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ABSTRACT

Motivation: Population structure significantly affects evolutionary

dynamics. Such structure may be due to spatial segregation, but

may also reflect any other gene-flow-limiting aspect of a model. In

combination with the structured coalescent, this fact can be used to

inform phylogenetic tree reconstruction, as well as to infer parameters

such as migration rates and subpopulation sizes from annotated se-

quence data. However, conducting Bayesian inference under the

structured coalescent is impeded by the difficulty of constructing

Markov Chain Monte Carlo (MCMC) sampling algorithms (samplers)

capable of efficiently exploring the state space.

Results: In this article, we present a new MCMC sampler capable of

sampling from posterior distributions over structured trees: timed

phylogenetic trees in which lineages are associated with the distinct

subpopulation in which they lie. The sampler includes a set of MCMC

proposal functions that offer significant mixing improvements over a

previously published method. Furthermore, its implementation as a

BEAST 2 package ensures maximum flexibility with respect to

model and prior specification. We demonstrate the usefulness of this

new sampler by using it to infer migration rates and effective popula-

tion sizes of H3N2 influenza between New Zealand, New York and

Hong Kong from publicly available hemagglutinin (HA) gene se-

quences under the structured coalescent.

Availability and implementation: The sampler has been implemented

as a publicly available BEAST 2 package that is distributed under

version 3 of the GNU General Public License at http://compevol.

github.io/MultiTypeTree.

Contact: tgvaughan@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Model-based phylogenetic inference has become one of the prin-

cipal methods of using genetic sequence data to test scientific

hypotheses pertaining to evolving populations. Its wide-spread

adoption has been driven not only by improvements in compu-

tational and sequencing hardware but also by advances in meth-

ods of statistical inference. An important initial step in this

development was the derivation of the n-coalescent process

(Kingman, 1982), which probabilistically ties the shape of a

rooted phylogenetic tree of n randomly chosen individuals to

the parameters of an underlying Wright–Fisher population gen-

etics model. In conjunction with Felsenstein’s ‘pruning algo-

rithm’ (Felsenstein, 1981), this allowed for the computational

inference of the sample genealogy itself alongside population

genetic parameters, such as the effective population size.
Since these beginnings, an array of sophisticated models and

inference methods has been developed, allowing molecular mu-

tation rates, population size histories and other population gen-

etic parameters of interest to be inferred alongside increasingly

sophisticated phylogenetic tree reconstructions, which, for ex-

ample, do away with the assumption of a strict molecular

clock (Drummond et al., 2006; Sanderson, 2002; Thorne et al.,

1998). Rapidly evolving populations such as viruses and bacteria

are of particular interest, as such populations may undergo sig-

nificant demographic variation over timescales comparable with

the age of the genealogy of sampled data. Such data form the

basis of the emerging field of phylodynamics (Grenfell et al.,

2004; Kühnert et al., 2011; Lemey et al., 2009; Volz et al.,

2013), which exploits these overlapping timescales by using the

genetic data to select and infer parameters of sophisticated

epidemiological models.
Many of the models that are of interest to population geneti-

cists and epidemiologists are structured in some way. This struc-

ture may represent the spatial subdivision of a population into

several distinct ‘demes’, or it may represent some other logical

categorization of individuals such as the temporal subdivision

used in compartmental epidemiological models. Such struc-

ture can strongly affect the shape of inferred genealogies

(Pannell, 2003), and can provide a source of statistical bias

when ignored.
A time-tested means of including this structure in phylogenetic

analyses is through the use of the structured coalescent (Hudson,

1990; Notohara, 1990), an extension of Kingman’s coalescent in

which the unstructured Wright–Fisher model is replaced by a

structured equivalent encompassing a number of discrete

subpopulations. Phylogenetic analyses based on this model are

capable of both (i) reducing model misspecification bias in the

inference of the genealogy and (ii) estimating parameters specific

to structured models such as migration rates and effective

subpopulation sizes. While similar, this model is distinct from

the character-based treatment of lineage locations used by

Lemey et al. (2009), in that the structured coalescent allows*To whom correspondence should be addressed.
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location to explicitly affect coalescent rate. (This is discussed in

Section 1 of the Supplementary Material.)
At least two distinct Markov Chain Monte Carlo (MCMC)

schemes for conducting inference under the structured coalescent

exist in the literature. Both of these schemes use an MCMC

algorithm to explicitly sample both the demographic and evolu-

tionary model parameters and the structured genealogy: a phylo-

genetic tree annotated with individual migration events. The first

of these schemes is the method of Beerli and Felsenstein (Beerli,

2006; Beerli and Felsenstein, 1999, 2001), which is implemented

in the software package Migrate-n. At its core, this method in-

volves a single proposal function, which updates the structured

tree by ‘dissolving’ a randomly selected edge and drawing a new

edge by simulating from the structured coalescent conditional on

the remaining edges.

