
Efficient BDD-Based Planning for

Non-Deterministic, Fault-Tolerant, and

Adversarial Domains

Rune Møller Jensen

June 2003

CMU-CS-03-139

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Manuela M. Veloso (Co-Chair), Carnegie Mellon University

Randal E. Bryant (Co-Chair), Carnegie Mellon University

Reid Simmons, Carnegie Mellon University

Paolo Traverso, IRST, Trento, Italy

Copyright c
�

2003 Rune Møller Jensen

This research was supported in part by the Danish Ministry of Science, Technology and Innovation and the

United States Air Force under Grants Nos F30602-00-2-0549 and F30602-98-2-0135.

The views and conclusions contained in this document are those of the author and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or implied, by the Danish

Government, the United States Air Force, or the US Government.

Keywords: Automated Planning, Heuristic Search, Binary Decision Diagrams, Artifi-

cial Intelligence, Symbolic Model Checking, Controller Synthesis.

To my grandparents

iv

Abstract

Automated planning considers selecting and sequencing actions in order

to change the state of a discrete system from some initial state to some goal

state. This problem is fundamental in a wide range of industrial and academic

fields including robotics, automation, embedded systems, and operational re-

search. Planning with non-deterministic actions can be used to model dynamic

environments and alternative action behavior. One of the currently best known

approaches is to employ reduced ordered Binary Decision Diagrams (BDDs)

to represent and generate plans using techniques developed in symbolic model

checking. However, the approach is challenged by a frequent blow-up of the

BDDs representing the search frontier and a limited number of solution classes.

This thesis addresses both of these problems. With respect to the first,

it contributes a general framework called state-set branching that seamlessly

combines classical heuristic search and BDD-based search. Our experimen-

tal results show that the performance of state-set branching often dominates

both blind BDD-based search and ordinary heuristic search. In addition, it

consistently outperforms any previous approach, we are aware of, to guide a

BDD-based search. We show that state-set branching naturally generalizes to

non-deterministic planning and introduce heuristically guided versions of the

current BDD-based non-deterministic planning algorithms.

With respect to the second problem, the thesis introduces two frameworks

called fault tolerant planning and adversarial planning. Fault tolerant plan-

ning addresses domains where non-determinism is caused by rare errors. The

current solution classes handle this situation poorly by taking all fault combi-

nations into account or produce too weak solutions. The thesis contributes a

new class of solutions called fault tolerant plans that are robust to a limited

number of faults. In addition, it introduces specialized BDD-based algorithms

for synthesizing fault tolerant plans.

Adversarial planning considers situations where non-determinism is caused

by uncontrollable, but known, environment actions. The current solution clas-

ses of BDD-based non-deterministic planning assume a “friendly” environ-

ment and may never reach a goal state if the environment is hostile and in-

formed. The thesis contributes efficient BDD-based algorithms for synthesiz-

ing winning strategies for such problems.

vi

Acknowledgments

This thesis has been a great journey in science, culture and life. Manuela,

I would like to thank you for the great guidance and support you have given

me, not only on research issues but on all aspects of this complicated voyage.

Without your help and encouragement, I would not have made it this far.

Randy, thank you very much for your extensive support and for taking care

of me while Manuela was on leave at MIT. I have always looked forward to

discuss ideas with you. Your deep insight in my work has helped me to cut

wild paths early and encouraged me to pursue fruitful ideas.

I would also like to thank the rest of my thesis committee, Reid and Paolo.

Thank you Reid for your detailed feedback on the thesis draft and for providing

the Deep Space One domain. Thank you Paolo for being able to attend my

thesis defense and for your key feedback on the thesis draft.

I also wish to thank Henrik Reif Andersen for hosting me as a visitor at the

IT University of Copenhagen in the summer 2000 and 2001 and for taking the

job as Danish contact person for my scholarship from the Danish Ministry of

Science, Technology and Innovation.

Several people, in addition to Reid, have contributed key benchmark prob-

lems to this thesis. I would like to thank Sylvie Thiebaux and Piergiorgio

Bertoli for providing the PSR domain, Anders P. Ravn for giving me point-

ers to the SIDMAR case study, and Kolja Sulimma for providing the channel

routing benchmark problems.

At an early point, I became interested in the application of non-deterministic

planning for controller synthesis. I wish to thank Bruce Krogh for our many

exciting meetings on this topic and for giving me pointers to relevant work in

control theory. I also wish to thank Gregg Ekberg at Highline Controls and

Nicola Muscettola at NASA Ames for showing interest in this particular appli-

cation of my work.

Finally, I wish to thank my family in Denmark and Alexander Gray and

Kent H. Andersen for their great friendship and support during my time at

Carnegie Mellon.

viii

ix

Notation

Symbol Interpretation�✂✁☎✄ the element � is a member of the set ✄�✝✆✁☎✄ the element � is not a member of the set ✄✄✟✞✡✠ the set ✄ is a subset of the set ✠✄✟☛✡✠ the set ✄ is a proper subset of the set ✠✄ ✆✞✡✠ the set ✄ is not a subset of the set ✠✄✟☞✡✠ the set ✄ is a superset of the set ✠✌
the empty set✍
the universal set✎ ✄ ✎ the cardinality of ✄✄ the complement of the set ✄✄✑✏✒✠ the difference of the sets ✄ and ✠✄✑✓✔✠ the intersection of the sets ✄ and ✠✄✑✕✔✠ the union of the sets ✄ and ✠✖✘✗✙✛✚✢✜ ✄ ✙ the intersection of the sets ✄ ✜✤✣✦✥✧✥✧✥★✣ ✄ ✗✩ ✗✙✛✚✢✜ ✄ ✙ the union of the sets ✄ ✜✤✣★✥✧✥✧✥★✣ ✄ ✗✖✘✗✙✫✪✭✬ ✄ ✙ the intersection of the family of sets ✮ ✄ ✙ ✎✰✯ ✁✝✱✳✲✩ ✗✙✫✪✭✬ ✄ ✙ the union of the family of sets ✮ ✄ ✙ ✎✰✯ ✁✴✱✳✲✵✷✶
the power set of the set ✄✄✴✸✹✠ the Cartesian product of the set ✄ and ✠✺✼✻ negation of the proposition ✻✻✾✽❀✿ conjunction of the proposition ✻ and ✿✻✾❁❀✿ inclusive disjunction of the proposition ✻ and ✿❂❄❃✤❅✭❆
tautology❇❉❈❋❊❍● ❆
contradiction■
the universal quantifier❏
the existential quantifier✻▲❑▼✿ the proposition ✻ implies the proposition ✿✻❖◆ ✿ ✻▲❑▼✿ and ✿P❑◗✻❘✘✗✙✛✚✢✜ ✻ ✙ the conjunction of the propositions ✻ ✜❙✣✦✥✧✥✧✥❙✣ ✻ ✗❚ ✗✙✛✚✢✜ ✻ ✙ the disjunction of the propositions ✻ ✜✤✣★✥✧✥✧✥★✣ ✻ ✗

x

Symbol Interpretation❘ ✗✙✫✪ ✬ ✻ ✙ the conjunction of the family of propositions ✮ ✻ ✙ ✎✰✯ ✁✝✱✳✲❚ ✗✙✫✪ ✬ ✻ ✙ the disjunction of the family of propositions ✮ ✻ ✙ ✎✰✯ ✁✝✱✳✲✁
the Boolean constants ✮ ❂❄❃✤❅✭❆ ✣ ❇❉❈❋❊❍● ❆ ✲✂
the set of natural numbers✄
the set of real numbers✂✆☎
the set of positive natural numbers✄✝☎
the set of positive real numbers✄ ☎✞ the set of non-negative real numbers✟
the set of Kripke structures✠ ✎ ✡☞☛✍✌
the Boolean formula

✠
restricted to the value ✎ ✁ ✁

of the Boolean variable ✏✠✒✑ ✓✕✔✗✖✙✘
the substitution of variable

✓
with variable

✖
in expression

✠
✮✗✚✜✛ ✻✣✢ ✚✥✤ ✲ the set of elements ✚ satisfying proposition ✻✣✢ ✚✥✤✦✓

a vector ✢ ✓ ✜❙✣✦✥✧✥✧✥❙✣ ✓ ✗ ✤✧
defining equality★
assignment in algorithm description✩
map in algorithm description✎ ✩ ✎
the number of entries in the map

✩
in algorithm description✩ ✑✫✪✙✘

the entry with key
✪

in map
✩

in algorithm description (
✪ ✙

denotes the
✯
th

key of
✩

)✬
the union of the entries in map

✩
in algorithm description

Contents

1 Introduction 1

1.1 Approach . 3

1.2 Thesis Contributions . 6

1.3 Document Outline . 7

2 Background 9

2.1 Logics and Formalisms . 9

2.1.1 Quantified Boolean Formulas . 9

2.1.2 Kripke Structures . 10

2.1.3 Computation Tree Logic . 11

2.2 Binary Decision Diagrams . 13

2.3 Symbolic Model Checking . 16

2.3.1 Partitioning . 18

2.3.2 Frontier Set Simplification . 20

2.3.3 Splitting . 20

2.3.4 BDD Package Adjustment . 21

2.4 Heuristic Search . 21

2.5 Summary . 25

3 BDD-Based Planning 27

3.1 Deterministic Planning . 27

3.1.1 Encoding STRIPS Domains . 28

3.1.2 Planning Algorithms . 32

xi

xii CONTENTS

3.2 Non-Deterministic Planning . 35

3.2.1 Encoding NADL Domains . 38

3.2.2 Planning Algorithms . 44

4 State-Set Branching 51

4.1 Best-Set-First Search . 52

4.2 BDD-Based Implementation . 57

4.2.1 Disjunctive Branching Partitioning 57

4.2.2 Conjunctive Branching Partitioning 59

4.3 Experimental Evaluation . 60

4.3.1 Search Problems . 64

4.3.2 Planning Problems . 69

4.3.3 Channel Routing Problems . 77

4.4 Conclusion . 80

4.5 Summary . 82

5 Non-Deterministic State-Set Branching 83

5.1 Guided Non-Deterministic Planning . 83

5.2 Guided Precomponents . 85

5.2.1 Guided Weak Precomponents . 86

5.2.2 Guided Strong Precomponents . 87

5.2.3 Guided Strong Cyclic Precomponents 88

5.3 Experimental Results . 89

5.3.1 Non-Deterministic Domains . 90

5.3.2 Deterministic Domains . 96

5.4 Conclusion . 99

5.5 Summary . 99

6 Fault Tolerant Planning 101

6.1 N-Fault Tolerant Planning Problems . 101

6.2 N-Fault Tolerant Planning Algorithms . 103

CONTENTS xiii

6.3 Experimental Evaluation . 110

6.3.1 Unguided Search . 110

6.3.2 Guided Search . 116

6.4 Conclusion . 119

6.5 Summary . 121

7 Adversarial Planning 123

7.1 Adversarial Planning Problems . 124

7.2 Adversarial Planning Algorithms . 130

7.2.1 Weak Adversarial Precomponents 130

7.2.2 Strong Cyclic Adversarial Precomponents 131

7.3 Action Selection Strategies . 132

7.4 Experimental Evaluation . 134

7.4.1 Parameterized Example Domain 135

7.4.2 Hunter and Prey Domain . 137

7.5 Conclusion . 139

7.6 Summary . 139

8 Related Work 141

8.1 Deterministic Planning and Heuristic Search 141

8.2 Non-Deterministic Planning . 145

8.3 Fault Tolerant Planning . 149

8.4 Adversarial Planning . 150

8.5 Planning Languages . 151

8.6 Summary . 152

9 Conclusion 155

9.1 Contributions . 155

9.2 Outlook and Future Directions . 157

A BIFROST 175

xiv CONTENTS

A.1 User Guide to BIFROST 0.7 . 175

A.1.1 Usage . 175

A.1.2 Examples . 177

A.2 NADL
☎

. 178

A.3 Experimental Setting . 182

B Proofs 185

B.1 Notation . 185

B.2 Additional Definitions . 186

B.3 NDP . 188

B.4 Strong . 189

B.5 Weak . 191

B.6 Strong Cyclic . 193

B.7 GNDP . 196

B.8 Guided Strong . 196

B.9 Guided Weak . 198

B.10 Guided Strong Cyclic . 200

B.11 Weak Adversarial . 201

B.12 Strong Cyclic Adversarial . 203

Chapter 1

Introduction

Planning is a fundamental aspect of human activity. It considers how to select and sequence

actions in order to achieve specific goals. This problem arises in a wide range of situations.

For instance, we need to select and sequence rotations very carefully in order to change

Rubik’s Cube from some initial configuration to its goal configuration where each side has

identically colored tiles. Planning is also needed to control a power plant in order to recover

from any possible failure of the plant. This problem is fairly different from solving Rubik’s

Cube since the control actions depend on an interacting environment. In general, we can

divide planning problems into two main categories: deterministic planning problems and

non-deterministic planning problems. Rubik’s Cube is a good example of a deterministic

planning problem. Each action has only one possible outcome. In other words, actions are

deterministic. This is not the case for non-deterministic planning problems. Consider the

power plant problem. Due to failures, actions may either succeed or fail. Thus, several

outcomes of actions are possible. In general, dynamic environments cause actions to be

non-deterministic since we are unable to determine their exact effect.

Planning problems are often very hard to solve in practice. There are several reasons

for this. First, real-world domains tend to be extremely large. Assume for instance that the

power plant described above consists of � units that each can be in at least two different

states. The total number of states of the power plant is then at least
✵ ✗

. Thus, the state

space of the power plant grows exponentially with the number of units. This is a common

problem for real-world domains and has been termed the state space explosion problem.

Second, plans for real-world problems are often long. A plan for controlling a power

plant or loading a container ship may involve sequencing thousands of actions. Third,

the combinatorial complexity of planning may be high. The Rubik’s Cube is a hard puzzle

because it is impossible to move one tile without affecting the position of several other

tiles. Similarly, routing wires between units on an integrated circuit is complicated because

1

2 CHAPTER 1. INTRODUCTION

routing one wire strongly constrains how the remaining wires can be routed. Finally, fourth,

a planning problem may not only be to generate a valid plan but an optimal one. We may

want to minimize the energy consumption or time used to load a container ship or we may

want to use a minimum number of connections between layers (vias) when routing the

wires of an integrated circuit. Such optimal plans can be much harder to find than just valid

ones.

Automated planning is a subfield of Artificial Intelligence (AI) concerned with how to

generate plans automatically. The traditional approach is to make a discrete abstraction of

the real-world domain and search for a solution. More formally, a planning domain consists

of a finite set of states, a finite set of actions, and a transition relation defining the effect of

actions. A planning problem consists of a planning domain, an initial state,1 and a set of

goal states. For a deterministic planning problem, a plan is a sequence of actions forming a

path leading from the initial state to one of the goal states. For a non-deterministic planning

problem where actions may lead to several possible next states, a plan may be defined as

a function associating states with relevant actions to apply at the state in order to reach

a goal state. Planning domains and planning problems are traditionally described in a

planning language that uses propositional or first order logic to define actions and states.

This encoding scheme causes the formal complexity of planning to be PSPACE-complete

[29].

The primary challenge of automated planning is to provide efficient algorithms and data

structures to represent and synthesize plans that scale to real-world problems. During its

more than 40 years of existence, 2 the field has contributed a vast number of effective search

techniques including means-end analysis [126], hierarchical abstraction [148], partial-order

planning [149], case-based planning [72, 164], graph-planning [18], heuristic search [75,

20], and planning and learning [163]. In addition, there has recently been successful work

on reducing planning to satisfiability [99], model checking [33], and integer programming

[19]. In recent years, the efficiency of planning systems has grown considerably. However,

scaling to moderately large real-world problems is still an open problem.

The secondary challenge of automated planning is to provide planning algorithms that

can handle essential properties of real-world domains such as time, dynamic environments,

partial observability of states, and concurrency. The challenge is not simply to extend the

expressiveness of planning languages and generalize algorithms to manage all these proper-

ties, but instead to carefully develop new representations and algorithms with an attractive

trade-off between expressiveness and scalability. Non-deterministic planning is an example

of such a positive trade-off. Non-determinism can model essential properties of dynamic

1If the initial state is uncertain, we may represent it by a set of states.
2The General Problem Solver (GPS) [126] is widely considered the first automated problem solver.

1.1. APPROACH 3

domains such as uncontrollable actions and alternative action behavior without introduc-

ing computational expensive elements in the model like continuous time and probability

distributions.

Recently, efficient algorithms using reduced ordered Binary Decision Diagrams (BDDs)

[26] to represent plans and applying implicit search techniques developed for symbolic

model checking [119] have been shown to outperform a wide range of the previous ap-

proaches to non-deterministic planning [34]. However, a major challenge of this line of

research is that non-deterministic domain models often are coarse abstractions that make it

hard to define strong solution models.

To summarize, planning is about selecting and sequencing actions in order to obtain

specific goals. In general, planning problems can be divided according to the environment

which either can be non-interacting or interacting. In both cases, most real-world planning

problems are very hard and the primary goal of automated planning is to provide efficient

algorithms and data structures that scale to real-world applications. A secondary goal is

to develop planning systems that handle essential properties of real-world domains such

as dynamic environments and time. An interesting recent development in this direction is

BDD-based non-deterministic planning. However, the range of solution classes developed

within this framework is still limited.

1.1 Approach

The overall objective of the thesis is to contribute efficient algorithms for non-deterministic

planning. We consider the universal planning [154] approach to non-deterministic plan-

ning. In universal planning, actions are assumed to be non-deterministic in the sense that

they may have several possible outcomes. States, on the other hand, are assumed to be

fully observable. A universal plan is a function mapping states to sets of relevant actions

to apply in order to reach a goal state. It is executed by iteratively observing the current

state and applying one of the actions in the plan associated with that state. From a control

theoretic point of view, universal planning corresponds to automated controller synthesis

of discrete, untimed, and memory less controllers.

A main assumption of the thesis is that the computational advantages of non-determinis-

tic domain models outweigh the problems of defining practically useful solution classes due

to their limited expressive power. We believe that the absence of continuous elements, like

time and probability distributions may be essential for developing algorithms that scale

to real-world problems. In addition, we trust that the limitation of the expressive power

of non-deterministic abstractions can be overcome by adding further information to the

model identifying different sources of non-determinism (e.g., by distinguishing between

4 CHAPTER 1. INTRODUCTION

successful and failure outcomes of actions).

The thesis relies on the efficiency of BDDs to represent and generate non-deterministic

plans. A BDD is a rooted Directed Acyclic Graph (DAG) representing a Boolean function.

Its main advantage is that the number of nodes in the BDD graph often is much smaller

than the number of truth assignments of the Boolean function it represents. State-of-the-art

BDD-based non-deterministic planning algorithms iteratively construct a BDD represent-

ing the plan. This is done by an implicit breadth-first backward search from the goal states

to the initial state carried out entirely with BDDs. Due to the compactness of BDDs, this ap-

proach may reduce both the time and space complexity exponentially compared to explicit

search techniques.

The current approaches to BDD-based non-deterministic planning face two major chal-

lenges. The first is that BDD-based non-deterministic planning despite, its unprecedented

efficiency, still does not scale to large real-world problems. Often the BDDs representing

the backward breadth-first search frontier blow up [86]. This tendency seems to be worse

for typical planning problems compared to typical model checking problems. One reason

for this might be that planning domains often represent hard combinatorial problems such

as channel routing in VLSI design, whereas model checking benchmarks often are indus-

trial cases with no particular intention of being combinatorially hard. Another difference

is the diameter of the finite transition graphs representing the planning domain. Planning

problems are deliberately designed to have transition graphs with large diameters causing

plan solutions to be long. Again, model checking benchmarks are not particularly chosen

to fulfill this requirement.

The second challenge of BDD-based non-deterministic planning is that the limited ex-

pressive power of the non-deterministic abstraction makes it hard to define solution classes

that are useful in practice. Non-deterministic domain models often hide too much informa-

tion about the source of non-determinism to allow useful solutions models to be defined.

Given these challenges, the goal of the thesis is to answer two questions

1. Can the computational efficiency of BDD-based non-deterministic planning be im-

proved ?

2. Is it possible to improve the current solution classes for BDD-based non-deterministic

planning ?

The thesis addresses the first question by introducing a seamless combination of BDD-

based search and heuristic search. 3 The advantage of heuristic search algorithms such as

3We will use the terms heuristic search, guided search, directed search, and informed search interchange-

ably.

1.1. APPROACH 5

pure heuristic search and A* [75] compared to uninformed or blind search algorithms such

as depth-first search and breadth-first search, is that they use heuristics to prioritize the node

expansion in the search tree and in this way guide the search toward a solution. In most

cases, the number of states of a guided search frontier grows slower with the search depth

than the number of states of an unguided search frontier. We therefore expect that the size of

BDDs representing a guided search frontier grow slower than the size of BDDs representing

a blind search frontier. Several attempts have been made to implement BDD-based versions

of these algorithms. They have, however, either been inefficient [53, 74, 180] or too narrow

in scope [179]. The approach introduced in the thesis is called state-set branching. The

philosophy of state-set branching is that the information represented by BDDs must be

semantically closely related in order for the BDD operations to work efficiently. In contrast

to previous work, state-set branching avoids arithmetic computations at the BDD level in

each iteration of the search algorithm. Instead, these computations are integrated in the

BDD operation computing the search frontier. State-set branching is general. It applies

to any heuristic function, any evaluation function, and any transition cost function. In

addition, state-set branching extends beyond classical heuristic search and deterministic

planning. In its non-deterministic version called non-deterministic state-set branching,

it can be used to dramatically improve the performance of non-deterministic BDD-based

planning algorithms not only in terms of computational efficiency but also in terms of the

size of the produced plans.

The thesis addresses the second thesis question by introducing two extensions of the

ordinary non-deterministic domain model. The first extension is based on the key observa-

tion that non-determinism in real-world domains often is caused by infrequent errors that

make otherwise deterministic actions fail. In many cases, no actions can be guaranteed

to succeed. For such problems plans taking all combinations of faults into account seldom

exists. The approach introduced in the thesis is called fault tolerant planning. Fault tolerant

plans are robust to a limited number of faults happening during execution.

The second extension considers situations where the main source of non-determinism

is uncontrollable actions selected by a possibly hostile environment. By extending the

ordinary non-deterministic domain model to explicitly represent environment actions, it

is possible to reason about the actions of the environment during planning. The approach

introduced in the thesis is called adversarial planning. The key idea is to prune unfair states

from the plans where the environment has an action for which no counter action exists that

may cause progress toward the goal states.

6 CHAPTER 1. INTRODUCTION

1.2 Thesis Contributions

The thesis has five major contributions:

1. State-Set Branching

State-set branching appears to be the currently most general and most computation-

ally efficient framework for combining classical heuristic search and BDD-based

search. It applies to any best-first search algorithm, any heuristic function, any eval-

uation function, and any transition cost function. A state-set branching implementa-

tion of A* often dominates both the ordinary explicit-state implementation of A* and

blind BDD-based search.

2. Non-Deterministic State-Set Branching

Non-deterministic state-set branching is, as far as we know, the first framework for

guiding BDD-based non-deterministic planning algorithms.4 Even for fairly weak

heuristics, extensive performance improvements over the current non-deterministic

BDD-based planning algorithms can be obtained not only in terms of computation

speed but also in terms of the size of the produced plans.

3. Fault Tolerant Planning

To our knowledge, the fault tolerant planning algorithms introduced in the thesis

are the first algorithms to synthesize fault tolerant control strategies given a domain

description that explicitly represents successful and failure effects of actions.

4. Adversarial Planning

Adversarial planning is, as far as we know, the first work that studies fully imple-

mented and complete symbolic algorithms for synthesizing strategies for winning

concurrent reachability games with probability 1 or positive probability. To our

knowledge, it also is the first work that provides such algorithms in a format that

enables guided search techniques to be applied.

5. NADL
☎

NADL
☎

is an extension of NADL [93]. To our knowledge, it is the first represen-

tation language suitable for planning that both explicitly represents uncontrollable

environment actions and failure effects of actions.

As described in the previous section, these contributions are along two orthogonal

axises: computational efficiency and solution quality. State-set branching falls on the first

4By non-deterministic planning, we refer to the definition given in Section 3.2.

1.3. DOCUMENT OUTLINE 7

axis, Fault tolerant planning and adversarial planning mainly fall on the second. In addi-

tion to this work, the thesis contributes formal correctness and optimality proofs for algo-

rithms where these properties are nontrivial. Moreover, the thesis provides the Bdd-based

InFoRmed planning and cOntroller Synthesis Tool (BIFROST) for solving search and plan-

ning problems described in PDDL [118] and NADL
☎

. BIFROST is fully implemented and

currently includes 8 deterministic and 10 non-deterministic planning and search algorithms.

1.3 Document Outline

The remainder of the thesis is organized as follows. Chapter 2 presents background mate-

rial including BDDs, symbolic model checking, and heuristic search. Chapter 3 presents

basic techniques for encoding deterministic STRIPS [58] and non-deterministic NADL

and NADL
☎

planning problems with BDDs and presents unguided BDD-based search

algorithms for synthesizing deterministic and non-deterministic plans. Chapter 4 intro-

duces state-set branching. It is shown how the framework can be used to implement algo-

rithms for classical heuristic search and deterministic planning. Chapter 5 introduces non-

deterministic state-set branching and describes guided versions of the blind BDD-based

non-deterministic planning algorithms. Chapter 6 defines fault tolerant planning and in-

troduces both blind and guided BDD-based algorithms for generating fault tolerant plans.

Chapter 7 presents adversarial planning and describes two BDD-based adversarial planning

algorithms. Finally, Chapter 8 discusses related work, and Chapter 9 presents conclusions

and future work. BIFROST is described in Appendix A and correctness and optimality

proofs are given in Appendix B.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter presents a range of formalisms and logics used in the thesis and gives an

introduction to symbolic model checking and classical heuristic search. Section 2.1 de-

scribes Quantified Boolean Formulas (QBF), Kripke structures, and Computation Tree

Logic (CTL). Section 2.2 presents the BDD data structure and modern BDD packages. Sec-

tion 2.3 describes symbolic model checking. It shows how BDDs can be used to represent

and search a finite transition system and describes a technique known as transition relation

partitioning used to lower the complexity of BDD-based search. Finally, Section 2.4 gives

a brief introduction to classical heuristic search.

2.1 Logics and Formalisms

This section presents Quantified Boolean Formulas (QBF) [1], Kripke structures [111], and

the Computation Tree Logic (CTL) [10, 55]. QBF provides a concise notation for complex

operations on Boolean formulas which we will use extensively to define BDD operations.

Kripke structures and CTL are basic tools for specifying behavior of non-deterministic

systems [40, 42]. We will use them to define various classes of non-determini-stic plans.

2.1.1 Quantified Boolean Formulas

Quantified Boolean Formulas (QBF) is ordinary propositional logic extended with quan-

tification of Boolean variables.

Definition 2.1 (QBF syntax) Given a set
� ✁ ✮✥✏ ✜✤✣✦✥✧✥✧✥❉✣ ✏ ✗ ✲ of propositional variables,

QBF(
�

) formulas are inductively defined by

9

10 CHAPTER 2. BACKGROUND

� every variable in
�

is a formula,� if
✠

and ✁ are formulas, then so are ✺ ✠ ,
✠ ✽ ✁ , and

✠ ❁ ✁ , and�
if
✠

is a formula and ✏ ✁ �
, then

❏ ✏✄✂ ✠ and
■ ✏☎✂ ✠ are formulas.

A truth assignment for QBF(
�

) is a function ✆ ✛ �✞✝ ✁
. We will use the notation✆✠✟ ✏ ★ �☛✡ for the truth assignment defined by

✆✠✟ ✏ ★ �☛✡ ✢✌☞ ✤ ✁✎✍ � ✛✑✏✓✒ ✏ ✁ ☞✆ ✢✌☞ ✤ ✛✑✔✖✕✘✗✚✙✜✛✣✢✤✏✦✥✣✙✧✂
Definition 2.2 (QBF Semantics) If

✠
is a formula in QBF(

�
) and ✆ is a truth assignment,

we will write ✆ ✎ ✁ ✠
to denote that

✠
is true under the assignment ✆ . The relation

✎ ✁
is

defined inductively in the obvious manner� ✆ ✎ ✁ ✏ iff ✆ ✢ ✏ ✤ ✁ ❂❄❃✤❅✭❆
,� ✆ ✎ ✁ ✺ ✠ iff ✆ ✆✎ ✁ ✠

,� ✆ ✎ ✁ ✠ ❁ ✁ iff ✆ ✎ ✁ ✠
or ✆ ✎ ✁ ✁ ,� ✆ ✎ ✁ ✠ ✽ ✁ iff ✆ ✎ ✁ ✠
and ✆ ✎ ✁ ✁ ,� ✆ ✎ ✁ ❏ ✏☎✂ ✠ iff ✆✠✟ ✏ ★ ❇❉❈❋❊❍● ❆ ✡ ✎ ✁ ✠

or ✆✠✟ ✏ ★ ❂ ❃✤❅✳❆ ✡ ✎ ✁ ✠
,� ✆ ✎ ✁ ■ ✏☎✂ ✠ iff ✆✠✟ ✏ ★ ❇❉❈❋❊❍● ❆ ✡ ✎ ✁ ✠

and ✆✠✟ ✏ ★ ❂ ❃✤❅✳❆ ✡ ✎ ✁ ✠
.

For a vector
✦✏ ✁ ✢ ✏ ✜❙✣✦✥✧✥✧✥❙✣ ✏✩★✍✤ of propositional variables in

�
, we define the abbreviations

❏ ✦✏☎✂ ✠ ✧ ❏ ✏ ✜ ✂ ✢ ✥✧✥✧✥ ✢ ❏ ✏✩★✪✂ ✠ ✤ ✥✧✥✧✥ ✤ (2.1)■ ✦✏☎✂ ✠ ✧ ■ ✏ ✜ ✂ ✢ ✥✧✥✧✥ ✢ ■ ✏✩★✪✂ ✠ ✤ ✥✧✥✧✥ ✤✫✂ (2.2)

The support of a formula
✠

is the set of variables that
✠

depends on ✮✥✏ ✁ � ✛ ✠ ✎ ✡ ☛☎✬✮✭✰✯✘✱ ✆✁✠ ✎ ✡☞☛✠✲✰✳✵✴ ✶✰✱ ✲ .

2.1.2 Kripke Structures

A Kripke structure [111, 40] is finite state transition graph that can be used to capture the

intuition about the behavior of a finite transition system. The standard definition of a Kripke

structure is a set of states, a set of transitions between states, and a function that labels each

state with a set of propositions that are true in this state. For the purpose of this thesis,

however, we consider a simplified version of the standard definition without propositions.1

1Similar restrictions have been used in model checking [39].

2.1. LOGICS AND FORMALISMS 11

Definition 2.3 (Kripke Structure) A Kripke structure � is a pair � ✁ ✟✂✁ ✣☎✄ ✡ where ✁ is

a finite set of states and
✄ ✞ ✁ ✸ ✁ is a total transition relation.2

A state and a transition of a Kripke structure denote a state and a possible state change of

the finite transition system the Kripke structure represents. A path in a Kripke structure

represents an execution of the system. A path ✆ in � is an infinite sequence ✿ ✞ ✿ ✜✼✥✧✥✧✥ of

states in ✁ such that, for
✯✞✝✠✟

, ✟ ✚ ✙ ✣ ✚ ✙ ☎ ✜ ✤ ✁ ✄
.

Example 2.1 A Kripke structure with four states ✁ ✁ ✮ ✄ ✣ ✠ ✣☛✡P✣☛☞ ✲ and five transitions✄ ✁ ✮ ✟ ✄ ✣ ✠ ✡ ✣ ✟ ✠ ✣☛☞ ✡ ✣ ✟ ✡ ✣ ✄ ✡ ✣ ✟ ✡ ✣☛☞ ✡ ✣ ✟ ☞✒✣✌✡ ✡✤✲ is shown in Figure 2.1. ✍

✎✶

✏ ✑

Figure 2.1: A Kripke structure with four states and five transitions.

2.1.3 Computation Tree Logic

Computation Tree Logic (CTL) [10, 55] is a branching-time temporal logic to specify the

behavior of a system represented by a Kripke structure. In branching-time temporal logics,

the underlying structure of time is assumed to have a branching tree-like nature where each

moment may have many successor moments. For a Kripke structure, this execution tree is

formed by designating a state in the Kripke structure as an initial state and then unwinding

the structure into an infinite tree with the designated state as root. Each path in the tree is

a path in the Kripke structure and represents a possible execution of the system the Kripke

structure models.

Example 2.2 The execution tree starting in state
✡

of the Kripke structure shown in Fig-

ure 2.1 is illustrated in Figure 2.2. ✍

We consider a small subset of CTL formulas sufficient for our purposes. CTL formulas

are composed of path quantifiers and temporal operators. The path quantifiers are used

to describe the branching structure in the execution tree. There are two such quantifiers ✒
2A transition relation is total iff ✓✕✔✗✖✙✘✚✔☎✛☛✖✌✜✢✔✤✣✙✔✌✛✦✥★✧✪✩ .

12 CHAPTER 2. BACKGROUND

✏

✶ ✑

✏✎

Figure 2.2: The execution tree produced from state � of the Kripke structure shown

in Figure 2.1.

(“for all execution paths”) and ✁ (“for some execution path”). These quantifiers are used

in a particular state to specify that all of the paths or some of the paths starting at that state

have some property. The temporal operators describe properties of a path through the tree.

We consider one of these ✂ (“until”). It is used to combine two properties ✄ and ☎ . It holds

if there is a state on the path where ☎ holds, and at every preceding state on the path, ✄
holds.

Definition 2.4 (CTL Syntax) Given a finite set of states ✁ , the syntax of CTL formulas are

inductively defined as follows

� Each element of
✵✝✆

is a formula,� ✺ ☎ , ✁ ✢ ✄✞✂✞☎ ✤ , and ✒ ✢ ✄✞✂✟☎ ✤ are formulas if ✄ and ☎ are.

CTL semantics is given with respect to Kripke structures. In the following inductive defi-

nition of the semantics of CTL, �
✣ ✿ ✎ ✁ ☎ denotes that ☎ holds in the state ✿ of the Kripke

structure � .

Definition 2.5 (CTL Semantics) Given a Kripke structure � ✁ ✟✂✁ ✣☎✄ ✡ , the semantics of

CTL formulas are inductively defined as follows

� �
✣ ✿ ✞ ✎ ✁✡✠

iff ✿ ✞ ✁ ✠ ,� �
✣ ✿ ✞ ✎ ✁ ✺ ☎ iff �

✣ ✿ ✞ ✆✎ ✁ ☎ ,� �
✣ ✿ ✞ ✎ ✁ ✁ ✢ ✄✞✂✞☎ ✤ iff there exists a path ✿ ✞ ✿ ✜ ✥✧✥✧✥ and

✯☞☛ ✟
such that �

✣ ✿ ✙ ✎ ✁ ☎ and,

for all
✟✍✌✏✎✒✑ ✯

, �
✣ ✿✔✓ ✎ ✁ ✄ ,� �

✣ ✿ ✞ ✎ ✁ ✒ ✢ ✄✞✂✞☎ ✤ iff for all paths ✿ ✞ ✿ ✜✼✥✧✥✧✥ there exists
✯✕☛ ✟

such that �
✣ ✿ ✙ ✎ ✁ ☎ and,

for all
✟✍✌✏✎✒✑ ✯

, �
✣ ✿✔✓ ✎ ✁ ✄ .

2.2. BINARY DECISION DIAGRAMS 13

We will use three abbreviations

✒✁� ☎ ✧ ✒ ✢ ✁ ✂✞☎ ✤ ✣ (2.3)

✁✂� ☎ ✧ ✁ ✢ ✁ ✂✞☎ ✤ ✣ (2.4)

✒✂✄✕☎ ✧ ✺ ✁☎� ✺ ☎✄✂ (2.5)

� stands for “future” or “eventually”. Since ✁ is the complete set of states in the Kripke

structure, the CTL formula ✁ holds in any state. Thus, ✒✁� ☎ means that for all execution

paths, a state where ☎ holds will eventually be reached. Similarly, ✁✂� ☎ means that there

exists an execution path reaching a state where ☎ holds. ✄ stands for “globally” or “always”.

The formula ✒✂✄✕☎ holds, if every state on any execution path satisfies ☎ .

Example 2.3 Let � denote the Kripke structure shown in Figure 2.1. Since four of the

transitions form a cycle
✡ ✄ ✠ ☞ ✡

, we have that from any state visited on an execution path

produced from
✡

,
✡

can be reached. Thus, �
✣☛✡ ✎ ✁ ✒✂✄✝✁☎� ✮ ✡ ✲ . ✍

We will often consider CTL formulas on execution trees produced from a set of states. To

simplify the presentation, we therefore introduce the short notation

�
✣✝✆ ✎ ✁ ☎ ✧ ■ ✿ ✁ ✆ ✂☎� ✣ ✿ ✎ ✁ ☎ ✂ (2.6)

2.2 Binary Decision Diagrams

A reduced ordered Binary Decision Diagram (BDD) is rooted Directed Acyclic Graph

(DAG) representing a Boolean function on a set of linearly ordered Boolean variables.

It has one or two terminal nodes labeled ✞ or
✟
, and a set of variable nodes. Each variable

node is associated with a Boolean variable and has two outgoing edges low and high. Given

an assignment of the variables, the value of the Boolean function is determined by a path

starting at the root node and recursively following the high edge, if the associated variable

is true, and the low edge, if the associated variable is false. The function value is
❂ ❃✤❅✳❆

, if

the label of the reached terminal node is ✞ ; otherwise it is
❇❉❈❋❊❍● ❆

. The graph is ordered such

that all paths in the graph respect the ordering of the variables.

Example 2.4 A BDD representing the function
✠ ✢ ✓ ✜✫✣ ✓✠✟ ✤ ✁ ✓ ✜ ❁✴✺ ✓ ✜ ✽ ✺ ✓✠✟

is shown in

Figure 2.3. ✍

A BDD is reduced such that no two distinct nodes ✡ and ✏ have the same variable name

and low and high successors (Figure 2.4a), and no variable node ✡ has identical low and

high successors (Figure 2.4b). Due to these reductions, the number of nodes in a BDD of

14 CHAPTER 2. BACKGROUND

✓ ✜

01

✓✠✟

Figure 2.3: A BDD representing the function �✂✁☎✄✝✆☎✣✞✄✠✟✌✥☛✡☞✄✌✆✎✍✑✏✒✄✌✆✔✓✕✏✒✄✖✟ . High

and low edges are drawn with solid and dashed lines, respectively.

a regularly structured function is often much smaller than the number of truth assignments

of the function. In particular, it can be shown that the size of a BDD representing any

symmetric function only grows polynomially with the number of variables of the function

[26].

Definition 2.6 A Boolean function
✠ ✁ ✁ ✗ is called symmetric if each permutation ✗ of the

variables does not change the function value, i.e.,

✠ ✢ ✓ ✜❙✣✦✥✧✥✧✥❙✣ ✓ ✗ ✤ ✁ ✠ ✢ ✓✙✘✛✚ ✜✢✜✰✣✦✥✧✥✧✥❉✣ ✓✙✘✛✚ ✗ ✜ ✤✫✂
Another advantage is that the reductions make BDDs canonical. Large space savings can

be obtained by representing a collection of BDDs in a single multirooted graph where the

subgraphs of the BDDs are shared. Due to the canonicity, two BDDs are identical if and

only if they have the same root. Consequently, when using this representation, equivalence

check between two BDDs can be performed in constant time. In addition, BDDs are easy

to manipulate. Any Boolean operation
✠✤✣ ✁ on two BDDs

✠
and ✁ can be carried out in✥ ✢ ✎ ✠ ✎ ✎ ✁ ✎ ✤ . The size of a BDD can depend critically on the variable ordering. To find an

(a) (b)

u v u

x x x

Figure 2.4: Reductions of BDDs. (a) nodes associated to the same variable with

equal low and high successors will be converted to a single node. (b) nodes causing

redundant tests on a variable are eliminated.

2.2. BINARY DECISION DIAGRAMS 15

optimal ordering is a co-NP-complete problem in itself [26], but as illustrated in Exam-

ple 2.5, a good heuristic for choosing an ordering is to locate variables close to each other

if knowledge about their truth assignment removes a lot of uncertainty about the truth value

of the Boolean function. [40].

Example 2.5 For the function ✢ ✓ ✜ ✽ ✖ ✜ ✤ ❁ ✢ ✓✠✟ ✽ ✖ ✟ ✤ ❁ ✥✧✥✧✥ ❁ ✢ ✓ ✗ ✽ ✖ ✗ ✤ there is an exponential

difference between the size of a BDD with the variable ordering
✓ ✜❙✣ ✖ ✜✫✣✢✥✧✥✧✥✢✣ ✓ ✗ ✣ ✖ ✗ and a

BDD with the variable ordering
✓ ✜❙✣★✥✧✥✧✥ ✣ ✓ ✗ ✣ ✖ ✜ ✣ ✥✧✥✧✥★✣ ✖ ✗ . For the latter ordering, the lack of

information about the assignment of the
✖

variables in the top section of the BDD, where

the
✓

variables are tested, causes an exponential growth of the graph [119]. The problem is

illustrated for �
✁✁�

in Figure 2.5. ✍

0 11

x1

x2

x3 x3 x3

x2

x3

y1 y1 y1 y1

y2 y2

y3

x1

y1

x2

y2

x3

y
3

0

(b)(a)

Figure 2.5: Two BDDs representing the function ✁ ✄✝✆✝✓✄✂ ✆ ✥ ✍ ✁ ✄✖✟✒✓☎✂ ✟ ✥✖✍✕✁☎✄✝✆✒✓✄✂✞✆✌✥ .
The BDD in (a) only grows linearly with the number of variables in the expression,

while the BDD in (b) grows exponentially.

For a comprehensive introduction to BDDs and branching programs in general, we refer

the reader to Bryant’s original paper [26] and the books [121, 168].

BDD Packages

A BDD package is a collection of efficient data structures and algorithms for representing

and computing basic operations on BDDs. Modern BDD packages (e.g.,[158, 112]) typi-

cally share the following common implementation features based on [25, 146]: 1) a single

16 CHAPTER 2. BACKGROUND

shared BDD with several roots representing a set of BDDs, 2) a set of dynamic program-

ming algorithms for carrying out operations on the BDDs that due to a large number of

distinct subproblems use a cache instead of a memoization table, and 3) data structures that

facilitate dynamic variable reordering and garbage collection of unreferenced BDD nodes

that is invoked when the percentage of unreferenced BDD nodes exceeds a preset threshold.

The three major parameters are: the initial number of nodes allocated to the shared BDD,

the cache size, and the type of dynamic variable reordering, if any.

2.3 Symbolic Model Checking

Model checking (e.g., [40]) is a subfield of computer science that applies efficient search

procedures to determine if a finite transition system fulfills its specification. In other words,

the transition system is checked to see whether it is a model of its specification. Given a

Kripke structure � representing the system, a specification is a CTL formula that must hold

in the initial state ✚ ✞ of the system. For our purpose, it is sufficient only to consider invariant

specifications �
✣ ✚ ✞ ✎ ✁ ✒✂✄ ✱ where all states reachable from ✚ ✞ must be within the set ✱ . An

invariant specification is verified by performing a reachability analysis to find the set of

states
✄

reachable from ✚ ✞ . It is then checked whether
✄

is a subset of ✱ . Obviously, an

exhaustive explicit exploration faces the state space explosion problem. In 1987 McMillan

suggested to use BDDs to search the state space implicitly to address this problem. He

coined the technique symbolic model checking [119].

The basic idea in symbolic model checking is to use a BDD to represent the character-

istic function of a set of states and the transition relation. Given a set ✄ , its characteristic

function ✄ ✢ ✓ ✤ ✧ ✓ ✁ ✄ is a Boolean function identifying all elements of ✄ . This is an im-

plicit representation of ✄ since the size of the BDD representing the characteristic function

of ✄ does not necessarily grow linearly with the cardinality of ✄ . Due to the isomorphism

between set algebra and Boolean algebra union, intersection, and complement of sets cor-

respond to disjunction, conjunction and negation of their characteristic functions. In the

sequel, we will not distinguish between set operations and their corresponding Boolean

operations. Given a Kripke structure � ✁ ✟✙✁ ✣☛✄ ✡ , we can use a vector of Boolean state

variables
✦✏ ✁ ✢ ✏ ✜✤✣★✥✧✥✧✥★✣ ✏✁�✄✂✆☎✞✝ ✚✠✟ ✆ ✟ ✜☛✡ ✤ to represent a state. Any subset of states

✆
can be rep-

resented by a Boolean function
✆ ✢ ✦✏ ✤ that can be encoded as a BDD. Similarly, a Boolean

function
✄ ✢ ✦✏ ✣ ✦✏✌☞ ✤ , where unprimed and primed variables denote current and next states, can

be used to represent the characteristic function of the transition relation.

Example 2.6 The Kripke structure in Figure 2.1 can be represented with two state variables✦✏ ✁ ✢ ✏ ✜❙✣ ✏ ✟ ✤ such that ✄ ✁ ✢ ❇❉❈❋❊❍● ❆ ✣ ❇❉❈❋❊❍● ❆ ✤ , ✠ ✁ ✢ ❂❄❃❙❅✳❆ ✣ ❇❉❈❋❊❍● ❆ ✤ ,
✡ ✁ ✢ ❇❉❈❋❊❍● ❆ ✣ ❂ ❃✤❅✳❆ ✤ , and☞ ✁ ✢ ❂❄❃✤❅✭❆ ✣ ❂❄❃❙❅✳❆ ✤ . The characteristic function of the transition relation is then

2.3. SYMBOLIC MODEL CHECKING 17

✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ = ✺ ✏ ✜ ✽✒✺ ✏ ✟ ✽ ✏ ☞✜ ✽✹✺ ✏ ☞✟ ❁
✏ ✜ ✽✹✺ ✏ ✟ ✽ ✏ ☞✜ ✽ ✏ ☞✟ ❁
✺ ✏ ✜ ✽ ✏ ✟ ✽ ✺ ✏ ☞✜ ✽✒✺ ✏ ☞✟ ❁
✺ ✏ ✜ ✽ ✏ ✟ ✽ ✏ ☞✜ ✽ ✏ ☞✟ ❁

✏ ✜ ✽ ✏ ✟ ✽ ✺ ✏ ☞✜ ✽ ✏ ☞✟
.

✍

The crucial idea in symbolic model checking is to compute previous and next states via

BDD operations. The next states of a set of states
✡

, can be found by computing the image

of
✡

IMG ✢ ✡ ✤ ✧ � ❏ ✦✏✄✂ ✡ ✢ ✦✏ ✤ ✽ ✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤✂✁ ✑ ✦✏ ☞ ✔ ✦✏ ✘ ✂ (2.7)

Existential quantification is used to abstract the source state. The input to IMG ✢ ✡ ✤ is the

characteristic function of
✡

in current state variables
✡ ✢ ✦✏ ✤ . The output is the characteristic

function in current state variables of the states that can be reached by a single transition

from
✡

. Notice that such states may lie within
✡

. The output is given in current state

variables in order to use it as input for subsequent image computations. The reachable

states from
✡

can be computed by composing images from
✡

until a fixed point is found.

All Boolean functions in the image computation are represented by BDDs, and all Boolean

operations are carried out directly on these BDDs. In the sequel, we will not distinguish

between Boolean operations and their corresponding BDD operations.

Example 2.7 For the state
✡

in the Kripke structure shown in Figure 2.1, we have
✡ ✢ ✦✏ ✤ ✁

✺ ✏ ✜ ✽ ✏ ✟
. The image of

✡
is given by

IMG ✢ ✡ ✤ ✁ � ❏ ✦✏☎✂ ✢ ✺ ✏ ✜ ✽ ✏ ✟ ✤ ✽ ✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✁ ✑ ✦✏ ☞ ✔ ✦✏ ✘
✁ � ❏ ✦✏☎✂ ✺ ✏ ✜ ✽ ✏ ✟ ✽✹✺ ✏ ☞✜ ✽✹✺ ✏ ☞✟ ❁ ✺ ✏ ✜ ✽ ✏ ✟ ✽ ✏ ☞ ✜ ✽ ✏ ☞✟ ✁ ✑ ✦✏ ☞ ✔ ✦✏ ✘
✁ � ✺ ✏ ☞✜ ✽✹✺ ✏ ☞✟ ❁ ✏ ☞ ✜ ✽ ✏ ☞✟ ✁ ✑ ✦✏ ☞ ✔ ✦✏ ✘
✁ ✺ ✏ ✜ ✽❀✺ ✏ ✟ ❁ ✏ ✜ ✽ ✏ ✟ ✂

Thus, as expected, we get IMG
✢ ✡ ✤ ✁ ✮ ✄ ✣☛☞ ✲ . ✍

Previous states of a set of states
✡

can be found by a similar computation called the preim-

age of
✡

PREIMG ✢ ✡ ✤ ✧ ❏ ✦✏ ☞ ✂ ✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✽ ✡ ✢ ✦✏ ✤ ✑ ✦✏ ✔ ✦✏ ☞ ✘ ✂ (2.8)

Again, the input is the characteristic function of
✡

in current state variables. The output is

the characteristic function (in current state variables) of the states from which a state in
✡

can be reached by a single transition.

18 CHAPTER 2. BACKGROUND

2.3.1 Partitioning

A common problem when computing the image and preimage is that the intermediate

BDDs tend to be large compared to the BDD representing the result. Another problem is

that the transition relation may grow very large if represented by a single BDD (a monolithic

transition relation). In symbolic model checking, one of the most successful approaches to

solve this problem is transition relation partitioning [28]. The technique relies on the ob-

servation that a system often can be characterized as either asynchronous with interleaved

activity or synchronous with simultaneous activity. Consider the system model shown in

Figure 2.6. For each computation, the state variables ✏ ✜❙✣✦✥✧✥✧✥❉✣ ✏ ✗ are updated. Assume that

�✂✁☎✄✝✆✞ ✁✠✟✡✆☛✌☞✁✎✍

�✑✏✝✄✒✆✞ ✏✓✟✡✆☛ ☞ ✏✔✍
�✂✕✖✄✝✆✞ ✕✗✟✘✆☛✙☞✕ ✍

✚ ☞
✜

✚ ☞✗

✚ ✜
✚ ✟

✚ ✗

✚ ☞✟

State ✛ State ✛✢✜✤✣
Figure 2.6: System model.

activity
✯

computes the next value of the state variables in
✦✖ ✙

given the current value of the

state variables in
✦✓ ✙

and is characterized by the transition relation
✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ . If the system

is asynchronous, only a single subsystem is active in a computation step and only the next

state variables of this subsystem change value. Otherwise, if the system is synchronous,

each subsystem is active in a computation step and calculates a new value of its associated

state variables. In this case, we must assume that the sets of variables changed by the sub-

systems form a partitioning of the state variables. Let ✥ denote the state variables in vector✦✦ . In the asynchronous case, the total transition relation is

✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✁
✗✧✙ ✚✢✜ � ✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✽✩★✡✫✪✪✭✬✡✮ ✢ ✏ ☞ ◆ ✏ ✤ ✁ (2.9)

while in the synchronous case, it is

✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✁
✗★✙✛✚✢✜ ✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✂ (2.10)

Thus, the transition relation can either be represented as a disjunctive partitioning or a con-

junctive partitioning of subrelations. The main point about partitioning is that the complete

2.3. SYMBOLIC MODEL CHECKING 19

transition relation never needs to be computed since both the image and preimage com-

putations can be carried out directly on the subrelations. In the asynchronous case, we

get

IMG ✢ ✡ ✤ ✁
✗✧✙ ✚✢✜ � ❏ ✦✖ ✙ ✂ ✡ ✢ ✦✏ ✤ ✽ ✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✁ ✑ ✦✖ ☞✙ ✔ ✦✖ ✙ ✘ ✂ (2.11)

We exploit that all variables except the ones modified by the active sybsystem are un-

changed. Thus, no quantification over these variables is necessary. This often has a substan-

tial positive effect on the complexity of the computation. The reason is that the complexity

of quantification on BDDs may be exponential in the number of quantified variables.3 In

practice, it is often an advantage to merge some of the subrelations [143] and combine

quantification and disjunction to a single BDD operation (e.g.,[112]). A similar approach

can be used to simplify the preimage computation

PREIMG ✢ ✡ ✤ ✁
✗✧✙ ✚✢✜ ❏ ✦✖ ☞✙ ✂ ✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✽ ✡ ✢ ✦✏ ✤ ✑ ✦✖ ✙ ✔ ✦✖ ☞✙ ✘ ✂ (2.12)

The conjunctive case is more complicated due to the fact that existential quantification does

not distribute over conjunction. However, the subrelations can be moved out of scope of

existential quantification if they do not depend on any of the variables being quantified.

