these biases by incorporating less biased data like hospitalisation and death
counts, as well as less granular but better understood estimates of prevalence data obtained
from randomised surveys such as REACT (Riley et al., 2020) and the ONS infection survey
(Pouwels et al., 2020).

In order to model cross-area dependencies, we also used commuting flow data from the 2011
Census. However, this data does not necessarily reflect the commuter flow accurately during
the pandemic, especially since the data is static. We used a simple approach to parameterise a
time-dependent flow matrix via 𝛼t which captures the overall amount of travel in each week.
Nonetheless, our model is likely to improve if this limitation is addressed by using more accurate,
real-time commuter flow data.

Finally, with the increasing importance of the roles of vaccines and variants, it is interest-
ing to consider how these can be incorporated into our model. This will require a number
of extensions, including separating the population into age bands and modelling the suscep-
tible population. These extensions will incur significantly higher computational costs, and
additional work will have to be performed with respect to software and implementational
efficiency.

Our hierarchical Bayesian model is sensitive to a number of hyperparameters, particularly
those specifying the generation interval and incubation period distributions, and the spatial and
temporal length scales of the latent GP. These are hard to specify in a fully Bayesian manner.
For example, the posterior strongly prefers spatial length scales that are too long due to model
misspecification. Until there are good, fully Bayesian approaches to dealing with such situa-
tions, we have kept to a more pragmatic approach of using cut models and cross validation (see
Section 3.1.2).
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Our hierarchical model introduces stochasticity at all three layers of the model to
capture different aspects of the unfolding epidemic. As a reviewer noted, there can be complex
interplays between these layers, for example resulting in non-identifiable parameters. The various
components of the model have been chosen to avoid the worse of these, but we have not
performed a systematic study of the impacts of these choices. This will be an illuminating piece
of future research.
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APPENDIX A. ADDITIONAL MODEL VARIATIONS

In addition to the final model described in the main paper, we have also considered a number of
model variations which did not result in improved performance so did not include them.

A.1 Global effects term in GP prior
We have also explored adding an additional global effects term to the spatial part of the kernel
in (6):

Kspace
ij = (𝜎spatial)2 exp(−||yi − yj||∕𝜌spatial) + (𝜎local)2𝛿ij + (𝜎global)2. (A1)

This has the effect of adding another GP term f global
∶ ∼ GP(0, 𝜎globalKtime) to (5) that is shared across

all areas i = 1, … ,n. However this has an effect of over-generalising estimates of Ri,t from the
high incidence areas (for which the likelihoods constrain inference of Ri,t sufficiently) to the low
incidence areas (for which they do not).

A.2 Modelling infectiousness and susceptibility separately
We have also explored a somewhat more elaborate meta-population model. Note that in (3) and
(4) the number of transmissions occurring in an area i depends only on Ri,t and not on Rj,t of the
areas j that are ‘sending’ infections to area i. We can extend this to a model where the predicted
mean count depends on properties of both the area that ‘receives’ an infection and the area that
‘sends’ it:

Ci,t|Ci,1∶t−1 ∼ NegBin(𝜇i,t, 𝜓) 𝜇i,t =
n∑

j=1
Ri,tFjiR′j,tZj,t, (A2)

where R′j,t can be interpreted as an infectiousness level of area j, and Ri,t a susceptibility of area
i, with the overall transmission rate being a function of both, as well as of the fluxes. While
this extension is more complex and flexible, it is not clear whether both the infectiousness
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and susceptibilities are well-identified from case count data. Empirically, we have not found
it to perform differently from the simpler meta-population model (3) and (4). We used the
same GP prior for both the infectivities R′i,t and susceptibilities Ri,t in these experiments. As a
result of the lack of statistical gains and of computational costs, we decided to use the simpler
model (3)–(4).

APPENDIX B. COMPUTATIONAL EFFICIENCY CONSIDERATIONS

B.1 Kronecker structured GP kernel
The Kronecker structure of the GP kernel allows for efficient computations (Flaxman et al., 2015;
Saatçi, 2012). In particular, we never have to explicitly form or factorise Kspace

⊗ Ktime, which
would have computational cost of O((nm)3). Instead, if f∶,∶ is represented as a n ×m matrix, a
draw from its GP prior can be expressed as:

f∶,∶ = LspaceE(Ltime)⊤, (B1)

where Lspace and Ltime are Cholesky factors of Kspace and Ktime, respectively, and E is
an n ×m matrix with iid standard normal distributed entries. The computational cost of
this procedure is O((n2 +m2)(n +m)), which represents significant computational savings
over O((nm)3).

B.2 Positivised Gaussian approximation for infection model
We used a negative binomial distribution for the number of new infections on each day
given infections in past days (4). This is a discrete distribution and makes posterior simu-
lation, particular with the Stan probabilistic programming system, challenging. Instead we
considered a simple approximation of the negative binomial distribution using a positivised
Gaussian distribution with matched mean and variance. Specifically, if Y ∼ NegBin(𝜇, 𝜙),
we approximate Y ≈ | ̃Y |, where ̃Y ∼ (𝜇,

√
(1 + 𝜙)𝜇). Note that | ̃Y | has mean higher

than 𝜇 and variance lower than (1 + 𝜙)𝜇, but for 𝜇 ≥ 5 the difference is practically neg-
ligible. However in cases where 𝜇 ≤ 10 this can lead to under-estimation of R, but we
believe this is not a serious concern since the epidemic would then be of very small size
anyway.