The other scheme is the work of Ewing et al. (2004), who have

published a set of simple and fast proposal functions that act

solely on the migration events on the structured genealogy. In

combination with those for traversing the space of unstructured

trees (Drummond et al., 2002), Ewing et al. showed that an

MCMC algorithm based on these moves is capable not only of

jointly inferring the structured tree and migration model param-

eters, but also of exploiting the additional information contained

in serially sampled data to infer absolute migration rates. While

certainly functional and useful, this scheme suffers from perform-

ance issues, which arise in the form of slow ‘mixing’, meaning

that MCMC calculations must be run for a long time to obtain

useful information about the posterior probability distribution.

An additional issue is that no implementation of the sampler has

been made widely available.

In this article, we introduce a new set of MCMC proposal

functions (or ‘operators’) that provide an efficient means of

using serially sampled sequence data to infer the full structured

tree and related model parameters (including mutation rates)

under the structured coalescent. These operators, together with

the data structure representing the structured tree itself and the

probability density calculation algorithm for the structured co-

alescent, are implemented and distributed as a package extension

to BEAST 2 (Bouckaert et al., 2014; http://www.beast2.org).

When applied to equivalent data, and assuming equivalent

evolutionary models and parameter priors, this new package

yields posterior distributions, which are exactly equivalent to

those obtained using Migrate-n. However, the use of the

BEAST 2 platform for our implementation gives our sampler

access to a large array of molecular evolution models and

parameter priors not yet available in Migrate-n. Additionally,

we have implemented the operators described by Ewing et al.,

allowing direct comparison between the two sampling

methods. This comparison shows that the new operators achieve

significantly faster mixing when applied to simulated data,

with an order of magnitude improvement in some cases. We

go on to demonstrate the practicality of the new sampler by

using it to infer mutation rates, effective population sizes and

the structured tree from geographically annotated HA gene se-

quences derived from the Influenza A subtype H3N2 strain. We

interpret these results in light of recent work by Bedford et al.

(2010).

2 MATHEMATICAL BACKGROUND

2.1 Structured tree definition

Before discussing the inference procedure, we need to define pre-

cisely what we mean by a ‘structured tree’.
In this article, we define a structured tree T of n leaves as a

fully resolved, rooted and timed phylogenetic tree in which every

internal node represents a coalescent event and where every point
on each edge of the tree is associated with exactly one type d

drawn from a fixed setD of such types. Mathematically, we write

T ¼ ðV;E; t;MÞ. The first three elements are the usual phylo-
genetic tree components: a set V of 2n� 1 nodes, a set E con-

taining directed edges of the form hi; ji between nodes i; j 2 V

and a set of node ages t ¼ ftiji 2 Vg where ti is the age of node i.

The direction of each edge hi; ji is such that ti5tj. The set of
nodes is partitioned into two smaller sets Y and I, representing

the n� 1 internal and n external nodes, respectively.
The final element in T is the one that is unique to structured

trees and is defined byM ¼ f’hi;jijhi; ji 2 Eg, where each function

’hi;ji : ½ti; tj�!D is piecewise constant and defined such that ’hi;ji
ðtÞ is the type associated with the time t on edge hi; ji 2 E. Such a

tree is illustrated in Figure 1.
We caution that the term ‘structured tree’ is not a standard

name. For instance, elsewhere these objects are referred to as

‘migration-coalescent trees’ (Ewing et al., 2004) or simply as
‘genealogies’ (Beerli and Felsenstein, 1999; Hudson, 1990). Our

choice is based on the desire to at once distinguish these trees

from regular phylogenetic trees and to extend their applicability
beyond the special case of spatial structuring.

2.2 Bayesian inference framework

The goal of the inference scheme discussed here is to characterize

the joint posterior probability density PðE; tY;M;m;m; yjS; tI;LÞ,
where tY ¼ ftiji 2 Yg and tI ¼ ftiji 2 Ig are the times of the

internal and external nodes, m represents the set of substitution

model parameters, m and y are the immigration rate matrix
and population size vectors defined later and S ¼ fsiji 2 Ig and

L ¼ fliji 2 Ig are the sequences and types associated with each of

the leaf nodes. The values of S; tI and L represent the data.