This technique is often referred to as early quantification. For the image computation, we

get

IMG ✢ ✡ ✤ ✁ � ❏ ✦✦ ✗ ✂ ✢ ✥✧✥✧✥ ✢ ❏ ✦✦ ✜ ✂ ✡ ✢ ✦✏ ✤ ✽ ✄P✜ ✢ ✦✓ ✜❙✣ ✦✖ ☞ ✜ ✤☞✤ ✥✧✥✧✥ ✤ ✽ ✄ ✗ ✢ ✦✓ ✗ ✣ ✦✖ ☞✗ ✤ ✁ ✑ ✦✏ ☞ ✔ ✦✏ ✘ (2.13)

where ✥ ✓ ✓ ✩✘✗✙✛✚ ✓ ☎ ✜✁� ✙ ✁ ✌
for ✞ ✌✏✎ ✑ � and

✩✘✗✙✛✚✢✜ ✥ ✙ ✁ ✮✥✏ ✜❙✣✦✥✧✥✧✥❙✣ ✏ ✗ ✲ .
Similarly, for the preimage computation, we have

PREIMG
✢ ✡ ✤ ✁ ❏ ✦✦ ☞✗ ✂ ✄ ✗ ✢ ✦✓ ✗ ✣ ✦✖ ☞✗ ✤ ✽ ✢ ✥✧✥✧✥ ✢ ❏ ✦✦ ☞ ✜ ✂ ✄ ✜ ✢ ✦✓ ✜❙✣ ✦✖ ☞ ✜ ✤ ✽ ✡ ✢ ✦✏ ✤ ✑ ✦✏ ✔ ✦✏ ☞ ✘ ✤ ✥✧✥✧✥ ✤ (2.14)

where ✥ ☞✓ ✓ ✩✘✗✙✛✚ ✓ ☎ ✜✄✂ ☞✙ ✁ ✌
for ✞ ✌ ✎✒✑ � and

✩ ✗✙✛✚✢✜ ✥ ☞✙ ✁ ✮✥✏ ☞✜ ✣✦✥✧✥✧✥❉✣ ✏ ☞✗ ✲ .
A large number of heuristics have been developed for choosing and arranging partitions

in the conjunctive case (e.g., [143, 120]). The main idea is to avoid a blow up of the

intermediate BDDs of the image and preimage computation by reducing the life span of

variables. Assume that a variable is introduced in the computation by partition
✯

and that

the variable is removed again by the existential quantification associated with partition
✎
.

The life span of the variable is then
✎✆☎❖✯

. Another approach to reduce the complexity of the

3From an artificial intelligence point of view, this simplified image computation is an efficient solution to

the frame problem of asynchronous systems.

20 CHAPTER 2. BACKGROUND

image and preimage computation is to compress the transition relation using an approach

called iterative squaring [27]. The idea is to incrementally compute the closure of the

transition relation. This computation, however, is often very complex. It is normally only

an advantage if the domain has very high sequential depth (e.g., due to counters [61]).

2.3.2 Frontier Set Simplification

Partitioning is often combined with frontier set simplification [41]. The purpose of frontier

set simplification is to reduce the size of the BDDs representing the frontier of bacward or

forward search based on the image or preimage computation. Consider computing the set

of states reachable from
✡

using the image computation. The set of states
✄✘✜

that can be

reached in one step or less is ✄P✜ ✁
IMG ✢ ✡ ✤ ✕ ✡ ✂

Similarly, the set of states
✄ ✟

that can be reached in two steps or less is

✄ ✟ ✁
IMG ✢ ✄ ✜ ✤ ✕ ✄ ✜ ✂

This computation can be simplified by only computing next states from the frontier of the

search ✄ ✟ ✁
IMG

✢ ✄ ✜ ✏ ✡ ✤ ✕ ✄ ✜ ✂
The set � ✁ ✄ ✜ ✏ ✡

may have a large BDD representation. However, we can choose

it anywhere in the range
✄ ✜ ✏ ✡ ✞ � ✞ ✄ ✜

to obtain a small BDD. The research on

frontier set simplification has developed several heuristic BDD operations for finding a

good candidate for � .

2.3.3 Splitting

A more direct approach for computing the image and preimage of a set of states is to

use a transition function. Consider for example a transition system with � state variables

✏ ✜❙✣✦✥✧✥✧✥❉✣ ✏ ✗ and the transition function
✠ ✛ ✁ ✗ ✝ ✁ ✗

given by

✏ ☞ ✜ ✁ ✠ ✜ ✢ ✏ ✜✫✣✦✥✧✥✧✥★✣ ✏ ✗ ✤✥✧✥✧✥
✏ ☞✗ ✁ ✠ ✗ ✢ ✏ ✜❙✣✦✥✧✥✧✥❙✣ ✏ ✗ ✤✫✂

The image of a state ✚ ✁ ✁ ✗ is the mathematical image
✠ ✢ ✚ ✤ of ✚ . To find the image

✠ ✢ ✁✆✤
of all states ✁ in the domain (the unrestricted image) a technique called input splitting

2.4. HEURISTIC SEARCH 21

can be employed (e.g., [121]). It is based on the observation that the unrestricted image

computation can be decomposed with respect to the input variables

✠ ✢ ✁ ✤ ✁ ✠ ✎ ✡ ✮ ☛☎✬✮✭✰✯✘✱ ❁ ✠ ✎ ✡ ✮ ☛✠✲✰✳✵✴ ✶✰✱ ✂
The decomposition is carried out recursively until each restricted

✠
function has constant

elements. The characteristic function of the image (in next state variables) is given by the

resulting expression. The approach can be extended to an arbitrary set of states and is par-

ticularly efficient for problems where it is impossible to arrange a conjunctive partitioning

to allow an efficient early quantification [123].

2.3.4 BDD Package Adjustment

An invariant specification is checked by performing a sequence of image computations

until the set of covered states reaches fixed point. Experimental studies indicate that the

BDD package parameters should be adjusted differently for BDD-based model checking

compared to circuit verification where a BDD representing a digital circuit is compared to

a BDD representing its specification [177]. The experiments show that model checking

computations have a large number of repeated subproblems across the top level operations.

Thus, a large cache size is more important for model checking than for circuit verifica-

tion. Furthermore, model checking computations can have a very high death and rebirth

rate (unreferenced nodes being referenced again) compared to circuit computations. Thus,

garbage collection should occur less frequently, which for example can be accomplished by

initially allocating a large number of nodes for the shared BDD. Finally, dynamic reorder-

ing of variables is efficient given an initial bad variable ordering, but given a good initial

variable ordering the time spend on reordering does not pay off.

2.4 Heuristic Search

A classical search problem is similar to a deterministic planning problem defined in Defi-

nition 3.2. The only difference is that actions are associated with a positive cost.4 Let the

function � ✛ ✁✄✂ ❂ ✝ ✄ ☎
define action costs. A solution to a classical search problem is a

deterministic plan ✆ ✁ � ✜✢✥✧✥✧✥ � ✗ . The length of ✆ is � . The cost of ✆ is

COST ✢ ✆✣✤ ✧
✗☎ ✙✛✚✢✜ � ✢ � ✙ ✤ ✂ (2.15)

4The cost of an action must be positive since we require that infinite paths have unbounded total cost.

22 CHAPTER 2. BACKGROUND

Definition 2.7 (Optimal Search Problem Solution) A search problem solution ✆ to search

problem is optimal if it has minimum cost.

Example 2.8 The deterministic planning problem shown in Figure 3.1 can be extended to

a search problem by adding action costs as shown in Figure 2.7. We have

✁ ✁ ✮ ✄ ✣ ✠ ✣☛✡P✣☛☞ ✲ ✣
✁ ✂ ❂ ✁ ✮ ✎ ✣ ✁ ✣✄✂ ✲ ✣✝ ✁ ✮ ✟ ✄ ✣ ✁ ✣ ✠ ✡ ✣ ✟ ✠ ✣☎✂ ✣☛☞ ✡ ✣ ✟ ✡ ✣ ✎ ✣ ✄ ✡ ✣ ✢ ✡P✣ ✁ ✣☛☞ ✡ ✣ ✟ ☞ ✣ ✎ ✣✌✡ ✡✤✲ ✣

✚ ✞ ✁ ✡P✣
✆ ✁ ✮ ✠❖✲ ✣

� ✁ ✮ ✎✞✝✝ ✞ ✂ ✟ ✣ ✁ ✝✝ ✞ ✂ ✟ ✣☎✂ ✝✝ ✵ ✂ ✟ ✲ ✂
An optimal solution is ✎ ✁ with a length and cost of 2. ✍

✎✶

✏ ✑
✔✄✟

✠
✡ ✡☞☛

✡ ✡✞✌✡ ✡✎✍

✡ ✡✏✌

✍✌ ✑✒

✌✓

✌✓
✌✒

Figure 2.7: A search problem derived from the deterministic planning problem

discussed in Example 3.1. The
✡

-values associated with each state defines a heuristic

function used in Example 2.9.

Classical search algorithms like A* and pure heuristic search are characterized by build-

ing a search tree superimposed over the state space during the search process. Each search

node in the tree is a pair ✟ ✚ ✣ ✱ ✡ where ✚ is a single state and ✱ ✁ ✄✕✔
is a ✖ -dimensional vec-

tor of real numbers representing information associated with the node to guide the search.

The root of the search tree contains the initial state. We will assume that the initial state

belongs to a search node with node information ✱ ✞ . The leaf nodes of the tree correspond

to states that do not have successors in the tree, either because they have not been expanded

yet, or because they were expanded, but had no children. In each step, the search algorithm

chooses one leaf node to expand. The collection of unexpanded nodes is called the fringe

or frontier of the search tree. It is important to distinguish between the search domain and

the search tree. For finite but cyclic search domains, the search tree may be infinite. Best-

First Search (BFS) describes a collection of search algorithms, each of which has a cost

2.4. HEURISTIC SEARCH 23

associated with each node and at each node expansion cycle chooses a node of lowest cost

to expand next. Depending on the particular cost function chosen, we get different BFS al-

gorithms. To lower the complexity of the node selection, the frontier is often implemented

as a priority queue on the node costs. Figure 2.8 shows the BFS algorithm. The solution

extraction function in line 5 simply obtains a solution by tracing back the actions from the

goal node to the root node. The EXPAND function in line 6 finds the set of child nodes of a

single node, and ENQUEUEALL inserts each child in the frontier queue.

function BFS ✢ ✚ ✞ ✣ ✱ ✞ ✣ ✆ ✤
1

❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ★
MAKEQUEUE ✢ ✟ ✚ ✞ ✣ ✱ ✞ ✡ ✤

2 ✝✟✞✠✞☛✡
3 ☞✟✌ ✎ ❇ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✎ ✁ ✟✎✍✑✏✓✒✕✔✗✖✘✒✙✍✑✚✓✖✄✔

“no solution exists”

4 ✟ ✚ ✣ ✱ ✡ ★
REMOVETOP

✢ ❇ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✤
5 ☞✟✌ ✚ ✁ ✆ ✍✑✏✓✒✕✔✗✖✘✒✙✍✑✚✓✖✄✔

ExtractSolution ✢ ❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✣ ✟ ✚ ✣ ✱ ✡ ✤
6

❇ ❃✛�✄✂✳❂✟☎ ❆❙❃ ★
ENQUEUEALL

✢ ❇ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✣ EXPAND
✢ ✟ ✚ ✣ ✱ ✡ ✤ ✤

Figure 2.8: The Best-First Search (BFS) algorithm.

The A* algorithm is probably the best known and most well studied of the BFS algo-

rithms. A* sorts the unexpanded nodes in the priority queue in ascending order given by a

heuristic evaluation function
✠

. The evaluation function is defined by

✠ ✢ � ✤ ✁ ✁ ✢ � ✤✢✜✤✣ ✢ � ✤ (2.16)

where ✁ ✢ � ✤ is the cost of the path in the search tree leading from the root node to � , and

✣ ✢ � ✤ is a heuristic function estimating the cost of a minimum cost path leading from the

state in � to some goal state. Thus
✠ ✢ � ✤ measures the minimum cost over all solution paths

constrained to go through the state in � .

Example 2.9 The search tree built by A* for the problem introduced in Example 2.8 and

the heuristic function defined in Figure 2.7 is shown in Figure 2.9. ✍

The properties of A* have been surveyed by Pearl [130]. A* is sound and complete,

since the node expansion operation is assumed to be correct, and infinite cyclic paths have

unbounded cost. A* further finds optimal solutions if the heuristic function ✣ ✢ � ✤ is ad-

missible, that is, ✣ ✢ � ✤ is a lower bound estimate such that ✣ ✢ � ✤ ✌ ✣✦✥ ✢ � ✤ for all � , where

✣ ✥ ✢ � ✤ is the minimum cost of a path going from the state in � to a goal state. A* is op-

timally efficient for any admissible heuristic function. That is, no other optimal algorithm

is guaranteed to expand fewer nodes than A* [44]. It can be shown that every node on the

24 CHAPTER 2. BACKGROUND

� ✚ ✟

� ✚ ✟ � ✚ ✟

� ✚ ✟ � ✚✂✁

✑

✏✎

✶

✏

Figure 2.9: Search tree example.

frontier with
✠ ✢ � ✤ ✑ ✡

✥ , where
✡
✥ is the optimal cost, eventually will be expanded by

A*. Thus, the complexity of A* is directly tied to the accuracy of the estimates provided

by ✣ ✢ � ✤ . When A* employs a perfectly informed heuristic (✣ ✢ � ✤ ✁ ✣✦✥ ✢ � ✤), it is guided

directly toward the closest goal. At the other extreme, when no heuristic at all is available

(✣ ✢ � ✤ ✁ ✟
), the search becomes exhaustive, normally yielding exponential complexity. In

general, A* has linear complexity if the absolute error of the heuristic function is constant,

but it may have exponential complexity if the relative error is constant. Subexponential

complexity requires that the growth rate of the error is logarithmically bounded [147]

✎ ✣ ✢ � ✤ ☎ ✣ ✥ ✢ � ✤ ✎ ✁ ✥ ✢☎✄ ✔✝✆ ✣ ✥ ✢ � ✤ ✤ ✂
The complexity results are disappointing due to the fact that practical heuristic functions

often are based on a relaxation of the search problem that causes ✣ ✢ � ✤ to have constant or

near constant relative error. The results show that practical application of A* still may be

very search intensive. Often better performance of A* can be obtained by weighting the ✁
and ✣ -component of the evaluation function [140]

✠ ✢ � ✤ ✁ ✢ ✞ ☎ ☞ ✤ ✁ ✢ � ✤✢✜ ☞ ✣ ✢ � ✤ , where ☞ ✁ ✑ ✟ ✣
✞ ✘ ✂ (2.17)

Weighted A* can be used to implement a wide range of BFS algorithms. Weights ☞ ✁
✟ ✂ ✟ ✣ ✟ ✂✟✞ ✣

and ✞✧✂ ✟
correspond to uniform cost search (Dijkstra’s algorithm), A*, and pure

heuristic search, respectively. Weighted A* is optimal in the range
✑ ✟ ✂ ✟ ✣ ✟ ✂✠✞ ✘

but often finds

solutions faster in the range ✢ ✟ ✂✟✞ ✣
✞ ✘

.

Another drawback of A* is that its space complexity is very high due to the explicit

representation of the search tree. For that reason an iterative deepening version of A*

called IDA* has been developed [107]. This algorithm has space complexity linear with

the search depth. However, unless the search domain is a tree, it may perform a highly

redundant search.

2.5. SUMMARY 25

2.5 Summary

This chapter has described Quantified Boolean Formulas (QBF) as a concise logic for rep-

resenting the complex Boolean operations involved in BDD-based planning. To specify

non-deterministic plans, we have presented Kripke structures and the Computation Tree

Logic (CTL). We then spend two sections describing the key features of the Binary De-

cision Diagram (BDD) and the techniques developed in model checking to represent and

search a state space efficiently with BDDs. Finally, we have described classical heuristic

search algorithms and heuristic search techniques.

26 CHAPTER 2. BACKGROUND

Chapter 3

BDD-Based Planning

In this chapter, we describe several basic encoding and search techniques for deterministic

and non-deterministic BDD-based planning. Section 3.1 defines deterministic planning and

presents three principles for encoding STRIPS planning problems with BDDs. Moreover, it

describes a general BDD-based bidirectional breadth-first search algorithm for generating

deterministic plans. Section 3.2 introduces the definition of non-deterministic planning

used in the thesis and shows how to encode NADL and NADL
☎

planning problems with

BDDs. Finally, it introduces a general BDD-based backward breadth-first search algorithm

for generating weak, strong cyclic, and strong non-deterministic plans.

3.1 Deterministic Planning

Classical AI-planning considers domains with a finite set of states and a finite set of deter-

ministic actions.

Definition 3.1 (Deterministic Planning Domain) A deterministic planning domain is a

tuple ✟✂✁ ✣ ✁ ✂ ❂ ✣ ✝ ✡ where ✁ is a finite set of states,
✁ ✂ ❂

is a finite set of actions, and
✝ ✞

✁ ✸ ✁✄✂ ❂ ✸ ✁ is a deterministic transition relation of action effects. Instead of ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✝
,

we write ✚✁�✝ ✚ ☞ .

The transition relation
✝

is deterministic if actions can lead to at most one possible next

state. That is

✚✂�✝ ✻ ☞ ✽ ✚✁�✝ ✿ ☞ ❑ ✻ ☞ ✁ ✿ ☞ ✂
An action � is applicable in a state ✚ iff ✚ �✝ ✚ ☞ for some state ✚ ☞ . A deterministic planning

problem is given by a single initial state and a set of goal states.

27

28 CHAPTER 3. BDD-BASED PLANNING

Definition 3.2 (Deterministic Planning Problem) A deterministic planning problem is a

tuple ✟ � ✣ ✚ ✞ ✣ ✆ ✡
where

�
is a deterministic planning domain, ✚ ✞ ✁ ✁ is an initial state, and✆ ✞ ✁ is a set of goal states.

A solution to (or plan for) a deterministic planning problem is a sequence of actions form-

ing a path from the initial state to a goal state.

Definition 3.3 (Deterministic Plan) Let ✁ be a deterministic planning problem. A solu-

tion or plan for ✁ is a sequence of actions ✆ ✁ � ✜ ✥✧✥✧✥ � ✗ such that there exists a path✿ ✞ ✥✧✥✧✥ ✿ ✗ where ✿ ✞ ✁ ✚ ✞ , ✿ ✗ ✁ ✆
, and for

✟ ✑ ✯ ✌
� , we have ✿ ✙✄✂✳✜ �

✮✝ ✿ ✙ .
The length of a plan � ✜✼✥✧✥✧✥ � ✗ is � . A plan is optimal if it has minimum length.

Example 3.1 The deterministic planning problem shown in Figure 3.1 has

✁ ✁ ✮ ✄ ✣ ✠ ✣☛✡P✣☛☞ ✲ ✣
✁ ✂ ❂ ✁ ✮ ✎ ✣ ✁ ✣✄✂ ✲ ✣✝ ✁ ✮ ✟ ✄ ✣ ✁ ✣ ✠ ✡ ✣ ✟ ✠ ✣☎✂ ✣☛☞ ✡ ✣ ✟ ✡ ✣ ✎ ✣ ✄ ✡ ✣ ✢ ✡P✣ ✁ ✣☛☞ ✡ ✣ ✟ ☞ ✣ ✎ ✣✌✡ ✡✤✲ ✣

✚ ✞ ✁ ✡P✣
✆ ✁ ✮ ✠❖✲ ✂

An optimal plan solving the problem is ✎ ✁
and has length 2. ✍

✎✶

✏ ✑
✔ ✟

✠

✒ ✑

✒
✓

✓

Figure 3.1: A deterministic planning problem with four states ☎ , ✆ , � , and ✝ and

three actions ✒ (dashed),
✓

(solid), and ✑ (dotted). The initial state is � and the set of

goal states is a singleton set ✞✟✆✡✠ .

3.1.1 Encoding STRIPS Domains

Classical deterministic planning problems are often written in planning languages such as

STRIPS [58], ADL [132], and PDDL [118]. In these languages, states are represented by

3.1. DETERMINISTIC PLANNING 29

conjunctions of function-free ground predicates.1 A STRIPS planning domain is a pair� ✁ ✟ ✠ ✣ ✄ ✡ where
✠

is a set of predicates and ✄ is a set of action schemas. Each action

schema is a tuple ✟✁� ❈ ❃ ✣ � ❃ ❆ ✣ ❈✄✂✄✂ ✣ ✂ ❆ ❊ ✡ where �
❈ ❃

is a set of parameter variables, and �
❃✫❆

,❈✄✂✄✂
, and

✂ ❆ ❊
are sets of predicates from

✠
where the only free variables are parameter

variables in �
❈ ❃

.

Example 3.2 The Gripper domain used in the AIPS-98 planning competition [113] is

shown in Figure 3.2. In this domain there are three actions schemas and 7 predicates of

which three are used to indicate the type of objects. ✍

par:

add:

del:

pre:

par:

add:

del:

pre:

par:

add:

del:

pre:

Move

Pick

Drop

FROM, TO

room(FROM), room(TO), atRobby(FROM)

atRobby(TO)

atRobby(FROM)

OBJ, ROOM, GRIPPER

ball(OBJ), room(ROOM), gripper(GRIPPER), at(OBJ, ROOM), atRobby(ROOM), free(GRIPPER)

carry(OBJ, GRIPPER)

at(OBJ, ROOM), free(GRIPPER)

carry(OBJ, GRIPPER)

at(OBJ, ROOM), free(GRIPPER)

ball(OBJ), room(ROOM), gripper(GRIPPER), carry(OBJ, GRIPPER), atRobby(ROOM)

OBJ, ROOM, GRIPPER

Actions

ball(B)

gripper(G)

at−robby(R)

at(B,R)

free(G)

carry(O,G)

room(R)

Predicates

Figure 3.2: The Gripper domain of the AIPS-98 planning competition. A robot

called Robby has grippers to move objects between rooms. The Move action moves

Robby between rooms, while the Pick and Drop actions load and unload objects into

a gripper.

A STRIPS planning problem is a tuple ✟ � ✣ ✥ ✣ ✱ ✣ ✆ ✡ where
�

is a STRIPS planning do-

main,
✥

is a set of constant terms forming the objects of the problem, ✱ is a set of ground

1More elaborate state representations exist, but representing states as sets of ground predicates is the main

idea.

30 CHAPTER 3. BDD-BASED PLANNING

predicates that are true in the initial state (all other ground predicates are assumed to be

false initially), and
✆

is a set of ground predicates that must be true in a goal state (all other

ground predicates can have arbitrary truth values). The actions of the problem are gener-

ated from the action schemas by instantiating the parameters with objects of the problem.

In a given state ✁ , an action ✟✁� ❃ ❆ ✣ ❈✄✂✄✂ ✣ ✂ ❆ ❊ ✡ is applicable if �
❃ ❆ ✞ ✁ , and the resulting state

is ✁ ☞ ✁ ✢ ✁ ✕ ❈✄✂✄✂ ✤ ✏ ✂ ❆ ❊
.

Example 3.3 The objects and initial state of the Gripper planning problem shown in Fig-

ure 3.3 specifies that there are two rooms (rooma,roomb), two grippers (left,right), and that

the movable object is a ball (ball1). Initially, both Robby and the ball is in room A and the

goal is to move the ball to room B. ✍

Initial
room(rooma), room(roomb), ball(ball1), atRobby(rooma), free(left), free(right) at(ball1, rooma)

gripper(left), gripper(right)

Goal
at(ball1, roomb)

Objects

rooma, roomb, ball1, left, right

Figure 3.3: A Gripper planning problem, with two rooms, one ball object to move,

and two grippers on Robby. Initially, both Robby and the ball are in room A, and the

goal is to move the ball to room B.

For classical deterministic planning problems described in a STRIPS like language,

BDD-based deterministic planning involves two orthogonal problems. The first is to rep-

resent the planning domain compactly. The second is to compute a BDD representation of

the transition relation and perform a BDD-based exploration of the state space.

Representing STRIPS Domains Compactly

Consider the STRIPS description of the Gripper problem in Example 3.3. A simple way

to represent the transition relation of this problem with a BDD is to ground all predicates

and action schemas and use a Boolean state variable to represent each ground predicate.

However, this often results in a very redundant encoding that is impossible to handled

efficiently with BDDs. In order to encode STRIPS domains efficiently, we follow mainly

[50] and use three principles to compress the domain description.

Principle 1. The first principle is to remove predicates from the domain description that

do not change their truth-value. These predicates are called static predicates. They are

3.1. DETERMINISTIC PLANNING 31

typically used to represent typing information like the static predicates
❃✛�✑�✁� ✢ ✄ ✤ ,

✂ ❈❋❊ ❊ ✢ ✠ ✤ ,

and ✄ ❃ ☎ �✄� ❆❙❃ ✢ ✆ ✤ in the Gripper problem. It is simple to identify static predicates by check-

ing that they are not included in a delete or add set of any action. Moreover, since we

already now their truth value by inspecting the initial state, they can be abstracted away in

a compressed encoding of the transition relation.

Principle 2. The second principle is to find the domain of predicate arguments and action

schema parameters which is often a small subset of the total set of objects
✥

. The static

predicates may provide information to restrict these domains, but there can be constraints

on the domains that only can be found by finding the set of reachable states from the initial

state. Computing these states is as hard as solving the planning problem itself. Instead, the

set of reachable states can be approximated by a relaxed reachability analysis where the

delete set of actions is ignored. This estimate will always include the reachable states. If

implemented carefully, the analysis can be carried out in a small fraction of the time needed

to solve the complete planning problem [50].

Principle 3. The third principle is to use numerical state variables instead of predicates to

represent locations of objects. Predicates often encode physical locations of objects. In the

Gripper problem, the four predicates
❈ ❂ ✢ ✂ ❈❋❊ ❊✆☎ ✣ ❃✁�✑�✁� ❈ ✤ ,

❈ ❂ ✢ ✂ ❈❋❊ ❊✆☎ ✣ ❃✁�✑�✁� ✂ ✤ ,
✂ ❈ ❃✤❃✞✝ ✢ ✂ ❈❋❊ ❊✆☎ ✣ ❊ ❆ ❇ ❂ ✤ ,

and
✂ ❈ ❃✤❃✞✝ ✢ ✂ ❈❋❊ ❊✆☎ ✣ ❃ ☎ ✄✁✟ ❂ ✤ encode the four possible locations of the ball. However, since the

ball at most can be at one location at a time, we only need a single numerical state vari-

able represented by ✄ ✔✝✆ ✢✡✠ ✤ ✁ ✵
bits to represent the truth value of these predicates. Sets

of predicates with this property are called single-valued [64] or balanced [50]. Balanced

predicates can be found automatically by generating candidate sets of predicates and prov-

ing by induction that they are balanced. The base case of this proof is to show that they are

balanced in the initial state. The inductive step is to show that each action preserves their

balance [141].

When given a planning problem defined in the STRIPS part of the PDDL language, the

BIFROST search engine described in Appendix A can perform these three analysis steps

automatically. The complete analysis can normally be carried out in a small fraction of the

total time needed to solve the planning problem.

Encoding STRIPS Domains with BDDs

In order to compute a BDD representation of the transition relation, we first observe that

a deterministic planning domain is an asynchronous system in the sense that only a single

action is active in each step. Thus, as described in Section 2.3.1, a disjunctive partitioning

of the transition relation can be used to lower the complexity of the image and preimage

computation. For each action
✯

in the compressed encoding of the domain, we get a subre-

32 CHAPTER 3. BDD-BASED PLANNING

lation

✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✁ ★
�

✪
✁
✭✓✱ ✮ ✓ ✽ ★

✂
✪ ✳☎✄☎✄ ✮ ✖ ☞ ✽ ★

✂
✪ ✄ ✱ ✴ ✮ ✺ ✖ ☞ ✂ (3.1)

To conform to the definition of the transition relation, the subrelation should contain in-

formation about which action the transitions are associated with. However, as described

below, we can use the partitioning itself to hold this information when extracting the ac-

tions of a solution. Saving variables in the encoding of the transition relation is important

for keeping the complexity of the image and preimage computations low.

Due to the large number of small BDDs representing the action relations, it is almost al-

ways an advantage to combine them into larger partitions. Care must be taken to merge the

subrelations such that partitions that only modify a small subset of variables are produced.

It is hard to produce optimal solutions to this problem. However, an approximation that

works satisfactory in practice is to sort the subrelations according to which variables they

modify and merge them from left to right according to a threshold on the size of the BDD

representing the resulting partition. Typical “good” values of the threshold is in the range

5000 to 10000 BDD nodes. As described in Section 2.2, the size of a BDD is sensitive

to the variable ordering. In general, related variables should be close to each other in the

ordering. Since the current and next state variables of a state variable almost always are

highly dependent, it is often beneficial to interleave them in the ordering. However, no pre-

vious work has addressed how the state variables of planning domains should be ordered.

Heuristics like fan in and weight for constructing good variable orders of combinational

circuits [121] still need to be developed for BDD-based planning. In practice, the natural

ordering of state variables of a planning domain often turns out to be efficient, since it re-

flects the semantics of the variables. Otherwise, the dynamic re-ordering techniques of the

BDD package can be used to find good orderings.

3.1.2 Planning Algorithms

Given a BDD representation of the transition relation, it is simple to use the image and

preimage computation to implement optimal breadth-first forward, backward, and bidi-

rectional search. The forward and backward search algorithms are special cases of the

bidirectional search algorithm shown in Figure 3.4. In each iteration, the algorithm either

computes the frontier states in forward or backward direction. The set
❃ ❆ ❈ ✂ ✟ ❆ ✂

contains all

explored states and is used to prune a new frontier from previously visited states. If the set

of pruned frontier states is empty, the algorithm returns “no solution exists”. If an overlap

between the forward and backward search frontier is found, the algorithm extracts and re-

turns a solution. Otherwise the search continues. A good heuristic for deciding in which

3.1. DETERMINISTIC PLANNING 33

function BIDIRECTIONAL BREADTH-FIRST SEARCH
✢ ✚ ✞ ✣ ✆ ✤

1
❃ ❆ ❈ ✂ ✟ ❆ ✂ ★ ✌

2
❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✞ ★ ✮✗✚ ✞ ✲ ;

✯ ★ ✟
3

✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✞ ★ ✆
;

✎ ★ ✟
4 ✝

✏ ☞✟✝ ✒ ❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✙ ✓ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✓ ✁ ✌
5 ☞✟✌ TIME ✢ ❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✙ ✤ ✑

TIME ✢ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✓ ✤
6

✯ ★ ✯ ✜ ✞
7

❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✙ ★
IMG ✢ ❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✙✄✂✳✜ ✤ ✏ ❃ ❆ ❈ ✂ ✟ ❆ ✂

8
❃ ❆ ❈ ✂ ✟ ❆ ✂ ★ ❃ ❆ ❈ ✂ ✟ ❆ ✂ ✕ ❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✙

9 ☞ ✌ ❇ �✷❃✞� ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✙ ✁ ✌ ✖✄✒ ✍✘✚ ✖✄✔
“no solution exists”

10
✒ ✝✠✟ ✒

11
✎ ★ ✎ ✜ ✞

12
✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✓ ★

PREIMG ✢ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✓ ✂✳✜ ✤ ✏ ❃✫❆ ❈ ✂ ✟ ❆ ✂

13
❃ ❆ ❈ ✂ ✟ ❆ ✂ ★ ❃ ❆ ❈ ✂ ✟ ❆ ✂ ✕ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✓

14 ☞ ✌ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✓ ✁ ✌ ✖✘✒ ✍✘✚ ✖ ✔
“no solution exists”

15
✖✘✒✙✍✑✚✓✖✄✔

EXTRACTSOLUTION ✢ ❇ �✷❃✁� ❈ ❃ ✂✄✂ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✣ ✂ ❈ ✂✆☎ � ❈ ❃ ✂✄✂ ❃✛�✄✂✳❂✟☎ ❆❙❃ ✤

Figure 3.4: BDD-based Bidirectional Breadth-First Search.

direction to expand the search is simply to choose the direction where the previous frontier

took least time to compute [51]. When using this heuristic, bidirectional search has similar

or better performance than both forward and backward search, since it will adapt to one of

these algorithms if the frontiers always are faster to compute in a particular direction. The

complexity of extracting a solution is normally much lower than the complexity of comput-

ing the sequence of expansions of the search frontier. To realize this, consider having found

an overlap between the forward and backward search frontier. For each state ✚ in the over-

lap, there exists an optimal solution passing through ✚ . Consequently, we can pick a single

state in the overlap and trace its associated optimal solution. To find the part of the solution

from ✚ to a goal state, images of ✚ are intersected with the backward search frontiers. For

each of these computations, the image only needs to be computed for a single state. This

can be done very fast relative to the time needed for computing images during search since

the BDD of a single state is small. When performing these image computations a version

of the transition relation is employed where no subrelations of actions have been merged.

Since each subrelation is associated with a particular action, this transition relation can be

used to extract the actions of the solution path. To extract the part of the plan leading from

the initial state to ✚ a similar sequence of preimage computations is carried out.

The growth rate of the search frontier is usually depending highly on the search direc-

34 CHAPTER 3. BDD-BASED PLANNING

tion. For most problems, the backward growth rate is substantially larger than the forward.

The reason for this is that the states reached from the initial state always are legal states of

the system modeled by the domain, while the states reached from the goal states may be

illegal states of the system. Thus, a regular structure of the modeled system may only be

reflected in the forward search frontier. The difference in growth rate often disappears if

the set of goal states is reduced to legal system states.

A major problem of BDD-based planning is a high growth rate of BDDs representing

the search frontier [86]. Frontier set simplification can be used to address this problem

(see Section 2.3.1). However, the technique does not seem work well on typical planning

problems.

Since the reachability analysis that forms the core of symbolic model checking resem-

bles the state space search performed by the bidirectional search algorithm shown in Fig-

ure 3.4, we would expect that the BDD package parameters should be adjusted similarly for

symbolic model checking and planning. No systematic experiments have been carried out

to confirm this, but our experiences with deterministic planning problems fit well with the

hypothesis that: 1) a planning problem initiated with a good variable order seems always

to perform better without dynamic variable reordering, 2) each garbage collection seems

to impair performance by deleting nodes that later must be recomputed, and 3) a too little

cache can cause a performance degradation of several factors (a cache size that works well

in practice is about 10 percent of the total number of allocated nodes). However, there also

seems to be significant differences between typical model checking problems and planning

problems. The BDDs representing the search frontier of a typical planning problem often

grow very fast compared to the BDDs representing the search frontier of a typical symbolic

model checking problem [119]. The reason seems to be that there are several subtle differ-

ences between typical verification problems and planning problems. First of all, planning

problems tend to be combinatorially hard compared to formal verification problems. Veri-

fication often considers digital circuits and software descriptions that are large compared to

the logical problem they contain. Planning problems, on the other hand, are normally fairly

dense representations of a combinatorial problem. Second, the graph diameter of planning

domains is often larger than the graph diameter of the domains studied in formal verifica-

tion. The reason is that planning problems normally involve sequencing a large number of

actions, while symbolic model checking problems typically consider synchronous systems

where a global state change can happen in each iteration.

3.2. NON-DETERMINISTIC PLANNING 35

3.2 Non-Deterministic Planning

A deterministic action can lead to at most one possible next state. A more general model

is to assume that the outcome actions is uncertain such that actions may lead to one of

several possible next states. For instance, when the robot in the Gripper domain picks a

ball, it may be that it either succeeds and holds the ball in its gripper in the next state,

or it fails and ends in a state where the ball still is on the floor and the gripper is empty.

Markov decision processes (MDPs) model such non-determinism by defining the effect of

actions as a probability distribution over the state space. We will consider a simpler model

of non-determinism where the effect of an action is defined by a set of possible next states.

Unless an alternative interpretation is clear from the context, the term non-determinism will

be used to refer to this particular model.

Non-determinism can model a wide range of dynamic systems [3]. Common to all of

them is that an active environment interact with the actions. The environment can for in-

stance cause otherwise deterministic actions to fail, or it can control a subset of the actions.

In the latter case these uncontrollable actions may either be interleaved or simultaneous

with controllable actions. In both cases, it can be modeled by non-deterministic control-

lable actions.

A non-deterministic planning domain is similar to a deterministic planning domain ex-

cept that the actions may be non-deterministic

Definition 3.4 (Non-Deterministic Planning Domain) A non-deterministic planning do-

main is a tuple ✟✂✁ ✣ ✁ ✂ ❂ ✣ ✝ ✡ where ✁ is a finite set of states,
✁ ✂ ❂

is a finite set of actions,

and
✝ ✞ ✁ ✸ ✁ ✂ ❂ ✸ ✁ is a non-deterministic transition relation of action effects. Instead

of ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✝
, we write ✚ �✝ ✚ ☞ .

The set of next states of an action � applied in state ✚ is given by

NEXT
✢ ✚ ✣ � ✤ ✧ ✮✗✚ ☞ ✛✝✚✁�✝ ✚ ☞ ✲ ✂ (3.2)

An action � is called applicable in state ✚ iff NEXT ✢ ✚ ✣ � ✤ ✆✁ ✌
. The set of applicable actions

in a state ✚ is given by

APP ✢ ✚✥✤ ✧ ✮ � ✛ NEXT ✢ ✚ ✣ � ✤ ✆✁ ✌ ✲ ✂ (3.3)

A non-deterministic planning problem is similar to a deterministic planning problem.

Definition 3.5 (Non-Deterministic Planning Problem) A non-deterministic planning pro-

blem is a tuple ✟ � ✣ ✚ ✞ ✣ ✆ ✡ 2 where
�

is a non-deterministic planning domain, ✚ ✞ ✁ ✁ is an

2Several of the non-deterministic algorithms introduced in the thesis can handle uncertainty about the

initial state represented by a set of initial states � ✟ . However, for the sake of simplicity of the presentation,

we assume the initial state to be fully known.

36 CHAPTER 3. BDD-BASED PLANNING

initial state, and
✆ ✞ ✁ is a set of goal states.

A non-deterministic plan could be a sequence of actions that is guaranteed to reach a goal

state regardless of the non-determinism of the domain. That is, for all uncertain action ef-

fects, the execution of the plan leads to a goal state. Such plans are called conformant plans

[68, 35]. However, since conformant plans seldom exist, we define a non-deterministic plan

to be a set of state-action pairs defined below.

Definition 3.6 (State-action pair (SA)) Let
�

be a non-deterministic planning domain. A

state-action pair ✟ ✚ ✣ �☛✡ of
�

is a state ✚ ✁ ✁ associated with an applicable action � ✁
APP ✢ ✚✥✤ .
The set of SAs define a function from states to sets of actions relevant to apply in order

to reach a goal state. This definition is identical to the state-action table definition used in

[36, 37, 42, 34] and is similar to universal plans [154], policies in reinforcement learning

(e.g.,[122]), and strategies in concurrent reachability games [43].

Definition 3.7 (Non-Deterministic Plan) Let
�

be a non-deterministic planning domain.

A non-deterministic plan for
�

is set of state-action pairs of
�

.

States are assumed to be fully observable. An execution of a non-deterministic plan is

an alternation between observing the current state and choosing an action to apply from

the set of actions associated with the state. Similar to policies in game theory, we call a

non-deterministic plan static if there is at most a single action associated with each state.

Otherwise, we call it dynamic, since an agent executing the plan may change its preference

about which action to apply.

The set of states covered by a plan ✆ is

STATES ✢ ✆✣✤ ✧ ✮✗✚✜✛ ❏ � ✂✩✟ ✚ ✣ � ✡ ✁ ✆ ✲ ✂ (3.4)

The set of actions in a plan ✆ associated with a state ✚ is

ACT ✢ ✆
✣ ✚✥✤ ✧ ✮ � ✛✄✟ ✚ ✣ �☛✡ ✁ ✆ ✲ ✂ (3.5)

The closure of a plan ✆ is the set of possible end states

CLOSURE ✢ ✆✣✤ ✧ ✮✗✚ ☞ ✆✁ STATES ✢ ✆✣✤ ✛ ❏ ✟ ✚ ✣ �☛✡ ✁ ✆ ✂ ✚ ☞ ✁ NEXT ✢ ✚ ✣ � ✤ ✲ ✂ (3.6)

A plan ✆ is said to be total iff CLOSURE ✢ ✆✣✤ ✞ ✆
.

3.2. NON-DETERMINISTIC PLANNING 37

Example 3.4 A non-deterministic version of the deterministic planning problem described

in Example 3.1 is shown in Figure 3.5. We have

✁ ✁ ✮ ✄ ✣ ✠ ✣☛✡P✣☛☞ ✲ ✣
✁✄✂ ❂ ✁ ✮ ✎ ✣ ✁ ✣☎✂ ✲ ✣✝ ✁ ✮ ✟ ✄ ✣ ✁ ✣ ✠ ✡ ✣ ✟ ✠ ✣☎✂ ✣☛☞ ✡ ✣ ✟ ✡P✣ ✎ ✣ ✄ ✡ ✣ ✢ ✡ ✣ ✎ ✣☎☞ ✡ ✣ ✟ ☞❀✣ ✁ ✣☛✡ ✡✤✲ ✣
✚ ✞ ✁ ✡P✣
✆ ✁ ✮ ✠ ✲ ✂

Notice that the ✎ action is non-deterministic since it can lead to two states from ✚ ✞ . A plan

for solving the problem could be ✆ ✁ ✮ ✟ ✡ ✣ ✎ ✡ ✣ ✟ ☞❀✣ ✁ ✡ ✣ ✟ ✄ ✣ ✁ ✡❙✲ . We have STATES
✢ ✆✣✤ ✁

✮ ✡P✣ ✄ ✣☛☞ ✲ and CLOSURE ✢ ✆✣✤ ✁ ✮ ✠❖✲✾✞ ✆
, thus, ✆ is total. ✍

✎✶

✏ ✑
✔ ✟

✠

✒ ✑

✓
✒

✓

Figure 3.5: A non-deterministic planning problem with four states ☎ , ✆ , � , and ✝
and three actions ✒ (dashed),

✓
(solid), and ✑ (dotted). The initial state is � while the

set of goal states is a singleton set ✞✟✆✡✠ .
Notice that the definition of a non-deterministic plan does not give any guarantees about

goal achievement. The reason is that, in contrast to deterministic plans, it is natural to

define a range of solutions classes. There currently exists three classes of non-deterministic

plans called weak, strong cyclic, and strong [36, 37]. Following [42, 34], we use CTL to

define these solutions. First, we need to define a Kripke structure to represent the execution

behavior of a plan.

Definition 3.8 (Execution Model) An execution model with respect to a non-deterministic

plan ✆ for the domain
� ✁ ✟✂✁ ✣ ✁ ✂ ❂ ✣ ✝ ✡ is a Kripke structure � ✢ ✆✣✤ ✁ ✟✂✁ ✣☛✄ ✡ where

� ✁ ✁
CLOSURE ✢ ✆✣✤ ✕ STATES ✢ ✆✣✤ ✕ ✆

,� ✟ ✚ ✣ ✚ ☞ ✡ ✁ ✄
iff ✚ ✆✁ ✆ ✣ ❏ � ✂✩✟ ✚ ✣ �☛✡ ✁ ✆ and ✚ �

✝ ✚ ☞ , or ✚ ✁ ✚ ☞ and ✚ ✁ CLOSURE ✢ ✆ ✤ ✕✆
.

38 CHAPTER 3. BDD-BASED PLANNING

✎✶

✏ ✑

Figure 3.6: The execution model of the plan in Example 3.4.

Example 3.5 The execution model of the plan in Example 3.4 is shown in Figure 3.6. It

has ✁ ✁ ✮ ✄ ✣ ✠ ✣☛✡P✣☛☞ ✲ and
✄ ✁ ✮ ✟ ✄ ✣ ✠ ✡ ✣ ✟ ✠ ✣ ✠ ✡ ✣ ✟ ✡ ✣ ✄ ✡ ✣ ✟ ✡ ✣☛☞ ✡ ✣ ✟ ☞✒✣☎✡ ✡❙✲ . ✍

Notice that all execution paths are infinite which is required in order to define solutions

in CTL. If a state is reached that is not covered by the plan (e.g., a goal state or a dead

end), the postfix of the execution path from this states is an infinite repetition of it. Given a

Kripke structure defining the execution of a plan, weak, strong cyclic, and strong plans are

defined by the CTL formulas below.

Definition 3.9 (Weak, Strong Cyclic, and Strong Plans) Given a non-deterministic plan-

ning problem ✁ ✁ ✟ � ✣ ✚ ✞ ✣ ✆ ✡ and a plan ✆ for
�

� ✆ is a weak solution iff � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
,� ✆ is a strong cyclic solution iff � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆

,� ✆ is a strong solution iff � ✢ ✆ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂� ✆
.

An execution of a strong plan is guaranteed to reach states covered by the plan until a goal

state after a finite number of steps is reached. An execution of a strong cyclic plan is also

guaranteed to reach states covered by the plan or a goal state. However, due to cycles, it

may never reach a goal state. An execution of a weak plan may reach states not covered by

the plan, it only guarantees that some execution exists that reaches the goal from the initial

state.

3.2.1 Encoding NADL Domains

Compared with the wide range of deterministic planning languages, the number of non-

deterministic planning languages is limited. The work presented in this thesis rests on the

3.2. NON-DETERMINISTIC PLANNING 39

Non-deterministic Agent Domain Language (NADL) [93] due to its explicit representation

of environment actions.

NADL was developed as input language to the Universal Multi-agent Obbd-based Plan-

ner (UMOP) [93]. An NADL planning problem consists of: a set of state variables, a

description of system and environment agents, and a specification of an initial and goal

condition. The set of state variable assignments defines the state space of the domain. An

agent’s description is a set of actions. The agents change the state of the world by perform-

ing actions that are assumed to be executed synchronously and to have a fixed and equal

duration. At each step, all of the agents perform exactly one action, and the resulting action

tuple is a joint action. The system agents are assumed to be controllable, while the envi-

ronment agents model the uncontrollable world. A valid domain description requires that

the system and environment agents modify a disjoint set of state variables. Otherwise they

may be able to control each other through their choice of actions. An action has three parts:

a set of modified state variables, a precondition formula, and an effect formula. The next

state value of the modified variables is defined by the effect formula and may depend on

the value of the current state variables. During execution, the action has exclusive access

to the modified state variables and it can not change the value of any other state variables.

In order for the action to be applicable, the precondition formula must be satisfied in the

current state. The values of state variables not modified by a joint action are unchanged.

The initial and goal condition are formulas that must be satisfied in the initial state and the

goal states, respectively. We assume that the initial condition only represents a single state.

Example 3.6 An NADL problem is shown in Figure 3.7. The problem has two state vari-

ables: a numerical one, position �
� ●

and a propositional one, �
�✄� ❆❙❃

. The position is a

natural number that can be represented by three Boolean variables. This gives �
� ●

the do-

main ✮ ✟ ✣ ✞
✣ ✵ ✣ � ✣ ✠ ✣ ✞ ✣✁� ✣✄✂ ✲ . The system is a robot moving between the eight positions. It has

two actions Right and Left. The Right and Left actions have conditional effects described

by an if-then-else operator (
✝

). If the power is on (that is, �
�✄� ❆❙❃

is
❂ ❃✤❅✳❆

), they increase

or decrease the position, otherwise they cause no position change. The Right action is

non-deterministic. It may increase the position with either one or two. The Left action

is deterministic. It always decreases the position with one. The environment is a human

that controls the power with two actions On and Off. Since the system and environment

must apply exactly one action at each step, there are four joint actions Left-On, Left-Off,

Right-On, and Right-Off. Initially, the power is on and the robot is at position 0. ✍

There are two sources of non-determinism in NADL domains. The first is non-determini-

stic actions not constraining all their modified variables to a single value in the next state.

The second is the uncontrollable actions of the environment. We define actions to be inter-

fering if either

40 CHAPTER 3. BDD-BASED PLANNING

variables

nat(3) �✂✁☎✄
bool �✂✁✝✆✟✞✡✠

system

agt: Robot

Right

mod: �✂✁☛✄
pre: �✂✁☛✄✌☞✎✍
eff: �✂✁✝✆✟✞✡✠✑✏✓✒✔�✂✁☛✄ ☞✖✕ �✂✁☛✄ ✜✤✣✟✗✘�✂✁☛✄ ☞✖✕ �✂✁☎✄ ✜✚✙✜✛✣✢✤�✂✁☎✄ ☞✖✕ �✥✁☎✄

Left

mod: �✂✁☛✄
pre: �✂✁☛✄✌✦★✧
eff: �✂✁✝✆✟✞✡✠✑✏✩�✂✁☛✄ ☞ ✕ �✂✁☛✄✫✪ ✣☛✢✤�✂✁☎✄ ☞ ✕ �✂✁☎✄

environment

agt: Human

On

mod: �✂✁✝✆✟✞✡✠
pre: ✬✭�✥✁☛✆✟✞✡✠
eff: �✂✁✝✆✟✞✡✠ ☞

Off

mod: �✂✁✝✆✟✞✡✠
pre: �✂✁✝✆✟✞✡✠
eff: ✬✭�✥✁☛✆✟✞✡✠ ☞

initially

�✂✁☎✄ ✕ ✧✯✮✰�✂✁☛✆✟✞✱✠
goal

�✂✁☎✄ ✕✳✲

Figure 3.7: An NADL planning problem.

1. they have inconsistent effects, or

2. they constrain an overlapping set of state variables.

The first condition is due to the fact that state knowledge is expressed in a monotonic logic

that cannot represent inconsistent knowledge. The second condition addresses the problem

of sharing resources. We assume that each state variable at most can be accessed by a single

action at each step even if the effect of several actions is consistent.

3.2. NON-DETERMINISTIC PLANNING 41

Abstract Syntax of NADL

The abstract syntax of an NADL description is a 7-tuple � ✁ ✟✂✁☎✄ ✣
✁
✣✝✆ ✣ ✁ ✂ ❂ ✣ ✖ ✣ ✱ ✣ ✆ ✡

where

� ✁☎✄ ✁✟✞ ✄ ❈ ❃ ✕✡✠ ✄ ❈ ❃ is a finite set of state variables comprised of a finite set of

Boolean variables,
✞ ✄ ❈ ❃ , and a finite set of numerical variables with finite domains,✠ ✄ ❈ ❃ ,� ✁ is a finite, nonempty set of system agents,� ✆

is a finite set of environment agents,� ✁✄✂ ❂
is a set of action descriptions ✟ � � ✂ ✣

�
❃ ❆ ✣ ❆☞☛ ✡ where

� � ✂
is the set of state vari-

ables modified by the action, �
❃ ❆

is a precondition state formula in the set ✁ ✂ �✷❃✞�
and

❆☞☛
is an effect formula in the set

✂ �✷❃✞�
. The sets ✁ ✂ �✷❃✞�

and
✂ �✷❃✞�

are defined

below.� ✖ ✛ ✁ ✄ ❂ ✝ ✵✍✌✏✎ ✬
is a function mapping agents (

✁ ✄ ❂ ✁ ✁ ✕ ✆) to their actions.� ✱▲✁ ✁ ✂ �✷❃ �
is the initial condition,� ✆ ✁ ✁ ✂ �✷❃✞�
is the goal condition.