We chose this approximation as the computation for the infection model can be ‘reparam-
eterised’ (Kingma & Welling, 2014) using the so-called non-centred parameterisation and lead
to a better mixing MCMC sampler. Specifically, and assuming no meta-population model for
simplicity, we can write the sampling statements for the positivised Gaussian approximation
of (4) as:

̃Xi,t =
|
|
|
|
Ri,t ̃Zi,t + 𝜂i,t

√

(1 + 𝜓)Ri,t ̃Zi,t
|
|
|
|
, 𝜂i,t ∼ (0, 1) iid. (B2)

Note that the modelled epidemic sizes ̃Xi,∶ can be written as a differentiable and efficiently com-
puted function of a sequence of iid standard normal random variables 𝜂i,∶ (and the reproduction
numbers). The gradients can be automatically computed by Stan, and the No-U-Turns Sampler
mixes more effectively since while ̃Xi,∶ are highly correlated (which can lead to slow mixing if
not reparameterised), the reparameterised random variables 𝜂i,∶ are independent a priori (hence
faster mixing).
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B.3 Regional inference
In order to track the daily evolution of the epidemic in real time it is preferable for
the posterior simulations to run overnight. However, the model described in 3 is quite
complex, and full posterior simulation for the whole of Great Britain using Markov
chain Monte Carlo (MCMC) has significant computational costs. In this section we
describe a two-stage procedure to reduce the computational costs to a manageable
level.

During the first stage the epidemic time courses of individual local areas are approximately
inferred first by ignoring cross-area dependencies in both the meta-population infection model
and the GP prior. This first stage can be easily parallelised across the 348 areas and completed
quickly.

In the second stage, we split Great Britain into nine regions (seven NHS regions in
England, plus Wales and Scotland), and modelled each region independently using the model
described in Section 3. In order to account for transmissions to and from other regions, we
fix the latent epidemic process for areas in other regions to the posterior median inferred
during the first stage. To reduce the approximation error due to only modelling each region
rather than the whole of Great Britain, we include in each region model a number of
areas outside the region, such that for all areas within that region at least 80% of the
off-diagonal flux probabilities (corresponding rows in Ffwd and Frev) are included in the
model.

APPENDIX C. ADDITIONAL FIGURES

C.1 Simulation data
Figures C1 and C2 show case count and Rt predictions for all models and variants of EpiMap.
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F I G U R E C1 Estimated median, 50% (inner) and 95% (outer) credible intervals of the posterior predictive
distributions for daily case counts plotted against the observed case counts used to infer Rt. Values to the left of
the vertical line are inferred from data, and those to the right are future predictions. For EpiMap, we include the
weekly variation in expected cases in the model, but plot the distribution without this variation for clarity. The
EpiMap methods report the full distribution of expected cases. EpiNow2 returns the distribution of the mean
number of cases. EpiEstim does not provide estimated case distributions, so future predictions are stochastic
rollouts of the epidemic based on the last inferred Rt distribution. [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E C2 Estimated median, 50% (inner) and 95% (outer) credible intervals of Rt for the methods
plotted against the Rt used to create the simulated epidemic. EpiEstim does not provide future estimates of Rt,
and so the final Rt posterior is used as a prediction. [Colour figure can be viewed at wileyonlinelibrary.com]
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C.2 Predicting future case counts
Figures C3 and C4 append the results in Figures 2 and 3, respectively, showing losses and uncer-
tainty calibration stratified by week during the 3-week prediction period. Figure C5 shows the
log(RMSE+ 1) for individual LTLAs which are stratified by week and compared between models.
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F I G U R E C3 A comparison of predictive performance similar to Figure 2 but stratified by week over the
3-week prediction period. As expected, the predictions made for later weeks, such as W3, are worse than those
made for earlier weeks, such as W1, across models. The relative ordering of EpiMap variants typically remains
unchanged for different weeks. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E C4 An evaluation of the uncertainty estimates produced by methods similar to Figure 2 but
stratified by week over the 3-week prediction period. As expected, the quality of uncertainty estimates degrades
in the later weeks compared to earlier weeks, as indicated by reliability curves that are further from the ideal
diagonal. Once again, the relative ordering of EpiMap variants typically remains unchanged for different weeks,
however differences in uncertainty calibration between models tend to exacerbate. [Colour figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E C5 We plot the log(RMSE + 1) for individual lower-tier local authorities (LTLAs; each dot is an
LTLA) stratified by week. We observe variation in predictive performance for different LTLAs for all models, with
large correlation in LTLA losses between methods. [Colour figure can be viewed at wileyonlinelibrary.com]
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C.3 Regional estimates
Figure C6 shows the regional estimates for cases and Rt on remaining NHS regions in England,
in the same setting as Figure 4.
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F I G U R E C6 Additional regional estimates of cases and Rt for NHS regions in England, using case data
available by 15 March 2021. [Colour figure can be viewed at wileyonlinelibrary.com]
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