Fig. 1. A structured tree T ¼ ðV;E; t;MÞ with V ¼ I [ Y where

I ¼ fx; y; zg;Y ¼ fi; jg, E ¼ fhx; ii; hy; ii; hi; ji; hz; jig and the coalescence

times t and type mappings M are as shown. Here we have selected the

type set D ¼ fblue; red; green; orangeg, although this can be composed of

the values of any discrete trait
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The inference framework centres around the following
expansion:

PðE; tY;M; m;m; yjS; tI;LÞ

/ PFðSjE; t; mÞPðE; tY;MjtI;L;m; yÞPðm;m; yÞ:
ð1Þ

The first term PFðSjE; t; mÞ is the probability of the sequence

alignment and can be efficiently evaluated using Felsenstein’s

pruning algorithm (Felsenstein, 1981). The second term

captures the joint probability of the genealogy and the type
mapping, conditional on the number of samples, their types

and the times at which they were recorded, and the demographic

model parameters. This is given by the structured coalescent, as

discussed below. The final term is the joint prior for all model

parameters and can be factorized into PðmÞPðmÞPðyÞ.
Our goal here is to use MCMC to draw samples from

Equation (1), thus allowing us to uncover what the data have

to say about the structured tree and the demographic and evo-
lutionary model parameters.

2.3 The structured coalescent probability density

The structured coalescent, allowing for serially sampled se-

quences as detailed by Ewing et al. (2004), assumes the following

demographic model. A discrete set of connected subpopulations

D with sizes Nd for d 2 D are evolving under a Wright–Fisher
model in which each generation of length g is divided into two

stages. In the first stage, each haploid individual in the model

migrates from its current location/type d to a new location d0

with probability qdd 0g, or remains in the same subpopulation

with probability 1�
P

d 02Dnd qdd 0g. In the second stage, Nd indi-

viduals are sampled with replacement from the occupants of each
subpopulation following stage 1, with the sampled individuals

forming the next generation.
To express the probability density of a structured tree under

this model, we require the following additional definitions. First,

we divide the period spanned by the tree into B adjacent intervals

of lengths t1; t2; . . .; tB such that
PB

a¼1 ta ¼ tr where tr is the age

of the root. Each interval is bracketed by a pair of consecutive

‘events’, each of which may be a ‘coalescent’, ‘migration’ or
‘sampling’ event. Coalescent events correspond to internal

nodes i 2 Y, migrations correspond to discontinuities in the

type functions ’hi;jiðtÞ and sampling events correspond to leaf

nodes x 2 I. The total number of migration events from the d 0

type to the d type inM is given by nmdd 0 , while the total number of

coalescent events (i.e. internal tree nodes) occurring in type d is
ncd. Finally, the number of tree edges hi; ji for which ’hi;jiðtÞ ¼ d

for t in interval a is given by ka;d. All of this information is

readily available from T as defined previously.
The probability density of the components of the structured

tree before conditioning on the sequence data is then given by

PðE; tY;MjtI;L;m; yÞ ¼

exp �
XB
a¼1

ta
X
d2D

ka;d

2

0
@

1
A 1

yd
þ ka;d

X
d 02Dnd

mdd 0

0
@

1
A

2
4

3
5

� ðmdd 0 Þ
nm
dd 0

1

yd

� �nc
d

ð2Þ

where yd ¼ Ndg are population sizes scaled by the generation

length and mdd 0 � ðyd=yd 0 Þqd 0d are the immigration rates into d

from d 0 (per individual in d 0). (This is essentially Equation (3)

from Beerli and Felsenstein (2001) but allowing for heterochro-

nous leaves.)
The structured coalescent, as well as other models including

the reversible Markov model used by Lemey et al. (2009), im-

poses the following additional constraint on the structured

tree beyond those laid out in section 2.1: that the type functions

for all edges meeting at node i possess the same value at ti.

Formally,

’hi;ipiðtiÞ ¼ ’hicl;iiðtiÞ ¼ ’hicr;iiðtiÞ ð3Þ

where ip; icl and icr are the parent, left child and right child of i,

respectively.