For a valid domain description, we require that actions of system agents modify a disjoint

set of variables ✑

✎✓✒ ✁ ✁� ✁ ✖ ✢ ✎✔✒ ✤

� � ✂

�
✓ ✑

✎✔✕ ✁ ✆
� ✁ ✖ ✢ ✎✖✕☞✤

� � ✂

�
✁ ✌ ✂

The set of formulas
✂ �✷❃✞�

is constructed from the following alphabet of symbols

� A finite set of current state ✏ and next state ✏ ☞ variables, where ✏ ✣ ✏ ☞ ✁ ✁☎✄ ,� The natural numbers
✂

,� The arithmetic operators ✜ ,
☎

,
✔
, and ✗ ,� The relation operators

✝
,

✑
,

✌
,

☛
,

✁
and ✆✁ ,� The Boolean operators ✺ , ❁ , ✽ , ❑ , ◆ and

✝
,� The special symbols

❂❄❃❙❅✳❆
,
❇❉❈❋❊❍● ❆

, parentheses and comma.

42 CHAPTER 3. BDD-BASED PLANNING

Arithmetic expressions are defined inductively by

� Every numerical state variable ✏ ✁ ✠ ✄ ❈ ❃ is an arithmetic expression,� A natural number is an arithmetic expression,� If ✁ ✜ and ✁ ✟
are arithmetic expressions and

✂
is an arithmetic operator, then ✁ ✜ ✂ ✁ ✟

is an arithmetic expression.

Finally, formulas
✂ �✷❃✞�

are defined inductively by

� ❂❄❃✤❅✭❆
and

❇❉❈❋❊❍● ❆
are formulas,� Boolean state variables ✏ ✁ ✞ ✄ ❈ ❃ are formulas,� If ✁ ✜ and ✁ ✟

are arithmetic expressions and ✄ is a relation operator, then ✁ ✜ ✄ ✁ ✟
is a

formula,� If
✠ ✜

,
✠ ✟

and
✠✆☎

are formulas, so are ✢ ✺ ✠ ✜ ✤ , ✢ ✠ ✜ ❁ ✠ ✟ ✤ , ✢ ✠ ✜ ✽ ✠ ✟ ✤ , ✢ ✠ ✜ ❑ ✠ ✟ ✤ , ✢ ✠ ✜ ◆ ✠ ✟ ✤
and ✢ ✠ ✜ ✝ ✠ ✟ ✣ ✠✆☎ ✤ .

Parentheses have their usual meaning and operators have their usual priority and associa-

tivity with the if-then-else operator “
✝

” given lowest priority. ✁ ✂ �✷❃✞� ☛ ✂ �✷❃✞�
is a subset

of the formulas only referring to current state variables. All of the symbols in the alphabet

of formulas have their usual meaning with the if-then-else operator
✠ ✜ ✝ ✠ ✟ ✣ ✠✆☎

being an

abbreviation for ✢ ✠ ✜ ✽ ✠ ✟ ✤ ❁ ✢ ✺ ✠ ✜ ✽ ✠✆☎ ✤ .
The domain of a numerical state variable ✏ ✁ ✠ ✄ ❈ ❃ is given by

✂ �✁� ✢ ✏ ✤ ✁ ✮ ✟ ✣ ✞
✣✦✥✧✥✧✥✤✣✞✝ ✡ ✲ ,

where
✝ ✡ ✝ ✟

. Let ✟ ✁ ✂ ❂ ✒ and ✟ ✁ ✂ ❂ ✕ denote the set of joint actions of system agents and

environment agents, respectively

✟ ✁✄✂ ❂ ✒ ✧ ✠✌☛✡ ✪ ✆ ✖ ✢ ✎✔✒ ✤ ✣

✟ ✁✄✂ ❂ ✕ ✧ ✠✌☛☞ ✪✍✌ ✖ ✢ ✎✔✕☞✤ ✂
Moreover, let ✟ ✁✄✂ ❂ denote the set of joint actions of system and environment agents ✟ ✁✄✂ ❂ ✧
✟ ✁✄✂ ❂ ✒ ✸ ✟ ✁ ✂ ❂ ✕ .
Encoding NADL Domains with BDDs

An NADL description ✟ ✁☎✄ ✣
✁
✣✝✆❖✣ ✁ ✂ ❂ ✣ ✖ ✣ ✱ ✣ ✆ ✡ represents a non-deterministic planning prob-

lem ✁✏✎ ✄
✁ ✟ � ✎ ✄ ✣ ✚✑✎ ✄✞ ✣ ✆ ✎ ✄ ✡ where

� ✎ ✄
✁ ✟✂✁✒✎ ✄ ✣ ✁✄✂ ❂ ✎ ✄ ✣ ✝ ✡ and

3.2. NON-DETERMINISTIC PLANNING 43

� ✁ ✎ ✄
✁ ✁ ✁✄✂ ✳✵✭ ✸✆☎ ✡ ✪✞✝ ✂ ✳✵✭ ✂ �✁� ✢ ✏ ✤ ,� ✁✄✂ ❂ ✎ ✄

✁ ✟ ✁✄✂ ❂ ✒ ,� ✚ ✎ ✄✞ ✛ ✱ ✢ ✚✑✎ ✄✞ ✤ ,� ✆ ✎ ✄
✁ ✮✗✚✜✛ ✆ ✢ ✚✥✤ ✲ ,� ✚ ✓ ✡✝ ✚ ☞ iff

✄ ✢ ✚ ✣ ✎ ✒ ✣ ✚ ☞ ✤ .
The transition relation is given by

✄ ✢ ✚ ✣ ✎ ✒ ✣ ✚ ☞ ✤ ✁ ❏ ✎ ✕ ✁ ✟ ✁✄✂ ❂ ✕ ✂ ✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤
where

✎ ✁ ✟ ✁ ✂ ❂ is the joint action of the system and environment actions
✎ ✒ and

✎ ✕ given by✎ ✁ ✎ ✒ ✏ ✣✦✥✧✥✧✥❉✣ ✎ ✒✠✟ ✡☛✟ ✣ ✎ ✕ ✏ ✣✦✥✧✥✧✥★✣ ✎ ✕✠✟ ☞✌✟ and
✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ is the transition relation of the joint system

and environment actions.
✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ is a conjunction of three relations ✄ , � , and ✱

✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✁ ✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✽ � ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✽ ✱ ✢ ✎ ✤ ✂
✄ defines the constraints on the current state ✚ and next state ✚ ☞ caused by the actions in the

joint action
✎
. ✄ further ensures that actions with inconsistent effects cannot be applied con-

currently, since ✄ reduces to false if any pair of actions in
✎

has inconsistent effects. Thus,✄ also ensures the first condition for avoiding interference between concurrent actions. We

have

✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✁

✟ ✌✎✍ ✬ ✟
★✙✛✚✢✜ � �

❃✫❆ ✓ ✮ ✢ ✚✥✤ ✽ ❆☞☛ ✓ ✮ ✢ ✚ ✣ ✚ ☞ ✤ ✁ ✂
� is a frame relation ensuring that unmodified variables are unchanged

� ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✁ ★✡ ✪✑✏ ✂✓✒ ✏
✢ ✏ ✁ ✏ ☞ ✤

where
✡ ✁ ✩ ✟ ✌✔✍ ✬ ✟✙ ✚✢✜ � � ✂ ✓ ✮

.

Finally, ✱ ensures the second condition for avoiding interference between concurrent ac-

tions. ✱ ✢ ✎ ✤ ✁ ★✙ ✪✚✖✕ � � � ✂ ✓ ✮ ✓ � � ✂ ✓✘✗ ✁ ✌ ✁ ✂
An NADL domain corresponds to a synchronous system where each agent is an ac-

tivity. From the discussion in Section 2.3.1, we can therefore expect to be able to use a

conjunctive partitioning to represent the transition relation of the domain. The definition of

44 CHAPTER 3. BDD-BASED PLANNING

✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ above verifies this, since
✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ is a conjunction of subexpressions. However,

the existential quantification in the expression

✄ ✢ ✚ ✣ ✎ ✒ ✣ ✚ ☞ ✤ ✁ ❏ ✎ ✕ ✁ ✟ ✁ ✂ ❂ ✕ ✂ ✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ ✂
does not distribute over the conjunction of subexpressions in

✄ ✢ ✚ ✣ ✎ ✣ ✚ ☞ ✤ . It is possible

though, to use the early quantification technique explained in Section 2.3.1 to obtain a con-

junctive partitioning of
✄ ✢ ✚ ✣ ✎ ✒ ✣ ✚ ☞ ✤ by moving subexpression out of scope of the existential

quantification.

Notice that, for non-deterministic planning, the BDD encoding of the transition relation

needs to be complete in the sense that the action of a transition must be encoded in the BDD.

For deterministic planning, the disjunctive partitioning of the transition relation could be

used to represent actions. This is not possible for non-deterministic planning since the

search algorithms reason about state-action pairs (SAs) and synthesize plans represented

by a set of SAs.

In the remainder of the thesis, we focus on simple multi-agent problems with a single

system agent and at most one environment agent. We have developed a specialized version

of NADL called NADL
☎

where the system and environment is represented by a set of

actions instead of a set of agents. In addition, NADL
☎

has features to support guided

BDD-based search and failure effects of actions. If no environment actions exist, it is

straight forward to encode the transition relation of an NADL
☎

domain as a disjunctive

partitioning. Otherwise, if environment actions exist, we “flatten” the action descriptions

by computing each joint action, which again makes it possible to represent the transition

relation as a disjunctive partitioning. This can be done efficiently due to the relatively small

number of joint-actions. NADL
☎

is described in more detail in Appendix A.

3.2.2 Planning Algorithms

Weak, strong cyclic, and strong plans can be synthesized by a backward breadth-first search

from the goal states to the initial states. The search algorithm is shown in Figure 3.8. In

each iteration (l.2-7), a precomponent
✠✁�

of the plan is computed from the states
✡

currently

covered by the plan. If the precomponent is empty, a fixed point of
✠

has been reached

that does not cover the initial states and “no solution exists” is returned. Otherwise, the

precomponent is added to the plan and the states in the precomponent are added to the set

of covered states (l.6-7). The precomponent function must fulfill the specification given

below.

Definition 3.10 (Precomponent Function) A valid precomponent function PRECOMP ✢ ✡ ✤ ✛✵ ✆ ✝ ✵ ✆✄✂ ✌✏✎ ✬
must terminate. In addition, For any state-action pair in the precomponent

3.2. NON-DETERMINISTIC PLANNING 45

function NDP ✢ ✚ ✞ ✣ ✆ ✤
1

✠ ★ ✌
;

✡ ★ ✆
2 while ✚ ✞ ✆✁ ✡

3
✠ � ★

PRECOMP ✢ ✡ ✤
4 if

✠ � ✁ ✌
then return “no solution exists”

5 else

6
✠ ★ ✠ ✕ ✠ �

7
✡ ★ ✡ ✕ STATES ✢ ✠ � ✤

8 return
✠

Figure 3.8: A generic algorithm for synthesizing non-deterministic plans.

✟ ✚ ✣ � ✡ ✁ PRECOMP ✢ ✡ ✤ , we have ✚ ✆✁ ✡
.

Since the set of states is finite and the precomponent function terminates,
✠

must eventually

reach a maximum size. Thus, it can be shown that NDP terminates.

Theorem 3.1 (Termination) NDP terminates.

Proof. Given in Appendix B
✁

The Strong, strong cyclic, and weak planning algorithms only differ by the definition of

the precomponent. The core operation is to find the preimage where states are associated

with actions

PREIMGSA ✢ ✡ ✤ ✧ ❏ ✦✏ ☞ ✂ ✄ ✢ ✦✏ ✣ ✦� ✣ ✦✏ ☞ ✤ ✽ ✡ ✢ ✦✏ ✤ ✑ ✦✏ ✔ ✦✏ ☞ ✘ ✂ (3.7)

As a set computation PREIMGSA ✢ ✡ ✤ is defined by

PREIMGSA ✢ ✡ ✤ ✧ ✮ ✟ ✚ ✣ � ✡ ✛ NEXT ✢ ✚ ✣ � ✤ ✓ ✡ ✆✁ ✌ ✲ ✂ (3.8)

The weak and strong precomponent is the set of SAs given by

PRECOMPW ✢ ✡ ✤ ✧
PREIMGSA ✢ ✡ ✤ ✏ ✡ ✸ ✁ ✂ ❂

(3.9)

PRECOMPS ✢ ✡ ✤ ✧ ✢ PREIMGSA ✢ ✡ ✤ ✏ PREIMGSA ✢ ✡ ✤☞✤ ✏ ✡ ✸ ✁✄✂ ❂
(3.10)

The strong cyclic precomponent PRECOMPSC ✢ ✡ ✤ can be generated by iteratively extend-

ing a set of candidate SAs (
� ✁ ✁) and pruning it until a fixed point is reached [34]. The

precomponent function is shown in Figure 3.9.

Let WEAK, STRONGCYCLIC , and STRONG denote the NDP algorithm using PRE-

COMPW, PRECOMPSC, and PRECOMPS, respectively. It is shown in Appendix B that

46 CHAPTER 3. BDD-BASED PLANNING

function PRECOMPSC ✢ ✡ ✤
1

� ✁ ✁ ★ ✌
2 repeat

3 � ❊ ✂ � ✁ ✁ ★ � ✁ ✁
4

� ✁ ✁ ★
PREIMGSA ✢ STATES

✢ � ✁ ✁ ✤ ✕ ✡ ✤ ✏ ✡ ✸ ✁ ✂ ❂
5

● ✂ ✁ ✁ ★
SCPLANAUX ✢ � ✁ ✁ ✣☎✡ ✤

6 until
● ✂ ✁ ✁ ✆✁ ✌ ❁ � ✁ ✁ ✁ � ❊ ✂ � ✁ ✁

7 return
● ✂ ✁ ✁

function SCPLANAUX ✢ ● ❂ ❈ ❃✤❂ ✁ ✁ ✣☛✡ ✤
1 ✁ ✁ ★ ● ❂ ❈ ❃✤❂ ✁ ✁
2 repeat

3 � ❊ ✂ ✁ ✁ ★ ✁ ✁
4 ✁ ✁ ★

PRUNEOUTGOING ✢ ✁ ✁ ✣☛✡ ✤
5 ✁ ✁ ★

PRUNEUNCONNECTED
✢ ✁ ✁ ✣☛✡ ✤

6 until ✁ ✁ ✁ � ❊ ✂ ✁ ✁
7 return ✁ ✁

function PRUNEOUTGOING
✢ ✁ ✁ ✣☛✡ ✤

1 ✠ ❆✞� ✁ ✁ ★ ✁ ✁ ✏ PREIMGSA ✢ ✡ ✕ STATES ✢ ✁ ✁ ✤ ✤
2 return ✠ ❆✞� ✁ ✁

function PRUNEUNCONNECTED ✢ ✁ ✁ ✣☛✡ ✤
1 ✠ ❆✞� ✁ ✁ ★ ✌
2 repeat

3 � ❊ ✂ ✁ ✁ ★ ✠ ❆✞� ✁ ✁
4 ✠ ❆✞� ✁ ✁ ★ ✁ ✁ ✓ PREIMGSA ✢ ✡ ✕ STATES ✢ ✠ ❆✞� ✁ ✁ ✤☞✤
5 until ✠ ❆✞� ✁ ✁ ✁ � ❊ ✂ ✁ ✁
6 return ✠ ❆✞� ✁ ✁

Figure 3.9: The strong cyclic precomponent function.

WEAK, STRONGCYCLIC , and STRONG are sound and complete and have valid precompo-

nents. Since we have shown the generic non-deterministic algorithm then terminates, we

have

Theorem 3.2 (Correctness of Weak, StrongCyclic, and Strong) The WEAK, STRONG-

CYCLIC, and STRONG planning algorithms are correct. The algorithms return “no solu-

3.2. NON-DETERMINISTIC PLANNING 47

tion exists” iff no solution exists, otherwise they return a valid solution.

Proof. This follows from the soundness, completeness, and termination theorems of each

algorithm proven in Appendix B.
✁

Due to the breadth-first search carried out by the non-deterministic planning algorithm,

weak solutions have minimum length best-case execution paths and strong solutions have

minimum length worst-case execution paths [34]. Formally, for a non-deterministic plan-

ning domain
�

and a plan ✆ of
�

let

EXEC ✢ ✚ ✣ ✆✣✤ ✧ ✮ ✿ ✛ ✿ is a path of � ✢ ✆✣✤ and ✿ ✞ ✁ ✚ ✲ (3.11)

denote the set of execution paths of ✆ starting at ✚ . Let the length of a path ✿ ✁ ✿ ✞ ✿ ✜✢✥✧✥✧✥
with respect to a set of states

✡
be defined by

✎ ✿ ✎ ✏ ✧ ✍ ✯ ✛✑✏✓✒ ✿ ✙ ✁ ✡ �✂✁☎✄ ✿✔✓ ✆✁ ✡ ✒✌✔✧✛ ✟✍✌✏✎ ✑ ✯
✆ ✛✑✔✧✕ ✗✚✙ ✛ ✢✤✏✦✥✣✙ ✂ (3.12)

We will say that an execution path ✿ reaches a state ✚ iff
✎ ✿ ✎✞✝ ✒✠✟ ✆✁ ✆ . In addition, we will call

a state ✚ connected to a set of states
✡

by a plan ✆ iff � ✢ ✆✣✤ ✣ ✚ ✎ ✁ ✁✂� ✡
. Let MIN ✢ ✚ ✣☛✡ ✣ ✆✣✤

and MAX
✢ ✚ ✣☛✡P✣ ✆✣✤ denote the minimum and maximum length of an execution path from ✚

to
✡

of a plan ✆

MIN
✢ ✚ ✣☎✡ ✣ ✆ ✤ ✧ ✡ ✏ ✁☛ ✪ EXEC

✚ ✒✌☞ ✍ ✜ ✎ ✿ ✎ ✏ (3.13)

MAX ✢ ✚ ✣☎✡ ✣ ✆ ✤ ✧ ✡ �✏✎
☛ ✪ EXEC

✚ ✒✌☞ ✍ ✜ ✎ ✿ ✎ ✏ ✂ (3.14)

Similarly, let ✑ denote the set of all plans of
�

and let WDIST ✢ ✚ ✣☛✡ ✤ (weak distance) and

SDIST ✢ ✚ ✣☎✡ ✤ (strong distance) denote the minimum of MIN ✢ ✚ ✣☛✡P✣ ✆✣✤ and MAX ✢ ✚ ✣☛✡P✣ ✆✣✤ for

any plan ✆ ✁ ✑ of
�

WDIST ✢ ✚ ✣☛✡ ✤ ✧ ✡ ✏ ✁✍ ✪✓✒ MIN ✢ ✚ ✣☛✡P✣ ✆✣✤ (3.15)

SDIST
✢ ✚ ✣☎✡ ✤ ✧ ✡ ✏ ✁✍ ✪✓✒ MAX

✢ ✚ ✣☛✡ ✣ ✆✣✤ ✂ (3.16)

It can be shown that the WEAK and STRONG algorithms are optimal with respect to weak

and strong distance.

Theorem 3.3 (Optimality of Weak and Strong)

� If ✆ is a solution returned by WEAK ✢ ✚ ✞ ✣ ✆ ✤ then MIN ✢ ✚ ✞ ✣ ✆ ✣
✆✣✤ ✁

WDIST ✢ ✚ ✞ ✣ ✆ ✤ .� If ✆ is a solution returned by STRONG ✢ ✚ ✞ ✣ ✆ ✤ then MAX ✢ ✚ ✞ ✣ ✆ ✣
✆✣✤ ✁

SDIST ✢ ✚ ✞ ✣ ✆ ✤ .

48 CHAPTER 3. BDD-BASED PLANNING

Proof. Follows from the optimality proofs of WEAK and STRONG given in Appendix B.
✁

A limitation of strong cyclic and strong planning compared to weak planning is that

strong cyclic and strong plans often do not exist because it is impossible to avoid dead

ends. Consider generating a non-deterministic plan for a system that can be in a set of bad

states, a set of good states or a set irrecoverable failed states (dead-ends). Assume that

Bad States Good States

Failed
States

(Dead−Ends)

Irrecoverable

Figure 3.10: System with irrecoverable states.

there exist actions that can bring the system from any bad state to a good state. However,

these actions may fail and cause transitions to bad states or even irrecoverable failed states

(see Figure 3.10). No strong nor strong cyclic plan can be found since an irrecoverable

state can be reached from any initial state. There only exists a weak plan for this problem.

However, weak plans are mostly useless since actions are chosen without reasoning about

their worst-case behavior.

Another limitation of strong and strong cyclic plans is their inherent pessimism. Con-

sider for example the domain illustrated in Figure 3.11. The domain consists of � ✜ ✞ states

and two different actions (dashed and solid). The only strong cyclic and strong solution is

10

...

n

D

I G

Figure 3.11: A domain with two actions (drawn as solid and dashed arrows) illus-

trating the possible loss of short execution paths. � and
✠

are the initial and goal state,

respectively.

✮ ✟ ✟ ✣ ✚✂✁☎✄ ✯ ✖ ✡ ✣ ✟ ✞
✣ ✚✆✁✝✄ ✯ ✖ ✡ ✣✦✥✧✥✧✥✫✣ ✟ �

☎ ✞
✣ ✚✂✁☎✄ ✯ ✖ ✡❙✲ . There is a single execution path associated with

this plan that reaches the goal state in � steps. However, a weak plan ✮ ✟ ✟ ✣ ✖ � ✚✘✣ ✁ ✖ ✡❙✲ may be

3.2. NON-DETERMINISTIC PLANNING 49

preferable since the probability of its best-case execution length of 1 may be much higher

than its worst-case infinite execution length.

50 CHAPTER 3. BDD-BASED PLANNING

Chapter 4

State-Set Branching

In this chapter, we introduce a new framework called state-set branching [88, 89, 90, 91].

State-set branching combines BDD-based search and heuristic search. The philosophy

of state-set branching is that the information represented by BDDs must be semantically

closely related in order for the BDD operations to work efficiently. Hence, we separate the

representation of information used to guide the search algorithm from the representation

of states and transitions and only use BDDs to encode the latter. The framework has two

independent parts: a modification of the Best-First Search algorithm (BFS) described in

Section 2.4 to a new algorithm called Best-Set-First Search (BSFS), and an efficient BDD-

based implementation of this algorithm based on a partitioning of the transition relation

called branching partitioning. In Section 4.1, we introduce the BSFS algorithm and show

that it applies to any classical BFS algorithm, any transition cost function, heuristic func-

tion, and node-evaluation function. In Section 4.2, we define branching partitioning and

describe how this new BDD partitioning technique can be used to implement the BSFS al-

gorithm. Finally, Section 4.3 describes an experimental evaluation of two implementations

of A* called GHSETA* and FSETA*. The performance of these algorithms is compared

to unguided BDD-based search, ordinary single-state A*, and BDDA*, the only previous

BDD-based implementation of A*. The evaluation includes 8 search domains ranging from

VLSI-design with synchronous actions, to classical AI problems such as ✢ �

✟ ☎ ✞✥✤ -Puzzles,

Blocks World and problems used in the AIPS 1998, 2000 and 2002 planning competitions

[113, 4, 115]. We apply four different families of heuristic functions ranging from the min-

imum Hamming distance to the sum of Manhattan distances for the ✢ �

✟ ☎ ✞✥✤ -Puzzle, and

HSPr [20] for planning problems. The experimental evaluation shows that GHSETA* and

FSETA* consistently outperform single-state A*, except when the heuristic is very strong.

In addition, we show that it can improve the complexity of single-state search exponentially

and that it often dominates both single-state A* and blind BDD-based search by several or-

ders of magnitude. Moreover, it consistently outperforms BDDA*.

51

52 CHAPTER 4. STATE-SET BRANCHING

4.1 Best-Set-First Search

The Best-Set-First Search (BSFS) algorithm generalizes BFS to build a search tree where

each search node contains a set of states associated with the same search information. There

are two main properties of BDD-based search techniques that this algorithm exhibits.

1. It can exploit the ability of the image computation to find next states of a set of states

effectively when expanding a search node.

2. Since a search node contains states associated with the same search information, it

can avoid using inefficient symbolic arithmetic operations to find the search informa-

tion associated with states in child nodes.

BSFS can implement heuristic search tree algorithms where the search node informa-

tion used to prioritize the node expansion can be computed by associating each transition✟ ✚ ✣ � ✣ ✚ ☞ ✡ of the search domain with a change � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ of the search node information.

Thus, if ✚ belongs to a node with information ✱ and ✚ ☞ is reached with transition ✟ ✚ ✣ � ✣ ✚ ☞ ✡
then ✚ ☞ belongs to a search node with information ✱ ✜✁� ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ . For A*, the search node

information can be one or two dimensional: either it is the
✠

-value or the ✁ and ✣ -value. In

the first case, � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ is the change in
✠

-value caused by the transition.

Example 4.1 The � ✣ , �✩✁ , and resulting � ✠
values of the problem introduced in Example 2.8

are shown in Figure 4.1. ✍

✎✶

✏ ✑
✔✄✟

✠
✡ ✡✎☛

✡ ✡ ✌✡ ✡ ✍

✡ ✡✞✌

✂ � ✡☞☛
✂ ✡ ✡☎✄ ✌

✂ �✕✡ ☛
✂ ✡ ✡☎✄ ✌

✂ � ✡✝✆
✂ ✡ ✡✞✌

✂ �✕✡ ☛
✂ ✡ ✡☎✄ ✌

✂ � ✡ ✍
✂ ✡ ✡ ✌
✂✟✞ ✡ ✌

✂✟✞ ✡✎✍

✂✟✞ ✡ ✌

✂✟✞ ✡ ✌
✂✟✞ ✡✞✌

Figure 4.1: The
✂ � -values of the search problem introduced in Example 2.8.

The BSFS algorithm shown in Figure 4.2 is almost identical to the ordinary BFS al-

gorithm defined in Figure 2.8. However, the state-set version builds a search tree during

the search process where each search node contains a set of states. Multiple states in each

node emerge because child nodes with identical node information are coalesced by the

4.1. BEST-SET-FIRST SEARCH 53

function BSFS ✢ ✚ ✞ ✣ ✱ ✞ ✣ ✆ ✤
1

❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ★
MAKEQUEUE ✢ ✟ ✮✗✚ ✞ ✲ ✣ ✱ ✞ ✡ ✤

2 ✝ ✞✢✞ ✡
3 ☞✟✌ ✎ ❇ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✎ ✁ ✟✎✍✑✏✓✒✕✔✗✖✘✒✙✍✑✚✓✖✄✔

”no solution exists”

4 ✟✂✁ ✣ ✱ ✡ ★
REMOVETOP

✢ ❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✤
5 ☞✟✌ ✁ ✓ ✆ ✆✁ ✌ ✍✘✏ ✒ ✔ ✖✘✒ ✍✘✚ ✖✄✔

EXTRACTSOLUTION ✢ ❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✣ ✟✂✁ ✓ ✆ ✣ ✱ ✡ ✤
6

❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ★
ENQUEUEANDMERGE

✢ ❇ ❃✁�✄✂✳❂✟☎ ❆❙❃ ✣ STATESETEXPAND
✢ ✟✂✁ ✣ ✱ ✡ ✤☞✤

Figure 4.2: The Best-Set-First Search (BSFS) algorithm.

STATESETEXPAND function in line 6 and because the ENQUEUEANDMERGE function

may merge child nodes with nodes on the
❇ ❃✁�✄✂✳❂✟☎ ❆❙❃

queue having identical node informa-

tion. The STATESETEXPAND function is defined in Figure 4.3.

function STATESETEXPAND ✢ ✟✂✁ ✣ ✱ ✡ ✤
1 �

✏ ☞✆✝ ✁ ★ ❆ �
�
❂ ✝✄✂ ❈

�
2 ✌ ✞ ✖✄✒✆☎ � ✏ ✥✣✕ � ✕✘✙ ✚ ☞ ✔ ✁
3 ✌ ✞ ✖✘✒✆☎ � ✏ ✕✘✛ �✂✁ ✥ ✏✓✕✘✏✦✔ ✁ ✟ ✚ ✣ � ✣ ✚ ☞ ✡
4 ✱ � ★ ✱ ✜✁� ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤
5 �

✏ ☞✟✝ ✁ ✑ ✱ � ✘ ★ �
✏ ☞✟✝ ✁ ✑ ✱ � ✘ ✕ ✮✗✚ ☞ ✲

6
✖✄✒ ✍✘✚ ✖✄✔

MAKENODES ✢ � ✏ ☞✟✝ ✁ ✤

Figure 4.3: The STATESETEXPAND function.

Child states with node information ✱ are stored in
✂ ✟ ☎ ❊ ✂ ✑ ✱ ✘ . The outgoing transitions

from each state in the parent node are used to find all successor states. The function

MAKENODES called at line 6 constructs the child nodes from the completed child map.

Each child node contains states with the same search information. However, there may

exist several nodes with the same node information. In addition, MAKENODES may prune

some of the child states (e.g., to implement cycle detection in A*).

Example 4.2 Figure 4.4 shows the search tree traversed by the BSFS algorithm for A*

applied to the problem in Example 4.1. ✍

In order to introduce multiple states in each search node and reduce the number of search

nodes, the ENQUEUEANDMERGE function of the BSFS algorithm may merge nodes on the

search frontier having identical search information. This, however, transforms the search

tree into a Directed Acyclic Graph (DAG). We will refer to this DAG as a search structure.

54 CHAPTER 4. STATE-SET BRANCHING

� ✚ ✟

� ✚ ✟

� ✚ ✟ � ✚ ✁

✝ ✏ ✟

✝ ✎ ✟ ✝ ✏ ✟

✝ ✶ ☞ ✑ ✟

Figure 4.4: State-set search tree example.

Lemma 4.1 The search structure build by the BSFS algorithm is a DAG where every node✟✂✁ ☞
✣ ✱ ☞ ✡ different from a root node ✟ ✮✗✚ ✞ ✲ ✣ ✱ ✞ ✡ has a set of predecessor nodes. For each state

✚ ☞ ✁ ✁ ☞ in such a node there exists an action � and a predecessor ✟✙✁ ✣ ✱ ✡ with a state ✚ ✁ ✁
such that ✚ �

✝ ✚ ☞ and ✱ ☞ ✁ ✱ ✜ � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ .
Proof. By induction on the number of loop iterations, we get that the search structure after

the first iteration is a DAG consisting of a root node ✟ ✮✗✚ ✞ ✲ ✣ ✱ ✞ ✡ . For the inductive step,

assume that the search structure is a DAG with the desired properties after � iterations of

the loop (see Figure 4.2). If the algorithm in the next iteration terminates in line 3 or 5,

the search structure is unchanged and therefore a DAG with the required format. Assume

that the algorithm does not terminate and that ✟✂✁ ✣ ✱ ✡ is the node removed from the top of❇ ❃✁�✄✂✳❂✆☎ ❆❙❃
. The node is expanded by forming child nodes with the STATESETEXPAND func-

tion in line 6. According to the definition of this function, for any state ✚ ☞ ✁ ✁ ☞ in a child

node ✟✂✁ ☞
✣ ✱ ☞ ✡ there exists an action � and some state ✚ ✁ ✁ in ✟✂✁ ✣ ✱ ✡ such that ✚ �

✝ ✚ ☞ and✱ ☞ ✁ ✱ ✜✝� ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ . Thus ✟✂✁ ✣ ✱ ✡ is a valid predecessor for all states in the child nodes. Fur-

thermore, since all child nodes are new nodes, no cycles are created in the search structure

which therefore remains a DAG. If a child node is merged with an old node when enqueued

on
❇ ❃✁�✄✂✳❂✟☎ ❆❙❃

the resulting search structure is still a DAG because all nodes on
❇ ❃✁�✄✂✳❂✆☎ ❆❙❃

are

unexpanded and therefore have no successor nodes that can cause cycles. In addition, each

state in the resulting node obviously has the required predecessor nodes.
✁

Lemma 4.2 For each state ✚ ☞ ✁ ✁ ☞ of a node ✟✂✁ ☞
✣ ✱ ☞ ✡ in a finite search structure of the BSFS

algorithm there exists a path ✿ ✞ ✥✧✥✧✥ ✿ ✗ with associated actions ✆ ✁ � ✜ ✥✧✥✧✥ � ✗ in the search

domain such that ✿ ✗ ✁ ✚ ☞ and ✱ ☞ ✁ ✱ ✞ ✜✁� ✗✙ ✚✢✜ � ✱ ✢❄✿ ✙✄✂✳✜✤✣ � ✙ ✣ ✿ ✙ ✤ .

4.1. BEST-SET-FIRST SEARCH 55

Proof. We will construct the path by tracing the edges backwards in the search struc-

ture. Let ✻ ✗ ✁ ✚ ☞ . According to Lemma 4.1 there exists a predecessor ✟✂✁ ✣ ✱ ✡ to ✟✂✁ ☞
✣ ✱ ☞ ✡

such that for some state ✻ ✗ ✂✳✜ ✁ ✁ and action ✎ ✗ ✁ ✁✄✂ ❂
we have ✻ ✗ ✂✳✜ ✌ ✁✝ ✻ ✗ and✱ ☞ ✁ ✱ ✜ � ✱ ✢ ✻ ✗ ✏ ✣ ✎ ✗ ✣ ✻ ✗ ✤ . Continuing the backward traversal from ✻ ✗ ✂✳✜

must eventually ter-

minate since the search structure is finite and acyclic. Moreover, the traversal will terminate

at the root node because this is the only node without predecessors. Assume that the back-

ward traversal terminates after � iterations. Then ✿ ✞ ✥✧✥✧✥ ✿ ✗ ✁ ✻ ✞ ✥✧✥✧✥ ✻ ✗ and ✆ ✁ ✎ ✜✼✥✧✥✧✥ ✎ ✗ ✁

The EXTRACTSOLUTION function in line 5 of the BSFS algorithm uses the backward

traversal described in the proof of Lemma 4.2 to extract a solution. We can now prove

soundness of the BSFS algorithm.

Theorem 4.1 (Soundness of BSFS) If the BSFS algorithm returns a solution ✆ ✁ � ✜✢✥✧✥✧✥ � ✗
with associated path ✿ ✞ ✥✧✥✧✥ ✿ ✗ and the search node information of ✿ ✗ ’s search node is ✱ then

✆ is a valid solution and
✱ ✁ ✱ ✞ ✜ � ✗✙ ✚✢✜ � ✱ ✢❄✿ ✙✄✂✳✜✤✣ � ✙ ✣ ✿ ✙ ✤ .

Proof. Since ✿ ✗ ✁ ✆
it follows from Lemma 4.2 and the definition of EXTRACTSOLUTION

that ✆ is a solution to the search problem and ✱ ✁ ✱ ✞ ✜ � ✗✙✛✚✢✜ � ✱ ✢❄✿ ✙✄✂✳✜✤✣ � ✙ ✣ ✿ ✙ ✤ . ✁

It is not possible to show that the BSFS algorithm in general is complete since it covers in-

complete algorithms such as pure heuristic search. However, it follows from the optimality

proofs below that BSFS is complete when implementing the A* algorithm.

Example Implementations

The BSFS algorithm can be used to implement all classical variants of the BFS algorithm

including pure heuristic search, A*, weighted A*, uniform cost search, beam search, and

hill climbing. With some modifications, it also covers iterative deepening heuristic search

algorithms such as IDA*.

Pure heuristic search is implemented by using the values of the heuristic function as

search node information and sorting the nodes on the frontier in ascending order such that

the top node contains states with least ✣ -value. The search node information of the initial

state is ✱ ✞ ✁ ✣ ✢ ✚ ✞ ✤ and each transition ✟ ✚ ✣ � ✣ ✚ ☞ ✡ is associated with the change in ✣ , that

is, � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✣ ✢ ✚ ☞ ✤ ☎ ✣ ✢ ✚✥✤ . In each iteration, this pure heuristic search algorithm will

expand all states with least ✣ -value on the frontier given that all nodes with identical ✣ -value

are merged on the frontier queue.

A* can be implemented by setting ✱ ✞ ✁ ✣ ✢ ✚ ✞ ✤ and � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ � ✢ � ✤ ✜ ✣ ✢ ✚ ☞ ✤ ☎ ✣ ✢ ✚✥✤ .
In this way, the search node information equals the

✠
-value of the states belonging to the

56 CHAPTER 4. STATE-SET BRANCHING

nodes. Again, nodes on the frontier are sorted ascendingly. We call a particular imple-

mentation of this algorithm where all nodes with identical
✠

-value on the frontier queue

are merged for FSETA*. An A* implementation with cycle detection must keep track of✁ and ✣ separately and prune child states reached previously with a lower ✁ -value. Thus,✱ ✞ ✁ ✢ ✟ ✣ ✣ ✢ ✚ ✞ ✤☞✤ and � ✱ ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✢ � ✢ � ✤ ✣ ✣ ✢ ✚ ☞ ✤ ☎ ✣ ✢ ✚✥✤ ✤ . The frontier is, as usual, sorted

according with respect to the evaluation function
✠ ✢ � ✤ ✁ ✁ ✢ � ✤ ✜ ✣ ✢ � ✤ . The resulting al-

gorithm is called GHSETA*. Compared to FSETA*, GHSETA* does not merge nodes that

have identical
✠

-value but different ✁ and ✣ -values. In each iteration, it may therefore only

expand a subset of the states on the frontier with minimum
✠

-value. A number of other

improvements have been integrated in GHSETA*. First, it uses a tie breaking rule for nodes

with identical
✠

-value that chooses the node with the least ✣ -value. Thus, in situations

where all nodes on the frontier have
✠ ✢ � ✤ ✁ ✡

✥ , the algorithm focuses the search in a

DFS fashion. The reason is that a node at depth level ✖ in this situation must have greater

✣ -value than a node at level ✖ ✜ ✞ due to the non-negative transition costs. In addition, it

merges two nodes on the frontier only if the space used by the resulting node is less than

an upper-bound ✡ . This may help to focus the search further in situations where the space

requirements of the frontier nodes grow fast with the search depth. Both GHSETA* and

FSETA* can easily be extended to the weighted A* algorithms described in Section 2.4.

Using an approach similar to Pearl [130], FSETA* and GHSETA* can be shown to be opti-

mal given an admissible heuristic. In particular this is true when using the trivial admissible

heuristic function ✣ ✢ � ✤ ✁ ✟
of uniform cost search.

Lemma 4.3 Assume FSETA* and GHSETA* apply an admissible heuristic and ✿ ✞ ✥✧✥✧✥ ✿ ✗ is

the path associated with an optimal solution ✆ ✁ � ✜✼✥✧✥✧✥ � ✗ , then at any time before FSETA*

and GHSETA* terminate there exists a frontier node ✟✂✁ ✣ ✱ ✡ with ✿ ✙ ✁ ✁ such that ✱ ✌ ✡
✥

and ✿ ✞ ✥✧✥✧✥ ✿ ✙ is the search path associated with ✿ ✙ .
Proof. A node ✟✙✁ ✣ ✱ ✡ containing ✿ ✙ with associated search path ✿ ✞ ✥✧✥✧✥ ✿ ✙ must be on the

frontier since a node containing ✚ ✞ was initially inserted on the frontier and FSETA* and

GHSETA* terminate if a node containing the goal state ✚ ✗ is removed from the frontier. We

have ✱ ✁ ✂ � ● ❂ ✢ � ✜✢✥✧✥✧✥ � ✙ ✤ ✜ ✣ ✢❄✿ ✙ ✤ . The path ✿ ✞ ✥✧✥✧✥ ✿ ✙ is a prefix of an optimal solution, thus✂ � ● ❂ ✢ � ✜✼✥✧✥✧✥ � ✙ ✤ must be the minimum cost of reaching ✿ ✙ . Since the heuristic function is

admissible, we have ✣ ✢❄✿ ✙ ✤ ✌ ✣ ✥ ✢ ✿ ✙ ✤ which gives ✱ ✌ ✡
✥ . ✁

Theorem 4.2 (Optimality of fSetA* and ghSetA*) Given an admissible heuristic func-

tion, FSETA* and GHSETA* are optimal.

Proof. Suppose FSETA* or GHSETA* terminates with a solution derived from a frontier

node with ✱ ✝ ✡
✥ . Since the node was at the top of the frontier queue, we have

✱ ✑ ✠ ✢ � ✤ ■ � ✁ ❇ ❃✁�✄✂✳❂✆☎ ❆❙❃ ✂

4.2. BDD-BASED IMPLEMENTATION 57

Thus, prior to termination, all nodes on the frontier satisfied
✠ ✢ � ✤ ✝ ✡

✥ . However, this

contradicts Lemma 4.3 that states that any optimal path has a node on the frontier any time

prior to termination with ✱ ✌ ✡
✥ .

✁

IDA* performs a depth-first search in the search tree bounded by a limit
✠ ✴
�✂✁✄�

✬
on the✠

-values of search nodes. Initially,
✠ ✴
�☎✁✆�

✬
is equal to the

✠
-value of the initial state. In each

iteration,
✠ ✴
�☎✁✆�

✬
is increased by the minimum value that the previous search exceeded

✠ ✴
�☎✁✆�

✬
by. A similar algorithm can be defined for a state-set search structure where child nodes

with identical
✠

-values are combined.

4.2 BDD-Based Implementation

The motivation for defining the BSFS algorithm is that it can be efficiently implemented

with BDDs. In this section, we define a new BDD technique called branching partitioning

to effectively expand search nodes where the sets of states are represented by BDDs.

The BDD-based BSFS algorithm represents the states in each search node by a BDD.

This may lead to exponential space savings compared to the explicit state representation

used by ordinary implementations of best-first search. However, if we want exponential

space savings to translate into an exponential time savings, we also need an implicit ap-

proach for computing the expand operation. The image computation can be applied to find

all next states of a set of states implicitly, but we need a way to partition the next states into

child nodes with identical node information. The expand operation could be carried out in

two phases, where the first finds all the next states using the image computation, and the

second splits this set of states into child nodes [179]. A more efficient approach, however,

is to split up the image computation such that the second phase is integrated in the first

phase without a significant computational overhead. We call this branching partitioning.

4.2.1 Disjunctive Branching Partitioning

For disjunctive partitioning the approach is straight-forward. We simply ensure that each

partition contains transitions with the same search information change. The result is called

a disjunctive branching partitioning.

Definition 4.1 (Disjunctive Branching Partitioning) A disjunctive branching partition-

ing is a disjunctive partitioning
✄✾✜ ✢ ✦✓ ✜❙✣ ✦✖ ☞ ✜ ✤ ✣✦✥✧✥✧✥❉✣☎✄ ✗ ✢ ✦✓ ✗ ✣ ✦✖ ☞✗ ✤ where each subrelation rep-

resents a set of transitions with the same search node information change.

58 CHAPTER 4. STATE-SET BRANCHING

Notice, that there may exist several partitions with identical information change. In prac-

tice, it is often more efficient to merge some of these partitions even though more variables

will be modified by the resulting partitions.

So far, an unresolved problem is how to find the search node information change of

each transition efficiently. It is intractable to compute ✣ ✢ ✚✥✤ explicitly for each state since

the number of states grows exponentially with the number of state variables of the domain.

In practice, however, it turns out that � ✣ of an action often is independent of which state

it is applied in. This is not a coincidence. Heuristics are relaxations that typically are

based on ignoring interactions between actions in the domain. Thus, the effect of an action

can often be associated with a particular � ✣ value. In the worst case, it may be necessary to

encode the heuristic function symbolically with a BDD ✣ ✢ ✦✁ ✣ ✦✏ ✤ where the vector of Boolean

variables
✦✁ encodes the heuristic value in binary of the state represented by

✦✏ . We can then

compute � ✣ ✢ ✚ ✣ ✚ ☞ ✤ symbolically with

� ✣ ✢ ✦✏ ✣ ✦✏ ☞
✣ ✦✖✙✤ ✧ ✣ ✢ ✦✁ ✣ ✦✏ ✤ ✽ ✣ ✢ ✦✁ ☞

✣ ✦✏ ☞ ✤ ✽ ✦
✖ ✁ ✦✁ ☞ ☎ ✦✁ (4.1)

where
✦

✖ encodes the value of � ✣ ✢ ✚ ✣ ✚ ☞ ✤ in binary. This computation avoids iterating over

all states. In addition, it only needs to be carried out once prior to search. For all of

the heuristics studied in this thesis (including several classical heuristics), it has not been

necessary to perform this symbolic computation. Instead, the � ✣ value of each action has

been independent or close to independent of the state the action is applied in.

Example 4.3 For the search problem in Example 4.1, we get at least three subrelations

corresponding to the three distinct � ✠ -values

� ✠ ✜ =
✟

✄ ✜ ✢ ✦✏ ✣ ✦✏ ☞ ✤ = ✺ ✏ ✜ ✽✹✺ ✏ ✟ ✽ ✏ ☞ ✜ ✽✹✺ ✏ ☞✟ ❁
✺ ✏ ✜ ✽ ✏ ✟ ✽ ✺ ✏ ☞✜ ✽✒✺ ✏ ☞✟ ❁
✺ ✏ ✜ ✽ ✏ ✟ ✽ ✏ ☞ ✜ ✽ ✏ ☞✟

� ✠ ✟
=
✵

✄ ✟ ✢ ✦✏ ✣ ✦✏ ☞ ✤ = ✏ ✜ ✽ ✏ ✟ ✽ ✺ ✏ ☞✜ ✽ ✏ ☞✟

� ✠✆☎ =
�

✄ ☎ ✢ ✦✏ ✣ ✦✏ ☞ ✤ = ✏ ✜ ✽❀✺ ✏ ✟ ✽ ✏ ☞ ✜ ✽ ✏ ☞✟
.

✍

Assume that the search node information change associated with subrelation
✯

is � ✱ ✙
and that there are � subrelations. Let IMG

✙ ✢ ✡ ✤ denote the image of the transitions in sub-

4.2. BDD-BASED IMPLEMENTATION 59

relation
✯

IMG
✙ ✢ ✡ ✤ ✧ � ❏ ✦✖ ✙ ✂ ✡ ✢ ✦✏ ✤ ✽ ✄ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✁ ✑ ✦✖ ☞✙ ✔ ✦✖ ✙ ✘ ✂ (4.2)

The STATESETEXPAND function in Figure 4.3 can then be implemented with BDDs as

shown in Figure 4.5.

function DISJUNCTIVESTATESETEXPAND ✢ ✟✂✁ ✣ ✱ ✡ ✤
1 �

✏ ☞✆✝ ✁ ★ ❆ �
�
❂ ✝✄✂ ❈

�
2 ✌ ✞ ✖✾✯ ✁ ✞ ✍ ✞ �

4 ✱ � ★ ✱ ✜✁� ✱ ✙
5 �

✏ ☞✟✝ ✁ ✑ ✱ � ✘ ★ �
✏ ☞✟✝ ✁ ✑ ✱ � ✘ ✕ IMG

✙ ✢ ✁✆✤
6

✖✘✒ ✍✘✚ ✖✄✔
MAKENODES

✢ � ✏ ☞✟✝ ✁ ✤

Figure 4.5: The STATESETEXPAND function for a disjunctive branching partition-

ing.

4.2.2 Conjunctive Branching Partitioning

An efficient implicit node expansion computation is also possible to define for a conjunc-

tive partitioning. Consider the synchronous composition of the � subsystems in Figure 2.6.

Assume that the search node information change of a joint activity equals the sum of infor-

mation changes of each activity. We can then represent a conjunctive branching partitioning

as � disjunctive branching partitionings where each disjunctive branching partitioning rep-

resents the subrelations of the activities.

Definition 4.2 (Conjunctive Branching Partitioning) A conjunctive branching partition-

ing
✠ ✜✤✣★✥✧✥✧✥❉✣ ✠ ✗ is a set of disjunctive branching partitionings

✠ ✙ ✁ ✄ ✜✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ ✣✦✥✧✥✧✥❙✣☛✄✁�
✮✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤

for ✞ ✌✂✯ ✌
� .

Since the subsystems are synchronous, we require that the sets of variables in
✦✖ ☞ ✜ ✣✦✥✧✥✧✥❉✣ ✦✖ ☞✗

form a partitioning of the state variables
✦✏ ☞ . Assume that the search node information

change of
✄ ✓ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ is � ✱ ✓✙

. Further let

SUBCOMP

✓ ✙ ✢ ✄✕✤ ✧ ❏ ✦✦ ✙ ✂ ✄ ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✽ ✄ ✓ ✙ ✢ ✦✓ ✙ ✣ ✦✖ ☞✙ ✤ (4.3)

60 CHAPTER 4. STATE-SET BRANCHING

where ✄ represents an intermediate computation result. As for an ordinary conjunctive

image computation, we require ✥ ✓ ✓ ✩ ✗✙ ✚ ✓ ☎ ✜✁� ✙ ✁ ✌
for ✞ ✌ ✎ ✑

� and
✩ ✗✙ ✚✢✜ ✥ ✙ ✁

✮✥✏ ✜✤✣✦✥✧✥✧✥★✣ ✏ ✗ ✲ .
The conjunctive state-set expansion function is then defined as shown in Figure 4.6. The

function CONJUNCTIVESTATESETEXPAND ✢ ✟✙✁ ✣ ✱ ✡ ✤
1 �

✏ ☞✟✝ ✁ ★ ❆ �
�
❂ ✝ ✂ ❈

�
2 �

✏ ☞✟✝ ✁ ✑ ✱ ✘ ★ ✁
3 ✌ ✞ ✖✘✯ ✁ ✞ ✍ ✞ �

4
✔✓✒

✝
� ✏ ☞✟✝ ✁ ★ ❆ �

�
❂ ✝ ✂ ❈

�
5 ✌ ✞ ✖✄✒✆☎ � ✏ ✙ ✁ ✕✘✛✂✁ ✟ ✄ ✣ � ✱ ✡ ☞ ✔ �

✏ ☞✟✝ ✁
6 ✌ ✞ ✖ ✎ ✁ ✞ ✍ ✞☎✄

✙
7 ✱ � ★ � ✱ ✜ � ✱ ✓✙
8

✔ ✒
✝
� ✏ ☞✆✝ ✁ ✑ ✱ � ✘ ★ ✔ ✒

✝
� ✏ ☞✆✝ ✁ ✑ ✱ � ✘ ❁ SUBCOMP

✓ ✙ ✢ ✄✕✤
9 �

✏ ☞✆✝ ✁ ★ ✔✓✒
✝
� ✏ ☞✟✝ ✁

10
✖✘✒✙✍✑✚✓✖✄✔

MAKENODES ✢ � ✏ ☞✆✝ ✁ ✤

Figure 4.6: The STATESETEXPAND function for a conjunctive branching partition-

ing.

outer loop of the conjunctive state-set expansion function performs � iterations. In iteration✯
, the next value of the variables

✦✖ ✙
is computed. In the end, the map

✂ ✟ ☎ ❊ ✂
contains sets

of next states with identical search node information.1 In the worst case, the number of

child nodes will grow exponentially with the number of activities. However, in practice

this blow-up of child nodes may be avoided due to the merging of nodes with identical

search node information during the computation.

4.3 Experimental Evaluation

Even though state-set branching applies to weighted A* and pure heuristic search, the ex-

perimental evaluation focuses on evaluating the two implementations FSETA* and GH-

SETA* of the A* algorithm. There are several reasons for this. First, we are interested

in finding optimal or near optimal solutions, and for pure heuristic search, the whole em-

phasis would be on the quality of the heuristic function rather than the efficiency of the

search approach. Second, the behavior of A* has been extensively studied, and finally, we

1The function MAKENODES generates search nodes from the map. In addition, it substitutes the variables

of the BDDs encoding next states from primed to unprimed state variables.

4.3. EXPERIMENTAL EVALUATION 61

wish to compare with the BDDA* algorithm. Readers interested in the performance of

state-set branching algorithms of weighted A* with weight settings other than ☞ ✁ ✟ ✂✟✞ (see

Equation 2.17) are referred to [89].