3 MCMC SAMPLING ALGORITHM

As outlined above, our goal here is to use MCMC to efficiently

draw samples from the joint posterior Equation (1) over the state

space spanned by x ¼ ðE; tY;M;m;m; yÞ. To perform efficiently,

MCMC sampling algorithms need to be able to (i) rapidly cal-

culate the value of a target distribution for a particular state x

and (ii) propose new states x 0 that are far enough from the cur-

rent state for state space to be explored relatively quickly but not

so far that the proposal acceptance rate becomes low.
Much of this problem is solved by existing methods. For re-

versible substitution processes, the probability of the sequence

alignment given the tree can be efficiently evaluated using the

pruning algorithm (Felsenstein, 1981). For inference under the

structured coalescent, the density of the structured genealogy can

be evaluated very simply by directly applying Equation (2),

which scales according to the number of ‘events’ (coalescent,

migration and sampling) making up the tree. The prior densities

for the parameters (m,m,y) are usually chosen to be standard

functions for which numerical evaluation is straightforward. In

terms of state proposal, standard proposal distributions for sam-

pling distributions over real numbers can be used to propose new

parameter combinations.
The remaining component is a set of proposal operators that

allow exploration of those regions of T space that have finite

support under the structured coalescent. As noted above, this has

been addressed in two distinct ways by Beerli and Felsenstein

(1999) and Ewing et al. (2004). Here we introduce a novel set of

operators that directly builds on an existing set of unstructured

phylogenetic tree operators (Drummond et al., 2002) that form

the basis for the phylogenetics package BEAST (Bouckaert et al.,

2014; Drummond and Rambaut, 2007; Drummond et al., 2012)

and as such have been shown capable of efficiently traversing the

space of ðE; tYÞ.

3.1 Structured tree operator design strategy

Our general operator construction strategy involves the

following:

(1) the application of an existing unstructured tree operator,

mapping ðE; tYÞ!ðE
0; t
0

YÞ, followed by
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(2) the application of an edge type function proposal, which

produces type functions ’hi;ji 2M 0 for a subset of the

edges hi; ji 2 E 0 to ensure Equation (3) is satisfied at all

nodes.

New type functions are proposed by using a backward-in-time

continuous-time Markov chain (CTMC) to describe the type-

change process along an edge, with the type transition rate

matrix fixed to the jointly estimated structured coalescent immi-

gration rate matrix m. We define the CTMC in terms of the

probability of the edge taking a particular type given the type

at the most recent node, pðd; tÞ � Pð’hi;jiðtÞ ¼ dj’hi;jiðtiÞ ¼ diÞ, by

way of the following master equation:

d

dt
pðd; tÞ ¼

X
d 02D

mdd 0pðd
0; tÞ ð4Þ

where we define mdd ¼ �
P

d 02Dnd mdd 0 .
Drawing type-space paths from Equation (4) is straightfor-

ward (Gillespie, 1976, 1977). However, to ensure Equation (3)

is satisfied, we need to be able to draw paths from the CTMC

conditioned on the type di and dj at ‘both’ ends of an edge hi; ji.
To do this, we use the uniformization-based scheme of

Fearnhead and Sherlock (2006). (A useful summary is provided

by Rodrigue et al. (2008).)

This method involves defining a ‘uniformized’ version of the

process that has a uniform intensity � ¼ max d½�mdd� over the

length of an edge. This is accomplished by allowing for ‘do noth-

ing’ transitions that are not associated with a type change. This

means that the number of transition events and the time at which

the events occur do not depend on exactly which transitions occur.

We can therefore sample these aspects of the type function first.
The number of ‘virtual’ events nv, which includes the ‘do noth-

ing’ transitions, is distributed according to

Pðnvjdi; djÞ ¼
PðnvÞ½R

nv �di;dj

½em"�di;dj
ð5Þ

where " ¼ tj � ti;PðnvÞ is a Poissonian with rate parameter �";
R is the stochastic matrix m=�þ I and em" is a matrix exponen-

tial. We sample from this distribution using the technique

described in Section 2 of the Supplementary Material, then

sample the event times by uniformly selecting nv times from the

interval [ti,tj] and sorting the result.
The remaining problem of sampling the transition types them-

selves is equivalent to sampling paths of a discrete time Markov

chain conditional on the end states, and is addressed using the

standard forward–backward algorithm (Baum et al., 1970).
One difficulty with this approach is its reliance on the matrix

exponential em". Identifying general numerical approaches to

matrix exponentiation is known to be problematic (Moler and

Van Loan, 2003). We use the scaled Padé approximation method

as implemented in the Java library jblas (http://mikiobraun.

github.io/jblas), which generally performs well. However, in our

experience it can become unreliable when very large and

very small (yet non-zero) migration rates exist in the same

matrix. For some data and prior combinations, it may therefore

be necessary to temporarily switch to an alternative proposal

mechanism when the MCMC chain strays into problematic

regions.

3.2 Proposal acceptance probabilities

Non-unitary proposal acceptance probabilities are integral to the

Metropolis–Hastings MCMC algorithm. For a given proposal

operator op, a proposed state x 0 is accepted with the probability

aopðx 0;xÞ ¼ min 1;
fðx 0Þ

fðxÞ
�opðx

0jxÞ

� �
ð6Þ

where f(x) is the target density and �opðx
0jxÞ is what we refer to

as the Hastings–Green factor (HGF)—a generalization of the

usual Hastings ratio to reversible jump MCMC operators

(Green, 1995).

To calculate the HGF for each of our new operators, we need

to be able to determine the probability density with which a

particular type-change path is proposed. This density is given by

Pð’hi;jijdi; djÞ ¼
Pð’hi;jijdiÞ

PðdjjdiÞ
ð7Þ

Here Pð’hi;jijdiÞ is the probability of the CTMC path conditional

only on the most recent type, which can be derived directly from

Equation (4) and is a simple product of exponential waiting time

factors and transition rates. The denominator PðdjjdiÞ is the total

transition probability over the length of the edge and may be

computed using the same matrix exponential em" used in the

previous section.

3.3 Structured tree operators

As described above, the tree-specific operators present in our

sampler are straightforward extensions of the unstructured tree

operators described by Drummond et al. (2002). They include

the following:

� The ‘Wilson–Balding’ move (Wilson and Balding, 1998),

which disconnects a subtree and reattaches it at a randomly

chosen location on the rest of the tree. Our extension re-

quires generating a type function for the new connecting

edge.

� The ‘subtree exchange’ move, which chooses two subtrees

and switches the points at which they connect to the rest of

tree. Again, our extension requires generating a type func-

tion for each of the two new edges.

� A ‘node height shifting’ move, which repositions a randomly

selected internal node by drawing from a uniform distribu-

tion between its oldest child and its parent. Our implemen-

tation randomly selects a new type for the selected node and

then generates three new type functions—one for each of the

connecting edges.

� A ‘tree height scaling’ move, which does not alter the top-

ology but instead scales the age of each node by a randomly

chosen factor. Our extension does not generate new type

functions but merely scales the times of the type changes

in the same way. This move is also used by Ewing et al.

(2004).

In addition, we include a ‘node retype’ operator, which selects

a new type for an internal node and generates new type functions
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for the connecting edges. (This is a special case of the node height

shift move.)
The actions of these operators are illustrated in Figure 2.

For complete operator descriptions including HGFs, refer to

Section 3 of the Supplementary Material.

4 IMPLEMENTATION

We have implemented the structured tree data structure, the

structured coalescent tree density and the structured tree pro-

posal operators as a BEAST 2 package. In this section we

test the correctness and efficiency of the algorithm and its

implementation.

4.1 Validation

In principle, a correctly implemented MCMC algorithm is cap-

able of drawing samples from any target density or distribution

defined over the state space traversed by its proposal operators.

Thus, a good way to test correctness of an operator implemen-

tation is to use the implementation to produce a large number of

samples from a target distribution that is either known exactly or

can be sampled in some other independent way. Any disagree-

ment between the MCMC-generated samples and the true distri-

bution, or the externally generated samples from that

distribution, is then indicative of an implementation error.
In our case, the structured coalescent density itself

[Equation (2)] provides a sensible reference distribution, as its

backwards-in-time Markovian structure allows structured trees

to be easily sampled via stochastic simulation (Gillespie, 1976).