All experiments have been carried out with the BIFROST 0.7 search engine using the

experimental setting described in Appendix A. The input to BIFROST is a search prob-

lem defined in the STRIPS part of PDDL or NADL
☎

described in Appendix A where

action costs and heuristics can be defined. The performance of 6 algorithms GHSETA*,

FSETA*, BIDIR, BDDA*, and iBDDA* is investigated. The GHSETA*, FSETA*, and

BIDIR search algorithms have been described in Section 4.1 and Section 3.1.2. The A*

algorithm manipulates and represents states explicitly. Due to the different state represen-

tations, specialized versions have been made for the ✢ �

✟ ☎ ✞✥✤ -Puzzles, the DVM domain,

and the �
✆ ✕

domain described below. In addition, a general version for PDDL planning

is implemented in BIFROST 0.7 and represents states as sets of facts and actions in the

usual STRIPS fashion. All of the single-state A* algorithms are implemented with cycle

detection. The BDDA* algorithm has been implemented in BIFROST 0.7 as described

in [53]. It is shown in Figure 4.7. BDDA* can solve search problems only in domains

function BDDA* ✢ ✚ ✞ ✣ ✆ ✤
1

�
�

❆ ✂ ✢ ✦✠ ✣ ✦✏ ✤ ★ ✣ ✢ ✦✠ ✣ ✦✏ ✤ ✽ ✚ ✞ ✢ ✦✏ ✤
2 ✝

✏ ☞✟✝ ✒ ✢ � �
❆ ✂ ✆✁ ✌ ✤

3 ✢ ✠ ✁✄� ✎
✣ � ☎ ✂ ✢ ✦✏ ✤ ✣ �

�
❆ ✂ ☞ ✢ ✦✠ ✣ ✦✏ ✤☞✤ ★ GOLEFT ✢ � �

❆ ✂ ✤
4 ☞✟✌ ❏ ✦✏☎✂ � ☎ ✂ ✢ ✦✏ ✤ ✽ ✆ ✢ ✦✏ ✤ ✖✘✒ ✍✘✚ ✖ ✔ ✠

✁✆� ✎
5

�
�

❆ ✂ ☞ ☞ ✢ ✦✠ ☞
✣ ✦✏ ☞ ✤ ★ ❏ ✦✏☎✂ � ☎ ✂ ✢ ✦✏ ✤ ✽✁� ✢ ✦✏ ✣ ✦✏ ☞ ✤ ✽

6
❏ ✦✁ ✂ ✣ ✢ ✦✁ ✣ ✦✏ ✤ ✽ ❏ ✦✁ ☞ ✂ ✣ ✢ ✦✁ ☞

✣ ✦✏ ☞ ✤ ✽✜✢ ✦✠ ☞ ✁ ✠
✁✆� ✎ ✜ ✦✁ ☞ ☎ ✦✁ ✜ ✞✥✤

7
�

�
❆ ✂ ✢ ✦✠ ✣ ✦✏ ✤ ★ �

�
❆ ✂ ☞ ✢ ✦✠ ✣ ✦✏ ✤ ❁ �

�
❆ ✂ ☞ ☞ ✢ ✦✠ ☞

✣ ✦✏ ☞ ✤ ✑ ✦✠ ☞ ✏ ✦✠ ✣ ✦✏ ☞ ✏ ✦✏ ✘

Figure 4.7: The BDDA* algorithm.

with unit transition costs. The search frontier is represented by a single BDD
�

�
❆ ✂ ✢ ✦✠ ✣ ✦✏ ✤ .

This BDD is the characteristic function of a set of states paired with their
✠

-value. The

state is encoded as usual by a Boolean vector
✦✏ and the

✠
-value is encoded in binary by the

Boolean vector
✦✠
. Similarly to FSETA*, BDDA* expands all states

� ☎ ✂ ✢ ✦✏ ✤ with minimum✠
-value (

✠
✁✆� ✎) in each iteration. The

✠
-value of the child states is computed by arithmetic

operations at the BDD level (line 5 and 6). The change in ✣ -value is found by applying a

symbolic encoding of the heuristic function to the child and parent state. BDDA* is able

to find optimal solutions, but the algorithm only returns the path cost of such solutions. In

our implementation, we therefore added a function for tracing a solution backward. In the

domains, we have investigated, this extraction function has low complexity, as do those for

62 CHAPTER 4. STATE-SET BRANCHING

GHSETA* and FSETA*. Our investigation of the BDDA* algorithm shows that it often can

be improved by

1. defining a computation of
�

�
❆ ✂ ☞ ☞ using a disjunctive partitioned transition relation

instead of monolithic transition relation as in line 5,

2. precomputing the arithmetic operation at the end of line 6 for each possible
✠

-value,

3. interleaving the BDD variables of
✦✠
,

✦✁ , and
✦✁ ☞ to improve the arithmetic BDD oper-

ations, and

4. moving this block of variables to the middle of the BDD variable ordering to reduce

the average distance to dependent state variables.

The last improvement is actually antagonistic to the recommendation of the BDDA* in-

ventors who locate the
✦✠

variables at the beginning of the variable ordering to simplify

the GOLEFT operation. However, we get up to a factor of two speed up with the four

modifications above. The algorithms are summarized in the table below.

GHSETA* : The GHSETA* algorithm with evaluation function
✠ ✢ � ✤ ✁

✁ ✢ � ✤ ✜ ✣ ✢ � ✤ .

FSETA* : The FSETA* algorithm with evaluation function
✠ ✢ � ✤ ✁

✁ ✢ � ✤✛✜ ✣ ✢ � ✤ . This algorithm has been implemented to mimic

the BDDA* algorithm. It expands exactly the same states in

each iteration. Any performance difference between the two

algorithms is due to efficiency differences between state-set

branching and the approach used by BDDA*.2

BIDIR : The BDD-based blind breadth-first bidirectional search al-

gorithm shown in Figure 3.4.

A* : Single-state A* with cycle detection, explicit state manipu-

lation, and evaluation function
✠ ✢ � ✤ ✁ ✁ ✢ � ✤✠✜ ✣ ✢ � ✤ .

BDDA* : The BDDA* algorithm [53] shown in Figure 4.7.

iBDDA* : An improved version of BDDA* described below.

In order to factor out differences due to state encodings and BDD computations, all

BDD-based algorithms use the same bit vector representation of states, the same variable

4.3. EXPERIMENTAL EVALUATION 63

ordering of the state variables, and similar space allocation and cache sizes of the BDD

package. We believe we did an extensive empirical validation. It is necessary since a

dissimilarity in just one of the above mentioned properties may cause an exponential per-

formance difference. All algorithms share as many subcomputations as possible, but redun-

dant or unnecessary computations are never carried out for a particular instantiation of an

algorithm. The following table shows the measured performance parameters of BIFROST.

✝ ✬✁� ✬✮✳ ✴
: The total elapsed CPU time of BIFROST.

✝ ✭✓✱ ✴
: Time to generate the transition relation. For BDDA* and

iBDDA*, this also includes building the symbolic repre-

sentation of the heuristic function and
✠

-formulas.

✝ ✶ ✱ ✳✵✭ ✎✄✂ : Time to search for and extract a solution.

✎ ● � ❊ ✎
: Solution length.

✎ ❆✆☎
�

❈ ✂ ✂ ✎
: For BIDIR this is the average size of the BDDs representing

the search frontier. For FSETA* and GHSETA*, it is the

average size of BDDs of search nodes being expanded. For

BDDA* and iBDDA*, it is the average size of
�

�
❆ ✂ ☞ ☞ .

✎ � ❈ ☎ ✆ ✎
: Maximum number of queue nodes on the frontier queue.

✎ � ✎
: The sum of the BDDs representing the partitioned transition

relation.

☎ ❂
: Number of iterations of the algorithm.

Time is measured in seconds. The time
✝ ✬✝�✵✬ ✳✵✴ ☎ ✝ ✭✓✱ ✴ ☎ ✝ ✶✰✱✦✳ ✭ ✎✄✂ is spent on allocating memory

for the BDD package, parsing the problem description and, in case of PDDL problems,

analysing the problem in order to make a compact Boolean state encoding. Time out and

out of memory are indicated by Time and Mem. Time out changes between the experi-

ments. The algorithms are out of memory when they start page faulting to the hard drive at

approximately 450 MB RAM.

Our experiments cover a wide range of search domains and heuristics. The first domain
✂✟✞

✕
is artificial and uses the minimum Hamming distance as heuristic function. It demon-

strates that state-set branching may have exponentially better performance than single-state

A*. Next, we consider the
☞ � � ✂ ✬✡✠

Puzzle and the 24 and 35 Puzzle using minimum

64 CHAPTER 4. STATE-SET BRANCHING

Hamming distance and sum of Manhattan distance as heuristic function, respectively. We

then consider a number of STRIPS planning problems from the AIPS planning competi-

tions [113, 4, 115] using the HSPr heuristic [20] and finally, we study the channel routing

problem from VLSI design using a specialized heuristic function.

4.3.1 Search Problems

FG

✕

This problem is a modification of Barret and Weld’s
☞ ✜

✁
✜

problem [8] and has been con-

structed to show that state-set branching may have exponentially better performance than

single-state A*. The problem is easiest to describe in STRIPS. Thus, a state is a set of facts

and actions are fact triples defining sets of transitions. The actions are

�
✜✜ �

✜✙ ✣ ✯ ✁ ✵ ✣✦✥✧✥✧✥❉✣
�

�
✟✙ ✣ ✯ ✁ ✞

✣✦✥✧✥✧✥❙✣
�

�
❃ ❆

: ✮ � ✥ ✲ �
❃ ❆

: ✮ � ✥
✣ ✆ ✙ ✂✳✜ ✲ �

❃ ❆
: ✮ ✲❈✄✂✄✂

: ✮ ✆ ✜ ✲ ❈✄✂✄✂
: ✮ ✆ ✙ ✲ ❈✄✂✄✂

: ✮ �
✙ ✲

✂ ❆ ❊
: ✮ ✲ ✂ ❆ ❊

: ✮ ✲ ✂ ❆ ❊
: ✮ � ✥ ✲ ✂

Each action is assumed to have unit cost. The initial state is ✮ � ✥ ✲ and the goal state is

✮ ✆ ✙ ✎ ✪ ✑ ✯ ✌
� ✲ . Only

�
✜✙

actions should be applied to reach the goal. Applying an
�

✟✙
action in any state leads to a wild path since � ✥ is deleted. The states on wild paths contain

�
✙

facts. Since any subset of �
✙

facts is possible, the number of states on wild paths grows

exponentially with � . The heuristic function is the minimum Hamming distance to the

goal states. The only solution is
�
✜✜ ✣✦✥✧✥✧✥★✣ �

✜
✗ and is non-trivial to find, since the heuristic

gives no information to guide the search on the first
✪

steps. Intuitively, the problem can

be thought of as walking blindfolded on a sharp ridge for
✪

steps and then with full vision

for the remaining �
☎ ✪

steps. A single wrong step has an exponential search penalty of

exploring wild paths.

In this experiment, we compare only the total CPU time and number of iterations of

GHSETA* and single-state A*. The FG

✕
problems are defined in NADL

☎
. A specialized

poly-time BDD operation for splitting NADL
☎

actions into transitions with the same search

information change is used for GHSETA*. No upper bound (✡ ✁ ✆) is used by GHSETA*

and no upper limit of the branching partitions is applied. For the FG

✕
problems considered,

� equals 16. This corresponds to a domain with
✵ ☎ ☎

states. Time out is 600 seconds.

The results are shown in Figure 4.8. The performance of A* degrades quickly with the

number of unguided steps. A* gets lost expanding an exponentially growing set of states

on wild paths. The GHSETA* algorithm is hardly affected by the lack of guidance. The

reason is that GHSETA* degenerates to a regular BDD-based blind forward search on the

4.3. EXPERIMENTAL EVALUATION 65

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of unguided steps (k)

ghSetA*
A*

Figure 4.8: Total CPU time of the FG � problems.

unguided part where the frontier states can be represented by a near symmetric function

with polynomial BDD size. Thus, the performance difference between A* and GHSETA*

grows exponentially with
✪
.

☞ � � ✂ ✬ ✠

This problem has the minimum Hamming distance as an admissible heuristic. The domain

consists of a set of sliders that can be moved between the corner positions of hypercubes.

In any state, a corner position can be occupied by at most one slider. The dimension of

the hypercubes is
✖
. There are ✦ sliders of which

✓
are moving on the same cube. The

remaining ✦ ☎ ✓
sliders are moving on individual cubes. The sliders are numbered. Initially,

they are given corner positions that, when encoded in binary, correspond to an ascending

order of their numbers. The goal is to change their positions to a descending order. Each

action is assumed to have unit cost. Figure 4.9 shows the initial state of
☞✂✁ �

☎ ✬☎✄
.

When
✓ ✁ ✦ all sliders are moving on the same cube. If further

✓ ✁ ✵ ✂ ☎ ✞ all corners

of the cube except one will be occupied making it a permutation problem similar to the 8-

Puzzle. The key point about this problem is that the
✓

parameter allows the dependency of

sliders to be adjusted linearly without changing the size of the domain. For the BDD-based

algorithms, the
☞ � �

✁ ✬ ✜ ✁
problems are defined in NADL

☎
. Again, a specialized poly-

time BDD operation for splitting NADL
☎

actions into transitions with the same search

66 CHAPTER 4. STATE-SET BRANCHING

0

1

2

3

4

5

6

Figure 4.9: The initial state of ✝ �✂✁ ✆☎✄✝✆
.

information change is applied by GHSETA* and FSETA*. For all problems, the number of

states is
✵✟✞ ✞

. For GHSETA* the upper bound for node merging is 200 (✡ ✁ ✵ ✟ ✟
). All BDD-

based algorithms except BDDA* utilize a disjunctive partitioning with an upper bound on

the BDDs representing a partition of 5000. Time out is 500 seconds. For all problems,

the BDD-based algorithms use 2.3 seconds on initializing the BDD package (�
✁✡✠ ✬

and

� ✁ ✂ ✟ ✟☞☛
). The results are shown in Table 4.1. Figure 4.10 shows a graph of the total CPU

time for the algorithms.

0.1

1

10

100

1000

0 2 4 6 8 10 12

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of sliders on the same cube (x)

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Figure 4.10: Total CPU time of the
☞ � �

✁ ✬ ✜ ✁
problems.

All solutions found are 34 steps long. Even when the largest number of sliders are on

the same cube, a plan with the minimum 34 steps is possible. For BDDA* and iBDDA*

the size of the BDD representing the heuristic function is 2014 and 1235, respectively. Both

the size of the monolithic and partitioned transition relation grows fast with the dependency

of sliders. The problem is that there is no efficient way to model whether a position is occu-

pied or not. The most efficient algorithm is GHSETA*. The FSETA* algorithm has worse

4.3. EXPERIMENTAL EVALUATION 67

performance than GHSETA* because it has to expand all states with minimum
✠

-value in

each iteration, whereas GHSETA* focus on a subset of them by having ✡ ✁ ✵ ✟ ✟
. A subex-

periment shows that GHSETA* has similar performance as FSETA* when setting ✡ ✁ ✆ .

The impact of the ✡ parameter is significant for this problem since, even for fairly large

values of
✓

, it has an abundance of optimal solutions. BDDA* has much worse perfor-

mance than FSETA* even though it expands the exact same set of states in each iteration.

As we show in Section 4.4, the problem is that the complexity of the computation of
�

�
❆ ✂ ☞ ☞

grows fast with the size of the BDD representing the states to expand. Surprisingly, the

performance of iBDDA* is worse than BDDA*. This is unusual, as the remaining exper-

iments will show. The reason might be that only a little space is saved by partitioning the

transition relation in this domain. This may cause the computation of
�

�
❆ ✂ ☞ ☞ for iBDDA*

to deteriorate because it must iterate through all the partitions. A* performs well when✠ ✢ � ✤ is a perfect or near perfect discriminator, but it soon gets lost in keeping track of the

fast growing number of states on optimal paths. It times out in a single step going from

about one second to more than 500 seconds. The problem for BIDIR is the usual for blind

BDD-based search algorithms applied to hard combinatorial problems: the BDDs repre-

senting the search frontiers blow up which increases the time of the image and preimage

computations dramatically.

The 24 and 35-Puzzle

We now turn to investigating the ✢ �

✟ ☎ ✞✥✤ -Puzzles. The domain consists of an � ✸ � board

with �

✟ ☎ ✞ numbered tiles and a blank space. A tile adjacent to the blank space can slide

into the space. The goal is to reach a configuration where the tiles are ordered ascendingly

as shown for the 24-Puzzle in Figure 4.11. For our experiments, the initial state is gener-

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

2221 23 24

Figure 4.11: Goal state of the 24-Puzzle.

68 CHAPTER 4. STATE-SET BRANCHING

Algorithm
✓ ✝ ✬✝�✵✬ ✳✵✴ ✝ ✭✓✱ ✴ ✝ ✶✰✱✦✳ ✭ ✎✄✂ ✎ ❆✆☎

�
❈ ✂ ✂ ✎ ✎ ✆ ✎

✁
✳✁� ✎ � ✎ ☎ ❂

GHSETA* 1 2.7 0.3 0.2 307.3 33 710 34

2 2.8 0.3 0.2 307.3 33 1472 34

3 3.1 0.4 0.3 671.0 33 4070 34

4 3.2 0.5 0.4 441.7 72 10292 34

5 3.1 0.4 0.4 194.8 120 20974 34

6 3.3 0.6 0.4 139.9 212 45978 34

7 3.9 1.0 0.5 128.4 322 104358 34

8 4.9 1.9 0.6 115.9 438 232278 34

9 8.1 5.0 0.8 132.0 557 705956 34

10 29.5 14.3 12.8 146.1 5103 1970406 373

11 46.9 43.8 0.8 107.3 336 5537402 34

12 Mem

FSETA* 1 2.7 0.3 0.2 307.3 1 710 34

2 2.8 0.3 0.2 307.3 1 1472 34

3 3.1 0.4 0.4 671.0 1 4070 34

4 3.3 0.4 0.6 671.0 1 10292 34

5 5.1 0.5 2.3 1778.6 1 20974 34

6 9.6 0.6 6.6 2976.5 1 45978 34

7 37.5 1.0 34.2 9046.7 1 104358 34

8 63.4 2.0 59.1 9046.7 1 232278 34

9 408.3 4.9 401.1 24175.4 1 705956 34

10 Time

BDDA* 1 3.6 0.5 0.4 314.3 355 34

2 3.9 0.5 0.6 314.3 772 34

3 4.6 0.6 1.3 678.0 2128 34

4 5.5 0.8 2.0 678.0 6484 34

5 10.2 1.3 6.2 1785.6 20050 34

6 56.4 3.4 50.4 2983.5 64959 34

7 214.8 10.8 201.1 9053.7 234757 34

8 312.1 52.7 256.1 9053.7 998346 34

9 Time

iBDDA* 1 4.0 0.4 0.8 307.3 355 34

2 4.2 0.4 1.1 307.3 772 34

3 5.1 0.5 1.9 671.0 2128 34

4 6.2 0.4 3.0 671.0 6791 34

5 33.7 0.4 30.4 1778.6 25298 34

6 117.6 0.5 113.9 2976.5 84559 34

7 Time

A* 1 1.1 1884 34

2 1.1 1882 34

3 1.0 1770 34

4 1.0 1750 34

5 0.9 1626 34

6 Time

BIDIR 1 2.7 0.2 0.1 568.5 355 34

2 2.7 0.2 0.2 630.8 772 34

3 3.2 0.3 0.7 2305.1 2128 34

4 5.2 0.2 2.6 3131.1 5159 34

5 278.9 0.2 276.4 30445.0 10610 34

6 Time

Table 4.1: Results of the ✝ ✂ ✁☎✄ ✄ ✆ �
problems.

4.3. EXPERIMENTAL EVALUATION 69

ated by performing ✄ random moves from the goal state.3 We assume unit cost transitions

and use the usual sum of Manhattan distances of the tiles to their goal position as heuristic

function. This heuristic function is admissible. For GHSETA* and FSETA* a disjunctive

branching partitioning is easy to compute since � ✣ of an action changing the position of

a single tile is independent of the position of the other tiles. The two algorithms have no

upper bound on the size of BDDs in the frontier nodes (✡ ✁ ✆). For the BDD-based algo-

rithms, the problems are defined in NADL
☎

and the best results are obtained when having

no limit on the partition size. Thus, BDDA*, iBDDA*, and BIDIR use a monolithic tran-

sition relation. The number of states for the 24-Puzzle is
✵ ✜ ✟ ✁

. The results of this problem

are shown in Table 4.2. For all 24-Puzzle problems, the BDD-based algorithms spend 3.6

seconds on initializing the BDD package (�
✁ ✞ ✞ ✬

and � ✁ ✞ ✟ ✟☞☛
). Time out is 10000

seconds. For BDDA* and iBDDA* the size of the BDD representing the heuristic func-

tion is 33522 and 18424, respectively. For GHSETA* and FSETA* the size of the transition

relations is 70582, while the size of the transition relation for BDDA* and iBDDA* is

66673. Thus, a small amount of space was saved by using a monolithic transition relation

representation. However, GHSETA* and FSETA* have better performance than BDDA*

and iBDDA* mostly due to the their more efficient node expansion computation. Interest-

ingly, both BDDA* and iBDDA* spend significant time computing the heuristic function

in this domain. The GHSETA* and FSETA* also scale better than A* and BIDIR. A* has

good performance because it does not have the substantial overhead of computing the tran-

sition relation and finding actions to apply. However, due to the explicit representation of

states, it runs out of memory for solution depths above 50. For BIDIR, the problem is the

usual: the BDDs representing the search frontiers blow up. Figure 4.12 shows a graph of

the total CPU time of the 24 and 35-puzzle. Again time out is 10000 seconds.

4.3.2 Planning Problems

In this section, we consider four planning problems from the STRIPS track of the AIPS

1998 [113], 2000 [4], and 2002 [115] planning competition. The problems are defined in

the STRIPS fraction of PDDL. The reachability analysis necessary to compactly encode

STRIPS domains described in Section 3.1 is based an approach described in [48]. It is

fast for the problems considered in experimental evaluation (for most problems less than

0.04 seconds). The algorithm proceeds in a breadth-first manner such that each ground

predicate or fact
✠

can be assigned a depth ✖ ✢ ✠ ✤ where it is reached. Similar to the MIPS

planning system [48], we use this measure to approximate the HSPr heuristic [20]. HSPr is

an efficient but non-admissible heuristic for backward search. For a state given by a set of

3In each of these steps choosing the move back to the previous state is illegal.

70 CHAPTER 4. STATE-SET BRANCHING

Algorithm � ✁ ✬✁� ✬✮✳ ✴ ✁ ✭✓✱ ✴ ✁ ✶✰✱ ✳✵✭ ✎ ✂ ✂ ✄✡✁☎✄ ✂✆✂ ✞✞✝ �✠✟☛✡✌☞ ✂✍✂✏✎✑✂ ✁
✳✁� ✒✔✓

GHSETA* 140 28.8 22.1 2.7 26 187.5 23 93

160 30.0 22.2 3.8 28 213.2 24 175

180 31.4 22.2 5.3 32 270.2 28 253

200 43.7 21.9 14.9 36 786.2 31 575

220 36.3 22.2 10.1 36 411.1 31 490

240 199.3 22.0 173.2 50 2055.5 44 1543

260 5673.7 23.9 5644.5 56 10641.2 48 2576

280 Mem

300 4772.7 20.9 4743.97 60 9761.3 53 2705

320 Mem

FSETA* 140 29.7 21.0 4.7 26 669.9 1 42

160 32.2 20.9 7.4 28 1051.6 1 57

180 34.3 21.0 9.5 32 1207.0 1 69

200 50.1 21.0 25.3 36 5276.0 1 93

220 41.8 21.0 17.0 36 3117.6 1 88

240 205.2 21.0 180.5 50 18243.3 1 156

260 Mem

BDDA* 140 98.5 83.0 11.3 26 676.9 42

160 114.7 83.2 27.4 28 1058.6 57

180 129.8 82.9 42.7 32 1214.0 69

200 425.0 83.1 337.1 36 5283.0 93

220 267.7 82.8 180.6 36 3124.6 88

240 4120.1 83.1 4032.8 50 18250.3 156

260 Time

iBDDA* 140 79.8 66.7 5.9 26 669.9 42

160 85.3 65.7 11.8 28 1051.6 57

180 93.6 65.7 20.0 32 1207.0 69

200 314.6 65.8 240.9 36 5276.0 93

220 156.9 65.6 83.5 36 3117.6 88

240 2150.3 65.9 2076.6 50 18243.3 156

260 Mem

A* 140 0.1 26 300 221

160 0.9 28 725 546

180 0.6 32 1470 1106

200 7.4 36 15927 12539

220 2.3 36 5228 4147

240 87.1 50 159231 133418

260 Mem

BIDIR 140 68.1 36.6 27.9 26 34365.2 26

160 96.0 36.8 55.6 28 55388.4 28

180 214.7 36.8 174.3 32 106166.0 32

200 1286.0 36.8 1245.6 36 359488.0 36

220 3168.8 36.8 3128.4 36 421307.0 36

240 Mem

Table 4.2: Results of the 24-Puzzle problems.

4.3. EXPERIMENTAL EVALUATION 71

0.1

1

10

100

1000

10000

120 140 160 180 200 220 240 260 280 300

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of random steps from the goal state

24-puzzle

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

0.01

0.1

1

10

100

1000

10000

120 140 160 180 200 220 240 260

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of random steps from the goal state

35-puzzle

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Figure 4.12: Total CPU time for the 24 and 35-Puzzle problems.

facts ✁ , the approximation to HSPr is given by

✣ ✢ ✁ ✤ ✁ ☎
� ✪ ✆ ✖ ✢ ✠ ✤ ✂

72 CHAPTER 4. STATE-SET BRANCHING

4 A disjunctive branching partitioning for this heuristic is efficient to generate given that

each action ✢ � ❃ ❆ ✣ ❈✄✂✄✂ ✣ ✂ ❆ ❊ ✤ leading from ✁ to ✁ ☞ ✁ ✢ ✁ ✕ ❈✄✂✄✂ ✤ ✏ ✂ ❆ ❊
satisfies

✂ ❆ ❊ ✞ �
❃ ❆ � ✁☎✄ ❈✄✂✄✂ ✓ �

❃ ❆ ✁ ✌ ✂
These requirements are natural and satisfied by all the planning domains considered in this

experimental evaluation. Due to the constraints, we get

� ✣ ✁ ✣ ✢ ✁ ☞ ✤ ☎ ✣ ✢ ✁ ✤
✁ ✣ ✢ ❈✄✂✄✂ ✏ ✁✆✤ ☎ ✣ ✢ ✂ ❆ ❊ ✤
✁ ☎

� ✪ ✳ ✄☎✄ ✒ ✆
✖ ✢ ✠ ✤ ☎ ☎

� ✪ ✄ ✱ ✴ ✖ ✢ ✠ ✤ ✂
Thus, each action is partitioned in up to

✵ ✟
�

✔ ✔ ✟
sets of transitions with different � ✣ -value.

In order to simplify the computation of the initial heuristic value, all problems have been

modified to a single goal state. Furthermore, in domains where the HSPr approximation

either systematically under or over estimates the true remaining cost, we have scaled it

accordingly.

Blocks World

The Blocks World is a classical planning domain. It consists of a set of cubic blocks sitting

on a table. A robot arm can stack and unstack blocks from some initial configuration to

a goal configuration. The problems, we consider, are from the STRIPS track of the AIPS

2000 planning competition. The number of states grows from
✵ ✜

✄
to

✵✁� ✞
. The HSPr heuristic

is scaled by a factor of 0.4. The GHSETA* and FSETA* algorithms have no upper bound

on the size of BDDs of the nodes on the frontier (✡ ✁ ✆). For all BDD-based algorithms,

the partition limit was 5000. For each problem, these algorithms spend about
✵ ✂✠✞ seconds

on initializing the BDD package (�
✁ ✠ ✬

and � ✁ ✠ ✟ ✟ ☛
). Time out is 500 seconds in all

experiments. The results are shown in Table 4.3. The top graph of Figure 4.13 shows the

total CPU time of the algorithms.

For BDDA* and iBDDA* the size of the BDD representing the heuristic function is in

the range of
✑ ✠ ✣

✞ ✂ ✟ ✠ ✘
and

✑ ✠ ✣
✞ ✟ ✟ ✟ ✘

, respectively. The GHSETA* and FSETA* algorithms

have significantly better performance than all other algorithms. As usual BDDA* and

iBDDA* suffer from an inefficient expansion computation while the frontier BDDs blow

4This is an approximation to the HSPr heuristic since the HSPr heuristic for a fact � estimates the number

of actions needed to produce � from the initial state if the the delete set of actions is ignored. By measuring

the depth of � in a forward reachability analysis from the initial state, we only consider the depth of this

dependency tree of actions.

4.3. EXPERIMENTAL EVALUATION 73

Algorithm �
✁ ✬✁� ✬✮✳ ✴ ✁ ✭✓✱ ✴ ✁ ✶✰✱ ✳✵✭ ✎ ✂ ✂ ✄✡✁☎✄ ✂✆✂ ✞✞✝ �✠✟☛✡✌☞ ✂✆✂✏✎ ✂ ✁

✳✁� ✒✔✓ ✂ ✁ ✂

GHSETA* 4 2.6 0.0 0.0 6 19.5 1 6 706

5 2.7 0.1 0.1 12 33.4 11 31 1346

6 2.6 0.1 0.1 12 57.7 9 30 2608

7 3.1 0.2 0.4 20 53.8 48 152 4685

8 4.1 0.3 1.3 18 540.4 12 72 7475

9 17.0 0.4 14.1 32 331.8 94 991 8717

10 116.2 0.6 113.1 38 744.9 111 2309 11392

11 133.5 0.7 130.2 32 1404.9 91 1200 16122

12 14.8 1.0 11.2 34 410.3 120 557 18734

13 Time

14 112.1 1.7 107.8 38 1067.8 125 1061 30707

15 Time

FSETA* 4 2.5 0.0 0.0 6 29.8 1 6 706

5 2.7 0.1 0.1 12 68.7 4 23 1346

6 2.7 0.1 0.1 12 126.8 2 20 2608

7 3.2 0.2 0.5 20 121.9 8 92 4685

8 3.9 0.3 1.1 18 1328.8 2 35 7475

9 30.0 0.4 27.1 32 935.5 10 610 8717

10 217.0 0.6 213.8 38 2594.4 12 1098 11392

11 259.8 0.8 256.4 32 4756.0 9 671 16122

12 39.2 1.0 35.7 34 817.0 13 860 18734

13 Time

14 274.3 1.7 270.0 38 1555.1 13 1462 30707

13 Time

BDDA* 4 3.3 0.0 0.1 6 37.8 6 706

5 3.6 0.2 0.2 12 76.7 23 1365

6 3.6 0.2 0.2 12 134.8 20 2334

7 4.9 0.5 1.2 20 129.9 92 4669

8 6.0 0.5 2.2 18 1336.8 35 6959

9 100.8 1.1 96.5 32 943.5 610 9923

10 Time

iBDDA* 4 2.7 0.0 0.0 6 29.8 6 706

5 2.8 0.1 0.1 12 68.7 23 1365

6 2.9 0.1 0.1 12 126.8 20 2334

7 3.7 0.3 0.7 20 121.9 92 4669

8 6.2 0.4 3.2 18 1328.8 35 7123

9 113.7 0.6 110.3 32 935.5 610 10361

10 Time

A* 4 0.0 0.0 6 8 15

5 0.2 0.2 12 62 70

6 0.4 0.4 12 115 102

7 1.3 1.2 20 287 287

8 31.9 31.6 18 7787 5252

9 233.9 232.9 32 38221 31831

10 Time

BIDIR 4 2.6 0.0 0.0 6 124.5 6 706

5 2.6 0.1 0.0 12 228.3 12 1423

6 2.7 0.1 0.1 12 438.8 12 2567

7 3.6 0.2 0.8 20 1931.3 20 5263

8 9.7 0.3 6.8 18 11181.8 18 8157

9 146.8 0.4 143.9 30 75040.9 30 11443

10 Time

Table 4.3: Results of the Blocks World problems.

74 CHAPTER 4. STATE-SET BRANCHING

up for BIDIR. The general A* algorithm for STRIPS planning problems is less domain-

tuned than the previous A* implementations. In particular, it must check the precondition

of all actions in each iteration in order to find the ones that are applicable. This may explain

the poor performance of A*.

Gripper

The Gripper problems are from the first round of the STRIPS track of the AIPS 1998

planning competition. The domain consists of two rooms, A and B, connected with a door

and robot with two grippers. Initially, a number of balls are located in room A, and the

goal is to move them to room B. The number of states grows linearly from
✵ ✜ ✟

to
✵ � �

.

The GHSETA* and FSETA* algorithms have no upper bound on the size of BDDs in the

frontier nodes (✡ ✁ ✆). For all BDD-based algorithms no partition limit is used, and they

spend about 0.8 seconds on initializing the BDD package (�
✁ ✵ ✬

and � ✁ ✠ ✟ ✟☞☛
). All

algorithms generate optimal solutions. The results are shown in Table 4.4. The bottom

graph of Figure 4.13 shows the total CPU time of the algorithms. Interestingly, BIDIR is

the fastest algorithm in this domain since the BDDs representing the search frontier only

grow moderately during the search. The GHSETA* and FSETA* algorithms, however, have

almost as good performance. BDDA* and iBDDA* has particularly bad performance in

this domain. The problem is that the BDDs of their frontier nodes are large compared

to other domains and that the expansion computation of these algorithms seems to scale

poorly. We will investigate this problem in detail in Section 4.4.

Logistics

The logistics domain considers moving packages with trucks between sub-cities and with

airplanes between cities. The problems considered are from the STRIPS track of the AIPS

2000 planning competition. The number of states grows from
✵ ✟ ✜

to
✵✁� ✞

. The GHSETA*

and FSETA* algorithms have no upper bound on the size of BDDs in the frontier nodes

(✡ ✁ ✆). For all BDD-based algorithms, a partition limit of 5000 is used and they spend

about 2.0 seconds on initializing the BDD package (�
✁ ✠ ✬

and � ✁ ✠ ✟ ✟☞☛
). Due to

systematic under estimation, the HSPr heuristic is scaled with a factor of 1.5. The top

graph of Figure 4.14 shows the total CPU time of the algorithms.

ZenoTravel

ZenoTravel is from the STRIPS track of the AIPS 2002 planning competition. It involves

transporting people around in planes, using different modes of movement: fast and slow.

4.3. EXPERIMENTAL EVALUATION 75

Algorithm �
✁ ✬✁� ✬✮✳ ✴ ✁ ✭✓✱ ✴ ✁ ✶✰✱ ✳✵✭ ✎ ✂ ✂ ✞ ✝✡�✠✟☛✡ ☞ ✂✆✂✏✎✑✂ ✁

✳✁� ✒✔✓ ✂ ✁ ✂

GHSETA* 2 0.9 0.1 0.02 68.8 5 21 594

4 1.0 0.1 0.08 168.9 6 43 1002

6 1.3 0.2 0.27 314.9 6 65 1410

8 1.5 0.3 0.34 504.8 6 87 1818

10 1.8 0.4 0.54 738.1 6 109 2226

12 2.3 0.5 0.88 1014.7 6 131 2634

14 3.0 0.7 1.33 1334.5 6 153 3042

16 3.6 0.9 1.78 1697.5 6 175 3450

18 4.5 1.1 2.46 2103.7 6 197 3858

20 5.7 1.4 3.37 2553.1 6 219 4266

FSETA* 2 1.0 0.1 0.1 95.4 1 17 594

4 1.0 0.1 0.1 231.2 1 29 1002

6 1.2 0.2 0.2 423.9 1 41 1410

8 1.6 0.3 0.3 673.4 1 53 1818

10 2.0 0.4 0.6 979.9 1 65 2226

12 2.5 0.6 1.0 1343.3 1 77 2634

14 3.1 0.8 1.4 1763.5 1 89 3042

16 3.7 0.9 1.9 2240.7 1 101 3450

18 5.0 1.2 2.9 2774.7 1 113 3858

20 5.7 1.5 3.2 3365.6 1 125 4266

BDDA* 2 1.8 0.1 0.2 103.4 17 323

4 2.4 0.2 0.6 239.2 29 539

6 3.4 0.3 1.5 431.9 41 755

8 6.1 0.6 4.0 681.4 53 971

10 16.9 0.9 14.4 987.9 65 1187

12 40.7 1.2 37.9 1351.3 77 1403

14 81.7 1.6 78.5 1771.5 89 1619

16 149.3 2.2 145.4 2248.7 101 1835

18 240.4 3.1 235.5 2782.7 113 2051

20 391.1 3.9 385.5 3373.6 125 2267

iBDDA* 2 1.2 0.1 0.1 95.4 17 323

4 1.6 0.1 0.4 231.2 29 539

6 2.3 0.3 1.0 423.9 41 755

8 3.6 0.4 2.2 673.4 53 971

10 6.2 0.6 4.5 979.9 65 1187

12 12.2 0.9 9.2 1343.3 77 1403

14 23.5 1.1 21.3 1763.5 89 1619

16 44.8 1.6 42.1 2240.7 101 1835

18 76.1 2.2 72.4 2774.7 113 2051

20 120.9 2.7 116.7 3365.6 125 2267

A* 2 3.9 3.9 698 1286

4 422.9 422.3 26434 85468

6 Time

BIDIR 2 0.9 0.1 0.0 125.4 17 323

4 1.0 0.1 0.1 290.9 29 539

6 1.2 0.2 0.1 589.7 41 755

8 1.4 0.3 0.3 958.2 53 971

10 1.7 0.4 0.5 1404.3 65 1187

12 2.2 0.5 0.8 1611.0 77 1403

14 2.6 0.7 1.0 2025.6 89 1619

16 3.2 0.9 1.3 3265.6 101 1835

18 3.8 1.2 1.7 4074.4 113 2051

20 4.5 1.5 2.1 4944.9 125 2267

Table 4.4: Results of the Gripper problems.

76 CHAPTER 4. STATE-SET BRANCHING

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem

Blocks World

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem

Gripper

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Figure 4.13: Total CPU time for the Blocks World and Gripper problems.

The number of states grows from
✵✁�

to
✵ ✜
✞ ✁

. The GHSETA* and FSETA* algorithms have

no upper bound on the size of BDDs in the frontier nodes (✡ ✁ ✆). For all BDD-based

algorithms a partition limit of 4000 is used. About 2.7 seconds is spent on initializing the

BDD package (�
✁ ✞ ✟ ✬

and � ✁ ✂ ✟ ✟☞☛
). The bottom graph of Figure 4.14 shows the

total CPU time of the algorithms. The results are very similar to the results of the logistics

problems.

4.3. EXPERIMENTAL EVALUATION 77

0.1

1

10

100

1000

2 4 6 8 10 12 14 16

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem

Logistics

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem

Zeno Travel

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Figure 4.14: Total CPU time for the Logistics and ZenoTravel problems. Problem

10 of ZenoTravel can only be solved by GHSETA* and FSETA*.

4.3.3 Channel Routing Problems

Channel routing is a fundamental subtask in the layout process of VLSI-design. It is an NP-

complete problem which makes exact solutions hard to produce. Channel routing considers

connecting pins in the small gaps or channels between the cells of a chip. In its usual

78 CHAPTER 4. STATE-SET BRANCHING

formulation, two layers are used for the wires: one where wires go horizontal (tracks) and

one where wires go vertical (columns). In order to change direction, a connection must be

made between the two layers. These connections are called vias. Pins are at the top and

bottom of the channel. A set of pins that must be connected is called a net. The problem

is to connect the pins optimally according to some cost function. The cost function studied

here equals the total number of vias used in the routing. Figure 4.15 shows an example

of an optimal solution to a small channel routing problem. The cost of the solution is

4. One way to apply search to solve a channel routing problem is to route the nets from

21 3 4 5
1

2
3

Columns

Tracks

Figure 4.15: A solution to a channel routing problem with 5 columns, 3 tracks, and

2 nets (labeled I and II). The pins are numbered according to what net they belong.

left to right. A state in this search is a column paired with a routing of the nets on the

left side of that column. A transition of the search is a routing of live nets over a single

column. Recently, it has been shown that BDD-based channel routing algorithms utilizing

this strategy efficiently can scale in the number of columns [153, 160]. The belief is that

such algorithms can be used to perform subcomputations of a global router that decomposes

the routing into a vertical and horizontal part.

A* can be used in the usual way to find optimal solutions. An admissible heuristic

function for our cost function is the sum of the cost of routing all remaining nets optimally

ignoring interactions with other nets. We have implemented a specialized search engine to

solve channel routing problems with GHSETA* [90]. The key point about this application

of state-set branching is that GHSETA* utilizes a conjunctive branching partitioning instead

of a disjunctive branching partitioning as in all other experiments reported so far. This is

possible since a transition can be regarded as the joint result of routing each net in turn.

The performance of GHSETA* is evaluated using problems produced from two ISCAS-

85 circuits [160]. For each of these problems the parameters of the BDD package are hand

tuned for best performance. There is no upper bound on the size of BDDs in frontier nodes

(✡ ✁ ✆) and no limit on the size of the partitions. Time out is 600 seconds. Table 4.5 shows

the results. The performance of GHSETA* is similar to previous applications of BDDs to

channel routing [153, 160, 175]. However, in contrast to previous approaches, GHSETA*

finds optimal solutions, whereas the previous algorithms only find valid solutions. The

4.3. EXPERIMENTAL EVALUATION 79

Circuit �✫✪ ✓ ✪ ✡ ✁ ✬✁� ✬✮✳ ✴ ✁ ✭ ✱ ✴ ✁ ✶ ✱ ✳✵✭ ✎✄✂ ✂✏✎✑✂ ✁
✳✁� ✒ ✓

Add 38-3-10 0.2 0.1 0.2 1 40

47-5-27 0.8 0.7 0.1 24 46

41-3-12 0.2 0.1 0.1 1 42

46-7-20 5.0 3.5 1.5 56 89

25-4-6 0.1 0.0 0.1 1 30

C432 83-4-33 0.4 0.2 0.2 0 93

89-11-58 Mem

101-9-57 286.1 61.5 206.6 135 113

99-8-58 34.0 13.5 20.5 59 448

97-10-63 295.0 99.7 195.3 129 109

101-7-53 15.7 11.5 4.2 90 101

95-9-48 223.8 58.9 164.9 59 399

95-10-48 Time

84-5-23 3.2 0.7 2.5 0 92

Table 4.5: Results of the ISCAS-85 channel routing problems. A problem,
✁ ✄ ✂ ✄☎✄ , is identified by its number of columns (✆), tracks (✝), and nets (✞).

experimental results, however, show that the benefit of using guided BDD-based search for

channel routing is limited. The reason is that the BDDs representing the search frontier do

not blow up in this domain as in most other planning domains. Instead the intermediate

BDDs of the image computation blow up, both when this computation is based on a regular

conjunctive partitioning for blind search and when it is utilizing a conjunctive branching

partitioning for guided search. It may be the case, though, that more efficient encodings

of channel routing domains exist. For instance, for the ✢ �

✟ ☎ ✞✥✤ -Puzzles, it is much more

efficient to encode for each position what tile it holds rather than for each tile encode

what its position is. The former encoding is redundant compared to the latter because it

also represents the position of the blank space. However, the representation of actions

is substantially simplified in the former encoding since the position of the blank space is

known.

80 CHAPTER 4. STATE-SET BRANCHING

4.4 Conclusion

We conclude this chapter by comparing state-set branching to single-state heuristic search,

blind BDD-based search, and BDDA*.

State-Set Branching versus Single-State Heuristic Search

Heuristic search is trivial if the heuristic function is very informative. In this case, state-

set branching may have worse performance than single-state heuristic search due to the

overhead of computing the transition relation. Thus, we do not expect state-set branch-

ing algorithms to have better performance than the single-state heuristic search algorithms

applied in the AIPS planning competitions because the problems considered have very

strong heuristics [79]. In this experimental evaluation, we consider finding optimal or near

optimal solutions with state-set branching implementations of A*. The studied heuristic

functions are classical but leave a significant search element for the algorithms to handle.

For these problems, state-set branching outperforms single-state A*. Notice that this result

is consistent with the fact that single-state A* is optimally efficient. The reason is that a

state-set branching implementation of A* may use an exponentially more compact state

representation than single-state A*.

State-Set Branching versus Blind BDD-based Search

Blind BDD-based search has been successfully applied in symbolic model checking and

circuit verification. It has been shown that many problems encountered in practice are

tractable when using BDDs [168]. The classical search problems studied in AI, however,

seem to be harder and have longer solutions than the problems considered in formal verifi-

cation. When applying blind BDD-based search to these problems, the BDDs used to repre-

sent the search frontier often grow fast. The experimental evaluation of state-set branching

shows that this problem can be substantially reduced when efficiently splitting the search

frontier according to a heuristic evaluation of the states.

State-Set Branching versus BDDA*

State-set branching implementations of A* such as GHSETA* and FSETA* are fundamen-

tally different from BDDA*. BDDA* does not exploit a partitioning of the transitions

according to how they change the ✁ and ✣ -value. Instead, it imitates the usual explicit ap-

plication of the heuristic function via a symbolic computation. It would be reasonable to

expect that the symbolic representation of practical heuristic functions often is very large.

4.4. CONCLUSION 81

However, this is seldom the case for the heuristic functions studied in this experimental

evaluation. The major challenge for BDDA* is that the arithmetic computations at the

BDD level scales poorly with the size of the BDD representing the set of states to expand

(line 5 and 6 in Figure 4.7). This hypothesis can be empirically verified by measuring the

CPU time used by FSETA* and iBDDA* to expand a set of states. Recall that FSETA*

and iBDDA* expand the exact same set of states in each iteration. Any performance dif-

ference is therefore solely caused by their expansion techniques. The results are shown in

Figure 4.16. The reported CPU time is the average of the 15-Puzzle with 50, 100, and 200

random steps, Logistics problem 4 to 9, Blocks World problem 4 to 9, Gripper problem 1 to

20, and DxV4M15 with
✓

varying from 1 to 6. For very small frontier BDDs, iBDDA* is

0.001

0.01

0.1

1

10

(0,100] (100,200] (200,400] (400,800] (800,1600] (1600,3200] (3200,6400]

A
v
e
ra

g
e
 e

x
p
a
n
s
io

n
 t
im

e
 (

lo
g
 s

c
a
le

)

Size of BDD to expand

fSetA*
iBDDA*

Figure 4.16: Node expansion times of FSETA* and BDDA*.

slightly faster than FSETA*. This is probably because small frontier BDDs mainly are gen-

erated by easy problems where a possibly monolithic transition relation used by iBDDA*

is more efficient than the partitioned transition relation used by FSETA*. However, for

large frontier BDDs, BDDA* needs much more time to expand the frontier than FSETA*.

Another limitation of BDDA* is the inflexibility of BDD-based arithmetic. It makes it

hard to extend BDDA* efficiently to general evaluation functions and arbitrary transitions

costs.

82 CHAPTER 4. STATE-SET BRANCHING

4.5 Summary

This chapter has introduced a new framework called state-set branching. State-set branch-

ing seamlessly combines BDDs and heuristic search via a state-set version of the classical

best-first search algorithm using a new partitioning technique called branching partition-

ing. It has been shown that the framework is general. It applies to any heuristic func-

tion, any cost function and any node evaluation function. In addition, both disjunctive and

conjunctive versions of branching partitions can be defined. The experimental evaluation

proves state-set branching to be a powerful approach that often outperforms both single-

state heuristic search and blind BDD-based search. Moreover, it has substantially better

performance than the approach used by BDDA*.

Chapter 5

Non-Deterministic State-Set Branching

A limitation of the current BDD-based non-deterministic planning algorithms is that they

perform blind search. A backward search frontier is expanded in a breadth-first manner

and the final non-deterministic plan may cover a large number states that are unreachable

from the initial states. In this chapter, we describe how to use state-set branching to guide

these algorithms [95]. We begin in Section 5.1 by introducing a generic non-deterministic

planning algorithm for guided search. Then, in Section 5.2, the guided precomponents

of weak, strong cyclic, and strong planning are defined. Section 5.3 describes a range of

experimental results showing that the new algorithms may dramatically reduce both the

search time and the plan size compared with the current algorithms. Finally, Section 5.4

draws conclusions.

5.1 Guided Non-Deterministic Planning

As described in the previous chapter, the state-set branching framework has two indepen-

dent parts: a modification of the best-first search algorithm to expanding sets of states in

each iteration and a specialized partitioning technique called branching partitioning to im-

plement the new algorithm efficiently with BDDs. A key observation is that branching

partitioning also can be used to propagate search control information between states in

non-deterministic domains. This follows directly from the fact that branching partition-

ing is defined at the transition level and therefore is independent of whether actions are

deterministic. The major difference when considering non-deterministic planning is that

it seems to be very hard, if not impossible, to cast the generic non-deterministic planning

algorithm NDP shown in Figure 3.8 as a search tree algorithm. The problem is to guar-

antee completeness for strong and strong-cyclic planning. Consider for example using a

83

84 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

search tree to generate a strong plan. Assume that the algorithm at some point during the

search adds a node � with states
✠

from the frontier of the search tree to the plan. Let
✡

denote the set of states covered by the plan after this incrementation. The algorithm then

computes the child nodes of � . This can be done by finding state-action pairs (SAs) that

can reach
✠

in one step and form a subset of a strong precomponent of
✡

. Assume that the

algorithm in the next iteration expands a node that is not a child node of � . Let
✡

☞ denote

the set of states covered by the plan after adding the states of this node to the plan. This,

however, may affect the child nodes of � . If the child nodes are recomputed with respect to✡
☞ and not

✡
they may contain a larger set of SAs since

✡
☞ ☞ ✡

. This makes the algorithm

incomplete since the child nodes of � are computed only once. A similar problem exists

for strong-cyclic planning. For weak planning, on the other hand, it is possible to define

a complete search tree algorithm since the set of SAs of the child nodes are independent

of the set of states in the plan (defined in [95]). In this presentation, though, we propose a

general framework for pure heuristic non-deterministic planning called non-deterministic

state-set branching where a heuristic function is used to select a subset of the blind pre-

component in each iteration. Non-deterministic state-set branching is based on the generic

guided non-deterministic planning algorithm GNDP shown in Figure 5.1.

function GNDP ✢ ✚ ✞ ✣ ✆ ✣
✣✁� ✤

1
✠ ★ ✌

;
� ★ ❆ �

�
❂ ✝✄✂ ❈

� ;
� ✑ ✣✁� ✘ ★ ✆

2 while ✚ ✞ ✔✁ ✡

3
✂☎✄ ★

GPRECOMP ✢ � ✤
4 if

✎ ✂✆✄ ✎ ✁ ✟
then return “no solution exists”

5
✠ ★ ✠ ✕ ✠ �

6 for
✪ ✁ ✞ to

✎ ✂☎✄ ✎
7

� ✑ ✣
✕ ✘ ★ � ✑ ✣

✕ ✘ ✕ STATES ✢ ✂✆✄ ✑ ✣
✕ ✘ ✤

8 return
✠

Figure 5.1: A generic guided algorithm for synthesizing non-deterministic plans.

The GNDP algorithm is similar to NDP. The main difference is that it keeps the set

of states covered by the plan in a map
�

. The purpose of the map is to partition the

covered states with respect to the value of a heuristic function that for a state ✚ estimates

the minimum length of a path from ✚ ✞ to ✚ . In each iteration, a guided precomponent
✂✝✄

is computed and added to the plan. The precomponent function must be valid according to

Definition 5.1.

5.2. GUIDED PRECOMPONENTS 85

Definition 5.1 (Guided Precomponent Function) If
�

associates states with their cor-

rect ✣ -value then a guided precomponent function GPRECOMP
✢ � ✤ is valid iff

� GPRECOMP ✛ ✢ ✄ ☎✞ ✝ ✵ ✆ ✤ ✝ ✢ ✄ ☎✞ ✝ ✵ ✆✄✂ ✌✏✎ ✬
✤ ,� GPRECOMP ✢ � ✤ terminates,� if

✂✆✄ ✁
GPRECOMP ✢ � ✤ then for any ✟ ✚ ✣ � ✡ ✁ ✂ ✄ ✑ ✣

✙ ✘
, we have ✚ ✆✁ ✡

and the

✣ -value of ✚ is ✣
✙
.

The completeness of the algorithm is due to the fact that the precomponent computation

does not rely on previous computations that may have become outdated. A limitation of

GNDP is that all goal states are assumed to have identical ✣ -value (✣ �). It is easy, though,

to generalize the algorithm to take a set of goal states partitioned with respect to ✣ -value as

input. It has not been done here to simplify the presentation.

Theorem 5.1 (Termination of GNDP) GNDP terminates.

Proof. Given in Appendix B
✁

5.2 Guided Precomponents

In this section, we introduce the guided precomponents for weak, strong cyclic, and strong

planning used by GNDP. For weak and strong planning, the guided precomponent is

the set of state-action pairs (SAs) in a complete blind precomponent that has states with

minimum ✣ -value. In both cases, this strategy results in a pure heuristic search, since only

the heuristic estimate of the distance to the initial state is used to guide the search. For

strong-cyclic planning, the guided precomponent is computed from a set of candidate SAs

built from a search tree of weak precomponents grown from the set of states covered by the

plan. In order to avoid a too “narrow” candidate set, both the heuristic value of the states

and the depth in the tree is taken into account when choosing a node to expand. After each

expansion of the candidate set, the SCPLANAUX function defined in Section 3.2.2 is used

to extract a strong cyclic precomponent from the candidate, if possible.

Similarly to blind non-deterministic planning, the core operation in guided non-determi-

nistic planning is to find the preimage of a set of states. However, we also need to split the

SAs in the preimage according to the ✣ -value of the states. As for deterministic state-set

branching, we can use a disjunctive branching partitioning to compute and split the preim-

age in a single operation. Assume that the disjunctive branching partitioning is of the form

✄P✜ ✢ ✦✏ ✣ ✦� ✣ ✦✖ ☞ ✜ ✤ ✣✦✥✧✥✧✥❉✣☛✄ ✗ ✢ ✦✏ ✣ ✦� ✣ ✦✖ ☞✗ ✤

86 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

where the ✣ -value change (in the is forward direction) of transitions in subrelation
✯

is � ✣
✙
.

The preimage of subrelation
✯

is then given by

PREIMGSA
✙ ✢ ✡ ✤ ✧ ❏ ✦✖ ☞✙ ✂ ✄ ✙ ✢ ✦✏ ✣ ✦� ✣ ✦✖ ☞✙ ✤ ✽ ✡ ✢ ✦✏ ✤ ✑ ✦✖ ✙ ✔ ✦✖ ☞✙ ✘ ✂ (5.1)

Thus, a complete partitioned preimage is found by computing PREIMGSA
✙ ✢ ✡ ✤ for each

subrelation in turn and merging partitions with identical ✣ -value.

5.2.1 Guided Weak Precomponents

The main computation of the guided weak precomponent is to find the preimage of a set of

states ✁ and prune it for SAs where the state is in
✡

PRECOMPW
✙ ✢ ✡ ✣

✁ ✤ ✧
PREIMGSA

✙ ✢ ✁ ✤ ✏ ✡ ✸ ✁✄✂ ❂ ✂ (5.2)

The algorithm computing the guided weak precomponent is shown in Figure 5.2. The input

function GPRECOMPW ✢ � ✤
1

✆ ★ ❆ �
�
❂ ✝ � ❅✭❆❙❅✳❆

;

2 for
✎ ✁ ✞ to

✎ � ✎
3 for

✯ ✁ ✞ to �

4
� ✁ ✁ ★

PRECOMPW
✙ ✢ ✡P✣ � ✑ ✣ ✓ ✘ ✤

5
✆ ★

INSERT ✢ ✆ ✣ ✟ � ✁ ✁ ✣ ✣ ✓ ☎ � ✣
✙ ✡ ✤

6 if
✎ ✆ ✎ ✁ ✟

then return
❆ �

�
❂ ✝✄✂ ❈

�
7 else return REMOVETOP ✢ ✆ ✤

Figure 5.2: The guided weak precomponent.

to the function is a map of covered states
�

where each entry contains a set of states with

identical ✣ -value. A priority queue
✆

stores the weak precomponents of
�

. The keys of✆
is the ✣ -values of the set of SAs forming the entries of

✆
. As usual, the set of keys of✆

are sorted ascendingly and a node inserted in
✆

is merged with any existing node with

identical ✣ -value. REMOVETOP ✢ ✆ ✤ returns a map with the top of
✆

as its only element.

Let GUIDEDWEAK denote the GNDP algorithm using the guided weak precomponent

function. It can be shown that GUIDEDWEAK is sound, complete and terminating. How-

ever, since a pure heuristic search strategy is employed, solutions are not guaranteed to be

weak distance optimal like solutions computed with the WEAK algorithm.

5.2. GUIDED PRECOMPONENTS 87

Theorem 5.2 (Correctness of GuidedWeak) The GUIDEDWEAK planning algorithm is

correct. The algorithm returns “no solution exists” iff no solution exists, otherwise it re-

turns a valid solution.

Proof. This follows from the soundness, completeness, and termination theorems of GUID-

EDWEAK proven in Appendix B.
✁

5.2.2 Guided Strong Precomponents

The main computation of the guided strong precomponent is to find a preimage of a set of

states ✁ and prune it for SAs where the state either is in
✡

or the SA can lead outside of
✡

PRECOMPS
✙ ✢ ✡P✣

✁ ✤ ✧ �
PREIMGSA

✙ ✢ ✁ ✤ ✏ PREIMGSA ✢ ✡ ✤ ✁ ✏ ✡ ✸ ✁✄✂ ❂ ✂ (5.3)

The algorithm computing the guided strong precomponent is shown in Figure 5.3.

It is similar to GPRECOMPS except that the function PRECOMPS
✙

is used instead of

PRECOMPW
✙
.

function GPRECOMPS ✢ � ✤
1

✆ ★ ❆ �
�
❂ ✝ � ❅✳❆❙❅✭❆

;

2 for
✎ ✁ ✞ to

✎ � ✎
3 for

✯ ✁ ✞ to �

4
● ✁ ✁ ★

PRECOMPS
✙ ✢ ✡P✣ � ✑ ✣ ✓ ✘ ✤

5
✆ ★

INSERT
✢ ✆ ✣ ✟ ● ✁ ✁ ✣ ✣ ✓ ☎ � ✣

✙ ✡ ✤
6 if

✎ ✆ ✎ ✁ ✟
then return

❆ �
�
❂ ✝✄✂ ❈

�
7 else return REMOVETOP ✢ ✆ ✤

Figure 5.3: The guided strong precomponent.

Let GUIDEDSTRONG denote the GNDP algorithm using the guided strong precompo-

nent function. It can be shown that GUIDEDSTRONG is sound, complete and terminating.

However, similarly to GUIDEDWEAK , since a pure heuristic search strategy is employed,

solutions are not guaranteed to be strong distance optimal like solutions computed with the

STRONG algorithm.

Theorem 5.3 (Correctness of GuidedStrong) The GUIDEDSTRONG planning algorithm

is correct. The algorithm returns “no solution exists” iff no solution exists, otherwise it

returns a valid solution.

88 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

Proof. This follows from the soundness, completeness, and termination theorems of GUID-

EDSTRONG proven in Appendix B.
✁

5.2.3 Guided Strong Cyclic Precomponents

The guided strong cyclic precomponent is fairly different from the weak and strong pre-

components. At each call, the algorithm builds a set of candidate SAs from a search tree

of weak precomponents grown from the set of covered states
✡

. For each extension of

the candidate set, the SCPLANAUX function defined in Section 3.2.2 is called to extract a

strong cyclic precomponent from the candidate, if possible. The search queue
✆

stores the

function GPRECOMPSC ✢ � ✤
1

✆ ★ ❆ �
�
❂ ✝ � ❅✳❆❙❅✭❆

2 for
✎ ✁ ✞ to

✎ � ✎
3 for

✯ ✁ ✞ to �

4
✂ ✁ ✁ ★

PRECOMPW
✙ ✢ ✡ ✣ � ✑ ✣ ✓ ✘ ✤

5
✆ ★

INSERT ✢ ✆ ✣ ✟ ✂ ✁ ✁ ✣
✞
✣

✣ ✓ ☎ � ✣
✙ ✡ ✤

6
� ✁ ✁ ★ ✌

; ✝✁� ★ ❆ �
�
❂ ✝✄✂ ❈

�
7 repeat

8 if
✎ ✆ ✎ ✁ ✟

then return
❆ �

�
❂ ✝✄✂ ❈

�
9 ✟ ✻ ✁ ✄ ✣ ✖ ✣ ✣ ✡ ★ REMOVETOP ✢ ✆ ✤
10 � ✁ ✁ ★ � ✁ ✁ ✏ � ✁ ✁
11 if � ✁ ✁ ✆✁ ✌

then

12 � ✁ ★
STATES ✢ � ✁ ✁ ✤

13 ✝✂� ✑ ✣ ✘ ★ ✝✁� ✑ ✣ ✘ ✕ � ✁
14 for

✯ ✁ ✞ to �

15
✂ ✁ ✁ ★

PRECOMPW
✙ ✢ ✡ ✣ ✻ ✁✆✤

16
✆ ★

INSERT ✢ ✆ ✣ ✟ ✂ ✁ ✁ ✣ ✖ ✜ ✞
✣

✣ ☎ � ✣
✙ ✡ ✤

17
� ✁ ✁ ★ � ✁ ✁ ✕ � ✁ ✁

18
● ✂ ✁ ✁ ★

SCPLANAUX ✢ � ✁ ✁ ✣☛✡ ✤
19 until

● ✂ ✁ ✁ ✆✁ ✌
20

✂✆✄ ★ ❆ �
�
❂ ✝✄✂ ❈

�
21 for

✪ ✁ ✞ to
✎

✝✁�
✎

22
✂✆✄ ✑ ✣

✕ ✘ ★ ✝✁� ✑ ✣
✕ ✘ ✓ ● ✂ ✁ ✁

23 return
✂☎✄

Figure 5.4: The guided strong cyclic precomponent.

frontier nodes of a search tree of weak precomponents generated from the states
✡

in the

5.3. EXPERIMENTAL RESULTS 89

current plan. Each node is associated with its ✣ -value as usual, however, for this algorithm,

we also associate a node with its depth ✖ in the search tree. In addition, the highest priority

is given to nodes with smallest sum of ✣ and ✖ . In case of a tie, the highest priority is

given to the node with smallest depth. When inserting a new node in
✆

, it will only be

merged with an existing node in
✆

if this node has identical ✣ and ✖ value. For each call

to GPRECOMPSC, a new search tree is generated. First, the weak precomponents of the

states
✡

covered by the current plan are added to
✆

(l.1-5). These are all at depth 1 in

the tree. Then, the candidate SAs
� ✁ ✁

for the strong cyclic precomponent and auxiliary

variables are initialized (l.6). The repeat loop (l.7-19) performs a guided version of the

expansion and pruning of
� ✁ ✁

carried out by PRECOMPSC(
✡

). The effect of taking the

depth in the search tree into account is that the set of candidate SAs does not form a narrow

beam in the state space that is unlikely to contain a strong cyclic precomponent. When a

non-empty strong cyclic precomponent
● ✂ ✁ ✁

is found, the SAs of this precomponent are

partitioned with respect to their ✣ -value (l.20-22) and the resulting map is returned.

Let GUIDEDSTRONGCYCLIC denote the GNDP algorithm using the strong cyclic pre-

component function. It can be shown that GUIDEDSTRONGCYCLIC is sound, complete

and terminating.

Theorem 5.4 (Correctness of GuidedStrongCyclic) The GUIDEDSTRONGCYCLIC plan-

ning algorithm is correct. The algorithm returns “no solution exists” iff no solution exists,

otherwise it returns a valid solution.

Proof. This follows from the soundness, completeness, and termination theorems of GUID-

EDSTRONGCYCLIC proven in Appendix B.
✁

5.3 Experimental Results

The performance of the guided non-deterministic planning algorithms has been evaluated

in three non-deterministic domains and two deterministic domains. We include the deter-

ministic domains since only a limited number of parameterized non-deterministic domains

with efficient search heuristics has been modeled so far. The deterministic domains may

provide some information about robustness of the search approach of non-deterministic

state-set branching to different heuristics.

All experiments are carried out using the BIFROST 0.7 search engine and the experi-

mental setting described in Appendix A. As usual, � denotes the number of BDD-nodes

allocated to represent the shared BDD, and � denotes the number of BDD nodes allocated

to represent BDDs in the operator caches used to implement dynamic programming. Total

CPU time includes time spent on allocating memory of the BDD package, parsing the prob-

90 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

lem description and, in case of PDDL problems, analysing the problem in order to make

a compact Boolean state encoding. Time out changes between the experiments. The algo-

rithms are out of memory when they start page faulting to the hard drive at approximately

450 MB RAM.

5.3.1 Non-Deterministic Domains

The three non-deterministic domains are a non-deterministic version of the 8-Puzzle, a real-

world steel producing plant of SIDMAR in Ghent, Belgium used as an ESPRIT case study

[56], and a real-world domain for Power Supply Restoration (PSR) introduced in [162].

Non-Deterministic 8-Puzzle

To make the 8-Puzzle domain non-deterministic, we assume that up and down moves of the

blank space may move left and right as well, as shown in Figure 5.5. Left and right moves

are deterministic in order to ensure that a strong plan exists for any reachable initial state.

However, we only consider actions that at most reduce the distance to the initial state by

one. Otherwise, the sum of Manhattan distances becomes a too conservative heuristic.

1

3 8
76
2

5

1

3 8
76
53

76
2

5
4

1

3 8
7

4 2

5

1

3 8
6

4 2

5

1
76

4 2

5

1

3
76

4 2

5

1

3
76

4 2

4 4
2

76

88
3

8
5

1

3 8
76

4 2

5

1

8

Figure 5.5: Moves of the blank space and their possible outcomes.

We consider problems where the minimum length of a path from the initial state to the

5.3. EXPERIMENTAL RESULTS 91

goal state grows linearly from 8 to 23. The BDD package was initialized with �
✁ ✠ ✬

and � ✁ ✂ ✟ ✟☞☛
. The threshold for merging partitions in the disjunctive transition relation

partitioning was 5000. Memory allocation and transition relation construction took 1.56

and 1.34 seconds respectively for all experiments. The results are shown in Figure 5.6. Each

data point shown in the graphs is the average of 3 computational results. The results show

a dramatic positive impact of guiding the search for all three algorithms. As depicted in the

graphs, it may reduce not only the total computation time but also the size of the produced

plans. This may be somewhat surprising since the guided algorithms apparently repeat a

large number of computations. The previous results of such recomputations, however, may

often be stored in the operator cache of the BDD package and may therefore not cause a

significant computation overhead.

SIDMAR

The SIDMAR domain is an abstract model of a real-world steel producing plant in Ghent,

Belgium used as an ESPRIT case study [56]. The layout of the steel plant is shown in

Figure 5.7. The goal is to cast steel of different qualities. Pig iron is poured portion-wise

in ladles by the two converter vessels. The ladles can move autonomously on the two east-

west tracks. However, two ladles can not pass each other and there can at most be one ladle

between machines. Ladles are moved in the north-south direction by the two overhead

cranes. The pig iron must be treated differently to obtain steel of different qualities. Before

empty ladles are moved to the storage place, the steel is cast by the continuous casting

machine. A ladle can only leave the casting machine if there already is a filled ladle at the

holding place. The actions of machine 1,2,4, and 5 are non-deterministic. They may either

cause the steel in the ladles to be treated or the machine to break. To ensure that a strong

plan exists, actions have been added to the domain that can fix failed machines.

We consider producing steel from two ladles. They both need an initial treatment on

machine 1 or 4 and 2 or 5. One of the ladles in addition needs a treatment on machine 3

and a final treatment on machine 2 or 5 before being cast. Non-determinism is caused by

machine failures. We consider 6 problems where the goal states correspond to situations

with growing distances from the initial state during the production of these two ladles. The

number of completed treatments is used as heuristic function. Notice that this heuristic is

relatively weak compared to the sum of Manhattan distances used for the 8-Puzzle since

it severely underestimates the minimum distance to the initial state. The BDD package

was initialized with �
✁ ✠ ✬

and � ✁ ✂ ✟ ✟☞☛
. The threshold for merging partitions in

the disjunctive transition relation partitioning was 5000. Memory allocation and transition

relation construction took 2.34 and 0.22 seconds respectively for all experiments. The

results are shown in Figure 5.8. Again, we observe a large performance gain obtained by

92 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

Weak Planning

1

10

100

6 8 10 12 14 16 18 20 22 24

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Minimum length path from initial state to goal state

guided
unguided

100

1000

10000

100000

1e+06

6 8 10 12 14 16 18 20 22 24

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Minimum length path from initial state to goal state

guided
unguided

Strong Cyclic Planning

1

10

100

1000

6 8 10 12 14 16 18 20 22 24

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Minimum length path from initial state to goal state

guided
unguided

100

1000

10000

100000

1e+06

6 8 10 12 14 16 18 20 22 24

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Minimum length path from initial state to goal state

guided
unguided

Strong Planning

1

10

100

6 8 10 12 14 16 18 20 22 24

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Minimum length path from initial state to goal state

guided
unguided

100

1000

10000

100000

1e+06

6 8 10 12 14 16 18 20 22 24

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Minimum length path from initial state to goal state

guided
unguided

Figure 5.6: Results of the non-deterministic 8-Puzzle experiments.

5.3. EXPERIMENTAL RESULTS 93

Buffer

Storage

Holding

Converter 1

Converter 2

Continuous

Machine 1

Machine 4

Machine 2 Machine 3

Machine 5

Crane 2

Crane 1

cranes
Overhead

place

place

machine
casting

�✁�
�✁�
✂✁✂
✂✁✂

✄✁✄✁✄
✄✁✄✁✄
☎✁☎✁☎
☎✁☎✁☎

✆✁✆
✆✁✆
✝✁✝
✝✁✝

✞✁✞
✞✁✞
✟✁✟
✟✁✟

Figure 5.7: Layout of the SIDMAR steel plant.

guiding the search for all three algorithms both in terms of total CPU time and the plan size.

These results are encouraging since SIDMAR is a real-world domain and non-determinism

is caused by realistic faults. In addition, the results demonstrate that even a very weak

heuristic may have a substantial positive effect on performance.

PSR

The Power Supply Restoration domain (PSR) is a network of electric lines connected via

switching devices (SDs), and fed via circuit-breakers (CBs). Switching devices and circuit

breakers can either be open or closed. A circuit-breaker supplies power when it is closed,

and a switching device stops the power propagation if it is open. Consumers may be located

on any line and are supplied only when the line is supplied. We assume that each closed

circuit-breaker forms a feeder. A feeder is a tree consisting of closed switching devices and

lines reachable downstream from the circuit breaker. The leafs are open switching devices

and dead end lines.

Example 5.1 The “simple” PSR domain investigated in [14] is shown in Figure 5.9. In the

depicted configuration, it only has a single feeder rooted in ✠ ✞ ✟
. ✍

94 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

Weak Planning

1

10

100

1000

1 2 3 4 5 6

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

1000

10000

100000

1e+06

1 2 3 4 5 6

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem Number

guided
unguided

Strong Cyclic Planning

1

10

100

1000

1 2 3 4 5 6

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

1000

10000

100000

1e+06

1 2 3 4 5 6

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem number

guided
unguided

Strong Planning

1

10

100

1000

1 2 3 4 5 6

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem number

guided
unguided

1000

10000

100000

1e+06

1 2 3 4 5 6

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Problem number

guided
unguided

Figure 5.8: Results of the SIDMAR experiments.

5.3. EXPERIMENTAL RESULTS 95

✠ ✞ ☎

✠ ✞ ✟

✠ ✞ ✜

✄ ✄

✄ ✁ ✄ ✞ ✄
✁

✄
✜

✄
✟

✄
☎✁ � ✄

✁ � ✁ ✁ � ✟

✁ � ✞ ✁ � ✁ ✁ � ✜

✁ � ☎

Figure 5.9: The “simple” PSR domain studied in [14]. A filled box denote that

the associated circuit-breaker or switching device is closed. Supplied and unsupplied

lines are drawn solid and dashed, respectively.

In the original definition of PSR domains, each unit in the system may fail. Lines may

short circuit, and switches may get stuck in one of their two positions. In addition, states

are assumed only to be partially observable. We consider a simplified version of the do-

main where states are fully observable and lines do not fail. The actions of the simplified

domain is to open and close switching devises and circuit breakers. The actions are non-

deterministic, they may open and close these units correspondingly or cause the units to

break permanently and get stuck in their current position.

The studied networks are on the linear form shown in Figure 5.10 with � ranging from 5

to 35. Initially, every unit is open and the goal is to feed each line. Since any combination of

errors may happen, neither a strong nor strong cyclic solution exists. The heuristic used to

guide the search is the number of lines with power. The results of the experiment is shown

✄
✜✠ ✞ ✞

✠ ✞ ✜

✠ ✞ ✗ ✂✳✜

✁ � ✞

✁ � ✜

✁ � ✗ ✂✳✜

✄ ✞

✄ ✟

✄ ✟ ✚ ✗ ✂✳✜✢✜

Figure 5.10: The linear PSR networks used for experiments.

in Figure 5.11 The BDD package was initialized with �
✁ ✞ ✞ ✬

and � ✁ ✞ ✟ ✟ ☛
. The

threshold for merging partitions in the disjunctive transition relation partitioning was 5000.

Memory allocation took 3.41 seconds for all experiments. Transition relation construction

96 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

took between 0.05 and 1.21 seconds. Again, we see a substantial positive impact of guiding

1

10

100

1000

20 40 60 80 100 120 140 160 180 200 220

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of State Variables

guided
unguided

100

1000

10000

100000

1e+06

20 40 60 80 100 120 140 160 180 200 220

N
u
m

b
e
r

o
f

B
D

D
 n

o
d
e
s
 i
n
 p

la
n
 (

lo
g
 s

c
a
le

)

Number of State Variables

guided
unguided

Figure 5.11: Results of the guided weak algorithm on the linear PSR problems.

the search.

5.3.2 Deterministic Domains

The two deterministic domains are the logistics domain described in Section 4.3.2 and the

ZenoTravel domain described in Section 4.3.2.

Logistics

For the logistics domain, we again study the problems from the STRIPS track of the AIPS

2000 planning competition and use the HSPr heuristic to guide the search (recall that this is

a heuristic for backward search). The results of the experiment is shown in Figure 5.12. The

BDD package was initialized with �
✁ ✞ ✵ ✬

and � ✁ ✠ ✟ ✟ ☛
. The threshold for merging

partitions in the disjunctive transition relation partitioning was 5000. Memory allocation

took 1.9 seconds for all experiments. Transition relation construction took between 0.10

and 0.77 seconds. The results show a significant performance improvement for each algo-

rithm. However, since the domain is deterministic the blind weak, strong cyclic and strong

precomponents are identical. Thus, we may expect the guided precomponents and the so-

lutions returned by the guided weak, strong cyclic and strong algorithm to be identical.

This seems to be the case. Even though each algorithm computes fairly similar solutions,

the results bring further evidence that the general guiding strategy employed by the algo-

rithms has good performance for a wide range of heuristics. In addition, the results show

that computational overhead of the algorithms is fairly similar. Not surprisingly, the weak

algorithm seems to have the smallest overhead.

5.3. EXPERIMENTAL RESULTS 97

Weak Planning

1

10

100

1000

4 5 6 7 8 9 10 11 12

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

100

1000

10000

100000

1e+06

1e+07

4 5 6 7 8 9 10 11 12

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem number

guided
unguided

Strong Cyclic Planning

1

10

100

1000

4 5 6 7 8 9 10 11 12

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

100

1000

10000

100000

1e+06

1e+07

4 5 6 7 8 9 10 11 12

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem number

guided
unguided

Strong Planning

1

10

100

1000

10000

4 5 6 7 8 9 10 11 12

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem number

guided
unguided

100

1000

10000

100000

1e+06

1e+07

4 5 6 7 8 9 10 11 12

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Problem Number

guided
unguided

Figure 5.12: Results of the Logistics experiments.

98 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

Weak Planning

1

10

100

0 2 4 6 8 10 12 14

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem number

guided
unguided

Strong Cyclic Planning

1

10

100

1000

0 2 4 6 8 10 12 14

T
o

ta
l
C

P
U

 t
im

e
 (

lo
g

 s
c
a

le
)

Problem number

guided
unguided

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

B
D

D
 n

o
d

e
s
 i
n

 t
h

e
 p

la
n

 (
lo

g
 s

c
a

le
)

Problem number

guided
unguided

Strong Planning

1

10

100

0 2 4 6 8 10 12 14

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Problem number

guided
unguided

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Problem number

guided
unguided

Figure 5.13: Results of the ZenoTravel experiments.

5.4. CONCLUSION 99

Zeno Travel

For the ZenoTravel domain, we again study the problems from the STRIPS track of the

AIPS 2002 planning competition and use the HSPr heuristic to guide the search. The

results of the experiment is shown in Figure 5.13 The BDD package was initialized with

�
✁ ✞ ✵ ✬

and � ✁ ✠ ✟ ✟ ☛
. The threshold for merging partitions in the disjunctive transition

relation partitioning was 5000. Memory allocation took 2.70 seconds for all experiments.

Transition relation construction took between 0.11 and 18.03 seconds. The results and their

interpretation are similar to the Logistics domain.

5.4 Conclusion

Our investigation of non-deterministic state-set branching has shown that it is possible

to employ branching partitionings in non-deterministic domains and define pure heuristic

search strategies of the weak, strong cyclic, and strong planning algorithms. The exper-

imental results show that non-deterministic state-set branching can lead to large perfor-

mance gains compared to blind search, not only in terms of CPU time but also in terms

of plan size. The main limitation of the approach is that no optimality guarantees can be

given for weak and strong solutions. Another limitation is that the algorithms in order to

provide completeness perform a large number of recomputations when building a complete

breadth-first search frontier in each iteration. Such recomputations may be avoided due to

the extensive caching of previous results by the BDD package. However, we cannot rely

on unstructured caching for memory intense problems. An interesting direction for future

work is to define a method for maintaining a complete search frontier instead of simply

recomputing it.

5.5 Summary

In this chapter, we have seen how the core ideas of state-set branching can be applied to

non-deterministic planning. Pure heuristic versions of the weak, strong cyclic, and strong

algorithms have been developed and formally proven to be correct. A range of experimen-

tal results in three non-deterministic and two deterministic domains using four different

heuristics show that the new guided algorithms may have dramatically better performance

than the ordinary blind algorithms both in terms of search time and solution size.

100 CHAPTER 5. NON-DETERMINISTIC STATE-SET BRANCHING

Chapter 6

Fault Tolerant Planning

In the previous two chapters, the focus has been on lowering the complexity of BDD-based

deterministic and non-deterministic search. In this, and the following chapter, we will shift

focus and introduce extensions to the non-deterministic domain model in order to improve

the quality of the produced solutions. A key observation is that non-determinism in the real

world often is caused by infrequent errors that make otherwise deterministic actions fail.

In many cases, no actions can be guaranteed to succeed. For such domains, it may be hard

or even impossible to generate plans that can recover from any combination of errors. In

this chapter, we propose a new framework called fault tolerant planning [96] to handle this

kind of non-determinism.

Section 6.1 defines fault tolerant planning domains and � -fault tolerant plans that are

robust to � failures occurring during the execution of the plan. In Section 6.2, we show

how optimal � -fault tolerant plans can be generated with the strong algorithm. Due to

non-local error states it turns out, however, to be hard to guide the search efficiently with

non-deterministic state-set branching when using this approach. We therefore develop a

specialized guided 1-fault tolerant planning algorithm 1-GFTP that decouples the guiding

toward error states and guiding toward the initial state. In Section 6.3, we present a range

of experimental results that show that the specialized algorithm indeed may be necessary

for solving real-world problems efficiently. Finally, Section 6.4 draws conclusions and

discusses directions for future work.

6.1 N-Fault Tolerant Planning Problems

Fault tolerant planning assumes that actions have primary and secondary effects. The pri-

mary effect models the usual deterministic behavior of the action, while the secondary

101

102 CHAPTER 6. FAULT TOLERANT PLANNING

effect models the error effects. � -Fault tolerant plans are robust to � errors or faults occur-

ring during the execution of the plan. This definition of fault tolerance is closely connected

to fault tolerance concepts in control theory and engineering. Every time we board a two

engined aircraft, we enter a 1-fault tolerant system: a single engine failure is recoverable,

but two engines failing may lead to an unrecoverable breakdown of the system.

An � -fault tolerant plan is not as restrictive as a strong plan that requires that the goal

can be reached in a finite number of steps independent of the number of errors. In many

cases, a strong plan does not exist because all possible errors must be taken into account.

This is not the case for fault tolerant plans, and if errors are infrequent, they may still be

very likely to succeed. A fault tolerant plan is also not as restrictive as a strong cyclic plan.

An execution of a strong cyclic plan will never reach states not covered by the plan unless

it is a goal state. Thus, strong cyclic plans also have to take all error combinations into

account. Weak plans, on the other hand, are more relaxed than fault tolerant plans. Fault

tolerant plans, however, are almost always preferable to weak plans because they give no

guarantees for all the possible outcomes of actions. For fault tolerant plans, any action may

fail, but only a limited number of failures are recoverable.

A fault tolerant planning domain is similar to a deterministic planning domain. How-

ever, in addition to the primary effect of actions, we add a secondary effect that describes

the outcome of a failure. Since an action can often fail in many different ways, we allow

the secondary effect to lead to one of several possible next states. Thus, secondary effects

are non-deterministic.

Definition 6.1 (Fault Tolerant Planning Domain) A fault tolerant planning domain is a

tuple ✟✂✁ ✣ ✁ ✂ ❂ ✣ ✝ ✣✂✁ ✡ where ✁ is a finite set of states,
✁✄✂ ❂

is a finite set of actions,
✝ ✞

✁ ✸ ✁✄✂ ❂ ✸ ✁ is a deterministic transition relation of primary effects, and
✁ ✞ ✁ ✸ ✁✄✂ ❂ ✸ ✁

is a non-deterministic transition relation of secondary effects. Instead of ✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✝
and✢ ✚ ✣ � ✣ ✚ ☞ ✤ ✁ ✁

, we write ✚✁�✝ ✚ ☞ and ✚ �✁ ✚ ☞ , respectively.

The planning language NADL
☎

described in Appendix A may be used to represent fault

tolerant planning domains. An � -fault tolerant planning problem is a deterministic planning

problem extended with the fault limit � .

Definition 6.2 (N-Fault Tolerant Planning Problem) An � -fault tolerant planning prob-

lem is a tuple ✟ � ✣ ✚ ✞ ✣ ✆ ✣
� ✡ where

�
is a fault tolerant planning domain, ✚ ✞ ✁ ✁ is an initial

state,
✆ ✞ ✁ is a set of goal states, and � ✛ ✂

is an upper bound on the number of faults

the plan must be able to recover from.

An � -fault tolerant plan is defined via a transformation of an � -fault tolerant planning

problem to a non-deterministic planning problem. The transformation adds a fault counter✠
to the state description and models secondary effects only when

✠ ✌
� .

6.2. N-FAULT TOLERANT PLANNING ALGORITHMS 103

Definition 6.3 (Induced Non-Deterministic Planning Problem) Let ✁ ✁ ✟ � ✣ ✚ ✞ ✣ ✆ ✣
� ✡

where
� ✁ ✟✂✁ ✣ ✁ ✂ ❂ ✣ ✝ ✣ ✁ ✡

be an � -fault tolerant planning problem. The non-deterministic

planning problem induced from ✁ is ✁ ✎ ✄
✁ ✟ � ✎ ✄ ✣ ✟ ✚ ✞ ✣ ✟ ✡ ✣ ✆ ✸ ✮ ✟ ✣✦✥✧✥✧✥❙✣ � ✲✖✡ where

� ✎ ✄
✁

✟✙✁ ✎ ✄ ✣ ✁ ✂ ❂ ✎ ✄ ✣ ✝ ✎ ✄ ✡
and is given by

� ✁ ✎ ✄
✁ ✁ ✸ ✮ ✟ ✣★✥✧✥✧✥❉✣ � ✲ ,� ✁✄✂ ❂ ✎ ✄

✁ ✁ ✂ ❂
,� ✟ ✚ ✣ ✠ ✡ �✝ ✎ ✄ ✟ ✚ ☞
✣ ✠ ☞ ✡ iff

– ✚✂�✝ ✚ ☞ and
✠ ☞ ✁ ✠

, or

– ✚ �✁ ✚ ☞ , ✠ ✑
� , and

✠ ☞ ✁ ✠ ✜ ✞ .

Definition 6.4 (Valid N-Fault Tolerant Plan) A valid � -fault tolerant plan for the � -fault

tolerant planing problem ✁ is a non-deterministic plan ✆ for the non-deterministic planning

problem induced from ✁ where � ✢ ✆✣✤ ✣ ✚ ✎ ✄✞ ✎ ✁ ✒✁� ✆ ✎ ✄

.

Thus, an � -fault tolerant plan is valid if any execution path where at most � failures happen

eventually reaches a goal state. An � -fault tolerant plan is optimal if it has minimum worst

case execution length.

Definition 6.5 (Optimal N-Fault Tolerant Plan) An optimal � -fault tolerant plan is a va-

lid � -fault tolerant plan ✆ where MAX ✢ ✚ ✎ ✄✞ ✣ ✆ ✎ ✄ ✣
✆ ✤ ✁

SDIST ✢ ✚✑✎ ✄✞ ✣ ✆ ✎ ✄

✤

6.2 N-Fault Tolerant Planning Algorithms

One might suggest using a deterministic planning algorithm to generate � -fault tolerant

plans. Consider for instance synthesizing a 1-fault tolerant plan in a domain where there

is a non-faulting plan of length
✪

and at most
✠

error states of any action. It is tempting

to claim that a 1-fault tolerant plan then can be found using at most
✪ ✠

calls to a classical

deterministic planning algorithm. This analysis, however, is flawed. It only holds for

evaluating a given 1-fault tolerant plan. It neglects that many additional calls to the classical

planning algorithm may be necessary in order to find a valid solution. Instead, we need

an efficient approach for finding plans for many states simultaneously. This can be done

with BDD-based non-deterministic planning. We first observe that it follows directly from

Definition 3.9 that the strong algorithm returns a valid � -fault tolerant plan, if it exists,

when given the induced non-deterministic planning problem as input. Moreover, if the

blind strong algorithm is used to generate the solution, it follows from Theorem 3.3 that

104 CHAPTER 6. FAULT TOLERANT PLANNING

the returned � -fault tolerant plan is optimal. Let � -FTP ✆ denote the STRONG algorithm

applied to an � -fault tolerant planning problem. Since the performance of blind strong

planning is limited, we also consider solving � -fault tolerant planning problems with the

guided version of strong planning defined in previous chapter. Let � -GFTP ✆ denote the

GUIDEDSTRONG algorithm applied to an � -fault tolerant planning problem.

We may expect � -GFTP ✆ to be efficient when secondary effects are local in the state

space because they then will be covered by the search beam of � -GFTP ✆ . In practice,

however, secondary effects may be permanent malfunctions that due to their impact on the

domain cause a transition to a non-local state. That is a state from which no short path of

primary effects exists to the source state. Indeed, in theory, the location of secondary effects

may be completely uncorrelated with the location of primary effects. To solve this problem,

we develop a specialized algorithm where the planning for primary and secondary effects

is decoupled. We constrain our investigation to 1-fault tolerant planning and introduce

two algorithms: 1-FTP using blind search and 1-GFTP using guided search. The input to

these algorithms is a 1-fault tolerant planning problem, not its induced non-deterministic

planning problem.

The 1-FTP algorithm is shown in Figure 6.1. The function PREIMGSA � computes the

function 1-FTP ✢ ✚ ✞ ✣ ✆ ✤
1 �

✞ ★ ✌
;

✡ ✞ ★ ✆
2 �

✜ ★ ✌
;

✡ ✜ ★ ✆
3 while ✚ ✞ ✔✁ ✡ ✞
4

✠ ✞� ★
PREIMGSA ✢ ✡ ✞ ✤ ✏ ✡ ✞ ✸ ✁✄✂ ❂

5
✠ ✞ ★ ✠ ✞� ✏ PREIMGSA � ✢ ✡ ✜

✤
6 while

✠ ✞ ✁ ✌
7

✠ ✜ ★
PREIMGSA ✢ ✡ ✜

✤ ✏ ✡ ✜ ✸ ✁✄✂ ❂
8 if

✠ ✜
✁ ✌

then return “no solution exists”

9 �
✜ ★ �

✜ ✕ ✠ ✜
10

✡ ✜ ★ ✡ ✜ ✕ STATES
✢ ✠ ✜

✤
11

✠ ✞ ★ ✠ ✞� ✏ PREIMGSA � ✢ ✡ ✜
✤

12 �
✞ ★ �

✞ ✕ ✠ ✞
13

✡ ✞ ★ ✡ ✞ ✕ STATES ✢ ✠ ✞ ✤
14 return ✟ �

✞ ✣
�

✜ ✡
Figure 6.1: The 1-FTP algorithm.

preimage of secondary effects. 1-FTP returns two non-deterministic plans �
✞

and �
✜

for

the fault tolerant domain, where �
✞

is robust to one fault while �
✜

is a recovery plan.

6.2. N-FAULT TOLERANT PLANNING ALGORITHMS 105

Example 6.1 An example of the non-deterministic plans �
✞

and �
✜

returned by 1-FTP is

shown in Figure 6.2 ✍

G

S

S

G

s

s

1
0

0

0

F

F

Figure 6.2: An example of the non-deterministic plans
� ✟

and
� ✆

returned by 1-

FTP. Primary and secondary effects of actions are drawn with solid and dashed lines,

respectively. In this example, we assume that
� ✟

forms a sequence of actions from

the initial state to a goal state, while
� ✆

recovers all the possible faults of actions in
� ✟

.

1-FTP performs a backward search from the goal states that alternate between blindly ex-

panding �
✞

and �
✜

such that failure states of �
✞

always can be recovered by �
✜
. Initially

�
✞

and �
✜

are assigned to empty plans (l. 1-2). The variables
✡ ✞

and
✡ ✜

are states cov-

ered by the current plans in �
✞

and �
✜
. They are initialized to the goal states since these

states are covered by zero length plans. In each iteration of the outer loop (l. 3-13), �
✞

is

expanded with SAs in
✠ ✞

(l. 12-13). First, a candidate
✠ ✞�

is computed. It is the preimage

of the states in �
✞

pruned for SAs of states already covered by �
✞

(l. 4). The variable✠ ✞
is assigned to

✠ ✞�
restricted to SAs for which all error states are covered by the current

recovery plan (l. 5). If
✠ ✞

is empty the recovery plan is expanded in the inner loop until
✠ ✞

is nonempty (l. 6-11). If the recovery plan at some point has reached a fixed point and
✠ ✞

is

still empty, the algorithm terminates with failure, since in this case, no recovery plan exists

(l. 8). We claim without proof that 1-FTP is sound, complete, and terminating.

1-FTP expands both �
✞

and �
✜

blindly. An inherent strategy of the algorithm, though,

is not to expand �
✜

more than necessary to recover the faults of �
✞
. This is not the case

for � -FTP ✆ that does not distinguish states with different number of faults. The aggressive

strategy of 1-FTP, however, makes it suboptimal as the example in Figure 6.3 shows. In

the first two iterations of the outer loop, ✟ ✻ ✟ ✣✂✁ ✡ and ✟ ✻ ✜✫✣✂✁ ✡ are added to �
✞

and nothing is

added to �
✜
. In the third iteration of the outer loop, �

✜
is extended with ✟ ✻ ✟ ✣✄✁ ✡ and ✟ ✿ ✟ ✣ � ✡

and �
✞

is extended with ✟ ✿ ✟ ✣ �☛✡ . In the last two iterations of the outer loop, ✟ ✿ ✜✤✣ �☛✡ and✟ ✚ ✞ ✣ � ✡ are added to �
✞
. The resulting plan is

�
✞ ✁ ✮ ✟ ✚ ✞ ✣ �☛✡ ✣ ✟ ✿ ✜✤✣ �☛✡ ✣ ✟ ✿ ✟ ✣ � ✡ ✣ ✟ ✻ ✜✤✣✄✁ ✡ ✣ ✟ ✻ ✟ ✣✄✁ ✡✤✲

106 CHAPTER 6. FAULT TOLERANT PLANNING

�

�
✁

✁ ✁

� ✞

✂ ✟

✄ ✟

�

✄ ✆ ✁

✂ ✆

✔✄✟

Figure 6.3: A problem with a single goal state
✞

showing that 1-FTP may return

suboptimal solutions. Dashed lines indicate secondary effects. Notice that action
�

and
✁

only have secondary effects in
✂ ✟ and ✔ ✟ , respectively. In all other states, the

actions are assumed always to succeed.

�
✜

✁ ✮ ✟ ✻ ✟ ✣✂✁ ✡ ✣ ✟ ✿ ✟ ✣ �☛✡❙✲ ✂
The worst case length of this 1-fault tolerant plan is 4. However, a 1-fault tolerant plan

�
✞ ✁ ✮ ✟ ✚ ✞ ✣✂✁ ✡ ✣ ✟ ✻ ✜✤✣✂✁ ✡ ✣ ✟ ✻ ✟ ✣✂✁ ✡❙✲

�
✜

✁ ✮ ✟ ✿ ✜✤✣ � ✡ ✣ ✟ ✿ ✟ ✣ �☛✡❙✲
with worst case length of 3 exists.

Despite the different search strategies applied by 1-FTP and ✞ -FTP ✆ , they both perform

blind search. A more interesting algorithm is a guided version of 1-FTP called 1-GFTP

based on the non-deterministic state-set branching framework introduced in previous chap-

ter. The over all design goal of 1-GFTP is to guide the expansion of �
✞

toward the initial

state and guide the expansion of �
✜

toward the failure states of �
✞
. However, this can be

accomplished in many different ways. Below we evaluate three different strategies. For

each algorithm, �
✞

is guided in a pure heuristic manner toward the initial state using the

approach employed by � -GFTP ✆ .

The first strategy is to assume that failure states are local and guide �
✜

toward the initial

state as well. The resulting algorithm is similar to ✞ -GFTP ✆ and has poor performance. The

problem is that the pure heuristic approach causes �
✜

only to cover a narrow beam of states

in the state space. Error states not within close distance to the primary effects tend not to be

covered by �
✜
. The strategy can be improved by widening the beam by taking the search

depth into account. However, this does not provide a satisfactory solution for non-local

states.

The second strategy is ideal in the sense that it dynamically guides the expansion of �
✜

toward error states of the precomponents of �
✞
. This can be done by using a specialized

BDD operation that splits the precomponent of �
✜

according to the Hamming distance to

6.2. N-FAULT TOLERANT PLANNING ALGORITHMS 107

the error states. The complexity of this operation, however, is exponential in the size of the

BDD representing the error states and the size of the BDD representing the precomponent

of �
✞
. Due to the dynamic programming used by the BDD package, the average complexity

may be much lower. However, this does not seem to be the case in practice.

The third strategy is the one chosen for 1-GFTP. It expands �
✜

blindly, but then prunes

SAs from the precomponent of �
✜

not used to recover error states of �
✞
. Thus, it uses an

indirect approach to guide the expansion of �
✜
. We expect this strategy to work well even

if the absolute position of error states is non-local. However, the strategy assumes that the

relative position of error states is local in the sense that the SAs in �
✜

in expansion
✯

of �
✞

are relevant for recovering error states in expansion
✯ ✜ ✞ of �

✞
. In addition, we still have

an essential problem to solve: to expand �
✞

or �
✜
. There are two extremes.

1. Expand �
✜

until first recovery of
✠ ✞

. Compute a complete partitioned backward

precomponent of �
✞
, expand �

✜
until some partition in

✠ ✞
has recovered error states

and add the partition with least ✣ -value to �
✞
.

2. Expand �
✜

until best recovery of
✠ ✞

. Compute a complete partitioned backward

precomponent of �
✞
, expand �

✜
until the partition of

✠ ✞
with lowest ✣ -value has

recovered error states and add this partition to �
✞
. If none of these error states can

be recovered then consider the partition with second lowest ✣ -value and so on.

It turns out that neither of these extremes work well in practice. The first is too conservative.

It may add a partition with a high ✣ -value even though a partition with a low ✣ -value can

be recovered given just a few more expansions of �
✜
. The second strategy is too greedy.

It ignores the complexity of expanding �
✜

in order to recover error states of the partition

of
✠ ✞

with lowest ✣ -value. Instead, we consider a mixed strategy: spend half of the last

expansion time on recovering error states of the partition of
✠ ✞

with lowest ✣ -value and,

in case this is impossible, spend one fourth of the last expansion time on recovering error

states of the partition of
✠ ✞

with second lowest ✣ -value, and so on.

The 1-GFTP algorithm is shown in Figure 6.4. The keys in maps are sorted ascend-

ingly. The instantiation of �
✞

and �
✜

of 1-GFTP is similar to 1-FTP except that the

states in
✡ ✞

are partitioned with respect to their associated ✣ -value. Initially the map entry,
� ✞ ✑ ✣ ✍ � ✳ ✴ ✘

is assigned to the goal states. 1 The variable
✝

stores the duration of the previ-

ous expansion. Initially, it is given a small value � . In each iteration of the main loop

(l. 4-22), the precomponents
✠ ✞

and
✠ ✜

are computed and added to �
✞

and �
✜
. First, the

start time
✝ ✒ is logged by reading the current time

✝
✁✄✂✆☎ (l. 5). Then a map

✂ �
holding

a complete partitioned precomponent candidate of �
✞

is computed by PRECOMPFTP (l.

1To simplify the presentation, we assume that all goal states have identical
✡

-value. A generalization of

the algorithm is trivial.

108 CHAPTER 6. FAULT TOLERANT PLANNING

function 1-GFTP ✢ ✚ ✞ ✣ ✆ ✤
1 �

✞ ★ ✌
;

� ✞ ✑ ✣ �
✘ ★ ✆

2 �
✜ ★ ✌

;
✡ ✜ ★ ✆

3
✝ ★

�

4 while ✚ ✞ ✔✁ ✡ ✞
5

✝ ✒ ★ ✝
✁✄✂ ☎

6
✂ � ★

PRECOMPFTP ✢ � ✞ ✤
7

✠ ✞ ★ ✌
;
❇ ✁✎ ★ ✌

8 ✌
✜

� ★ ❆ �
�
❂ ✝✄✂ ❈

�
9

✯ ★ ✟
10 while

✠ ✞ ✁ ✌ ✽ ✯ ✑ ✎ ✂ � ✎
11

✯ ★ ✯ ✜ ✞ ;
✝ ★ ✝ ✔ ✵

12
✠ ✞� ★ ✠ ✞� ✕ ✂ � ✑ ✯ ✘

13 ✟✟✌ ✜� ✣ ✠ ✞ ✡ ★
EXPANDTIMED ✢ ✠ ✞� ✣

✌
✜

� ✣☎✡ ✜ ✣ ✝ ✤
14 if

✠ ✞ ✁ ✌
then

15 ✟✟✌ ✜� ✣ ✠ ✞ ✡ ★
EXPANDTIMED ✢ ✠ ✞� ✣

✌
✜

� ✣☎✡ ✜ ✣ ✆ ✤
16

✝ ★ ✝
✁✄✂ ☎ ☎ ✝ ✒

17 if
✠ ✞ ✁ ✌

then return “no solution exists”

18
✠ ✜ ★

PRUNEUNUSED ✢ ✌
✜

� ✣ ✠ ✞ ✤
19 �

✜ ★ �
✜ ✕ ✠ ✜

;
✡ ✜ ★ ✡ ✜ ✕ STATES ✢ ✠ ✜

✤
20 �

✞ ★ �
✞ ✕ ✠ ✞

21 for
✎ ✁ ✞ to

✯
22

� ✞ ✑ ✣ ✓ ✘ ★ � ✞ ✑ ✣ ✓ ✘ ✕ STATES ✢ ✠ ✞ ✓ ✂ � ✑ ✣ ✓ ✘ ✤
23 return ✟ �

✞ ✣
�
✜ ✡

Figure 6.4: The 1-GFTP algorithm.

6). For each entry in
� ✞

, PRECOMPFTP inserts the preimage in
✂ �

of each partition of a

disjunctive branching partitioning of the transition relation of primary effects. We assume

that this partitioning has ✂ subrelations
✄ ✜✤✣✦✥✧✥✧✥☎✄ ★ where the transitions represented by✄ ✙

are associated with a change � ✣
✙

of the ✣ -value (in forward direction). The inner loop

(l. 10-13) of 1-GFTP expands the two candidates
✠ ✞�

and
✠ ✜

�
for

✠ ✞
and

✠ ✜
. In each itera-

tion, a partition of the partitioned precomponent
✂ �

is added to
✠ ✞�

(l. 12).2 The function

EXPANDTIMED expands
✠ ✜

�
. In iteration

✯
, the time out bound of the expansion is

✝ ✔ ✵ ✙
.

EXPANDTIMED returns early if

2Recall that
✄✆☎

is traversed ascendingly such that the partition with lowest
✡

-value is added first.

6.2. N-FAULT TOLERANT PLANNING ALGORITHMS 109

1. a precomponent
✠ ✞

in the candidate
✠ ✞�

is found where all error states are recovered

(l. 5 and l. 11), or

2.
✠ ✜�

has reached a fixed point.

The preimage added to
✠ ✜�

in iteration
✯

of EXPANDTIMED is stored in the map entry ✌
✜

� ✑ ✯ ✘
in order to prune SAs not used for recovery.

function PRECOMPFTP ✢ � ✞ ✤
1

✂ � ★ ❆ �
�
❂ ✝ ✂ ❈

�
2 for

✯ ✁ ✞ to
✎ � ✞ ✎

3 for
✎ ✁ ✞ to ✂

4 ✁ ✁ ★
PREIMGSA ✓✗✢ � ✞ ✑ ✣ ✙ ✘ ✤ ✏ ✡ ✞ ✸ ✁✄✂ ❂

5
✂ � ✑ ✣ ✙ ☎ � ✣ ✓ ✘ ★ ✂ � ✑ ✣ ✙ ☎ � ✣ ✓ ✘ ✕ ✁ ✄

6 return
✂ �

Eventually
✠ ✞�

may contain all the SAs in PC without any of these being recoverable. In

this case 1-GFTP expands
✠ ✜�

(l. 15) untimed.

function EXPANDTIMED ✢ ✠ ✞� ✣
✌
✜

� ✣☛✡ ✜ ✣✞✝ ✤
1

✝ ✒ ★ ✝
✁✄✂ ☎

2 � ❊ ✂ ❇ ✜
� ★ �

3
✯ ★ ✎ ✌

✜
� ✎

4
❃✫❆ ✂ �✂✁ ✁ ★

STATES ✢ ✠
✜

� ✤ ✕ ✡ ✜
5

✠ ✞ ★ ✠ ✞� ✏ PREIMGSA � ✢ ❃ ❆ ✂ �✂✁ ✁✒✤
6 while

✠ ✞ ✁ ✌ ✽ � ❊ ✂ ❇ ✜
� ✆✁ ✠ ✜� ✽ ✝

✁✄✂ ☎ ☎ ✝ ✒ ✑ ✝
7 � ❊ ✂ ❇ ✜� ★ ✠ ✜�

8
✯ ★ ✯ ✜ ✞

9 ✌
✜

� ✑ ✯ ✘ ★
PREIMGSA ✢ ❃ ❆ ✂ �✂✁ ✁ ✤ ✏ ❃✫❆ ✂ �✂✁ ✁ ✸ ✁✄✂ ❂

10
❃ ❆ ✂ �✂✁ ✁ ★

STATES ✢ ✠
✜

� ✤ ✕ ✡ ✜
11

✠ ✞ ★ ✠ ✞� ✏ PREIMG � ✢ ❃✫❆ ✂ �✂✁ ✁ ✤
12 return ✟✆✌ ✜� ✣ ✠ ✞ ✡

If
✠ ✜�

has reached a fixed point but no recoverable precomponent
✠ ✞

exists, no 1-fault tol-

erant plan exists and 1-GFTP returns with “no solution exists” (l. 17). Otherwise,
✠ ✜

�
is

pruned for SAs of states not used to recover the SAs in
✠ ✞

(l. 18). This pruning is com-

puted by PRUNEUNUSED that traverses backward through the preimages of ✌
✜

�
and marks

states that either are error states of SAs in
✠ ✞

, or states needed to recover previously marked

states.