The mean and variance of the root height are also known exactly

for two taxon trees (see, for example, Hein et al., 2005), allowing

additional testing. Finally, this choice allows us to test the im-

plementation of the structured coalescent density.
Comparisons between the tree height and migration event

counts obtained using our sampler (2� 107 steps minus 2� 106

burn-in) and those obtained through 105 direct simulations

generated using MASTER (Vaughan and Drummond, 2013)

for trees with five leaves having times 0, 5, 10, 15, 20 and loca-

tions 0, 1, 2, 3, 0 in a 4 deme model with yd¼ 7 and mdd 0 ¼ 0.05

for all d,d 0 are shown in Figure 3. Additional comparisons for

smaller sets of operators and against analytical results for the tree

height expectations and variances are presented in Section 4 of

the Supplementary Material. Together, these results are convin-

cing evidence that the operators and structured coalescent dens-

ity evaluation have been implemented correctly.
Note that using this package to perform inference from genetic

data exploits additional machinery already present in the core

BEAST 2 platform. In particular, modules for calculating the

likelihood of a tree conditional on available sequence data are

used. These modules have been implemented independently and

have undergone their own extensive testing, so we do not expli-

citly test them here. (Indeed, this is one of the benefits of imple-

menting a method using an existing inference platform.)

However, many of those components are implicitly tested in

the Migrate-n comparison reported below.

4.2 Inference from simulated data

We have applied the implemented sampler to the inference of

evolutionary and demographic parameters from simulated sam-

pling data to ensure that the inference scheme is capable of

recovering the truth in situations where this is known a priori.
The data simulation procedure involved the following

steps. (The relevant BEAST 2 XML files are provided as

Supplementary Material.)

(1) A structured coalescent model was chosen with a particu-

lar set of types, D, immigration rate matrix m and popu-

lation size vector y.

(2) A 128 taxon structured coalescent tree was simulated

under this model using MASTER, with times of the leaf

nodes spread evenly among t¼ 0, 1, 2, 3 and the types of

each set of 32 contemporaneous leaves chosen as evenly as

possible from D.

(3) A randomly selected 2 kb nucelotide sequence was evolved

down this tree according to the HKY model (Hasegawa

et al., 1985) with transition/transversion rate ratio of 3 and

base substitution rate m0¼ 0.005 subst./site/unit time using

(a) (b)

(c) (d)

Fig. 2. Schematics illustrating actions of the tree-specific operators used

in our structured tree MCMC algorithm, including structured tree imple-

mentations of the (a) Wilson–Balding, (b) subtree exchange, (c) node

height shift and (d) tree scaling operators. The solid edge shadings rep-

resent the deme to which each lineage belongs at each time. Double white

lines represent edges for which new type functions will be proposed

as part of the move, crosses represent edges to be removed and dashes

represent edges that may continue beyond the schematic boundary

(a) (b)

Fig. 3. Agreement of (a) tree height and (b) migration count distributions

sampled from the structured coalescent distribution using our implemen-

tation of the described MCMC algorithm (black lines) with those gener-

ated via direct simulation (grey lines). See text for more detail
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the BEAST 2 alignment simulator, resulting in a simulated

alignment of 128 sequences.

(4) The MCMC procedure outlined in the previous section

was used to infer the parameters �, m0, m and y, with
log-normal prior distributions ln Nð0; 4Þ on each element

of these parameters. A total of 108 MCMC steps were

generated, with the first 10% being discarded to account

for burn-in, resulting in an average effective sample size

(ESS) of 1164 (5 and 95% sample quantiles 277 and 2425)

for the slowest mixing parameter.

The diagrams in the first column of Table 1 illustrate three

different structured coalescent models, with the nodes represent-

ing types D, the numeric labels on the nodes representing values

of y, the edges representing allowed transitions between these

types and the numeric labels on the edges representing the

values of m. The simulation and inference procedure was carried

out 100 times for each of these models. The four right-most col-

umns of the table present the fractions of inference runs that

included the truth of the parameter at the head of the column

within the 95% highest posterior density (HPD). In the case of y
and m, the average over each of the elements is displayed. Note

that in the 4 deme mode, only the non-zero elements of m were

used to calculate the coverage fraction although all elements were

independently estimated.
Section 5 of the SupplementaryMaterial describes these results

in more detail. An important message to convey here is that

increasing the number of demes without increasing the available

data can have strong negative effects on the amount of signal

that can be recovered. For this reason, while the sampler itself

is capable of sampling from structured tree distributions with

higher numbers of demes (as shown in Section 5.2 of the

Supplementary Material), doing so requires additional con-

straints on the model. In our experience, 3–4 demes seems to

be an upper limit for inference from a 128 taxon dataset if all mi-

gration rates are to be reliably estimated (given non-informative

priors).

4.3 Comparison with Ewing et al., 2004

To compare the new structured tree operators with those of

Ewing et al. (2004), we have implemented the operators described

in that paper in our BEAST 2 package and used them to analyse

the same simulated data sets described above. As each set of

operators is capable of traversing the structured tree state

space, there should be no difference in the inference results ob-

tained by each set given sufficient MCMC steps. However, as

discussed in Section 3, the specific proposal distributions used

can have a significant impact on the rate at which the Markov

chain produces effectively independent samples from the target

distribution. This rate can be quantified using the inverse of the

integrated auto-correlation time (IACT): the number of effect-

ively independent samples (i.e. the ESS) generated per iteration

of the MCMC algorithm. While IACT is usually expressed in

terms of MCMC iterations, we use the total computation times

used by each inference run to express it in terms of real time. This

‘effective sample rate’ (ESR) allows us to directly compare the

computational efficiency of our proposal operators with those

of Ewing et al. (2004), despite the fact that their operators are

individually less computationally demanding. Such rates will

depend on the specific hardware used to perform the computa-

tions, of course, but useful comparisons can still be made pro-

vided the same hardware is used across all analyses.
Figure 4 shows how the ESRs for demographic (y and m),

evolutionary (m0) and genealogy-related (time of most recent

common ancestor, tr) parameters depend on the number of

types, jDj, and the operator set used. Two features are immedi-

ately obvious. Firstly, there is a clear decline in ESR as the

number of types increases, which is to be expected due to the

corresponding increase in the size of the state space. Secondly,

the ESR estimates obtained from the new proposal operators are

greater than those obtained using our implementation of the

operators proposed by Ewing et al. (2004). This improvement

Fig. 4. ESRs per hour of MCMC calculation recorded from the simu-

lated data analyses using both the new proposal operators and our im-

plementation of those developed by Ewing et al. (2004) (ENR), where y is
the vector of population sizes, m is the immigration rate matrix, m0 is the
clock rate and tr is the age of the root. Values for the vector/matrix

parameters y and m were averaged across all elements

Table 1. 95%HPD coverage fractions for demographic (population sizes

y, immigration rates m) and evolutionary parameters (clock rate m0, tran-
sition/transversion ratio �) inferred from simulated sequence data under

structured population models with different numbers jDj of

subpopulations

Model jDj y coverage

(%)

m coverage

(%)

m0 coverage
(%)

� coverage

(%)

2 95.5 96 97 98

3 92.3 93.7 92 97

4 93.5 86 96 96
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is particularly striking in the case of the tr parameter, for which
our method produced at least an order of magnitude as many

effective samples per unit time as our implementation of the
previously published method.
We therefore find that the new operators presented here gen-

erally outperform our implementation of the Ewing et al. (2004)
operators, in spite of the additional computational complexity of

our proposals.

4.4 Comparison with Migrate-n

Migrate-n (Beerli and Felsenstein, 1999, 2001; Beerli, 2006) has

long been a popular tool for performing both Bayesian and max-
imum-likelihood analysis under the structured coalescent. There

are numerous differences between the MCMC sampler presented
here and Migrate-n: we focus on providing the capability to per-

form joint estimation of heterochronous structured trees, demo-
graphic model parameters and substitution model parameters,

while Migrate-n excels at demographic model parameter infer-
ence for trees with fixed clock rates or times expressed relative to

an unknown substitution rate.
Despite this, it is possible to analyse some datasets under

exactly equivalent assumptions in both packages. In Section 6
of the Supplementary Material, we directly compare sampled

posteriors obtained for model parameters from heterochronous
sequence datasets simulated under 2 and 3 deme models, assum-

ing a known clock rate m0, and find perfect agreement. Given
the complete independence of these implementations, this is ex-

tremely strong evidence that both samplers are implemented
correctly.

4.5 Application to global influenza epidemics

To assess the usefulness of our sampling strategy and its imple-
mentation in the context of real genetic data, we address the

problem of inferring global dynamics of influenza epidemics
from genetic data. To do this, we assembled 980 H3N2 1.6kb

HA sequences from NCBI GenBank, which were isolated from
humans in Hong Kong (n¼ 220), New York (n¼ 320) and New

Zealand (n¼ 440) between the years 2000 and 2006. (Accession
numbers, sampling times and locations are tabulated in the