110 CHAPTER 6. FAULT TOLERANT PLANNING

function PRUNEUNUSED ✢ ✌
✜

� ✣ ✠ ✞ ✤
1

❆❙❃✤❃ ★
SAIMG � ✢ ✠ ✞ ✤

2
☎ � ✄ ★ ✌

;
� ❈ ❃ ☎ ❆ ✂ ★ ✌

3 for
✯ ✁ ✎ ✌

✜
� ✎

to ✞
4 ✌

✜
� ✑ ✯ ✘ ★ ✌

✜
� ✑ ✯ ✘ ✓ ✢☞✢ ✁ ✄ ✄ ✕ ✯

✂ ✁ ✤ ✸ ✁✄✂ ❂ ✤
5

� ❈ ❃ ☎ ❆ ✂ ★ � ❈ ❃ ☎ ❆ ✂ ✕ STATES ✢ ✌
✜

� ✑ ✯ ✘ ✤
6

☎ � ✄ ★
SAIMG ✢ ✌

✜
� ✑ ✯ ✘ ✤

7 return
✠ ✜� ✓ ✢ � ❈ ❃ ☎ ❆ ✂ ✸ ✁ ✂ ❂ ✤

The function SAIMG
✢ ✆✣✤ and SAIMG � ✢ ✆ ✤ computes the image states of a set of SAs ✆ for

primary and secondary effects respectively.

SAIMG ✢ ✆✣✤ ✧ ✮✗✚ ☞ ✛ ❏ ✟ ✚ ✣ �☛✡ ✁ ✆ ✂ ✚ �
✝ ✚ ☞ ✲ (6.1)

SAIMG � ✢ ✆✣✤ ✧ ✮✗✚ ☞ ✛ ❏ ✟ ✚ ✣ �☛✡ ✁ ✆ ✂ ✚ �
✁ ✚ ☞ ✲ (6.2)

The updating of �
✞

and �
✜

of 1-GFTP (l. 19-22) is similar to 1-FTP, except that
� ✞

is

updated by iterating over
✂ �

and picking SAs in
✠ ✞

. Notice that in this iteration ✣ ✓ refers to

the keys of
✂ �

. We claim without proof that 1-GFTP is sound, complete, and terminating.

The specialized algorithms can be generalized to � faults by adding more recovery plans

� ✗ ✣ � ✗ ✂✳✜ ✣✦✥✧✥✧✥★✣
�
✞
. For � -GFTP all of these recovery plans would be indirectly guided by

the expansion of � ✗
. The algorithm is illustrated in Figure 6.5

6.3 Experimental Evaluation

The purpose of the experimental evaluation is not only to compare the performance of the

developed algorithms, but also to investigate the properties of fault tolerant planning in

significant real-world domains. The algorithms 1-FTP, 1-GFTP, 1-FTP ✆ , and 1-GFTP ✆
have been implemented in the BIFROST 0.7 search engine. All experiments have been

carried out in the experimental setting described in Appendix A. As usual, we represent

the parameter setting of the BuDDy package by the number of allocated BDD nodes in the

unique table (�) and the number of allocated BDD nodes in the operator caches (�). Time

is measured in seconds and the size of a BDDs is measured in number of BDD nodes.

6.3.1 Unguided Search

We first focus on unguided search and study four fault tolerant planning domains. Two of

these, DS1 and PSR, are models of real-world domains.

6.3. EXPERIMENTAL EVALUATION 111

G

G

G

F n

F n−1

F n−2

... G

F 1

0F

G

s

s

s

s

s0

0

0

0

0

Figure 6.5: An example of
�✁� ✣✄✂☎✂☎✂ ✣ � ✟

produced by a specialized ✞ -fault tolerant

planning algorithm. Primary and secondary effects of actions are drawn with solid

and dashed lines, respectively.

DS1

DS1 is based on an SMV encoding [131] of the Livingstone model [173] used by the Re-

mote Agent for NASA’s Deep Space One probe. The Livingstone model describes the

electrical system of the spacecraft. It consists of a system bus and a number of units con-

nected to the bus. These units include a power distribution subsystem, a Ion Propulsion

System (IPS), Propulsion Drive Electronics (PDE), a Reaction Control System (RCS), At-

titude Control System (ACS), Star Tracker Unit (SRU), and a MICAS camera. We recast

the SMV encoding as a fault tolerant planning problem in NADL
☎

. Each bus-command

is an action. The primary effect of the command is the changes it causes on the electrical

system given that all units work correct. The secondary effect of an action is one of the two

faults F2 and F4 considered in the Remote Agent Experiment [124].

F2 : camera or pasm switch is recoverably stuck on/off.

F4 : an x-z thruster valve is permanently stuck closed.

In addition to these two faults, the Remote Agent Experiment considered two other errors.

We are not modeling these since no 1-fault tolerant plan exists when taking all four faults

112 CHAPTER 6. FAULT TOLERANT PLANNING

into account. The following simplifications have been made in the NADL
☎

model of the

SMV description

1. we assume that the state of components is known,

2. attitude errors are assumed to be deterministically computable,

3. relative thrust is assumed to be low or nominal if a valve is stuck otherwise nominal,

4. redundant state variables in the SMV model have been removed. 3

The NADL
☎

encoding of the domain has 84 Boolean state variables. We consider generat-

ing a 1-fault tolerant plan from an initial state where the IPS is in standby mode, the MICAS

camera is “off”, and the pasm switch is “on”. The goal is to reach a state where the IPS

is in thrusting mode, the MICAS camera is “on”, and the pasm switch is “off”. The BDD

package parameters are � = 1M and � = 100K. The threshold for merging partitions of a

disjunctive transition relation partitioning is 5000. The total size of the transition relation is

104881 and is computed in 0.42 seconds. The size of the solution is 535 and the total CPU

time is 1.15 seconds. The experiment shows that a BDD encoding is very efficient for the

kind of constraints modeled by DS1. Despite a fairly large and dense model, a disjunctive

transition relation is fast to compute. In addition, a 1-fault tolerant plan for a non-trivial

problem in this domain is small and can be generated in less than a second. The experiment

demonstrates that BDD-based fault tolerant planning is mature to be applied on significant

real-world problems. An important lesson to learn from the investigation of DS1 is that

even 1-fault tolerance imposes a strong restriction on a physical system. No 1-fault tolerant

plan exists for the problem if all of the original four failures are considered.

✄
✜✠ ✞ ✞

✠ ✞ ✜

✠ ✞ ✗ ✂✳✜

✁ � ✞

✁ � ✜

✁ � ✗ ✂✳✜

✄ ✞

✄ ✟

✄ ✟ ✚ ✗ ✂✳✜✢✜

Figure 6.6: The linear PSR domain.

3An automatic approach for doing this has been developed in [178].

6.3. EXPERIMENTAL EVALUATION 113

PSR

The PSR domain is described in Section 5.3.1. The primary effect of the Open and Close

actions on switches is that the switches open and close accordingly. The secondary effect

is that they break and get stuck in their current position. We compare the performance

of 1-FTP and 1-FTP ✆ in two versions of the domain. The first, is the “simple” domain

described Section 5.3.1. In the initial state, all switches are open and the goal is to feed all

lines. 1-FTP and 1-FTP ✆ solve this problem in 6.8 and 11.25 seconds, respectively (0.98

seconds is used on memory allocation, � = 1M and � = 700K).

The second version of the domain is the linear network shown in Figure 6.6. Again,

the initial state is that all switches are open, and the goal is to feed all lines. The result are

shown in Figure 6.7. The BDD package parameters are �
✁ ✞ ✞ ✬

and � ✁ ✞ ✟ ✟☞☛
and 3.38

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200 220

C
P

U
 T

im
e

 (
s
e

c
)

Number of Boolean State Variables

1-FTP
1-FTPs

1000

10000

100000

1e+06

1e+07

20 40 60 80 100 120 140 160 180 200 220

P
la

n
 s

iz
e

 (
B

D
D

 n
o

d
e

s
)

Number of Boolean State Variables

1-FTP
1-FTPs

Figure 6.7: Results of the PSR problems.

114 CHAPTER 6. FAULT TOLERANT PLANNING

seconds are used on memory allocation. 1-FTP performs significantly better than 1-FTP ✆
on this problem. Interestingly, the performance difference is not reflected by the plan sizes.

However, this may be an artifact caused by the fact that the plan size for 1-FTP is a sum of

the size of two BDDs, while the plan size for 1-FTP ✆ is the size of a single BDD. Similarly

to the DS1 domain, 1-fault tolerance imposes a strong constraint on the PSR domain. For

most configurations, where a few units already have failed, no 1-fault tolerant plan exists.

Power Plant

The power plant domain is shown in Figure 6.8 and originates in [93]. The task is to execute

H4

R

H2H1

H3

T1

T2

T3

T4

b2

b3

b4

okt1 okb1

okt2 okb2

okt3 okb3

okt4 okb4

b1 m4

m5

okm5

a3 a4

a1 a2

m2

okm2

m3

okm3

m1 okm1

oka4 okh4okh3 oka3

oka2 okh2

okp

okm4

p = 3

~okh1 oka1

f = 3

Figure 6.8: The power plant domain. An open valve is drawn solid and allows

water or steam to flow through it. In the depicted state, a failure of heat exchanger 1

is assumed just to have happened.

the correct control actions in order to bring the plant from some bad state, where the plant

is unsafe or not working properly, to some good state, where the plant satisfies its safety

and activity requirements. A single reactor R is surrounded by four heat exchangers H1,

H2, H3 and H4. The heat exchangers produce high pressure steam to the four electricity

generating turbines T1, T2, T3 and T4. The heat exchangers can fail and leak radioactive

substances from the internal water loop to the external steam loop. If this happens, the

6.3. EXPERIMENTAL EVALUATION 115

1-FTP 1-FTP ✆● ☎✁�✷❆ ✝ ✬✝�✵✬ ✳✵✴ ✎ ● � ❊ ✎ ✝ ✬✝�✵✬ ✳✵✴ ✎ ● � ❊ ✎
40 6.1 65K 8.7 62K

80 157.8 1.2M 189.4 1.5M

Figure 6.9: Results of the power plant experiment. The total CPU time and plan

size is given by ✝✄✂✆☎✝✂✟✞✡✠ and
☛✌☞✎✍✑✏✡☛

, respectively. The size of the problem is the number of

Boolean state variables.

blocking valve (� ✞ , � ✵ , � �
or � ✠) of the heat exchanger must be closed. However, these

valves can fail too, in which case the valves ✂
✵
, ✂

�
or ✂ ✞ are used. Similarly, if turbines

fail, they must be shut down by closing one of the valves
✁

✞ ,
✁ ✵

,
✁ �

or
✁ ✠ , or ✂ ✠ , ✂ ✞ and

✂ ✞ . The energy production ✻ of the plant can either be 0,1,2,3 or 4 units of energy per time

unit. The production must be adjusted to fit the demand
✠

, if possible. A heat exchanger

can only transfer enough energy to a single turbine, and a single turbine can only produce

one unit of energy per time unit. The initial state is shown in Figure 6.8. A failure of heat

exchanger 1 is a assumed to have just happened.

We compare the performance of 1-FTP and 1-FTP ✆ in two versions of the domain.

The first considers controlling a single power plant. The second considers controlling two

power plants simultaneously. The results are shown in Figure 6.9. In both experiments, the

parameters of the BDD package are �
✁ ✞ ✞ ✬

and � ✁ ✞ ✟ ✟☞☛
. The time spent on memory

allocation is 3.4 seconds. 1-FTP has a slightly better performance than 1-FTP ✆ . However,

both algorithms suffer from a large growth rate of the BDDs representing the frontier of the

backward search. Again, 1-fault tolerant plans turns out to be hard to generate. Even though

the system is highly redundant, 1-fault tolerant plans only exist for simple malfunctions like

the one investigated in this experiment.

Beam Walk

...

...s0

G

Figure 6.10: The Beam Walk domain. Solid edges denote primary effects of the

move action, while dashed edges denote secondary effects.

The Beam Walk domain was introduced in [36] and considers a robot walking on a

beam. The primary effect of the move action is that the robot moves one step forward

116 CHAPTER 6. FAULT TOLERANT PLANNING

on the beam. The secondary effect is that it falls down from the beam. The domain is

shown in Figure 6.10. The BeamWalk domain represents a worst case scenario for 1-FTP

and 1-FTP ✆ since a fault in the last step to reach the goal causes a transition to the state

furthest away from the goal. Both algorithms must iterate over all states before a solution

is found. The results are shown in Figure 6.11. As expected, both algorithms have a limited

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

C
P

U
 T

im
e

 (
s
e

c
)

Number of Boolean State Variables

1-FTP
1-FTPs

Figure 6.11: Results of the BeamWalk experiments.

performance in this domain. Again, however, we observe a slightly better performance of

1-FTP.

6.3.2 Guided Search

The main purpose of the experiments in this section is to study the difference between 1-

GFTP and 1-GFTP ✆ . In particular, we are interested in investigating how sensitive these

algorithms are to non-local error states and to what extent we may expect this to be a

problem in practice. We study 3 domains, of which SIDMAR descends from a real-world

study.

LV

The LV domain is an artificial domain and has been designed to demonstrate the different

properties of 1-GFTP and 1-GFTP ✆ . It is an ✂ ✸ ✂ grid world with initial state ✢ ✟ ✣
✂

☎ ✞ ✤
and goal state ✢✁� ✂

✔ ✵✄✂ ✣ � ✂
✔ ✵✄✂ ✤ . The actions are Up, Down, Left, and Right. Above the✖ ✁ ✓

line, actions may fail causing the
✓

and
✖

position to be swapped. Thus, error states

are mirrored in the
✖ ✁ ✓

line. A
✂ ✸ ✂

instance of the problem is shown in Figure 6.12.

6.3. EXPERIMENTAL EVALUATION 117

The essential property is that error states are non-local, but that two states close to each

6 71 2 3 4 5

1

2

3

4

5

6

7 ✁ ✆✚✣✁� ✥

✁✂� ✣ ✆✤✥

✔✄✟

�

✂

✠

Figure 6.12: The ✄✆☎✝✄ instance of the LV domain.

other also have error states close to each other. This is the assumption made by 1-GFTP,

but not 1-GFTP ✆ that requires error states to be local. The heuristic value of a state is the

Manhattan distance to the initial state. The BDD package parameters are �
✁ ✞ ✬

and

� ✁ ✞ ✟ ✟☞☛ . Memory allocation takes 1.4 seconds. The results are shown in Figure 6.13. As

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e

 (
s
e

c
)

Vertical and Horizontal Board Dimension

1-GFTP
1-GFTPs

Figure 6.13: Results of the LV experiments.

depicted, the performance of 1-GFTP ✆ degrades very fast with ✂ due to the misguidance

of the heuristic for the recovery part of the plan. Its total CPU time is more than 500

seconds after the first three experiments. 1-GFTP ✆ is fairly unaffected by the error states.

118 CHAPTER 6. FAULT TOLERANT PLANNING

To explain this, consider how the backward search proceeds from the goal state. The guided

precomponents of �
✞

will cause this plan to beam out toward the initial state. Due to the

relative locality of error states, the pruning of �
✜

will cause �
✜

to beam out in the opposite

direction. Thus, both �
✞

and �
✜

remain small during the search.

8-Puzzle

The 8-Puzzle further demonstrates this difference between 1-GFTP and 1-GFTP ✆ . We

consider a non-deterministic version of the 8-Puzzle where the secondary effects are self

loops. Thus, error states are the most local possible. We use the usual sum of Manhat-

tan distances of tiles as an heuristic for the distance to the initial state. The experiment

compares the performance of 1-FTP, 1-GFTP, 1-FTP ✆ , and 1-GFTP ✆ . The BDD pack-

age parameters are �
✁ ✞ ✬

and � ✁ ✞ ✟ ✟☞☛
. Memory allocation takes 0.29 seconds. The

number of Boolean state variables is 35 in all experiments. The results are shown in Fig-

ure 6.14. Again, 1-FTP performs substantially better than 1-FTP ✆ . The guided algorithms

1-GFTP and 1-GFTP ✆ have much better performance than the unguided algorithms. Due

to local error states, however, there is no substantial performance difference between these

two algorithms. As depicted, 1-FTP is slightly faster than 1-GFTP ✆ in the experiment with

a minimum deterministic solution length of 14. For such small problems, we may expect to

see this since 1-FTP only expands the recovery plan when needed while 1-GFTP ✆ expands

the recovery part of its plan in each iteration.

SIDMAR

The final experiments are on the SIDMAR domain introduced in Section 5.3.1. The purpose

of these experiments is to study the robustness of 1-GFTP and 1-GFTP ✆ to the kind of

errors found in real-world domains. The primary effects of actions are to move, lift and

perform treatments of ladles on machines. The secondary effects are that machines break

permanently and moves fail. We consider casting two ladles of steel. The heuristic is

the sum of machine treatments carried out on the ladles. The experiment compares the

performance of 1-FTP, 1-GFTP, 1-FTP ✆ , and 1-GFTP ✆ . The BDD package parameters

are �
✁ ✞ ✬

and � ✁ ✞ ✟ ✟☞☛
. Memory allocation takes 1.41 seconds. The number of

Boolean state variables is 47 in all experiments. The results are shown in Figure 6.15.

Missing data points indicates that the associated algorithm spent more than 500 seconds

trying to solve the problem. The only algorithm with good performance is 1-GFTP. The

experiment indicates that real-world domains may have non-local error states that limits the

performance of 1-GFTP ✒ . Also notice that this is the only domain where 1-FTP does not

outperform 1-FTP ✆ . In this domain, 1-FTP seems to be finding complex plans that fulfills

6.4. CONCLUSION 119

0.1

1

10

100

4 6 8 10 12 14 16 18 20 22

C
P

U
 T

im
e

 (
s
e

c
)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

100

1000

10000

100000

1e+06

4 6 8 10 12 14 16 18 20 22

P
la

n
 S

iz
e

 (
B

D
D

 n
o

d
e

s
)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

Figure 6.14: Results of the 8-Puzzle experiments.

that the recovery plan is minimum. Thus, the strategy of 1-FTP to keep the recovery plan

as small as possible does not seem to be an advantage in general.

6.4 Conclusion

The experimental evaluation shows that 1-GFTP consistently outperforms its strong al-

gorithm counter part 1-GFTP ✆ and in particular is robust to non-local error states. Our

investigation of real-world domains suggests that such error states exist and are caused

by permanent failures. Despite the blind search of 1-FTP, it often outperforms its strong

algorithm counter part 1-FTP ✆ since it may avoid producing large recovery plans.

The experimental evaluation of DS1, Power Plant, and PSR further shows that 1-fault

120 CHAPTER 6. FAULT TOLERANT PLANNING

1

10

100

1000

6 8 10 12 14 16 18 20 22

C
P

U
 T

im
e

 (
s
e

c
)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

1000

10000

100000

1e+06

6 8 10 12 14 16 18 20 22

P
la

n
 S

iz
e

 (
B

D
D

 n
o

d
e

s
)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

Figure 6.15: Results of the SIDMAR experiments.

tolerant plans often do not exist even for highly redundant physical systems. This suggests

that a fruitful direction for future work is to define classes of fault tolerant plans that are

more relaxed than 1-fault tolerant plans. Another direction of work is to consider fault

tolerant plans that are adjusted to the likelihood of faults. The more likely a fault is, the

more robust the fault tolerant plan should be for it. Finally, it seems fairly simple to allow

non-deterministic primary effects. In this case the strong precomponent would be natural

to use to expand the nonfaulting and recovery part of the plan.

6.5. SUMMARY 121

6.5 Summary

In this chapter, we have introduced a new class of non-deterministic plans called fault tol-

erant plans. Fault tolerant plans address domains where non-determinism is caused by

infrequent errors. For such domains strong and strong cyclic solutions seldom exist since

any action may fail. Fault tolerant plans relax this problem by being robust only to a

limited number of faults occurring during execution. Fault tolerant plans can be synthe-

sized with the strong algorithm by reducing a fault tolerant planning problem to a non-

deterministic planning problem. However, due to non-local error states, we introduce a

specialized guided algorithm called 1-GFTP that decouples the guiding of the fault tolerant

and recovery part of the plan. The experimental evaluation indicates that this decoupling

may be very helpful for obtaining good performance in real-world domains.

122 CHAPTER 6. FAULT TOLERANT PLANNING

Chapter 7

Adversarial Planning

In the previous chapter, we identified faults as a major source of non-determinism in real-

world domains. In this chapter, we introduce a new framework called adversarial planning

[94] to address domains where non-determinism is caused by simultaneous actions of a

controllable system agent and an uncontrollable and possibly hostile environment agent.

Each state is associated with a set of actions that are applicable by the system agent and

a set of actions that are applicable by the environment agent. In each execution step, the

two agents select one of their applicable actions. They have no knowledge about the action

selected by the other agent. The two actions form a joint action that causes a transition to a

new state.

We begin our description of adversarial planning in Section 7.1 by modifying the non-

deterministic domain model introduced in Section 3.2 to represent system and environ-

ment actions. We then demonstrate that for these domains there exist plans that are more

powerful than weak and strong cyclic plans. These adversarial plans can be generated by

reasoning explicitly about environmental actions. In Section 7.2, we introduce two new

algorithms for synthesizing weak adversarial plans and strong cyclic adversarial plans.

We prove that, in contrast to strong cyclic plans, strong cyclic adversarial plans guarantee

goal achievement independent of the environment behavior if actions are selected randomly

from the plan. Similarly, we prove that given actions are selected randomly from the plan,

weak adversarial plans improve the quality of weak plans by guaranteeing that there is a

non-zero probability of reaching a goal state independent of the behavior of the environ-

ment. In Section 7.4, the algorithms are evaluated experimentally both in terms of their

computational efficiency and in terms of the quality of the produced plans. Finally, we

draw conclusions in Section 7.5.

123

124 CHAPTER 7. ADVERSARIAL PLANNING

7.1 Adversarial Planning Problems

An adversarial planning domain has two active agents: a system and an environment. The

task is to construct plans for the system in order for it to achieve a goal. The environment

may be an intelligent adversary (or it may simply be an advantage to assume that) who is

fully informed about the structure of the domain and the limitations of the system’s ability

to construct plans.1

An adversarial planning domain is a non-deterministic planning domain with a set of

controllable system actions and a set of uncontrollable environment actions. System and

environment actions are synchronous. The transition relation of the domain describes the

effects of joint system and environment actions. The transition relation is deterministic to

reflect that the only source of non-determinism is uncontrollable environment actions.

Definition 7.1 (Adversarial Planning Domain) An adversarial planning domain is a tu-

ple ✟✂✁ ✣ ✁✄✂ ❂ ✒ ✣ ✁ ✂ ❂ ✕ ✣ ✝ ✡ where ✁ is a finite set of states,
✁ ✂ ❂ ✒ is a finite set of system actions,

,
✁✄✂ ❂ ✕ is a finite set of environment actions, and

✝ ✞ ✁ ✸ ✁ ✂ ❂ ✒ ✸ ✁✄✂ ❂ ✕ ✸ ✁ is a deterministic

transition relation of joint system and environment actions. Instead of ✢ ✚ ✣ � ✒ ✣ � ✕ ✣ ✚ ☞ ✤ ✁ ✝
,

we write ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ .

Adversarial planning domains can be described in NADL
☎

. The set of applicable actions

of a state ✚ are defined by the functions

APP
✢ ✚✥✤ ✧ ✮ ✟ � ✒ ✣ � ✕ ✡ ✛ ❏ ✚ ☞ ✂ ✚ �

✡ ☞
�

☞
☎ ✝ ✚ ☞ ✲ (7.1)

APP ✒ ✢ ✚✥✤ ✧ ✮ � ✒ ✛ ❏ � ✕ ✂✩✟ � ✒ ✣ � ✕ ✡ ✁ APP ✢ ✚✥✤ ✲ (7.2)

APP ✕ ✢ ✚✥✤ ✧ ✮ � ✕ ✛ ❏ � ✒ ✂✩✟ � ✒ ✣ � ✕ ✡ ✁ APP ✢ ✚✥✤ ✲ (7.3)

where APP ✢ ✚✥✤ , APP ✒ ✢ ✚✥✤ , and APP ✕ ✢ ✚✥✤ give the set of joint-actions, system actions, and

environments actions applicable in ✚ , respectively. It is required that system and environ-

ment actions are independent at each state. Otherwise the system can indirectly control the

environment by making some of its action unapplicable and vice versa. Thus

APP
✢ ✚ ✤ ✁

APP ✒ ✢ ✚✥✤ ✸ APP ✕ ✢ ✚✥✤ ✂ (7.4)

The set of states that can be reached from ✚ by some joint action from ✚ involving the

system action � ✒ is given by

NEXT ✒ ✢ ✚ ✣ � ✒ ✤ ✧ ✮✗✚ ☞ ✛ ❏ � ✕ ✂ ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ ✲ ✂ (7.5)

An adversarial planning problem is defined by an initial state and a set of goal states of

the system.

1This is a standard assumption in e.g. matrix games and extensive form games [127].

7.1. ADVERSARIAL PLANNING PROBLEMS 125

Definition 7.2 (Adversarial Planning Problem) An adversarial planning problem is a tu-

ple ✟ � ✣ ✚ ✞ ✣ ✆ ✡
where

�
is an adversarial planning domain, ✚ ✞ ✁ ✁ is an initial states, and✆ ✞ ✁ is a set of goal states.

An adversarial plan is a plan for the system represented in the usual way as a set of state-

action pairs.

Definition 7.3 (System State-Action Pair (SSA)) Let
�

be an adversarial planning do-

main. A system state-action pair ✟ ✚ ✣ � ✒ ✡ of
�

is a state ✚ of
�

associated with an applicable

system action � ✒ ✁ APP ✒ ✢ ✚✥✤
Definition 7.4 (System Plan) Let

�
be an adversarial planning domain. A system plan ✆✖✒

for
�

is set of SSAs of
�

.

We will use ✆ ✒ to denote system plans and often refer to them as adversarial plans.

Example 7.1 For the the adversarial planning problem shown in Figure 7.1(a), we have

✁ ✁ ✮ ✱ ✣ �
✣☎☞✒✣✁� ✣ ✆ ✲ ✣

✚ ✞ ✁ ✱ ✣
✆ ✁ ✮ ✆ ✲ ✣

✁ ✂ ❂ ✒ ✁ ✮ ✜ ✚ ✣ ☎ ✚ ✲ ✣
✁ ✂ ❂ ✕ ✁ ✮ ✜ ✁ ✣ ☎ ✁❋✲ ✣✝ ✁ ✮ ✟ ✱ ✣ ✜ ✚ ✣ ☎ ✁ ✣ � ✡ ✣ ✟ ✱ ✣ ☎ ✚ ✣ ☎ ✁ ✣✁� ✡ ✣ ✟ �

✣ ☎ ✚ ✣ ☎ ✁ ✣ � ✡ ✣ ✟ �
✣

✜ ✚ ✣ ✜ ✁ ✣ � ✡ ✣
✟ �
✣

✜ ✚ ✣ ☎ ✁ ✣ ✆ ✡ ✣ ✟ �
✣ ☎ ✚ ✣ ✜ ✁ ✣ ✆ ✡ ✣ ✟ � ✣ ☎ ✚ ✣ ☎ ✁ ✣☛☞ ✡ ✣ ✟ � ✣ ✜ ✚ ✣ ✜ ✁ ✣✁� ✡ ✣

✟ � ✣ ✜ ✚ ✣ ☎ ✁ ✣ ✆ ✡ ✣ ✟ � ✣ ☎ ✚ ✣ ✜ ✁ ✣ ✆ ✡❙✲ ✂
Notice that this transition relation fulfills the requirement APP

✢ ✚ ✤ ✁
APP ✒ ✢ ✚✥✤ ✸ APP ✕ ✢ ✚✥✤ for

any state ✚ . The state
☞

is a dead end, since the goal is unreachable from
☞

. This introduces

an important difference between � and
�

that captures a main aspect of the adversarial

planning problem. We can view the two states � and
�

as states in which the system and

environment have different opportunities. Observe that the system “wins”, i.e., reaches

the goal, only if the sign of the two actions in the joint action are different. Otherwise it

“loses” since there is no transition to the goal with a joint action where the actions have

the same sign. The goal is reachable from both � and
�

. However, the consequences of

losing is different for � and
�

. In � , losing causes a transition back to � . Thus, the goal

is still reachable. In
�

, however, losing may cause a transition to the dead end
☞

which

makes it impossible to reach the goal in subsequent steps. Consider how an adversarial and

126 CHAPTER 7. ADVERSARIAL PLANNING

I D G

−s

+s

+s

−s

U

F

+s

−s

+s −s

+s

−s

I D G

(−s,+e)

(+s,−e)
(+s,−e)

(−s,−e)

(+s,−e)

(−s,+e)

(−s,−e)

(+s,+e)

(+s,+e) (−s,−e)

U

F

(a) (b)

Figure 7.1: (a) An adversarial planning problem with five states ✞ � ✣ � ✣ ✝ ✣✁� ✣ ✠ ✠ , an

initial state � , and a single goal state
✠

. The system and environment have actions✞✄✂ ✔✤✣ ✄ ✔ ✠ and ✞✄✂✆☎ ✣ ✄✝☎ ✠ , respectively. (b) The induced non-deterministic planning

problem of the adversarial planning problem shown in (a) where the information about

environment actions has been abstracted.

informed environment can take advantage of the possibility of reaching a dead end from
�

.

Since this may happen if the system applies
☎ ✚ in

�
, it is reasonable for the environment to

assume that the system will always execute ✜ ✚ in
�

. But now the environment can prevent

the system from ever reaching the goal by always choosing action ✜ ✁ , so the system should

completely avoid the state
�

. This example domain is important because it illustrates how

an adversarial environment can act purposely to obstruct achievement of the goal. ✍

In order to introduce an execution model, we also need to define environment plans.

These are sets of state-action pairs, where the action is an environment action.

Definition 7.5 (Environment State-Action Pair (ESA)) Let
�

be an adversarial plan-

ning domain. An environment state-action pair ✟ ✚ ✣ � ✕ ✡ of
�

is a state ✚ of
�

associated

with an applicable environment action � ✕ ✁ APP ✕ ✢ ✚✥✤
Definition 7.6 (Environment Plan) Let

�
be an adversarial planning domain. An envi-

ronment plan ✆ ✕ for
�

is set of ESAs of
�

.

We will use ✆ ✕ to denote environment plans. The set of states covered by a system plan, an

environment plan, and a combined plan is given by

STATES ✒ ✢ ✆ ✒ ✤ ✧ ✮✗✚✜✛ ❏ � ✒ ✂✩✟ ✚ ✣ � ✒ ✡ ✁ ✆ ✒ ✲ (7.6)

7.1. ADVERSARIAL PLANNING PROBLEMS 127

STATES ✕ ✢ ✆ ✕☞✤ ✧ ✮✗✚✜✛ ❏ � ✕ ✂ ✟ ✚ ✣ � ✕ ✡ ✁ ✆ ✕ ✲ (7.7)

STATES
✢ ✆ ✒ ✣

✆ ✕☞✤ ✧
STATES

✢ ✆ ✒ ✤ ✓ STATES
✢ ✆ ✕☞✤ ✂ (7.8)

The set of actions of a plan associated with a state ✚ is

ACT ✒ ✢ ✆ ✒ ✣ ✚✥✤ ✧ ✮ � ✒ ✛✄✟ ✚ ✣ � ✒ ✡ ✁ ✆ ✒ ✲ (7.9)

ACT ✕ ✢ ✆ ✕ ✣ ✚✥✤ ✧ ✮ � ✕ ✛✄✟ ✚ ✣ � ✕ ✡ ✁ ✆ ✕ ✲ ✂ (7.10)

The set of possible end states of a combined system plan ✆ ✒ and an environment plan ✆ ✕ is

given by

CLOSURE ✢ ✆ ✒ ✣
✆ ✕☞✤ ✁ ✮✗✚ ☞ ✆✁ STATES ✢ ✆ ✒ ✣

✆ ✕ ✤ ✛ ❏ ✚ ✣ � ✒ ✁ ACT ✒ ✢ ✆ ✒ ✣ ✚✥✤ ✣
(7.11)� ✕ ✁ ACT ✕ ✢ ✆ ✕ ✣ ✚ ✤ ✂ ✚ �

✡ ☞
�

☞
☎ ✝ ✚ ☞ ✲ ✂

We can now define the execution model of a system and environment plan.

Definition 7.7 (Exectution Model) An execution model with respect to a system plan ✆ ✒
and an environment plan ✆ ✕ for the adversarial domain

� ✁ ✟✂✁ ✣ ✁✄✂ ❂ ✒ ✣ ✁ ✂ ❂ ✕ ✣ ✝ ✡ is a Kripke

structure � ✢ ✆ ✒ ✣
✆ ✕☞✤ ✁ ✟✂✁ ✣☎✄ ✡ where

� ✁ ✁
CLOSURE ✢ ✆ ✒ ✣

✆ ✕☞✤ ✕ STATES ✢ ✆ ✒ ✣
✆ ✕☞✤ ✕ ✆

,� ✟ ✚ ✣ ✚ ☞ ✡ ✁ ✄
iff ✚ ✆✁ ✆ ✣ ❏ � ✒ ✣ � ✕ ✂ ✟ ✚ ✣ � ✒ ✡ ✁ ✆ ✒ , ✟ ✚ ✣ � ✕ ✡ ✁ ✆ ✕ ✣

and ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ , or ✚ ✁ ✚ ☞
and ✚ ✁ CLOSURE ✢ ✆ ✒ ✣

✆ ✕☞✤ ✕ ✆
.

The execution paths starting at ✚ of the system plan ✆ ✒ and environment plan ✆ ✕ are given

by

EXEC
✢ ✚ ✣

✆ ✒ ✣
✆ ✕☞✤ ✧ ✮ ✿ ✛ ✿ is a path of � ✢ ✆ ✒ ✣

✆ ✕ ✤ and ✿ ✞ ✁ ✚ ✲ ✂ (7.12)

An important question is if adversarial plans can be generated via a transformation to a

non-deterministic planning problem and an application of an existing non-deterministic

planning algorithm as were done with fault tolerant plans. One approach is to let the

joint actions of the system and the environment form the actions of a corresponding non-

deterministic planning problem. However, this would imply that joint actions are control-

lable which is inconsistent with the assumption that environment actions are uncontrol-

lable. There does not seem to exist a simple solution to this problem except the obvious: to

model the effect of environment actions as non-determinism of system actions. This trans-

formation is defined as the induced non-deterministic planning problem of an adversarial

planning problem.

128 CHAPTER 7. ADVERSARIAL PLANNING

Definition 7.8 (Induced Non-Deterministic Planning Problem) Let ✁ ✁ ✟ � ✣ ✚ ✞ ✣ ✆ ✡ whe-

re
� ✁ ✟✂✁ ✣ ✁✄✂ ❂ ✒ ✣ ✁✄✂ ❂ ✕ ✣ ✝ ✡

is an adversarial planning problem. The non-deterministic

planning problem induced from ✁ is ✁ ✎ ✄
✁ ✟ � ✎ ✄ ✣ ✚ ✞ ✣ ✆ ✡ where

� ✎ ✄
✁ ✟✂✁✒✎ ✄ ✣ ✁ ✂ ❂ ✎ ✄ ✣ ✝ ✎ ✄ ✡

and is given by

� ✁ ✎ ✄
✁ ✁� ✁ ✂ ❂ ✎ ✄

✁ ✁✄✂ ❂ ✒� ✚ �
✡✝ ✎ ✄

✚ ☞ iff ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ for some
� ✕ ✁ APP ✕ ✢ ✚✥✤ .

Example 7.2 Figure 7.1(b) shows the induced non-deterministic planning problem of the

adversarial planning problem described in Example 7.1. ✍

The least restricted environment plan is one where each state is associated with all applica-

ble actions of the environment Let ✆ �

✕ denote the least restricted environment plan defined

by

✆ �

✕ ✧ ✮ ✟ ✚ ✣ � ✕ ✡ ✛ � ✕ ✁ APP ✕ ✢ ✚ ✤ ✲ ✂ (7.13)

For an environment plan to be non-empty, we require that it associates at least a single

action with any state where the set of applicable actions is non-empty. Otherwise, it is trivial

for the environment to construct a plan that for all executions prevent goal achievement. Let

✑ ☎✕ denote the set of non-empty environment plans

✑ ☎✕ ✧ ✮ ✆ ✕ ✛ ■ ✚ ✂ ACT ✕ ✢ ✆ ✕ ✣ ✚✥✤ ✓ APP ✕ ✢ ✚ ✤ ✆✁ ✌ ✲ ✂ (7.14)

A strong plan for the induced non-deterministic planning problem is an important class

of adversarial plans. The fact that a strong solution exists means that the system is able to

achieve its goal for any non-empty environment plan. If we regard the domain as a game

between the system and environment, such plans are often referred to as winning strategies

(e.g.,[3, 43]). Strong cyclic solutions to an induced non-deterministic planning problem,

on the other hand, have limited value as shown in Example 7.3.

Example 7.3 There is no strong solution to the induced non-deterministic planning prob-

lem shown in Figure 7.1. The reason is that there does not exist a system action for � or
�

that guarantees a transition to
✆

. A valid strong cyclic solution is

✆ ✒ ✁ ✮ ✟ ✱ ✣ ✜ ✚ ✡ ✣ ✟ ✱ ✣ ☎ ✚ ✡ ✣ ✟ �
✣

✜ ✚ ✡ ✣ ✟ �
✣ ☎ ✚ ✡ ✣ ✟ � ✣

✜ ✚ ✡✤✲ ✂
This plan eventually reaches the goal if the environment is “friendly” and sometimes exe-

cutes action
☎ ✁ in state

�

. Such friendliness, however, is unlikely if the environment is an

opponent. ✍

7.1. ADVERSARIAL PLANNING PROBLEMS 129

The problem with strong cyclic solutions is that they assume the environment uses the

least restricted plan ✆ �

. This is also the case for weak plans.

Theorem 7.1 Given an adversarial planning problem ✁ ✁ ✟ � ✣ ✚ ✞ ✣ ✆ ✡ , a non-deterministic

planning problem ✁ ✎ ✄
✁ ✟ � ✎ ✄ ✣ ✚✑✎ ✄✞ ✣ ✆ ✎ ✄ ✡

induced from ✁ , and a plan ✆ ✒ for
� ✎ ✄

� if ✆ ✒ is a weak solution then � ✢ ✆ ✒ ✣ ✆ �

✕ ✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
,� if ✆ ✒ is a strong cyclic solution then � ✢ ✆ ✒ ✣ ✆ �

✕ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄ ✁✂� ✆
,� if ✆ ✒ is a strong solution then

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕ ✤ ✣ ✚ ✞ ✎ ✁ ✒✁� ✆
.

Proof. Follows directly from the definition of weak, strong cyclic, and strong plans and the

definition of the induced non-deterministic planning problem.
✁

As shown in Example 7.4, it turns out that there exists plans that are more powerful

than weak and strong cyclic plans for adversarial planning problems.

Example 7.4 The strong cyclic plan

✆ ✒ ✁ ✮ ✟ ✱ ✣ ✜ ✚ ✡ ✣ ✟ ✱ ✣ ☎ ✚ ✡ ✣ ✟ �
✣

✜ ✚ ✡ ✣ ✟ �
✣ ☎ ✚ ✡ ✣ ✟ � ✣

✜ ✚ ✡❙✲
described in Example 7.3 can be improved by avoiding the state

�

. This is done by the

following plan

✆ ✒ ✁ ✮ ✟ ✱ ✣ ✜ ✚ ✡ ✣ ✟ �
✣

✜ ✚ ✡ ✣ ✟ �
✣ ☎ ✚ ✡❙✲

which is guaranteed eventually to reach the goal for any non-empty strategy of the envi-

ronment given that the system selects randomly between the actions in the plan. Or more

precisely, there is a zero probability for any infinite plan not reaching a goal state. ✍
Adversarial planning introduces a class of adversarial weak and strong cyclic solutions that,

similarly to strong solutions, are robust to any plan applied by the environment.

Definition 7.9 (Weak and Strong Cyclic Adversarial Plans) Given an adversarial plan-

ning problem ✁ ✁ ✟ � ✣
✁ ✞ ✣ ✆ ✡ and a plan ✆ ✒ for

�
� ✆ ✒ is a weak adversarial solution iff

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
,� ✆ ✒ is a strong-cyclic adversarial solution iff

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄ ✁✂� ✆
.

This can be done by generalizing the approach in Example 7.4 and prune states from weak

and strong cyclic plans where the game between the system and the environment is unfair.

We formalize this idea in the definition of a fair state. A state ✚ is fair with respect to a

set of states
✡

and a plan ✆ ✒ if ✚ is not already a member of
✡

and for each applicable

environment action there exists a counter action in ✆ ✒ such that the joint action leads into✡
.

130 CHAPTER 7. ADVERSARIAL PLANNING

Definition 7.10 (Fair State) A state ✚ ✔✁ ✡
is fair with respect to a set of states

✡
and a

plan ✆ ✒ iff
■ � ✕ ✁ APP ✕ ✢ ✚ ✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ ✆ ✒ ✣ ✚ ✤ ✣ ✚ ☞ ✁ ✡ ✂ ✚ �

✡ ☞
�

☞
☎ ✝ ✚ ☞ .

For convenience, we define an unfair state to be a state that is not fair.

7.2 Adversarial Planning Algorithms

Weak and strong cyclic adversarial plans can be synthesized by modifying the ordinary

weak and strong cyclic precomponents and employing the generic non-deterministic plan-

ning algorithm shown in Figure 3.8.2

The core computations of the precomponent functions are to find fair states of a plan

✆ ✒ with respect to a set of states
✡

and compute the preimage of system state-action pairs

(SSAs) of a set of states
✡

.

FAIRSTATES ✢ ✆ ✒ ✣☎✡ ✤ ✧ ✮✗✚ ✔✁ ✡ ✛ ■ � ✕ ✁ APP ✕ ✢ ✚✥✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ ✆ ✒ ✣ ✚✥✤ ✣
(7.15)

✚ ☞ ✁ ✡ ✂ ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ ✲
PREIMGSSA ✢ ✡ ✤ ✧ ✮ ✟ ✚ ✣ � ✒ ✡ ✛ NEXT ✒ ✢ ✚ ✣ � ✒ ✤ ✓ ✡ ✆✁ ✌ ✲ (7.16)

7.2.1 Weak Adversarial Precomponents

The weak adversarial precomponent consists of an ordinary weak precomponent pruned

for unfair states. The precomponent function is shown in Figure 7.2. Let WEAKADVER-

function PRECOMPWA ✢ ✡ ✤
1

� ✁ ✁ ★
PREIMGSSA ✢ ✡ ✤ ✏ ✡ ✸ ✁✄✂ ❂ ✒

2
� ❈ ✁ ✁ ★ � ✁ ✁ ✓ ✢ FAIRSTATES ✢ � ✁ ✁ ✣☛✡ ✤ ✸ ✁✄✂ ❂ ✒ ✤

3 return
� ❈ ✁ ✁

Figure 7.2: The weak adversarial precomponent function.

SARIAL denote the NDP algorithm using the weak adversarial precomponent. Since the

pruning of unfair states makes the SSAs in the precomponent robust for any non-empty

environment plan, it can be shown that WEAKADVERSARIAL is sound, complete, and ter-

minating.

2When applying this algorithm for adversarial planning, the function STATES is substituted with the func-

tion STATES � defined above.

7.2. ADVERSARIAL PLANNING ALGORITHMS 131

Theorem 7.2 (Correctness of WeakAdversarial) The WEAKADVERSARIAL planning al-

gorithm is correct. The algorithm returns “no solution exists” iff no solution exists, other-

wise it returns a valid solution.

Proof. This follows from the soundness, completeness, and termination theorems of WEAK-

ADVERSARIAL proven in Appendix B.
✁

A guided version of WEAKADVERSARIAL can be defined by using an approach similar

to GUIDEDWEAK.

7.2.2 Strong Cyclic Adversarial Precomponents

Similarly to the strong cyclic precomponent, the strong cyclic adversarial precomponent is

computed by iteratively expanding a candidate set and trying to show that it contains a valid

precomponent. The precomponent function is shown in Figure 7.3. The main difference

between the strong cyclic adversarial precomponent function and the strong cyclic precom-

ponent function is that the auxiliary function SCAPLANAUX prunes unfair states from the

precomponent instead of only unconnected states. This is done by iteratively computing

the set of fair states in the precomponent starting from the covered states
✡

. The com-

putation also removes all unconnected states. Let STRONGCYCLICADVERSARIAL denote

the NDP algorithm using the strong cyclic adversarial precomponent. It can be shown that

STRONGCYCLICADVERSARIAL is sound, complete, and terminating.

Theorem 7.3 (Correctness of StrongCyclicAdversarial) The STRONGCYCLICADVER-

SARIAL planning algorithm is correct. The algorithm returns “no solution exists” iff no

solution exists, otherwise it returns a valid solution.

Proof. This follows from the soundness, completeness, and termination theorems of

STRONGCYCLICADVERSARIAL proven in Appendix B.
✁

A guided version of STRONGCYCLICADVERSARIAL can be defined by using an ap-

proach similar to GUIDEDSTRONGCYCLIC.

Example 7.5 Consider the strong cyclic adversarial precomponent computed from the goal

state
✆

of the adversarial planning problem introduced in Example 7.1. The first candidate

precomponent is shown in Figure 7.4(a). Action
☎ ✚ would have to be pruned from

�

since

it has an outgoing transition. The pruned candidate is shown in Figure 7.4(b). Now there

is no action leading to
✆

in
�

when the environment chooses ✜ ✁ .
�

has become unfair

and must be pruned from the candidate. The resulting candidate is shown in Figure 7.4(c).

Since the remaining candidate is non-empty and no further state-action pairs need to be

pruned, a non-empty strong cyclic adversarial precomponent has been found. ✍

132 CHAPTER 7. ADVERSARIAL PLANNING

function PRECOMPSCA ✢ ✡ ✤
1

� ✁ ✁ ★ ✌
2 repeat

3 � ❊ ✂ � ✁ ✁ ★ � ✁ ✁
4

� ✁ ✁ ★
PREIMGSSA ✢ ✡ ✕ STATES ✒ ✢ � ✁ ✁ ✤☞✤ ✏ ✡ ✸ ✁ ✂ ❂ ✒

5 ✁ ✠ ✁ ★
SCAPLANAUX ✢ � ✁ ✁ ✣☎✡ ✤

6 until ✁ ✠ ✁ ✆✁ ✌ ❁ � ✁ ✁ ✁ � ❊ ✂ � ✁ ✁
7 return ✁ ✠ ✁

function SCAPLANAUX ✢ ● ❂ ❈ ❃✤❂ ✁ ✁ ✣☛✡ ✤
1 ✁ ✁ ★ ● ❂ ❈ ❃✤❂ ✁ ✁
2 repeat

3 � ❊ ✂ ✁ ✁ ★ ✁ ✁
4 ✁ ✁ ★

PRUNEOUTGOING ✢ ✁ ✁ ✣☛✡ ✤
5 ✁ ✁ ★

PRUNEUNFAIR
✢ ✁ ✁ ✣☛✡ ✤

6 until ✁ ✁ ✁ � ❊ ✂ ✁ ✁
7 return ✁ ✁

function PRUNEOUTGOING
✢ ✁ ✁ ✣☛✡ ✤

1 ✠ ❆✞� ✁ ✁ ★ ✁ ✁ ✏ PREIMGSSA ✢ ✡ ✕ STATES ✒ ✢ ✁ ✁ ✤ ✤
2 return ✠ ❆✞� ✁ ✁

function PRUNEUNFAIR ✢ ✁ ✁ ✣☛✡ ✤
1 ✠ ❆✞� ✁ ✁ ★ ✌
2 repeat

3 � ❊ ✂ ✁ ✁ ★ ✠ ❆✞� ✁ ✁
4 ✠ ❆✞� ✁ ✁ ★ ✁ ✁ ✓ FAIRSTATES ✢ ✁ ✁ ✣☛✡ ✕ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✤ ✤ ✸ ✁ ✂ ❂ ✶
5 until ✠ ❆✞� ✁ ✁ ✁ � ❊ ✂ ✁ ✁
6 return ✠ ❆✞� ✁ ✁

Figure 7.3: The strong cyclic adversarial precomponent function.

7.3 Action Selection Strategies

A strong cyclic adversarial plan guarantees that no intelligent environment can choose a

plan that forces executions to cycle forever without ever reaching a goal state. In principle,

though, infinite paths never reaching a goal state can still be produced by a system that

“keeps losing” to the environment. However, by assuming the system selects randomly

7.3. ACTION SELECTION STRATEGIES 133

G

F

U

−s+s

+s
−s

+s
−s

+s

−s

G

F

U

−s+s

+s
−s

+s

+s

G

F

−s+s

+s
−s

(a) (b) (c)

Figure 7.4: (a) The first candidate of PRECOMPSCA ✁ ✠ ✥ , for the problem shown in

Figure 7.1(a). (b) The candidate pruned for actions with outgoing transitions. (c) The

remaining candidate pruned for unfair states. Since no further SSAs are pruned, this

is the strong cyclic adversarial precomponent returned by PRECOMPSCA ✁ ✠ ✥ .

between actions in its plan, we can show that the probability of producing such execution

paths is zero.

Theorem 7.4 (Termination of Strong Cyclic Adversarial) By choosing actions randomly

from a strong cyclic adversarial plan ✆ ✒ produced by STRONGCYCLICADVERSARIAL

given the adversarial planning problem ✁ ✁ ✟ � ✣ ✚ ✞ ✣✆ ✡ , any execution path will eventually reach a goal state.3

Proof. Since all unfair states and actions with transitions leading out of the states covered by

✆ ✒ have been removed, all the visited states of an execution path will be fair and covered by

the plan. Assume without loss of generality that � strong cyclic adversarial precomponents

were computed in order to generate ✆ ✒ . Due to the definition of precomponent functions,

we can then partition the set of states covered by ✆ ✒ into � ✜ ✞ ordered subsets
✡ ✗ ✣✦✥✧✥✧✥★✣☛✡ ✞

where ✚ ✞ ✁ ✡ ✗ ,
✡ ✞ ✁ ✆

, and
✡ ✙

for
✟✍✑ ✯ ✌

� contains the states covered by precomponent✯
. Consider an arbitrary subset

✡ ✙
. Assume that there were ✂ iterations of the repeat loop in

the last call to PRUNEUNFAIR when computing precomponent
✯
. We can then subpartition✡ ✙

into ✂ ordered subsets
✡ ✙ ☞ ★ ✣✦✥✧✥✧✥★✣☛✡ ✙ ☞ ✜ where

✡ ✙ ☞ ✓ contains the states of the SSAs added

to ✠ ❆✞� ✁ ✁
in iteration

✎
of PRUNEUNFAIR. Due to the definition of FAIRSTATES , we have

that the states in
✡ ✙ ☞ ✓ are fair with respect to ✆ ✒ and the states

✡
given by

✡ ✁
✓ ✂✳✜

✑
✕✫✚✢✜ ✡ ✙ ☞ ✓ ✕

✙ ✂✳✜
✑

✕✫✚ ✞
✡ ✙ ✂

3It is likely that the theorem holds for any strong cyclic adversarial plan satisfying Definition 7.9. How-

ever, the proof must be strengthened to show this.

134 CHAPTER 7. ADVERSARIAL PLANNING

By flattening the hierarchical ordering of the partitions
✡ ✗ ✣✦✥✧✥✧✥❉✣☛✡ ✞ and their subpartitions,

we can assume without loss of generality that we get the ordered partitioning
�✂✁ ✣✦✥✧✥✧✥★✣ � ✞

where
� ✞ ✁ ✡ ✞ . Given that actions are selected uniformly in ✆ ✒ , the fairness between the

states in the levels guarantees that there is a non-zero probability to transition to a state in
� ✙✄✂✳✜❙✣✦✥✧✥✧✥❙✣ � ✞ from any state in

� ✙
. Consequently, an execution path only reaching states

covered by ✆ ✒ will eventually reach a state in
� ✞ .

✁

For weak adversarial plans, it is impossible to guarantee that a goal state eventually is

reached since an execution path may reach a dead end. On the other hand, by selecting

actions randomly from a weak adversarial plan there is a non-zero probability of reaching

a goal state.

Theorem 7.5 (Progress of Weak Adversarial) By choosing actions randomly from a weak

adversarial plan ✆ ✒ poduced by WEAKADVERSARIAL given the adversarial planning

problem ✁ ✁ ✟ � ✣ ✚ ✞ ✣ ✆ ✡ , there is a non-zero probability of eventually reaching the goal.4

Proof. Assume without loss of generality that � weak adversarial precomponents were

computed in order to generate ✆ ✒ . Due to the definition of precomponent functions, we can

then partition the set of states covered by ✆ ✒ into a � ✜ ✞ ordered subsets
✡ ✗ ✣✦✥✧✥✧✥❉✣☎✡ ✞ where

✚ ✞ ✁ ✡ ✗ ,
✡ ✞ ✁ ✆

and
✡ ✙

for
✟ ✑ ✯ ✌

� contains the states covered by precomponent
✯
.

Consider an arbitrary subset
✡ ✙

. Due to the definition of FAIRSTATES , we have that the

states in
✡ ✙

are fair with respect to ✆ ✒ and the states
✡

given by

✡ ✁

✙✄✂✳✜
✑

✕✫✚ ✞
✡ ✙ ✂

Thus, given that actions are selected uniformly in ✆ ✒ , we have a non-zero probability to

transition to a state in
✡ ✙✄✂✳✜✤✣✦✥✧✥✧✥❉✣☛✡ ✞ from any state in

✡ ✙
. Consequently, there is a non-zero

probability of an execution path starting in ✚ ✞ and reaching a goal state in
✆

.
✁

7.4 Experimental Evaluation

The performance of WEAKADVERSARIAL and STRONGCYCLICADVERSARIAL has been

evaluated in two domains. The first of these is a parameterized version of the example do-

main shown in Figure 7.1. The second is a grid world with a hunter and prey. Due to time

limitations and the lack of benchmark problems, the guided versions of the algorithms have

not been studied. However, we expect performance improvements between the blind and

4It is likely that the theorem holds for any weak adversarial plan satisfying Definition 7.9. However, the

proof must be strengthened to show this.

7.4. EXPERIMENTAL EVALUATION 135

guided versions of the adversarial algorithms that are similar to the performance improve-

ments obtained for the blind and guided version of the weak and strong cyclic algorithms

in Section 5.3.

All experiments are carried out using the BIFROST 0.7 search engine and the exper-

imental setting described in Appendix A. The problems of both domains have been de-

scribed in NADL
☎

. As usual, we use � to denote the number of BDD-nodes allocated to

represent the shared BDD, and � to denote the number of BDD nodes allocated to represent

BDDs in the operator caches used to implement dynamic programming. Total CPU time is

measured in seconds and includes time spent on allocating memory for the BDD package

and parsing the problem description.

7.4.1 Parameterized Example Domain

The parameterized example domain considers a system and environment actions ✮ ✜ ✚ ✣ ☎ ✚ ✣
✄ ✲ and ✮ ✜ ✁ ✣ ☎ ✁❋✲ , respectively. The domain is shown in Figure 7.5. The initial state is

✚ ✞ ✁ ✱ and the goal states are
✆ ✁ ✮ ✁ ✜✫✣ ✁ ✟ ✲ . Progress toward the goal states is made if the

sign of the two actions in the joint action are different. At any time, the system can cause

a switch from the lower to the upper row of states by executing ✄ . In the upper row, the

system can execute only ✜ ✚ . Thus, in these states an adversarial environment can prevent

further progress by always executing ✜ ✁ . Figure 7.6 shows the total CPU time and the size

...

...

(+s,+e) (+s,+e)

(+s,−e)

(−s,+e)

(+s,−e)(+s,−e)

(+s,−e)

(−s,+e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,+e)

(+s,+e)
(−s,−e)

(l,+e)

(l,−e)

(l,+e)

(l,−e)

(l,+e)

(l,−e)

g

g

I 2

1

Figure 7.5: The generalized example domain shown in Figure 7.1(a).

of the produced plans of the ordinary weak algorithm compared to weak adversarial algo-

rithm and the ordinary strong cyclic algorithm compared to the strong cyclic adversarial

algorithm. The BDD variable ordering was identical in all of these experiments. For each

experiment, the BDD package was initialized with �
✁ ✞ ✬

and � ✁ ✂ ✟ ✟☞☛
. The total time

used for memory allocation was
✟ ✂ ✂

seconds. Due to the structure of the domain, the length

136 CHAPTER 7. ADVERSARIAL PLANNING

Weak Planning

0.1

1

10

100

2 4 6 8 10 12 14 16

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of Boolean state variables

Adversarial
Ordinary

1

10

100

2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f

B
D

D
 n

o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Number of Boolean state variables

Adversarial
Ordinary

Strong Cyclic Planning

0.1

1

10

100

2 4 6 8 10 12 14 16

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of Boolean state variables

Adversarial
Ordinary

1

10

100

2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t
h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Number of Boolean state variables

Adversarial
Ordinary

Figure 7.6: Results of the parameterized example domain.

of a shortest path between the initial state and one of the goal states grows linearly with the

number of states. Since the four algorithms must compute at least one preimage for each

step in a shortest length path between the initial state and one of the goal states, their com-

plexity is at least exponential in the number of Boolean state variables. The experimental

results seem to confirm this. In this domain, there only is a small overhead of generating

adversarial plans compared to non-adversarial plans. The quality of the produced plans,

however, is very different. For instance, the strong cyclic adversarial plans consider exe-

cuting only
☎ ✚ and ✜ ✚ , while the strong cyclic plans consider all applicable actions. The

strong cyclic adversarial plan is guaranteed to achieve the goal. In contrast, the probabil-

ity of achieving the goal in the worst case for the strong cyclic plan is less than ✢ ✟☎ ✤✁� ✂ ✟ ✂✳✜
,

where � is the number of states in the domain. Thus, for an adversarial environment the

7.4. EXPERIMENTAL EVALUATION 137

probability of reaching the goal with a strong cyclic plan is practically zero, even for small

instances of the problem.

7.4.2 Hunter and Prey Domain

The hunter and prey domain consists of a hunter and prey agent moving on a chess board.

Initially, the hunter is at the lower left position of the board and the prey is at the upper

right. The initial state of the game is shown in Figure 7.7. The task of the hunter is to catch

H

P

Figure 7.7: The Hunter and Prey domain.

the prey. This happens if the hunter and prey at some point are at the same position. The

hunter and prey move simultaneously. They are not aware of each others moves before both

moves are carried out. In each step, they can either stay at the spot or move like a king in

chess. However, if the prey reaches the lower left corner position, it may change the moves

of the hunter to that of a bishop (making single step moves). This has a dramatic impact

on the game, since the hunter then can move only on positions with the same color. Thus,

to avoid the hunter, the prey just have to stay at positions with opposite color. A strong

cyclic adversarial plan therefore only exists if it is possible for the hunter to find a plan that

guarantees that the prey never gets to the lower left corner. A strong cyclic plan, on the

other hand, does not differentiate between whether the hunter moves like a chess King or a

Bishop. In both cases, a “friendly” prey can be caught.

We consider a parameterized version of the domain with the size of the chess board

ranging from
✠ ✸ ✠

to ✞☎✞ ✵ ✸ ✞☎✞ ✵
. For the

✠ ✸ ✠
board, we need 3 Boolean variables to

represent the vertical and horizontal location. This gives ✠ ✗ � ✁ ✞ ✵
Boolean variables.

Similarly, for the ✞☎✞ ✵ ✸ ✞✂✞ ✵
board, we need ✠ ✗ ✂ ✁ � �

Boolean variables. Figure 7.8

shows the total CPU time and the size of the plans produced by the ordinary weak algorithm

compared to weak adversarial algorithm and the ordinary strong cyclic algorithm compared

138 CHAPTER 7. ADVERSARIAL PLANNING

to the strong cyclic adversarial algorithm. For each experiment, the BDD package was

initialized with �
✁ ✞ ✵ ✬

and � ✁ ✞ ✟ ✟☞☛
. The total time used for memory allocation was✵ ✂ ✠ seconds. In this domain both weak and strong cyclic adversarial plans are larger and

Weak Planning

1

10

100

1000

10000

10 15 20 25 30 35 40

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of Boolean State Variables

adversarial
ordinary

100

1000

10000

100000

1e+06

1e+07

10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t

h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Number of Boolean State Variables

adversarial
ordinary

Strong Cyclic Planning

1

10

100

1000

10000

10 15 20 25 30 35 40

T
o
ta

l
C

P
U

 t
im

e
 (

lo
g
 s

c
a
le

)

Number of Boolean State Variables

adversarial
ordinary

100

1000

10000

100000

1e+06

10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
B

D
D

 n
o
d
e
s
 i
n
 t
h
e
 p

la
n
 (

lo
g
 s

c
a
le

)

Number of Boolean State Variables

adversarial
ordinary

Figure 7.8: Results of the hunter and prey domain.

take substantially longer time to generate than ordinary plans. The strong cyclic adversarial

algorithm spends more than 4000 seconds for problems with 28 Boolean state variables or

more. However, as discussed above, it is non-trivial to determine whether there exists a

strategy of the hunter that guarantees that the prey never succeeds in reaching the lower

left corner. Thus, we may expect these plans to be computationally harder than strong

cyclic plans. This interpretation is supported by the size of the plans. The adversarial plans

are substantially larger than the ordinary plans. We have not analysed the strong cyclic

adversarial plans in detail, but they at least must fulfill that the prey never gets closer to the

7.5. CONCLUSION 139

lower left corner than the hunter. The hunter starts at the lower left corner and can therefore

ensure that the prey must “risk its life” even by getting to a location with the same distance

to the lower left corner as the hunter. Since the hunter still has control over the game in this

situation, it has a positive chance of winning. Thus, a strong cyclic adversarial plan exists.

7.5 Conclusion

The two major design goals of the weak and strong cyclic adversarial planning algorithms

is that they are correct and efficient. With respect to correctness, the strong cyclic adver-

sarial algorithm has been chosen to closely match the strong cyclic algorithm such that a

similar proof strategy can be applied. With respect to efficiency, three major choices have

been made. First of all, we use a BDD-based implementation. Second, as for the strong

cyclic algorithm, we build up a strong cyclic adversarial plan incrementally from the goal

states. Alternatively, the algorithm could iteratively prune a largest possible plan as the

algorithm suggested in [43]. However, this approach seems less efficient. Finally, guided

versions of the algorithms can be defined using non-deterministic state-set branching. An

interesting direction for future work is to combine fault tolerant and adversarial planning

and to consider an explicit set of goal states of the environment agent [23].

7.6 Summary

In this chapter, we have introduced a new framework called adversarial planning to address

domains where non-determinism is caused by simultaneous actions of a controllable system

and an uncontrollable environment. We have shown that the usual abstraction of environ-

ment actions may lead to solutions where an adversarial environment may cause execution

paths never to reach a goal state. This can be avoided by pruning states from the plans where

the local “game” between the system and environment is unfair. We introduce adversarial

versions of the weak and strong cyclic non-deterministic planning algorithms and show that

they are sound, complete, and terminating. The experimental evaluation shows that adver-

sarial plans may be harder to produce than ordinary non-deterministic plans. However, this

is to be expected since they often represent more complex control strategies.

140 CHAPTER 7. ADVERSARIAL PLANNING

Chapter 8

Related Work

The discussion of related work is divided into five sections corresponding to the five main

contributions of the thesis. Section 8.1 describes work related to BDD-based deterministic

planning and state-set branching in Artificial Intelligence (AI) and formal verification. Sec-

tion 8.2 first discusses alternative approaches to non-deterministic planning in AI, automata

theory, game theory, and Discrete Event System (DES) control theory and then focuses on

work closely related to non-deterministic state-set branching. Section 8.3 presents work re-

lated to fault tolerant planning within DES control theory and AI, and Section 8.4 describes

work related to adversarial planning developed in automata theory, game theory, AI, and

formal verification. Finally, Section 8.5 reviews related work on planning languages devel-

oped in AI, formal verification, and DES control theory.

8.1 Deterministic Planning and Heuristic Search

An interesting fact is that even the earliest planning systems were using a symbolic rep-

resentation of the state space. The most popular representation is STRIPS where a search

state is a set of facts that are true in the set of domain states, the search state represents (a de-

tailed description of STRIPS planning is given in Section 3.1). Progression planners search

forward in the fact space. Since they start from a set of facts representing a single initial

state, each search state corresponds to a single state. Hence, for progression planners, no

space savings are obtained with the symbolic representation compared to an explicit repre-

sentation. Regression planners, on the other hand, search backward in the fact space. Since

this search starts from a single set of facts representing a set of goal states, each search

state may represent several domain states. Thus, regression planners may benefit from the

symbolic state representation.

141

142 CHAPTER 8. RELATED WORK

A wide range of planning systems and search techniques have been developed within

the STRIPS framework. These planning systems are often referred to as classical plan-

ners and roughly fall in three classes: state space planners (e.g. PRODIGY [133]), plan

space planners (e.g. SNLP [116] and UCPOP [163]) and hierarchical planners (e.g. SIPE

[171]). The probably most advanced state space planner is PRODIGY. PRODIGY performs

a bidirectional search in the fact space guided by search control rules, means-end analy-

sis and sub-goaling [126]. Plan space planners, on the other hand, carries out a search in

a space of possible plans using the least commitment principle where orderings between

actions only are introduced if the actions are causally linked or interfere. This may lead to

better performance in some domains [8]. However, plan space planners commit to causal

links in much the same way that state space planners commit to step ordering. In general,

they do not outperform state space planners [165]. Hierarchical planners such as SIPE use

hierarchical task networks (HTNs) to apply abstraction in the search. First, a solution is

found at an abstract level which then is refined to a concrete plan.

The scalability of classical STRIPS planning was substantially improved by the intro-

duction of GRAPHPLAN [18] that avoids the state space explosion problem by using a

planning graph to guide the search. Graph planners [18, 114, 104] use a two step approach.

In the first step, the planning graph is generated. The planning graph consists of alternat-

ing action and state layers and keeps track of the interferences between actions and states

resulting in a compact representation of the reachable states. In the second step, a plan is

extracted from the planning graph by a backwards search. Graph planners relax optimality

constraints by only finding parallel optimal plans, i.e., plans with shortest length assuming

that actions can be applied concurrently in each step.

One of the current trends in automated planning is to reduce planning to other problems.

SAT planners, like SATPLAN [99], encode a planning problem as a satisfiability problem

of a Boolean expression stating goal achievement within a certain number of steps. Using

binary search, this approach can be optimal, but better results have been obtained using

GRAPHPLAN’s parallel relaxation by encoding goal achievement of the planning graph as

a SAT problem (BLACKBOX,[100]). Planning as satisfiability, however, suffers from the

fact that the number of Boolean variables grows linearly with the plan length. In addition,

the clauses of a planning problem form long dependency chains (corresponding to plans)

that are known to be a worst case structure for SAT checkers [9].

A few experiments have also been carried out reducing planning to integer program-

ming [19, 101]. This approach works well if a considerable part of the planning problem

involves numerical constraints. Good performance, however, has not been obtained for

purely combinatorial problems.

The first application of BDDs for deterministic planning was based on reduction of

8.1. DETERMINISTIC PLANNING AND HEURISTIC SEARCH 143

planning to symbolic model checking (deterministic MBP, [33]), where the plan corre-

sponds to a counter example of a verified property. The approach has been shown to be

competitive with GRAPHPLAN and SATPLAN in several classical domains. More recent

approaches are MIPS 1.0, DOP, BDDPLAN and PROPPLAN [54, 92, 80, 59]. All of these

planners rely on blind BDD-based breadth-first search. MIPS 1.0 and DOP uses a spe-

cialized preprocessing of domains to find compact Boolean state encodings [50]. Both

planners apply bidirectional search from the initial and goal states. BDDPLAN and PROP-

PLAN are more simple BDD-based planners without domain preprocessing and have poor

performance compared to MIPS 1.0 and DOP.

Blind BDD-based search is currently one of the most efficient approaches for finding

optimal plans in deterministic domains [86]. However, when optimality constraints are

relaxed, the currently most efficient approach for the benchmark problems considered at

the AIPS planning competitions [113, 4, 115] are pure heuristic planners like HSP, FF, and

ALTALT [20, 176, 77]. However, it has been shown that the HSPr derived heuristics used

by these planners have no plateaus in the competition domains making simple hill climbing

a sufficiently strong search approach to find a solution [79]. It seems implausible that such

strong heuristics are easy to define for a larger set of benchmark problems.

State-Set Branching

As far as we know, state-set branching is the first general framework for combining heuris-

tic search and BDD-based search. All previous work has been restricted to particular al-

gorithms. BDD-based heuristic search has been investigated independently in symbolic

model checking and AI. The pioneering work is in symbolic model checking where heuris-

tic search has been used to falsify design invariants by finding error traces. Yuan et al.

[180] studies a bidirectional search algorithm pruning frontier states according to their

minimum Hamming distance to error states. BDDs representing Hamming distance equiv-

alence classes are precomputed and conjoined with BDDs representing the search frontier

during search. Yang and Dill [179] also consider minimum Hamming distance as heuristic

function in an ordinary pure heuristic search algorithm. They develop a specialized BDD

operation for splitting a set of states according to their minimum Hamming distance to a set

of error states. The operation is efficient. Its complexity is linear with the size of the BDD

representing the error states. However, it is unclear how such an operation can be general-

ized to other heuristic functions. In addition, this approach finds next states and splits them

according to their Hamming distance to the goal states in two separate phases where the

first phase is as complex as the single expansion phase used by state-set branching.

In general, heuristic BDD-based search has received little attention in symbolic model

144 CHAPTER 8. RELATED WORK

checking. There may be several reasons for this

1. Culture. Heuristics and heuristic search has mainly been studied in AI,

2. Lack of Efficient Heuristics. Symbolic model checking problems often consider se-

quential circuits where all state variables are changed in each step. The diameter of

the transition graph may be too low for an efficient search heuristic to exist [144],

3. A Different Problem. Planning problems are inherently different from verification

problems. In order to verify a system all reachable states must be explored. However,

in order to solve a planning problem only a single path from the initial state to the

goal state needs to be found.

An important exception to the second statement is verification of asynchronous systems. In

the SPIN validater [81] and JAVA PathFinder [166], several heuristics have been studied to

guide the search toward counter examples (e.g.,[52, 69]). In addition, a number of heuristic

methods have been developed to guide the exploration of a CTL formula in order to reduce

the complexity of the model checking problem [17, 82].

In AI, an implementation of A* called BDDA* was developed by Edelkamp and Reffel

[53]. BDDA* can use any heuristic function and has been applied to planning as well as

model checking [144]. Edelkamp later describes a more general implementation of BDDA*

not assuming unit-cost transitions and with cycle detection for monotonic heuristic func-

tions [48]. Both of these versions of BDDA*, however, are fairly direct implementations

of A* with BDDs that imitates the usual explicit application of the heuristic function via

complex symbolic arithmetic. Our experimental results show that the successor state com-

putation of BDDA* scales poorly. For this reason a major philosophy in the design of

state-set branching has been to avoid arithmetic operations at the BDD level. An ADD-

based implementation of A* called ADDA* [74] has been developed after the first publica-

tion of state-set branching. ADDs [6] generalize BDDs to finite valued functions. ADDA*

is similar to BDDA* but implements cycle detection for general heuristic functions. The

ADD may handle arithmetic computations more efficiently than the BDD [168]. However,

ADDA* has not successfully been shown to have better performance than BDDA* [74].

The high performance of state-set branching is achieved by the branching partitioning

that combines an efficient partitioned image and preimage computation with a propaga-

tion of search node information from parent to child states. The philosophy of state-set

branching is that the information represented by BDDs must be semantically closely re-

lated in order for the BDD operations to work efficiently. Hence, in contrast to BDDA*

and ADDA*, we separate the representation of information used by the search algorithm

from the representation of states and transitions and only employ BDDs to encode the latter.

8.2. NON-DETERMINISTIC PLANNING 145

To our knowledge, this idea is genuinely new. We have not been able to find any previous

work in either AI, control theory, automata theory, and formal verification that use a tran-

sition relation partitioning for propagating any kind of state information. There seems to

be several circumstances that may explain why this particular stone never has been turned

before. In AI, the main reason seems to be that the amount of work involving BDDs still is

very limited. The only BDD-based classical heuristic search algorithms in AI are BDDA*

and ADDA* and these algorithms seem to rely on a quite different design philosophy where

as much information as possible has been pushed to the BDD level. In control theory and

automata theory, symbolic controller synthesis been suggested but not sufficiently inves-

tigated. As far as we know, there has not been any work on guided synthesis algorithms.

A relevant area to expect previous work, is formal verification. There is a large body of

work on reducing the complexity of BDD-based search. In addition, it was within this

area that the first guided BDD-based search algorithms were invented. There seems to be

two reasons why an approach similar to state-set branching has not been considered. First,

even though the state-set branching approach covers both asynchronous and synchronous

systems, it is more obvious to consider for an asynchronous system where the transition

relation can be efficiently encoded by a disjunctive partitioning. However, in formal veri-

fication, most work on symbolic model checking considers synchronous systems. Second,

as discussed previously, heuristic search is often inefficient for synchronous systems with

a low transition graph diameter. Thus, only a limited amount of work has gone in this

direction.

8.2 Non-Deterministic Planning

Non-deterministic planning in different disguises has been studied in AI, automata theory,

game theory, and DES control theory. The classical approach to non-deterministic planning

in AI is conditional planning. Conditional actions were first studied in WARPLAN-C [167].

Modern conditional planners includes (CNLP, [134], C-BURIDAN [46], and SGP [169]).

CNLP is an extension of the partial order planner SNLP. It handles non-determinism by

constructing a conditional plan that accounts for each possible situation or contingency

that could arise. At execution time it is determined which part of the plan to execute by

performing sensing actions that are included in the plan to test for the appropriate condi-

tions. The returned plan is a finite tree where each branch is a sensing action. C-BURIDAN

combines conditional and probabilistic planning. A sensing action can be inserted in the

plan to increase the success probability. Branches can be rejoined such that the resulting

plan is more compactly represented as a DAG. SGP descends from GRAPHPLAN. It has

been shown to outperform any of the previous planners obtained as extensions to classi-

146 CHAPTER 8. RELATED WORK

cal planners [169]. The most important limitation of conditional planning compared to

non-deterministic planning as defined in this thesis is that conditional plans are finite and

may grow exponentially with the number of unknown facts. A performance comparison

between the BDD-based non-deterministic planning system MBP [34] and SGP on the

Omelet problem from the SGP distribution shows that MBP scales much better than SGP

on this problem. Conditional plans can also be generated by QBFPLAN [145]. QBFPLAN

is a generalization of the SATPLAN approach to the case of planning in non-deterministic

domains. The user must provide the number of control points and observations in the plan.

This can provide a significant limitation of the search space. However, in the Chain domain

provided with the QBFPLAN distribution, MBP outperforms it severely [34]. These ex-

perimental results indicate that BDD-based non-deterministic planning is one of the most

efficient approaches to conditional planning. In particular, BDD-based non-deterministic

planning seems to be least sensitive to the amount of non-determinism in the domain. On

the other hand, if non-determinism is sparse, the planning graph approach employed by

SGP may be more efficient.

Universal planning [154] is the non-deterministic planning approach closest related

to the approach investigated in this thesis. The main difference is that we model non-

determinism explicitly. Instead, the original idea in universal planning is to cover every

domain state in order to make the plan robust to non-determinism (e.g., caused by failures or

simultaneous activity). A major challenge is to represent universal plans compactly. It has

been shown that even for a flexible circuit representation of universal plans in domains with

� Boolean state variables, the fraction of randomly chosen universal plans with polynomial

size in � decreases exponentially with � [65]. 1 However, universal plans encountered in

practice are normally far from randomly distributed. Often real-world planning problems

and their universal plan solutions are regularly structured. A primary objective is therefore

to develop efficient techniques for exploiting such structure. It is exactly the ability of

BDDs to capture structure of many Boolean functions often met in practice that makes

them attractive for representing universal plans.

The first BDD-based universal planning system was MBP [36, 37]. The approach used

by MBP was further explored in UMOP [93] which together with MBP is the only current

BDD-based universal planning system. An alternative approach to universal planning is

SIMPLAN [98]. SIMPLAN generates a plan from a forward search that may be guided

by an LTL control rule formula [5]. It can synthesize plans for extended goals in Linear

Temporal Logic (LTL) [139]. This includes strong plans, but not strong cyclic plans, which

only can be expressed in CTL. A head-to-head comparison between MBP and SIMPLAN

in a robot delivery domain provided in the SIMPLAN distribution shows that SIMPLAN is

1There is nothing new in this result. Ginsberg’s circuit has the same fate as any other known representation

of Boolean functions [121].

8.2. NON-DETERMINISTIC PLANNING 147

very sensitive to non-determinism and is outperformed by MBP even when applying search

control rules. MBP has later been extended to handle temporally extended goals given as a

CTL formula [138].

Non-deterministic planning as defined in this thesis does not involve transition prob-

abilities. While transition probabilities can provide useful information in some domains,

there are domains where modeling transition probabilities is hard in practice due to the

lack of statistical data. In addition, we may expect the computational complexity of prob-

abilistic planning to be higher than non-deterministic planning due to the more expressive

domain model. The collection of probabilistic planners include DRIPS [70] and BURIDAN

[110]. DRIPS decomposes operators of an abstraction hierarchy of operators in order to

find plans with maximum expected utility. BURIDAN is derived from SNLP and produces

plans that meet a threshold probability. The produced plans are finite and acyclic and are

therefore in general insufficient to guarantee goal achievement.

Until now, we have only considered planning approaches where a plan is produced

prior to execution. An alternative approach is to perform planning interleaved or in parallel

with execution. This can either be done by monitoring the plan execution and re-plan

whenever an action fails or select an action in each step of the execution. Plan monitoring

and re-planning have been widely used in non-deterministic robotic domains (e.g., [62,

172, 71]). Action selection planners can be based on real-time heuristic search algorithms

like MIN-MAX LRTA* [105, 106]. The MIN-MAX LRTA* search algorithm can generate

suboptimal plans in non-deterministic domains through a search and execution iteration.

The search is based on a heuristic goal distance function that must be provided for a specific

problem. The ASP algorithm [21] uses a similar approach based on the HSP heuristic [20].

In contrast to MIN-MAX LRTA*, ASP does not assume a non-deterministic environment,

but is robust to non-determinism caused by action perturbations (i.e., that another action

than the planned action is chosen with some probability). In general, planners interleaving

planning and execution are incomplete because acting on an partial plan can make the goal

unachievable. However, they are often efficient in robotics domains where most actions are

reversible.

Non-deterministic planning, as defined in this thesis, is assuming full observability of

the states. Another extreme is to assume that the states are unobservable and generate

conformant plans [68, 169]. A conformant plan is a sequence of actions that leads to

the goal independently of non-determinism in the domain. A BDD-based approach to

conformant planning has been studied in the MBP planning framework [35] as well as an

approach to non-deterministic planning in domains with partially observable states [13]. In

the latter work, heuristics have been applied to guide the expansion of an AND-OR graph

where nodes are BDDs representing sets of belief states [12].

148 CHAPTER 8. RELATED WORK

We now turn to discuss approaches to non-deterministic planning developed outside of

the field of automated planning. Reinforcement Learning (RL) [161] can be regarded as

non-deterministic planning. In RL the goal is represented by a reward function in a Markov

Decision Process (MDP) model of the domain. A non-deterministic plan solving the prob-

lem is a policy mapping states to actions that maximizes the expected reward. The policy

can either be represented explicitly in a table or implicitly by a function (e.g., a neural net-

work). The major limitation of RL is its ability to scale. If states are represented explicitly

only very small problem instances can be solved. Function approximation methods may

be applied to obtain an implicit representation of the domain. However, this may compro-

mise the convergence of the value-iteration methods used to find policies [24]. Symbolic

approaches have been applied to RL. SPUDD [76] uses the Algebraic Decision Diagram

(ADD) [6] to represent value functions and policies. The value-iteration computation of

SPUDD is implemented via ADD manipulations. Substantial performance gains may be

obtained with SPUDD compared to ordinary RL methods. Compared to BDD-based non-

deterministic planning, however, SPUDD is limited by the fact that it must represent a

possibly fast growing set of different values of the value function.

The strong algorithm in different disguises has been discovered independently in au-

tomata theory [3], automated planning [36, 37] and game theory [43]. In addition, sym-

bolic methods for supervisory controller synthesis that in principle can be used to synthe-

size weak, weak adversarial, strong cyclic, strong cyclic adversarial and strong plans were

suggested as early as in 1992 [78]. However, these specific algorithms have, as far as we

know, not been described in the DES control theory literature. We are also not aware of

any work in DES control theory that studies the efficiency aspect of symbolic controller

synthesis.

Non-Deterministic State-Set Branching

Non-deterministic state-set branching is to our knowledge the first attempt to guide a BDD-

based search for a non-deterministic plan as defined in this thesis. We have not been able to

find any previous work of this kind in automated planning, automata theory, DES control

theory, and game theory. The closest work is the symbolic LAO* algorithm [57] used to

solve MDPs. However, this algorithm can not be applied to problems without transition

probabilities.

8.3. FAULT TOLERANT PLANNING 149

8.3 Fault Tolerant Planning

Most of the non-deterministic planning approaches discussed in the previous section fo-

cuses on domains where failure is a key aspect. This is also the case for the large body of

work in AI on fault diagnosis (e.g., [102, 73, 155, 45]). However, work explicitly represent-

ing and reasoning about success and failure effects of actions is very limited. The ELMER

system [117] uses error transitions from abstract actions to detect and recover from fail-

ures. In the Procedural Reasoning System (PRS) [62], the procedure descriptions defines

the effect of successful and unsuccessful execution of a procedure. Similarly, the Reactive

Model Based Programming Language (RMPL) [174] and its underlying executor Titan can

handle faults at runtime. The approach, however, does not involve computing a fault tol-

erant plan. The MRG [67] planning language explicitly models failure effects. However,

this work does not include planning algorithms for generating fault tolerant plans. To our

knowledge, the � -fault tolerant planning algorithms introduced in this thesis are the first

automated planning algorithms for generating fault tolerant plans given a description of the

domain that explicitly represents failure effects of actions.

Similarly to AI, there has been substantial amount of work on fault diagnosis in DES

control theory. This work has mainly focused on analysing event sequences in order to

determine if a fault has happened, and if so, which kind of fault [150, 151, 152, 159].

However, there has also been a considerable amount of work on fault models. These models

can be characterized as either transition based or state based. Most work (e.g., [31, 32, 38])

use the transition based model and regard faults as unexpected changes in a system that

tends to degrade the overall system performance rather than causing a total breakdown.

The term failure suggests a complete breakdown of a system component or function. The

transition based model is also used in supervisory control [142] where faults usually are

considered uncontrollable events [7, 32]. Within this frame, an approach to fault tolerant

control has been considered that is closely related to � -fault tolerant planning. The work

in [135], specifies fault tolerance for mission critical systems. A masking fault tolerant

system can recover from any fault. A
✝
-fault tolerant system can recover from up to

✝
faults

occurring during its life time. The system is modeled by an automaton with start states, but

no goal states. In addition, no algorithms or theory for controller synthesis are provided.

The state based models usually divides the state space into ranges of operation of some

system (e.g., “normal operation range”, “admissible error range”, and “non-admissible er-

ror range” [103], or “good” and “bad” states [128]). In Özveren’s work [128], Stability is

defined to be to visit the good states infinitely often. Thus, a controller is stable if it from

any reachable bad state can force a trajectory that in a finite number of steps reaches the

good states. Stabilizability is defined to choosing state feedback such that the closed loop

system is stable. A related approach [129] defines Lyapunov stability of a class of DES.

150 CHAPTER 8. RELATED WORK

Consider a set of states
� ★ that are invariant in the plant. That is, any execution starting in

any state in
� ★ stays within

� ★ .
� ★ is stable in the sense of Lyapunov if for any �

✝ ✟
a

max distance � ✝ ✟
(given by some metric) can be found such that any execution starting

at a state within � from
� ★ ends up in a state less than � from

� ★ .

We are not aware of work in any other field than AI and DES control theory that reason

explicitly about failures in order to automatically synthesize fault tolerant plans or fault

tolerant discrete controllers.

8.4 Adversarial Planning

Adversarial planning is related to work in AI on negotiation (e.g.,[30, 181, 108]) and collab-

oration (e.g.,[63, 47, 83]) in multi-agent systems. The focus in this work, however, is more

on establishing frameworks for describing these problems than developing efficient algo-

rithms for solving them. In particular, the only previous BDD-based multi-agent planning

system that we are aware of is UMOP [93] which is a predecessor to the work described

in this thesis. Another direction of work in AI applies planning algorithms to search in

a space of game states (e.g.,[170] Chess, and [157] Bridge). However, in contrast to the

adversarial planning algorithms introduced in this thesis, these approaches do not consider

complete solutions of the game. This is also not the case for game tree algorithms like

ALPHA-BETA-MINIMAX [125].

Adversarial planning is related to game theory in the sense that both offer alternative

approaches for generating policies for adversarial environments. For instance, we could

enumerate all policies of the environment and the system creating an appropriate payoff

matrix, and solve this as a normal form matrix game [127]. Alternatively, we could apply

game tree algorithms and solve the planning problem as an extensive form game [127].

However, both of these approaches are intractable due to the exponential size of the ma-

trix and game tree in the number of state variables. The game-theoretic framework that

is closest related to adversarial planning is stochastic games. Stochastic games extend

Markov decision processes to multiple agents. They are usually solved using value iter-

ation algorithms that require exponential space in the number of state variables (see e.g.

[156]). Function approximation techniques may be able to reduce the space requirements.

However, it is still unclear how these methods can be applied without sacrificing the con-

vergence properties of the value iteration algorithms. One of the advantages of BDD-based

adversarial planning is to avoid such explicit representations.

It has been noted in automata theory that winning strategies in two player games corre-

spond to strong plans and that such strategies can be computed symbolically using BDDs

[3]. This is independent of whether the moves by the two players are simultaneous or inter-

8.5. PLANNING LANGUAGES 151

leaved. The non-deterministic model is strong enough to represent both situations. Thus,

this early work in automata theory to some extend subsumes a later work in automated

planning employing BDDs for two-player games with alternating moves [49].

Adversarial planning has been studied in formal verification in the form of concurrent

reachability games [43, 2, 97]. A strategy of a player is a mapping from states to a proba-

bility distribution over a set of actions to apply in the state. A state ✚ is sure if player 1 (the

system) has a strategy so that for all strategies of player 2 (the environment), the game, if

started in ✚ , always reaches a set of target states (goal states). Hence, a state is sure, if player

1 has a strong plan for reaching the target states. A state ✚ is almost sure if player 1 has a

strategy so that for all strategies of player 2, the game, if started in ✚ , reaches a target state

with probability 1. Thus, a state is almost sure, if player 1 has a strong cyclic adversarial

plan for reaching the target states. Finally, a state ✚ is positive if player 1 has a strategy

so that for all strategies of player 2, the game, if started in ✚ has a positive probability of

reaching the target states. This corresponds to a weak adversarial plan.

It is observed that the set of sure, almost sure, and positive states can be computed

symbolically without representing probabilities. An algorithm similar to STRONGis given

to compute sure states [43]. The algorithm for computing almost sure states is dual to

STRONGCYCLICADVERSARIAL in the sense that it starts from all the states in the domain

and the most general strategy of player 1 and then iteratively prunes states and actions from

the strategy that can lead to states where player 2 can confine the game. Instead, STRONG-

CYCLICADVERSARIAL iteratively increments the set of almost sure states. The work in

[43, 2, 97] is theoretical. There is no experimental evaluation of the approach. The pri-

mary goal of our work on adversarial planning is scalability. The incremental approach of

STRONGCYCLICADVERSARIAL has been chosen because we believe this approach is more

efficient even in its blind version. More importantly, however, this format of the algorithm

makes it possible to apply search heuristics using non-deterministic state-set branching.

8.5 Planning Languages

Classical deterministic planning languages like STRIPS [58], ADL [132], and PDDL [118]

represent domains in first order logic. Such representations can be encoded compactly with

BDDs as described in Section 3.1.1, but it is more natural to use state variable representa-

tions as in NADL
☎

. Non-deterministic planning languages related to NADL
☎

includes � ✄
[66] and NuPDDL [137] that both are used as input languages to MBP [33]. The action

description language � ✄ can represent propositional and non-propositional fluents with

finite domains. Actions may change the value of fluents non-deterministically. Compared

to � ✄ , NADL
☎

introduces numerical state variables, an explicit environment model, and

152 CHAPTER 8. RELATED WORK

an explicit representation of failure effects of actions. In addition, it includes features for

defining transition costs and for propagating search information between states. The only

prior planning language, we are aware of, that explicitly models action failure is MRG [67].

However, this language does not explicitly model the actions of an uncontrollable environ-

ment. NuPDDL descends from PDDL 2.1 [60] that can represent numeric-valued fluents

and time. In addition, nuPDDL can model uncertainty in initial states and non-deterministic

action effects. However, it has no constructs for explicitly describing the actions of an un-

controllable environment.

Designs in formal verification are often described as a collection of concurrent non-

deterministic modules. For instance, the input language to the model checker SMV [119]

defines each module as a set of state variables and an expression stating the possible as-

signments to the variables. Modules in digital circuit description languages such as VHDL

and Verilog [16, 15] describe a unit in the circuit at some level of detail by defining the

computations mapping signals from input to output wires. Similarly to NADL
☎

, designs in

these languages typically describe a closed system where both the behavior of the system

and its environment are defined. However, it is not obvious how to use these languages as

planning languages since a design is assumed to describe a controlled system.

In DES control theory, systems are often described visually using Petri nets [136] or

object oriented description languages such as the Unified Modeling Language (UML) [22].

These representations, however, often grow fast with the size of the system and are, like

design representations in formal verification, often describing a controlled system.

8.6 Summary

In this chapter, we have discussed work related to the thesis. The investigation of related

work is based on previous work in AI, DES control theory, formal verification, game theory,

and automata theory. The main conclusions are

1. Using BDDs for non-deterministic search and for representing non-deterministic

plans seems to be the currently most efficient approach to non-deterministic plan-

ning for domains with dense non-determinism,

2. State-set branching appears to be the currently most general and most computation-

ally efficient framework for combining classical heuristic search and BDD-based

search,

3. Non-deterministic state-set branching is, as far as we know, the first framework for

8.6. SUMMARY 153

guiding BDD-based search algorithms that generate non-deterministic plans as de-

fined in this thesis,

4. The fault tolerant planning algorithms introduced in the thesis are to our knowledge

the first algorithms to synthesize � -fault tolerant control strategies given a domain

description that explicitly represents successful and failure effects of actions.

5. Adversarial planning is, as far as we know, the first work that studies fully imple-

mented and complete symbolic algorithms for synthesizing strategies for winning

concurrent reachability games with probability 1 or positive probability. To our

knowledge, it also is the first work that provides such algorithms in a format that

enables guided search techniques to be applied.

6. NADL
☎

is to our knowledge the first representation language suitable for planning

that both explicitly represents uncontrollable environment actions and failure effects

of actions.

154 CHAPTER 8. RELATED WORK

Chapter 9

Conclusion

In this chapter, we first briefly summarize the main contributions of the thesis in Section 9.1.

Then in Section 9.2, we consider non-deterministic planning as a possible future approach

to automated controller synthesis.

9.1 Contributions

The goal of this thesis has been to push the current state-of-the-art of BDD-based non-

deterministic planning in two independent directions. The first of these is to develop BDD-

based non-deterministic planning algorithms with high performance. To this end, we have

developed a general framework called state-set branching that seamlessly combines deter-

ministic BDD-based search and classical heuristic search. Our experimental results show

that the performance of a state-set branching implementation of the A* algorithm often

dominates both blind BDD-based search and the ordinary A* algorithm. In addition, it con-

sistently outperforms the previous BDD-based implementation of A*. We have shown that

state-set branching generalizes to non-deterministic planning and have introduced heuris-

tically guided algorithms for weak, strong cyclic, and strong non-deterministic planning.

Our experimental results show that extensive performance gains can be obtained with these

algorithms compared to the ordinary blind BDD-based search algorithms, both in terms of

computational efficiency and the size of the produced plans.

The second direction of work in the thesis is to improve the current solution classes

in BDD-based non-deterministic planning. To this end, we have introduced two new fr-

maeworks called fault tolerant planning and adversarial planning. Fault tolerant planning

extends the non-deterministic domain model with an explicit description of the effect of

failing actions. In this way, it is possible to define a new class of non-deterministic plans

155

156 CHAPTER 9. CONCLUSION

called n-fault tolerant plans. Compared to strong cyclic and strong plans, the advantage

of fault tolerant plans is that they do not have to take all possible fault combinations into

account. � -fault tolerant plans guarantee goal achievement, but only if no more than �

faults occur during execution. The fault tolerant planning algorithms introduced in the the-

sis are the first to synthesize � -fault tolerant control strategies given a domain description

that explicitly represents successful and failure effects of actions.

Adversarial planning extends the non-deterministic domain model with a set of uncon-

trollable environment actions that causes the outcome of the controllable actions to be non-

deterministic. We show that ordinary strong cyclic plans may never reach a goal state if the

environment is an informed opponent. To address this problem, we introduce two classes

of adversarial plans called weak adversarial plans and strong cyclic adversarial plans. We

present two BDD-based algorithms for computing these plans. The algorithms are exten-

sions of the previous weak and strong cyclic planning algorithms and may be defined in a

guided version using non-deterministic state-set branching. To our knowledge, adversarial

planning is the first work that studies fully implemented and complete symbolic algorithms

for synthesizing strategies for winning concurrent reachability games with probability 1 or

positive probability.

The thesis demonstrates that BDD-based non-deterministic planning can scale to sig-

nificant real-world domains such as the Deep Space 1 domain, the SIDMAR steel pro-

ducing plant, and the Power Supply Restoration domain (PSR). The thesis, however, does

not include experimental work on executing these plans in order to control the physical

systems they model. There are several issues that must be considered when applying non-

deterministic plans.

1. The plans do not provide any probability distribution over the actions to apply in a

state. For some domains this may restrict the useability of the plans.

2. Except for adversarial plans, it is assumed that only a single activity takes place in

each time step. The activities may represent events in a discrete event system, but

it is not natural to use a planning language like NADL
☎

to encode such domains.

In addition, the non-deterministic model does not provide a solution to the timing

problem of these events.

3. In order to select actions from a plan, the current state must be fully observable.

Often this is not the case. The problem may be addressed by abstracting the domain

model to the subset of observable state variables. This, however, may restrict the

ability to produce practically useful plans.

Despite these constraints, we believe that there exists important applications where the non-

deterministic abstraction or one of the extensions described in the thesis are strong enough

9.2. OUTLOOK AND FUTURE DIRECTIONS 157

to produce practically useful solutions. In addition, we are convinced that the simplicity

of non-deterministic abstraction compared to for example Markov decision processes or

timed automata may be necessary to scale to the extremely large domains often considered

in real-world applications. For these reasons, we recommend a continued focus on this line

of research in the future.

9.2 Outlook and Future Directions

An interesting direction of future work is to use non-deterministic BDD-based planning for

automated controller synthesis. Non-deterministic plans correspond to discrete, memory-

less, and untimed controllers where the task is to force the controlled system into a set of

goal states. There is a wide range of high profile application domains for such controllers

including automated production, traffic control, robotics, and embedded systems, just to

mention a few. A surprising fact is that the current efforts on developing efficient controller

synthesis algorithms are very limited. Automated planning has a strong focus on devel-

oping efficient data structures and algorithms to make planning systems scale. There has

been a significant amount of work on non-deterministic domains and robotics applications.

However, automated planning has not traditionally had close ties to the application domains

mentioned above. In DES control theory, the situation is the opposite. There has always

been a close connection to industrial applications, but the efforts on developing efficient

algorithms and data structures for automated DES controller synthesis have been limited.

The reason for this may be partially historical since the programming of control switch-

ing boards mainly has been considered a technician field [109]. The game tree algorithms

[125] and real time reactive planning algorithms [105] developed in AI are probably some

of the most scalable approaches to automated discrete control known today. A limitation of

these algorithms, however, is that they are incomplete and may drive the system into an un-

recoverable state that could have been avoided given a complete search prior to execution.

In formal verification there has been extensive work on automated verification of discrete

controllers (e.g.,[11]). However, the amount of work on controller synthesis is limited.

Several major questions need to be answered in order to mature BDD-based non-

deterministic planning for automated controller synthesis. First of all, a library of industrial

benchmark problems needs to be established similar to the benchmark suites used in for-

mal verification. This will clarify the distribution and character of the relevant problems

and help to guide a development of specialized algorithms for key problems. Second, an

appropriate family of specification languages and domain description languages must be

developed. The current approach in DES control theory is to use Petri nets or complete

state transition graphs to represent domains and specifications and does not seem to scale

158 CHAPTER 9. CONCLUSION

to large and combinatorially complex problems. Finally, it needs to be clarified how ef-

ficiently controllers represented by BDDs can be mapped to integrated circuits. If circuit

representations of controllers tend to be large this strongly limits the applicability of the

approach.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison Wesley, 1974.

[2] L. Alfaro and T. A. Henzinger. Concurrent omega-regular games. In Proceedings of

the 15th Annual Symposium on Logic in Computer Science (LICS), pages 141–154,

2000.

[3] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and

timed systems. In Hybrid Systems, pages 1–20, 1994.

[4] F. Bacchus. AIPS’00 planning competition : The fifth international conference on

artificial intelligence planning and scheduling systems. AI Magazine, 22(3):47–56,

2001.

[5] F. Bacchus and F. Kabanza. Using temporal logic to control search in a forward

chaining planner. In M. Ghallab and A. Milani, editors, New directions in AI plan-

ning, pages 141–153. ISO Press, 1996.

[6] R. Bahar, E. Frohm, C. Gaona, E Hachtel, A Macii, A. Pardo, and F. Somenzi.

Algebraic decision diagrams and their applications. In IEEE/ACM International

Conference on CAD, pages 188–191, 1993.

[7] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin. Supervisory

control of a rapid thermal multiprocessor. IEEE Trans. on Automatic Control, 38(7),

1993.

[8] A. Barret and D. S. Weld. Partial-order planning: Evaluating possible efficiency

gains. Artificial Intelligence, 67(1):71–112, 1994.

[9] S. Bart. Department of Computer Science, Cornell University, Ithaca, USA, Personal

communication, March 2003.

159

160 BIBLIOGRAPHY

[10] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta

Informatica, 20:207–226, 1983.

[11] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W Yi. UPPAAL - A

tool suite for automatic verification of real-time systems. In Hybrid Systems, pages

232–243, 1995.

[12] P. Bertoli, A. Cimatti, and M. Roveri. Conditional planning under partial observ-

ability as heuristic-symbolic search in belief space. In Pre-Proceedings of the 6th

European Conference on Planning (ECP-01), pages 379–384, 2001.

[13] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in non-deterministic

domains under partial observability via symbolic model checking. In Proceedings

of the 7th International Joint Conference on Artificial Intelligence (IJCAI-01), pages

473–478, 2001.

[14] P. Bertoli, A. Cimatti, J. Slanley, and S. Thiébaux. Solving power supply restoration

problems with planning via symbolic model checking. In Proceedings of the 15th

European Conference on Artificial Intelligence ECAI’02, 2002.

[15] J. Bhasker. A Verilog HDL Primer. Star Galaxy Publishing, second edition, 1999.

[16] J. Bhasker. A VHDL Primer. Prentice Hall, third edition, 1999.

[17] R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model check-

ing. In Proceedings of the 37th Design Automation Conference (DAC’00), pages

29–34. ACM, 2000.

[18] A. Blum and M. L. Furst. Fast planning through planning graph analysis. In Proceed-

ings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95),

pages 1636–1642, 1995.

[19] A. Bockmayr and D. Dimopoulos. Mixed integer programming models for plan-

ning problems. In Working Notes of the CP-98 Constraint Problem Reformulation

Workshop, 1998.

[20] B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings

of the 5th European Conference on Planning (ECP-99), pages 360–372. Springer,

1999.

[21] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mech-

anism for planning. In Proceedings of the 14th National Conference on Artificial

Intelligence (AAAI’97), pages 714–719. AAAI Press, 1997.

BIBLIOGRAPHY 161

[22] G. Booch, J. Rumbaugh, and I. Jacobsen. The Unified Modelling Language User

Guide. Addison Wesley, 1998.

[23] M. H. Bowling, R. M. Jensen, and M. M. Veloso. A formalization of equilibria for

multiagent planning. In 18th National Conference on Artificial Intelligence (AAAI-

02) workshop on Planning with and for Multiagent Systems, 2002.

[24] J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely

approximating the value function. In Advances in Neural Information Processing

Systems 7 (NIPS), 1995.

[25] K. Brace, R. Rudell, and R. E. Bryant. Efficient implementation of a BDD package.

In Proceedings of the 27th ACM/IEEE Design Automation Conference, pages 40–45,

1990.

[26] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 8:677–691, 1986.

[27] J. R. Burch, E. M. Clarke, and K. McMillan. Symbolic model checking: ✞ ✟ ✟ ✞
states

and beyond. In Proceedings of the 5th Annual IEEE Symposium on Logic in Com-

puter Science, pages 428–439, 1990.

[28] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned

transition relations. In International Conference on Very Large Scale Integration,

pages 49–58. North-Holland, 1991.

[29] T. Bylander. Complexity results for serial decomposability. In Proceedings of

the 10th National Conference on Artificial Intelligence (AAAI’92), pages 729–734,

1992.

[30] J. G. Carbonell. Counterplanning: A strategy-based model of adversary planning in

real-world situations. Artificial Intelligence, 16(3):257–294, 1981.

[31] J. Chen and R. J. Patton. Robust Model-Based Fault Diagnosis for Dynamic Systems.

Kluwer Academic Publishers, 1999.

[32] K.-H. Cho and J.-T. Lim. Synthesis of fault tolerant supervisor for automated man-

ufacturing systems: A case study on photolithographic process. IEEE Trans. on

Robotics and Automation, pages 348–351, 1998.

[33] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model

checking: A decision procedure for � ✄ . In Proceedings of the 4th European Con-

ference on Planning (ECP’97), pages 130–142. Springer, 1997.

162 BIBLIOGRAPHY

[34] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic

Planning via Symbolic Model Checking. Artificial Intelligence, 147(1-2), 2003.

Elsevier Science publishers.