Supplementary Material.) These locations were chosen to be rep-
resentative of northern, southern and equatorial regions having

human population sizes of comparable order of magnitude, while
the sampling time boundaries were chosen to ensure a roughly

even temporal and spatial distribution of samples. Additionally,
these locations and times allow comparison with the study of

global H3N2 dynamics conducted by Bedford et al. (2010).
The data were analysed under a 3 deme structured coalescent

model with a GTRþ� nucleotide substitution model and a strict
molecular clock. As for the simulated data, the heterochronous

sampling times and rapid evolution of influenza allowed for joint
estimation of the clock rate, m0. Broad log-normal priors log N

ð0; 4Þ were used for all population size and rate parameters. Due
to the large size of the data set, the MCMC algorithm was run

for 3.7� 108 iterations to ensure adequate mixing, giving a ‘min-
imum’ ESS across the sampled parameters of �150. Two add-

itional chains of 3.3� 108 iterations each were run to assess
convergence. (See Section 7 of the Supplementary Material for

details, the full set of results and ESS estimates.)

Figure 5 summarizes some of the results of this analysis,

including the maximum sampled posterior tree, and posterior

distributions for the root location, the subpopulation sizes y
and the molecular clock rate m0. Assuming a constant generation

time, the differences between elements of y reflect differences in

effective population sizes of the virus populations. It is therefore

interesting that the order of these sizes corresponds to the order-

ing of the human population sizes: New Zealand (smallest),

Hong Kong, New York (largest). Furthermore, the estimated

base mutation rate m0 ’ 5� 10�3 substitutions/site/year [95%

HPD interval ð4:5� 10�3; 5:5� 10�3Þ] is in line with previous

estimates for the HA gene (Rambaut et al., 2008). The placement

of the root of the maximum sampled posterior tree in New York

is in agreement with the posterior probability distribution of the

root location (Fig. 5b). This may seem contrary to conventional

wisdom that Asia provides the source for seasonal influenza epi-

demics (Russell et al., 2008). However, the location of the root is

very much a function of the particular dataset used.

Furthermore, our result is in line with the results of Bedford

et al. (2010) who applied a hierarchical approach to a much

larger dataset and found that the ‘trunk’ location of their

sampled H3N2 transmission tree was likely also within the

USA at the time of the root of our tree (mid 1998).

5 DISCUSSION

Taken together, the results above are strong evidence that our

new algorithm and its implementation are correct, computation-

ally efficient and capable of analysing large datasets. However,

the algorithm presented here does not address problems that are

fundamental to the structured coalescent. As discussed in detail

by Ewing et al. (2004), the structured coalescent tree density

(a)

(b)

(c) (d)

Fig. 5. Summary of results from spatial H3N2 influenza analysis, includ-

ing (a) the 980 taxon maximum sampled posterior structured tree, the

sampled posterior probability distributions for (b) the root location,

(c) the subpopulation sizes and (d) the base substitution rate (substitu-

tions/site/year). The grey lines in (c) and (d) show the visible portions of

the log Nð0; 4Þ prior used for all of these parameters, scaled vertically for

clarity
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[Equation (2)] can yield improper posterior densities for elements

of the migration rate and population size parameters when un-

informative priors are used. In our experience, this can still lead

to slow mixing with proper but broad priors. In such cases, we

suggest following the advice of Ewing et al. (2004) by imposing

sensible upper and lower bounds on the demographic parameters

whenever known.

There are many possible extensions to this work. Firstly, as we

discuss in Section 1 of the Supplementary Material, other models

involving structured trees exist beyond the structured coalescent.

Some of these are likely to be particularly important in the field

of viral phylodynamics, where the overlapping epidemiological

and evolutionary time scales mean that birth–death sampling

models (Stadler, 2008) or generalized coalescent processes

(Volz, 2012) are needed to explain the sequence data.

Developing, implementing and testing the performance of our

proposal operators on spatial extensions to these models will

therefore be an important area of future research.
Secondly, the problem of summarizing large numbers of struc-

tured trees sampled from posterior distributions requires special

attention. While existing techniques for summarizing phylogen-

etic tree distributions [Felsenstein (2003) provides a good review]

allow for the un-typed component of the trees in the sampled set

to be summarized, this discards useful information. In our influ-

enza analysis we chose to use the sampled structured tree with

the HPD. While retaining type information, this approach is also

suboptimal because it gives no indication of the uncertainty asso-

ciated with the type-change paths depicted.

The BEAST 2 package implementing the algorithms discussed

in this article and used in the analyses may be found at http://

compevol.github.io/MultiTypeTree, together with an example

analysis and a tutorial. The software source code is available

under the GNU General Public License and is highly extensible,

making third-party implementation of further structured tree

models practical.
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