[35] A. Cimatti and M. Roveri. Conformant planning via symbolic model checking.

Journal of Artificial Intelligence Research, 13:305–338, 2000.

[36] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation of uni-

versal plans in non-deterministic domains. In Proceedings of the 15th National Con-

ference on Artificial Intelligence (AAAI’98), pages 875–881. AAAI Press, 1998.

[37] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic do-

mains via model checking. In Proceedings of the 4th International Conference on

Artificial Intelligence Planning System (AIPS’98), pages 36–43. AAAI Press, 1998.

[38] M. D. Cin. Verifying fault-tolerant behavior of state machines. In Proceedings of

the Second IEEE High-Assurance Systems Engineering Workshop HASE 97, pages

97–99, 1997.

[39] E. Clarke. Computer Science Department, Carnegie Mellon University, Pittsburgh,

USA, Personal communication, May 2003.

[40] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[41] O. Coudert, C. Berthet, and J. Madre. Verification of sequential machines using sym-

bolic execution. Automatic Verification Methods for Finite State Machines, pages

365–373, 1989.

[42] M. Daniele, P. Traverso, and M. Y. Vardi. Strong cyclic planning revisited. In

Proceedings of the Fifth European Conference on Planning (ECP’99), pages 35–48.

Springer-Verlag, 1999.

[43] L. De Alfaro, Henzinger T. A., and O. Kupferman. Concurrent reachability games.

In IEEE Symposium on Foundations of Computer Science, pages 564–575, 1998.

[44] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality

of A*. Association for Computing Machinery, 32(3):505–536, 1985.

[45] R. J. Doyle. Determining the loci of anomalies using minimal causal models. In Pro-

ceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-

95), pages 1821–1827, 1995.

BIBLIOGRAPHY 163

[46] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gather-

ing and contingent execution. In Proceedings of 2nd Conference on Artificial Intel-

ligence Planning Systems (AIPS’94), 1994.

[47] E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic

Press, 1988.

[48] S. Edelkamp. Directed symbolic exploration in AI-planning. In AAAI Spring Sym-

posium on Model-Based Validation of Intelligence, pages 84–92, 2001.

[49] S. Edelkamp. Symbolic exploration in two-player games: Preliminary results.

In Proceedings of the International Conference on AI Planning and Scheduling

(AIPS’02) Workshop on Model Checking, 2002.

[50] S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems to min-

imize state encoding length. In Proceedings of the 6th European Conference on

Planning (ECP’99), pages 135–147, 1999.

[51] S. Edelkamp and M. Helmert. On the implementation of MIPS. In Proceedings of

AIPS-2000 Workshop on Decision-Theoretic Planning, pages 18–25, 2000.

[52] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with

HSF-spin. In Proceedings of SPIN-01, pages 57–79, 2001.

[53] S. Edelkamp and F. Reffel. OBDDs in heuristic search. In Proceedings of the 22nd

Annual German Conference on Advances in Artificial Intelligence (KI-98), pages

81–92. Springer, 1998.

[54] S. Edelkamp and F. Reffel. Deterministic state space planning with BDDs. In Pro-

ceedings of the 5th European Conference on Planning (ECP-99), pages 381–382,

1999.

[55] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In J. W. Bakker,

W. P. Roever, and G. Rozenberg, editors, Linear Time, Branching Time and Par-

tial Order in Logics and Models for Concurrency, pages 123–172. Springer, Berlin,

1989.

[56] A. Fehnker. Scheduling a steel plant with timed automata. In Sixth International

Conference on Real-Time Computing Systems and Applications (RTCSA’99). IEEE

Computer Society Press, 1999.

[57] Z. Feng and E. Hansen. Symbolic LAO* search for factored markov decision pro-

cesses. In Proceedings of the AIPS-02 Workshop on Planning via Model Checking,

pages 49–53, 2002.

164 BIBLIOGRAPHY

[58] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[59] M. P. Fourman. Propositional planning. In Proceedings of the AIPS-00 Workshop

on Model-Theoretic Approaches to Planning, pages 10–17, 2000.

[60] M. Fox and D. Long. The PDDL 2.1 home page. http://www.dur.ac.uk/

d.p.long/IPC/pddl.html, 2002.

[61] G. Gabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive partitioning and partial

iterative squaring. In Proceedings of the 34th Design Automation Conference DAC-

97, 1997.

[62] M. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of IEEE,

74(10):1383–1398, 1986.

[63] M. P. Georgeff. Communication and interaction in multiagent planning. In Pro-

ceedings of the 3rd National Conference on Artificial Intelligence (AAAI’83), pages

125–129, 1983.

[64] A. Gerevini and L. Schubert. Inferring state constraints for domain-independent

planning. In Proceedings of the 15th National Conference on Artificial Intelligence

(AAAI’98), pages 905–912, 1998.

[65] M. L. Ginsberg. Universal planning: An (almost) universal bad idea. AI Magazine,

10(4):40–44, 1989.

[66] E. Giunchiglia, G. N. Kartha, and Y. Lifschitz. Representing action: Indeterminacy

and ramifications. Artificial Intelligence, 95:409–438, 1997.

[67] F. Giunchiglia, L. Spalazzi, and P. Traverso. Planning with failure. In Proceedings of

the 2nd International Conference on Artificial Intelligence Planning Systems, 1994.

[68] R. Goldman and M. Boddy. Expressive planning and explicit knowledge. In Pro-

ceedings of the 3rd International Conference on Artificial Intelligence Planning Sys-

tems (AIPS’96), pages 110–117, 1996.

[69] A. Groce and W. Visser. Heuristic model checking for java programs. In Proceedings

of the SPIN Workshop on Model Checking of Software, pages 242–245, 2002.

[70] P. Haddawy and M. Suwandi. Decision-theoretic refinement planning using inheri-

tance abstraction. In Proceedings of the 2nd International Conference on Artificial

Intelligence Planning Systems (AIPS-92), 1994.

BIBLIOGRAPHY 165

[71] K. Z. Haigh and M. M. Veloso. Planning, execution and learning in a robotic agent.

In Proceedings of the 4th International Conference on Artificial Intelligence Plan-

ning Systems (AIPS’98), pages 120–127. AAAI Press, 1998.

[72] K. Hammond. Case-Based Planning: Viewing Planning as a Memory Task. Aca-

demic Press, 1989.

[73] K.J. Hammond. Explaining and repairing plans that fail. Artificial Intelligence,

40:173–228, 1990.

[74] E. Hansen, R. Zhou, and Z. Feng. Symbolic heuristic search using decision dia-

grams. In Symposium on Abstraction, Reformulation and Approximation SARA’02,

2002.

[75] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination

of minimum path cost. IEEE Transactions on SSC, 100(4), 1968.

[76] J. Hoey, R. St-Aubin, and A. Hu. SPUDD: Stochastic planning using decision di-

agrams. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelli-

gence, pages 279–288, 1999.

[77] J. Hoffman and B. Nebel. The FF planning system: Fast plan generation through

heuristic search. Submitted, Journal of Artificial Intelligence Research, 2001.

[78] G. Hoffmann and H. Wong-Toi. Symbolic synthesis of supervisory controllers. In

Proceedings of 1992 American Control Conference, pages 2789–2793, 1992.

[79] J. Hoffmann. Local search topology in planning benchmarks: An empirical analysis.

In Proceedings of the 17th International Joint Conference on Artificial Intelligence

(IJCAI-01), pages 453–458. Morgan Kaufmann, 2001.

[80] S. Holldouble and H.-P. Stör. Solving the entailment problem in the fluent calcu-

lus using binary decision diagrams. In AIPS-2000 Workshop on Model-Theoretic

Approaches to Planning, pages 32–39, 2000.

[81] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-

ing, 23(5):279–295, 1997.

[82] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy

designs. In IEEE/ACM International Conference on Computer-Aided Design (CAD-

97), pages 400 –404, 1997.

[83] N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. Artificial Intelligence, 75(2):195–240, 1995.

166 BIBLIOGRAPHY

[84] R. M. Jensen. OBDD-based universal planning in multi-agent, non-deterministic

domains. Master’s thesis, Technical University of Denmark, Department of Au-

tomation, 1999. IAU99F02.

[85] R. M Jensen. A comparison study between the CUDD and BuDDy OBDD package

applied to AI-planning problems. Technical report, Computer Science Department,

Carnegie Mellon University, 2002. CMU-CS-02-173.

[86] R. M. Jensen. Efficient BDD-based search for planning, thesis proposal. http:

//www.cs.cmu.edu/˜runej, 2002.

[87] R. M. Jensen. The BDD-based InFoRmed planning and cOntroller Synthesis Tool

BIFROST version 0.7. http://www.cs.cmu.edu/˜runej, 2003.

[88] R. M. Jensen, R. E. Bryant, and M. M. Veloso. An efficient BDD-based A* algo-

rithm. In Proceedings of the 6th International Conference on Artificial Intelligence

Planning and Scheduling (AIPS’02) Workshop on Planning via Model Checking,

2002.

[89] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA*: An efficient BDD-based

heuristic search algorithm. In Proceedings of 18th National Conference on Artificial

Intelligence (AAAI’02), pages 668–673, 2002.

[90] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA* applied to channel routing.

Technical report, Computer Science Department, Carnegie Mellon University, 2002.

CMU-CS-02-172.

[91] R. M. Jensen, R. E. Bryant, and M. M. Veloso. State-set branching: Leveraging

OBDDs for heuristic search. Artificial Intelligence, To Appear.

[92] R. M. Jensen and M. M. Veloso. OBDD-based deterministic planning using the

UMOP planning framework. In Proceedings of the AIPS-00 Workshop on Model-

Theoretic Approaches to Planning, pages 26–31, 2000.

[93] R. M. Jensen and M. M. Veloso. OBDD-based universal planning for synchronized

agents in non-deterministic domains. Journal of Artificial Intelligence Research,

13:189–226, 2000.

[94] R. M. Jensen, M. M. Veloso, and M. Bowling. Optimistic and strong cyclic adver-

sarial planning. In Pre-proceedings of the 6th European Conference on Planning

(ECP’01), pages 265–276, 2001.

BIBLIOGRAPHY 167

[95] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Guided symbolic universal planning.

In Proceedings of the 13th International Conference on Automated Planning and

Scheduling ICAPS-03, pages 123–132, 2003.

[96] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Synthesis of fault tolerant plans

for non-deterministic domains. In Proceedings of ICAPS’03 Workshop on Planning

under Uncertainty and Incomplete Information, pages 64–73, 2003.

[97] M. Jurdzinski, O. Kupferman, and T. A. Henzinger. Trading probability for fairness.

In Proceedings of the International Conference for Computer Science Logic (CSL),

pages 292–305, 2002.

[98] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents.

Artificial Intelligence, 95:67–113, 1997.

[99] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and

stochastic search. In Proceedings of the 13th National Conference on Artificial In-

telligence (AAAI’96), volume 2, pages 1194–1201. AAAI Press, 1996.

[100] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Pro-

ceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-

99), volume 1, pages 318–325. Morgan Kaufmann, 1999.

[101] H. Kautz and J. Walser. State-space planning by integer optimization. In Proceedings

of National Conference on Artificial Intelligence (AAAI’99), 1999.

[102] J. Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,

32(1):97–130, 1987.

[103] E. Klein and H. Wehlan. Systematic design of a protective controller in process

industries by means of the boolean differential calculus. In Proceedings of WODES-

96, 1996.

[104] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs

to an ADL subset. In Proceedings of the 4th European Conference on Planning

(ECP’97), Lecture Notes in Artificial Intelligence, pages 273–285. Springer-Verlag,

1997.

[105] S. Koenig and R. G. Simmons. Real-time search in non-deterministic domains.

In Proceedings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI-95), pages 1660–1667. Morgan Kaufmann, 1995.

168 BIBLIOGRAPHY

[106] R. Korf. Real-time heuristic search: First results. In Proceedings of the National

Conference on Artificial Intelligence (AAAI)’87, pages 133–138, 1987.

[107] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Ar-

tificial Intelligence, 27(1):97–109, 1985.

[108] T. Kreifelts and F. Martial. A negotiation framework for autonomous agents. In

Proceedings of the 2nd European Workshop on Modeling Autonomous Agents and

Multi-Agent Worlds, pages 169–182, 1990.

[109] B. Krogh. Department of Electrical and Computer Engineering, Carnegie Mellon

University, Pittsburgh, USA, Personal communication, Nov 2002.

[110] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning.

Artificial Intelligence, 76:239–286, 1995.

[111] J. Leeuwen, editor. Handbook of Theoretical Computer Science, volume B. MIT

Press, 1994.

[112] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical Re-

port IT-TR: 1999-028, Institute of Information Technology, Technical University of

Denmark, 1999. http://cs.it.dtu.dk/buddy.

[113] D. Long. The AIPS-98 planning competition. AI Magazine, 21(2):13–34, 2000.

[114] D. Long and M. Fox. Type analysis of planning domain descriptions. In Proceedings

of 17th Workshop of UK Planning and Scheduling SIG, 1998.

[115] D. Long and M. Fox. The AIPS-02 planning competition. http://www.dur

.ac.uk/d.p.long/competition.html, 2002.

[116] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings

of the 9th National Conference on Artificial Intelligence (AAAI’91), pages 634–639,

1991.

[117] G. McCalla and B. Ward. Error detection and recovery in a dynamic planning envi-

ronment. In Proceedings of the 2nd National Conference on Artificial Intelligence

(AAAI’82), pages 172–175, 1982.

[118] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,

and D. Wilkins. PDDL - the planning domain definition language. Technical report,

Yale Center for Computational Vision and Control, 1998.

[119] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

BIBLIOGRAPHY 169

[120] C. Meinel and Stangier C. A new partitioning scheme for improvement of image

computation. In Proceedings ASP-DAC‘2001, pages 97–102, 2001.

[121] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.

Springer, 1998.

[122] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[123] I. Moon, J. H. Kukula, K. Ravi, and F Somenzi. To split or to conjoin: The question

in image computation. In Proceedings of the 37th Design Automation Conference,

pages 23–28, 2000.

[124] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote agent: To boldly go

where no AI system has gone before. Artificial Intelligence, 103(1-2):5–47, 1998.

[125] A. Newell, J. C. Shaw, and H. A. Simon. Chess playing programs and the problem

of complexity. IBM Journal of Research Development, 4(2):320–335, 1958.

[126] A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem solving pro-

gram for a computer. In Proceedings of the International Conference on Information

Processing, 1960.

[127] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press, 1994.

[128] C. M. Özveren and A. S. Willsky. Stability and stabilizability of discrete event

dynamic systems. Journal of ACM, pages 730–752, 1991.

[129] K. M. Passino. Lyapunov stability of a class of discrete event systems. IEEE Trans.

on Automatic Control, pages 269–279, 1994.

[130] J. Pearl. Heuristics : Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.

[131] C. Pecheur and R. Simmons. From livingstone to SMV. In FAABS, pages 103–113,

2000.

[132] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and the

situation calculus. In Proceedings of the 1’st International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR’89), pages 324–332. Morgan

Kaufmann, 1989.

[133] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order plan-

ner for ADL. In Proceedings of the 3’rd International Conference on Principles

of Knowledge Representation and Reasoning, pages 103–114. Morgan Kaufmann,

1992.

170 BIBLIOGRAPHY

[134] M. Peot and D. Smith. Conditional nonlinear planning. In Proceedings of the 1’st In-

ternational Conference on Artificial Intelligence Planning Systems (AIPS’92), pages

189–197. Morgan Kaufmann, 1992.

[135] T. S. Perraju, S. P. Rana, and S. P. Sarkar. Specifying fault tolerance in mission

critical systems. In Proceedings of High-Assurance Systems Engineering Workshop,

1996, pages 24–31. IEEE, 1997.

[136] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3), 1977.

[137] B. Piergiorgio, B. Bonet, A. Cimatti, E. Giunchiglia, K. Golden, J. Rintanen,

and D. E. Smith. The NuPDDL home page. http://sra.itc.it/tools

/mbp/#nupddl, 2002.

[138] M. Pistore, R. Bettin, and P. Traverso. Symbolic techniques for planning with ex-

tended goals in non-deterministic domains. In Pre-Proceedings of the 6th European

Conference on Planning (ECP-01), pages 253–264, 2001.

[139] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-

sium on the Foundations of Computations Science (FOCS-77), pages 46–57, 1977.

[140] I. Pohl. First results on the effect of error in heuristic search. Machine Intelligence,

5:127–140, 1970.

[141] R. Punkunus. Approximation algorithms for STRIPS reachability analysis. Final

Report, Research Elective Course, Computer Science Department, Carnegie Mellon

University, 2001.

[142] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM J. Control Optim., 25(1):206–230, 1987.

[143] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient BDD

algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings of the

International Workshop on Logic Synthesis, 1995.

[144] F. Reffel and S. Edelkamp. Error detection with directed symbolic model. In Pro-

ceedings of World Congress on Formal Methods (FM), pages 195–211. Springer,

1999.

[145] J. Rintanen. Constructing conditional plans by a theorem prover. Journal of Artificial

Intelligence Research (JAIR), 10:323–352, 1999.

BIBLIOGRAPHY 171

[146] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Pro-

ceedings of the International Conference on Computer-Aided Design, pages 139–

144, 1993.

[147] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-Hall,

1995.

[148] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,

5(2):115–135, 1974.

[149] E. D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the 4th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-75), pages 206–214, 1975.

[150] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.

Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control,

40(9):1555–1575, 1995.

[151] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Fail-

ure diagnosis using discrete-event models. IEEE Trans. on Control Systems Tech-

nology, 4(2):105–123, 1996.

[152] M. Sampath, R. Sengupta, S. Lafortune, and D. Teneketzis. Active diagnosis of

discrete-event systems. IEEE Trans. on Automatic Control, 43(7):908–929, 1998.

[153] F. Schmiedle, R. Drechsler, and B. Becker. Exact channel routing using symbolic

representation. In Proceedings of IEEE International Symposium on Circuits and

Systems (ISCAS’1999), 1999.

[154] M. J. Schoppers. Universal plans for reactive robots in unpredictable environments.

In Proceedings of the 10th International Joint Conference on Artificial Intelligence

(IJCAI-87), pages 1039–1046. Morgan Kaufmann, 1987.

[155] R. Senjen and M. De Beler. Hybrid expert systems for monitoring and fault diagno-

sis. In Proceedings of the 9th IEEE Conference on Artificial Intelligence Applica-

tions, pages 235–241, 1993.

[156] L. S. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953.

[157] S. J. J. Smith and D. S. Nau. Total-order multi-agent task network planning for con-

tract bridge. In Proceedings of the 8th National Conference on Artificial Intelligence

(AAAI’96), 1996.

[158] F. Somenzi. CUDD: Colorado university decision diagram package. ftp://vlsi

.colorado.edu/pub/, 1996.

172 BIBLIOGRAPHY

[159] R. Su. Decentralized fault diagnosis for discrete-event systems. Master’s thesis,

Dept. Electl. Engrg., Univ. of Toronto, 2001.

[160] K. Sulimma and K. Wolfgang. An exact algorithm for solving difficult detailed

routing problems. In Proceedings of the 2001 International Symposium on Physical

Design, pages 198–203, 2001.

[161] R. S. Sutton and A. G. Barto. Reinforcement Learning: an Introduction. MIT Press,

1998.

[162] S. Thiébaux and M. O. Cordie. Supply restoration in power distribution systems – a

benchmark for planning under uncertainty. In Pre-Proceedings of the 6th European

Conference on Planning (ECP-01), pages 85–96, 2001.

[163] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe. Integrating

planning and learning: The PRODIGY architecture. Journal of Experimental and

Theoretical Artificial Intelligence, 7(1):81–120, 1995.

[164] M. M. Veloso. Planning and Learning by Analogical Reasoning. Springer-Verlag,

1994.

[165] M. M. Veloso and J. Blythe. Linkability: Examining causal link commitments in

partial-order planning. In Proceedings of the Second International Conference on AI

Planning Systems (AIPS’94), pages 170–175, 1994.

[166] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. IEEE

International Conference on Automated Software Engineering (ASE), 2000.

[167] D. H. D. Warren. Generating conditional plans and programs. In Proceedings of the

AISB Summer Conference, pages 344–354, 1976.

[168] I. Wegener. Branching Programs and Binary Decision Diagrams. Society for Indus-

trial and Applied Mathematics (SIAM), 2000.

[169] D. S. Weld, C. R. Anderson, and D. E. Smith. Extending graphplan to handle un-

certainty and sensing actions. In Proceedings of the 15th National Conference on

Artificial Intelligence (AAAI’98), 1998.

[170] D. Wilkins. Using patterns and plans in chess. Artificial Intelligence, 14:165–203,

1980.

[171] D. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.

Morgan Kaufman, 1988.

BIBLIOGRAPHY 173

[172] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning and reacting

in uncertain and dynamic environments. Journal of Experimental and Theoretical

Artificial Intelligence, 6:197–227, 1994.

[173] B. Williams and P. Nayak. A model-based approach to reactive self-configuring

systems. In Proceedings of the 13th National Conference on Artificial Intelligence

(AAAI’96), 1996.

[174] B. C. Williams, M. Ingham, S. H. Chung, and P. H. Elliott. Model-based program-

ming of intelligent embedded systems and robotic space explorers. In Proceedings of

the IEEE: Special Issue on Modeling and Design of Embedded Software, volume 9,

pages 212–237, 2003.

[175] H. Xu. Structured routing with boolean satisfiability. CMU ECE Course Paper,

2001.

[176] N. XuanLong and S. Kambhampati. Extracting effective and admissible state space

heuristics from the planning graph. In Proceedings of the 17th National Conference

on Artificial Intelligence (AAAI’00), pages 798–805, 2000.

[177] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K.

Ranjan, and F. Somenzi. A performance study of BDD-based model checking. In

Formal Methods in Computer-Aided Design FMCAD’98, pages 255–289, 1998.

[178] B. Yang, R. Simmons, R. E. Bryant, and R. O. O’Hallaron. Optimizing symbolic

model checking for constraint-rich models. In Proceedings of Computer-Aided Ver-

ification (CAV’99), pages 328–340, 1999.

[179] C. H. Yang and D. L. Dill. Validation with guided search of the state space. In

Proceedings of the 35th Design Automation Conference (DAC’98), pages 599–604.

ACM, 1998.

[180] J. Yuan, J. Shen, J. Abraham, and A. Aziz. Formal and informal verification. In

Conference on Computer Aided Verification (CAV’97), pages 376–387, 1997.

[181] G. Zlotkin and J. S. Rosenschein. Incomplete information and deception in multi-

agent negotiation. In Proceedings of the 12th International Joint Conference on

Artificial Intelligence (IJCAI’85), pages 225–231, 1985.

174 BIBLIOGRAPHY

Appendix A

BIFROST

This appendix contains a description of the Bdd-based InFoRmed planning and cOntroller

Synthesis Tool (BIFROST). Section A.1 is a user guide to BIFROST version 0.7. Sec-

tion A.2 describes the syntax and semantics of NADL
☎

used as input language to BIFROST.

Finally, Section A.3 describes the experimental setting used for the experiments described

in the thesis.

A.1 User Guide to BIFROST 0.7

BIFROST version 0.7 is a software package for BDD-based deterministic and non-determi-

nistic planning and heuristic search. The program is written in C++/STL for the GNU GCC

compiler running on a Redhat Linux 7.1 PC. The software is open source and may be used

for scientific and teaching purposes. BIFROST uses the BuDDy 2.0 BDD-package [112].1

A.1.1 Usage

Follow the instructions on the BIFROST web site [87] to download and install the program.

BIFROST is a regular UNIX command

bifrost -d domainFile [-iaxyvponcrthufeg].

The options of BIFROST are shown by executing bifrost -h. The input to BIFROST is

a planning problem written either in the STRIPS part of PDDL [118] or NADL
☎

described

1Comparison experiments with the CUDD package [158] has not shown a significant performance differ-

ence [85].

175

176 APPENDIX A. BIFROST

in Section A.2. Option -i type defines the input type and must be set. The possible values

for type are PDDL and NADL. If the input is PDDL, two input files must be given. The first

is the PDDL domain description which is set by option -d domain file name. The second

is the PDDL problem description which is set by option -p problem file name. If the input

is NADL
☎

, only a single NADL
☎

input file is given containing both a domain description

and a problem description. The name of the NADL
☎

file is set with option -d domain file

name. The verbosity level is set by option -v num where num is a non-negative number.

The higher the value of num, the more information BIFROST dumps to the screen.

The memory parameters of the BuDDy package are adjusted with options -n num

and -c num. The -n option sets the number of BDD-nodes allocated to represent the

shared BDD, while the -c option sets the number of BDD nodes allocated to represent

the BDDs in the operator caches used to implement dynamic programming. For medium

sized problems good values for � and � are around 1M and 400K, respectively. The Buddy

package can also be initialized to use dynamic variable reordering with option -r type. The

possible values of type are Off (no dynamic variable reordering) and Win2ite (sliding

window reordering).2

The search algorithm used by BIFROST is set by option -a type. The possible values of

type are shown in Table A.1. All BDD-based algorithms implemented in BIFROST rely on

a disjunctive partitioning of the transition relation. The threshold for merging partitions is

set by option -t num. The search timeout bound is set by option -l num where num is the

timeout bound in seconds. For bidirectional, forward, and backward deterministic search,

frontier set simplification based on [41] can be activated by option -f. For the weighted

A* algorithms,
✠

is given by
✠ ✁ ✓ ✗ ✁ ✜ ✖ ✗ ✣ where

✓
and

✖
are in the range

✑ ✟✁� ✞ ✘
and are

set by options -x num and -y num. For PDDL problems, the heuristic function is given by

option -g type where the possible values of type are MinHamming, which is the minimum

Hamming distance, and HSPr which is the HSPr heuristic described in [20]. For any of the

state-set branching algorithms, option -u num sets the upper bound of the size of merged

BDDs in the search queue.

BIFROST can write two different output files. The first is the solution file. Its name

is set by option -o solution file name. For deterministic problems, it is a text file with a

solution given as a sequence of actions. For non-deterministic problems, it is a BDD file

representing the produced non-deterministic plan. The second possible output file is for

conducting experiments with BIFROST. The name of the experiment file is set by option

-e experiment file name. The experiment file is a text file with data about the search

including time to allocate memory, analyse the domain, build the transition relation, and

search. In addition, it contains information about the size of the solution, the average size

2See the BuDDy 2.0 user manual for a detailed description.

A.1. USER GUIDE TO BIFROST 0.7 177

Deterministic Search Algorithms
Bidir : BDD-based breadth-first bidirectional search.

Forward : BDD-based breadth-first forward search.

Backward : BDD-based breadth-first backward search.

ghSetAstar : GHSETA* in a weighted version (
✠ ✁ ✓ ✗ ✁ ✜ ✖ ✗ ✣).

fSetAstar : FSETA* in a weighted version (
✠ ✁ ✓ ✗ ✁ ✜ ✖ ✗ ✣).

Astar : Ordinary weighted A* with explicit state representa-

tion and cycle detection. The input must be in PDDL

format.

BDDAstar : BDDA*.

iBDDAstar : Improved BDDA*.

Non-Deterministic Search Algorithms
Weak : WEAK.

WeakH : GUIDEDWEAK.

WeakAdv : WEAKADVERSARIAL. The input must be in NADL
☎

format.

StrongCyclic : STRONGCYCLIC.

StrongCyclicH : GUIDEDSTRONGCYCLIC.

StrongCyclicAdv : STRONGCYCLICADVERSARIAL. The input must be

in NADL
☎

format.

Strong : STRONG.

StrongH : GUIDEDSTRONG.

FaultTolerant : 1-FTP. The input must be in NADL
☎

format.

GuidedFaultTolerant : 1-GFTP. The input must be in NADL
☎

format.

Table A.1: BIFROST search algorithms.

of the BDDs representing the search frontier, and the number of iterations of the algorithm.

Finally, it summarizes the parameters of the BDD package and the name of the input file.

If an experiment file already exists with the same name, BIFROST appends its result to the

file. Otherwise, it creates the file and adds the first row of results.

A.1.2 Examples

bifrost -i NADL -d 5line.nadl -a WeakH -t 5000 -e WeakH.dat

-n 15000000 -c 500000 -v 1 -l 1000

178 APPENDIX A. BIFROST

Initializes the Buddy package with 15M BDD nodes and a cache of 500K BDD nodes.

BIFROST then builds a disjunctive partitioning of the NADL
☎

problem described in the

file 5line.nadl with a merging threshold of 5000 BDD nodes. The GUIDEDWEAK

non-deterministic planning algorithm is used to find a solution. The timeout bound is set

to 1000 seconds and the debug verbosity level is 1. The experimental results are written to

the file WeakH.dat.

bifrost -i PDDL -d domain.pddl -a BDDAstar -v 1 -e BDDAstar

.dat -p single01.pddl -t 4000 -n 8000000 -c 400000 -g HSPr

Initializes the Buddy package with 8M BDD nodes and a cache of 400K BDD nodes.

BIFROST then builds a disjunctive partitioning of the PDDL domain and problem de-

scribed in the files domain.pddl and single01.pddl with a merging threshold of

4000 BDD nodes. The BDDA* algorithm is used to find a solution using the HSPr heuris-

tic. The timeout bound is set to the default 500 seconds and the debug verbosity level is 1.

The experimental results are written to the file BDDAstar.dat.

bifrost -i NADL -d D4V4M15.nadl -g MinHamming -l 500 -u 200

-n 8000000 -c 700000 -x 1.0 -y 1.0 -t 5000 -e ghSetAstar.exp

-a ghSetAstar

Initializes the Buddy package with 8M BDD nodes and a cache of 700K BDD nodes.

BIFROST then builds a disjunctive partitioning of the NADL
☎

problem described in the file

D4V4M15.nadlwith a merging threshold of 5000 BDD nodes. The GHSETA* algorithm

with
✠ ✁ ✞ ✂ ✟ ✗✧✁ ✜ ✞ ✂ ✟ ✗✕✣ is used to find a solution using the min Hamming distance heuristic.

BDD nodes with a size below 200 are merged in the search queue of GHSETA*. The

timeout bound is set to 500 seconds and the debug verbosity level is 1. The experimental

results are written to the file ghSetAstar.

A.2 NADL ✜

NADL was developed as a part of the UMOP project [84, 93, 92, 94]. However, despite

providing a very general framework for modeling non-deterministic planning problems,

NADL does not allow additional information about transition costs, heuristic estimates,

and failure effects of actions. NADL
☎

adds these features to the language. There are are

three main differences between the two languages

A.2. NADL
☎

179

1. NADL
☎

has three new optional action description components dg, dh, and err. In

addition, it uses the entry heu to define the value of the heuristic estimate in the initial

state and the goal states,

2. An action description may concist of descriptions of several transition groups,

3. NADL
☎

assumes that the system and environment are described by as set of actions

instead of a set of agents.

The action component dg:
☎ ✂✳❂

associates a transition cost or weight with the action. The

component dh:
☎ ✂✳❂

describes the change of a heuristic estimate associated with each tran-

sition represented by the transition group. The change is always given in forward direction

even if the heuristic guides a backward search. Finally, err:
❇ �✷❃ �✘❅ ❊ ❈

defines a set of next

states reached by the action given that its execution fails.

An NADL
☎

problem description consists of: a set of state variables, a set of system and

environment actions, and an initial and goal condition. The set of state variable assignments

defines the state space of the domain. The set of system actions must be non-empty while

the set of environment actions may be empty if no active environment exists. System and

environment actions are assumed to be synchronous. At each step, exactly a single system

and environment action is performed. The resulting action is called a joint action. Only

the system actions are controllable. An action has three main parts: a set of modified state

variables, a precondition formula, and an effect formula. The set of modified variables are

the state variables which may have their value changed by the action. In order for an action

to be applicable, the precondition formula must be satisfied in the current state. The effect

of the action is defined by the effect formula. The value of state variables not modified by a

joint action is unchanged. The initial and goal condition are formulas that must be satisfied

in the initial state and the goal states, respectively.

Example A.1 An NADL
☎

planning problem is shown in Figure A.1. The problem has

two state variables �
� ●

and �
�✄� ❆❙❃

. The position is a natural number that can be represented

by three Boolean variables. This gives �
� ●

the domain ✮ ✟ ✣ ✞
✣ ✵ ✣ � ✣ ✠ ✣ ✞ ✣✁� ✣✄✂ ✲ . The power

is a proposition and is represented by a single Boolean state variable. The system is a

robot moving between the eight positions. It has two actions Right and Left. The cost

of both actions is 1. The heuristic is for guiding a backward search from the goal states

to the initial state. It therefore estimates the distance to the initial state. This estimate

is simply the value of the position. Thus, a successful Left action changes the heuristic

estimate with
☎ ✞ , while a successful Right action changes it with ✜ ✞ . The effect of the

Right action, depends on the �
�✄� ❆❙❃

variable. If the power is
❂ ❃✤❅✳❆

then the position is

increased, otherwise nothing happens. For this reason, the transitions of the Right action

180 APPENDIX A. BIFROST

are partitioned into two transition groups where the first describes the successful outcome

of the action where dh: is 1, and the second describes the unsuccessful outcome of the

action where dh: is 0. The Left action is assumed to succeed independent of the value

of �
�✄� ❆❙❃

. It can therefore be described by a single transition group. The environment

controls the power with two actions On and Off. Since the system and environment must

apply exactly one action at each step, there are four joint actions Left-On, Left-Off, Right-

On, and Right-Off. Initially, the power is on and the robot is at position 0. The goal is

to reach position 7. The value of the heuristic estimate must be given for the goal states

in order to use a branching partitioning to propagate the value of the heuristic estimate to

other states. This is done by adding the entry heu: 7 to the goal condition. ✍

Syntax of NADL ✂

Below is the BNF syntax of NADL
☎

. The syntax of formulas is given separately.

✟ ✠ ✁ �✁� ☎ ✡ ::= ✂☎✄✝✆✟✞✠✄✠✡✟☛✝☞☎✌ ✟✍✄ ❈ ❃ � ❆ ✂ ❊ ✡ ✮ ✟ ✄ ❈ ❃ � ❆ ✂ ❊ ✡❙✲
✌✎✍✟✌✑✏☎☞✎✒ ✟ ✁ ✂ ❂✟☎ �✄✂ � ❆ ✂ ❊ ✡ ✮ ✟ ✁ ✂ ❂✟☎ �✄✂ � ❆ ✂ ❊ ✡❙✲
☞✠✓✔✂✕✞✑✆✗✖✑✓✘✒✙☞✠✓✚✏▲✮ ✟ ✁ ✂ ❂✆☎ �✄✂ � ❆ ✂ ❊ ✡❙✲
✞✛✓✜✞✢✏✕✞✠✄✔☛✚☛✠✍ ✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡ [✣✗☞✠✤ ✛✚✟ ✠ ❅ � ✂ ❆❙❃ ✡]
✥ ✖✝✄✔☛ ✟ ✂ �✷❃ �✘❅ ❊ ❈ ✡ [✣✗☞✠✤ ✛ ✟ ✠ ❅ � ✂ ❆❙❃ ✡]

✟✍✄ ❈ ❃ � ❆ ✂ ❊ ✡ ::= ✟ ✄ ❈ ❃✝✦ ✝ �
❆ ✡ ✟★✧ ✂

�
● ❂ ✡

✟✍✄ ❈ ❃✘✦ ✝ �
❆ ✡ ::= ✡✟✖✚✖✘☛✎

✓✗✄✩✏ ✢ ✟ ✠ ❅ � ✂ ❆❙❃ ✡ ✤
✟✪✧ ✂

�
● ❂ ✡ ::= �✎ ✟★✧ ✂ ✡✎ ✟★✧ ✂ ✡ ✮ ✣ ✟✪✧ ✂ ✡❙✲

✟ ✁✄✂ ❂✟☎ �✄✂ � ❆ ✂ ❊ ✡ ::= ✟★✧ ✂ ✡ ✟ ✦ ❃ ❈ ✂ � ❆ ✂ ❊ ✡ ✮ ✟ ✦ ❃ ❈ ✂ � ❆ ✂ ❊ ✡❙✲
✟ ✦ ❃ ❈ ✂ � ❆ ✂ ❊ ✡ ::= [✫ ✥ ✛ ✟ ✠ ❅ � ✂ ❆❙❃ ✡]

[✫✩✣ ✛ ✟ ✠ ❅ � ✂ ❆❙❃ ✡]
✒✕✖✠✫ ✛✚✟✪✧ ✂

�
● ❂ ✡

✬ ✆✔☞ ✛✚✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡
☞✩✭✘✭ ✛✚✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡

[☞✩✆✘✆ ✛✚✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡]

A.2. NADL
☎

181

variables

nat(3) �✥✁☎✄
bool �✂✁☛✆✟✞✡✠

system

Right

dg: ✣
dh: ✣
mod: �✥✁☎✄
pre: �✥✁☎✄✌☞ ✲ ✮ �✂✁☛✆✟✞✡✠
eff: �✥✁☎✄ ☞✖✕ �✥✁☎✄ ✜✤✣
dg: ✣
dh: ✧
mod: �✥✁☎✄
pre: �✥✁☎✄✌☞ ✲ ✮ ✬✭�✂✁☛✆✟✞✱✠
eff: �✥✁☎✄ ☞✖✕ �✥✁☎✄

Left

dg: ✣
dh: ✪ ✣
mod: �✥✁☎✄
pre: �✥✁☎✄✌✦★✧
eff: �✥✁☎✄ ☞✖✕ �✥✁☎✄✫✪ ✣

environment

On

mod: �✥✁☛✆✟✞✡✠
pre: ✬ �✂✁☛✆✟✞✡✠
eff: �✥✁☛✆✟✞✡✠ ☞

Off

mod: �✥✁☛✆✟✞✡✠
pre: �✥✁☛✆✟✞✡✠
eff: ✬ �✂✁☛✆✟✞✡✠ ☞

initially

�✂✁☎✄ ✕ ✧ ✮✰�✂✁✝✆✟✞✡✠
goal

�✂✁☎✄ ✕✳✲
heu: ✲

Figure A.1: An NADL � planning problem.

182 APPENDIX A. BIFROST

An identifier is a sequence of numbers, letters and the character “ ” that does not begin

with a number. The syntax of formulas is given below. The
☎ ✝

operator is an if-then-else

operator. The relation operator
✑ ✝

denotes not equal to. The Boolean operators
✁ ✝

and✑ ✁ ✝
denote logical implication and bi-implication, respectively. The other operators have

their usual semantics.

✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡ ::= ✟ ✂ �✷❃ �✘❅ ❊ ❈ ✡ ☎ ✝ ✟ ✂ �✷❃ �✘❅ ❊ ❈ ✡ ✣ ✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡✎ ✟ ✂ �✷❃ �✘❅ ❊ ❈ ✡ ✟ ✞ �✑� ❊ � � ✡ ✟ ✂ �✷❃ �✘❅ ❊ ❈ ✡✎ ✟ ✠ ❅ �✁� ☎
� ✡ ✟✄✂ ❆ ❊ � � ✡ ✟ ✠ ❅ �✁� ☎

� ✡✎ ☎ ✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡✎ ✢ ✟ ✂ �✷❃✞�✘❅ ❊ ❈ ✡ ✤✎
✏✚✆✝✤✗☞✎
✭✔✄☎☛✚✌ ☞✎ ✟★✧ ✂ ✡

✟ ✞ �✑� ❊ � � ✡ ::=
✁ ✝✝✎ ✑ ✁ ✝✔✎ ✔ ✏ ✎ ✏ ✔

✟✆✂ ❆ ❊ � � ✡ ::=
✁ ✎✝✑ ✝✔✎ ✝☎✎ ✑

✟ ✠ ❅ �✁� ☎
� ✡ ::= ✟★✧ ✂ ✡✎ ✟ ✠ ❅ � ✂ ❆❙❃ ✡✎ ✟ ✠ ❅ � ✂ ❆❙❃ ✡ ✟ ✠ ❅ � � � ✡ ✟ ✠ ❅ � ✂ ❆❙❃ ✡✟ ✠ ❅ � � � ✡ ::= ✜ ✎ ☎

A.3 Experimental Setting

All experiments presented in this thesis have been carried out with BIFROST version 0.7.

However, specialized search engines have been implemented for the channel routing exper-

iments and experiments with the ordinary A* algorithm for other heuristics than HSPr. All

experiments have been executed on a Redhat Linux 7.1 PC with kernel 2.4.16, 500 MHz

Pentium III CPU, 512 KB L2 cache and 512 MB RAM.

PERL scripts are used to execute series of experiments. The results of these experiments

are logged in BIFROST experimental files. The experimental files of a particular domain

are collected in a master file describing the complete setup of the experiments for future

reference and reproduction. The master file also contains a description of the purpose of

A.3. EXPERIMENTAL SETTING 183

the experiments and important observations. The main parameters of an experiment, in

addition to the problem and the search algorithm, are

1. The � and � parameters of the BuDDy BDD-package, where � is the number of

BDD-nodes allocated to represent the shared BDD, and � the number of BDD nodes

allocated to represent BDDs in the operator caches used to implement dynamic pro-

gramming,

2. The threshold
✝

for merging partitions in the disjunctive partitioning given in number

of BDDs nodes used to represent the partitions,

3. The upper bound ✡ of the size of merged BDDs in the search queue of the state-set

branching algorithms.

Time is measured in seconds. The size of a BDD is equal to the number of nodes in the

BDD graph.

184 APPENDIX A. BIFROST

Appendix B

Proofs

This appendix contains soundness, completeness, and optimality proofs. The proofs for the

WEAK, STRONGCYCLIC , and STRONG algorithms are partially based on previous proofs

in [34].

B.1 Notation

Most algorithms consist of an initialization of a set of variables and a main loop that assigns

these variables and possibly a set of variables local to the loop. As an example consider the

NDP algorithm introduced in Section 3.2.2 and shown below in Figure B.1. The variables

function NDP ✢ ✚ ✞ ✣ ✆ ✤
1

✠ ★ ✌
;

✡ ★ ✆
2 while ✚ ✞ ✆✁ ✡

3
✠ � ★

PRECOMP ✢ ✡ ✤
4 if

✠ � ✁ ✌
then return “no solution exists”

5 else

6
✠ ★ ✠ ✕ ✠ �

7
✡ ★ ✡ ✕ STATES ✢ ✠ � ✤

8 return
✠

Figure B.1: The NDP algorithm introduced in Section 3.2.2.

of NDP that are initialized outside the loop and assigned to inside the loop are
✠

and
✡

,

while
✠ �

is a local variable of the loop. We will use the following naming conventions for

185

186 APPENDIX B. PROOFS

statements about these variables. For a variable
�

,
� ✙

denotes the value of the variable after✯
iterations of the loop. Thus, for NDP,

✡ ✙
,
✠ ✙

, and
✠ � ✮

denote the value of
✡ ✙

,
✠ ✙

, and
✠ � ✮

after
✯

executions of the code in line 2 to 7. If
�

is assigned to several times in an iteration

of the loop,
� ✙

refers to its value after the last assignment. If
�

is initialized before the loop

then
� ✞ denotes its initial value before the first iteration of the loop. If

�
is a local variable

of the loop then
� ✞ is undefined. Thus, for NDP,

✠ �✁�
is undefined.

� ✙
is said to exist if the

loop iterates at least
✯

times.

B.2 Additional Defi nitions

This section contains additional definitions used in the proofs.

Definition B.1 (WD)
✂ � ✕ ✢ ✡ ✤ ✧ ✮✗✚✜✛ WDIST ✢ ✚ ✣☛✡ ✤ ✁ ✪ ✲ .

Definition B.2 (SD) ✁ � ✕ ✢ ✡ ✤ ✧ ✮✗✚✜✛ SDIST ✢ ✚ ✣☛✡ ✤ ✁ ✪ ✲ .

Definition B.3 (FixedPoint) FIXEDPOINT ✢ ✡ ✤ is a set of SAs defined by the algorithm be-

low.

function FIXEDPOINT
✢ ✡ ✤

1 � ★ ✌
2 repeat

3 �
�✵✴ ✄ ★ �

3 � ★
PREIMGSA ✢ STATES

✢ � ✤ ✕ ✡ ✤ ✏ ✡ ✸ ✁✄✂ ❂
4 until � ✁ �

�✵✴ ✄

8 return �

Definition B.4 (Adversarial DAG) An adversarial DAG
✁ � ✢ ✡ ✤ of a set of states

✡
is a

graph where the vertices are states and the edges are system actions of a non-deterministic

adversarial planning domain. Each state ✿ in an
✁ � ✢ ✡ ✤ is associated with a level ✄ ✢ ✿ ✤ . An✁ � ✢ ✡ ✤ is defined inductively as follows

� � ✁ ✡
are terminal states of

✁ � ✢ ✡ ✤ with ✄ ✢ � ✤ ✁ ✟
,� if ✿ ☞✜ ✣✦✥✧✥✧✥❉✣ ✿ ☞✗ are states in

✁ � ✢ ✡ ✤ and there for each applicable environment action✁ ✂ ❂ ✕ ✢❄✿ ✤ ✁ ✮ ✁ ✜❙✣★✥✧✥✧✥❉✣ ✁ ✗ ✲ of a state ✿ exists a counter system action ✚ ✜❙✣★✥✧✥✧✥❉✣ ✚ ✗ in

APP ✒ ✢❄✿ ✤ such that ✿ ✒ ✮ ☞ ✕ ✮
☎ ✝ ✿ ☞✙ for ✞ ✌ ✯✕✌

� , then ✿ is an internal state of
✁ � ✢ ✡ ✤ with

outgoing edges ✚ ✜✤✣✦✥✧✥✧✥❉✣ ✚ ✗ to ✿ ☞ ✜ ✣✦✥✧✥✧✥★✣ ✿ ☞✗ . The level of ✿ is ✄ ✢❄✿ ✤ ✁ ✡ � ✎ ✗✙✛✚✢✜ ✄ ✢ ✿ ☞✙ ✤ ✜ ✞ .

B.2. ADDITIONAL DEFINITIONS 187

c c c1 2 3 4

0 0 0 0

1 1

22

3

c

k

q

p s

vx x

z

y

z

z
y

z

xy

x

z

Figure B.2: An adversarial DAG of a set of states ✞ ✆ ✆ ✣ ✆ ✟ ✣ ✆ ✆ ✣ ✆ ✄ ✠ . The number

shown next to a state is its level.

Notice that an
✁ � ✢ ✡ ✤ is a Directed Acyclic Graph (DAG) since no edge of a state at level

✄ leads to a state at level ✄ ☞ ☛
✄ . For a state ✿ in

✁ � ✢ ✡ ✤ , let ✿ ✏ ✌
denote the SSAs formed by

pairing ✿ with its outgoing edges. Similarly, let
✁ �

✏ ✌ ✢ ✡ ✤ denote the union of the SSAs of

each state in
✁ � ✢ ✡ ✤ .

Example B.1 Figure B.2 shows an adversarial DAG
✁ � ✢ ✡ ✤ of a set of states

✡ ✁ ✮ �
✜✤✣

� ✟ ✣
� ☎ ✣ �

✁ ✲ . It is assumed that the set of system actions is
✁ ✂ ❂ ✒ ✁ ✮ ✓ ✣ ✖ ✣ ✦ ✲ . We have

✁ �
✏ ✌ ✢ ✡ ✤

✁ ✮ ✟ ✪ ✣ ✓ ✡ ✣ ✟ ✪ ✣ ✖ ✡ ✣ ✟ ✪ ✣ ✦ ✡ ✣ ✟ ✿ ✣ ✦ ✡ ✣ ✟ ✿ ✣ ✖ ✡ ✣ ✟ ✿ ✣ ✓ ✡ ✣ ✟ ✏ ✣ ✖ ✡ ✣ ✟ ✏ ✣ ✓ ✡ ✣ ✟ ✻ ✣ ✖ ✡ ✣ ✟ ✻ ✣ ✦ ✡ ✣ ✟ ✚ ✣ ✦ ✡ ✣ ✟ ✚ ✣ ✓ ✡✤✲ . ✍

Definition B.5 (Weak Marking) A weak marking
✁ �✁� ✢ ✿ ✣☎✡ ✤ of an adversarial DAG✁ � ✢ ✡ ✤ is a subset of

✁ � ✢ ✡ ✤ defined by marking states and edges in
✁ � ✢ ✡ ✤ reachable

from ✿ .

The weak marking
✁ �✂� ✢❄✿ ✣☛✡ ✤ is undefined if ✿ is not a state of

✁ � ✢ ✡ ✤ .

Example B.2 Figure B.3 shows the weak marking of the adversarial DAG of Example B.1.

✍

Definition B.6 (Strong Cyclic Marking) A strong cyclic marking
✁ � ✶ ✎ ✢ ✿ ✣☎✡ ✤ of an ad-

versarial DAG
✁ � ✢ ✡ ✤ is a subset of

✁ � ✢ ✡ ✤ defined by, recursively from ✿ , marking each

outgoing edge and each state that is reachable by any joint action made up by an applicable

environment action and a system counter action.

The strong cyclic marking
✁ � ✶ ✎ ✢❄✿ ✣☛✡ ✤ is undefined if a state not in

✁ � ✢ ✡ ✤ needs to be

marked.

188 APPENDIX B. PROOFS

c c c c1 2 3 4

2

3

2

1

0 0 0 0

1

k

q

p s

vx x

z
y

z

zy
z

xy

x

z

Figure B.3: The weak marking from state
✂

of the adversarial DAG shown in Fig-

ure B.2. States and edges in the marking are emphasized.

Example B.3 Figure B.4 shows the strong cyclic marking from ✿ of the adversarial DAG

of Example B.1. ✍

B.3 NDP

Let
✆P✙

be the set of states for which a solution is found in iteration
✯

of the while loop of

NDP. That is,
✆ ✞ ✁ ✆

and
✆P✙ ✁

STATES ✢ ✠ � ✮ ✤ for
✯✞✝ ✟

.

Lemma B.1
✡ ✙ ✁ ✩ ✙✓ ✚ ✞ ✆ ✓ .

Proof. This follows directly from
✡ ✞ ✁ ✆

,
✆ ✞ ✁ ✆

, and
✡ ✙ ✁ ✡ ✙✄✂✳✜ ✕ ✆P✙

for
✯ ✝ ✟

.
✁

Lemma B.2
✆P✙ ✓ ✆ ✓ ✁ ✌

for
✯ ✆✁ ✎

.

Proof. Assume without loss of generality that
✯ ✝ ✎

. Then by Lemma B.1
✡ ✙✄✂✳✜ ☞ ✆ ✓ .

By the definition of valid precomponents, we have
✡ ✙ ✂✳✜ ✓ PRECOMP ✢ ✡ ✙ ✂✳✜ ✤ ✁ ✌

, which

gives
✆P✙ ✓ ✆ ✓ ✁ ✌

.
✁

Lemma B.3 if
✡ ✙

exists then
✡ ✙✁� ✡ ✙✄✂✳✜

.

Proof. If
✡ ✙

is computed then
✡ ✙ ✁ ✡ ✙✄✂✳✜ ✕ STATES ✢ ✠ � ✮ ✤ and STATES ✢ ✠ � ✮ ✤ ✆✁ ✌

. We have✠ � ✮ ✁
PRECOMP ✢ ✡ ✙✄✂✳✜ ✤ . By the definition of valid precomponents, we have STATES ✢ ✠ � ✮ ✤ ✓✡ ✙✄✂✳✜ ✁ ✌

. Thus,
✡ ✙✂� ✡ ✙✄✂✳✜

.
✁

Theorem B.1 (Termination) NDP terminates.

B.4. STRONG 189

c c c c1 2 3 4

2
2

1

0 0 0 0

1

3

q vx

y

z

y
z

xy

x

z

x

z

z s

k

p

Figure B.4: The strong cyclic marking from state
✂

of the adversarial DAG shown

in Figure B.2. States and edges in the marking are emphasized. Dashed edges are

not a part of the adversarial DAG but are only used for marking. These edges denote

joint actions where the environment action is paired with another system action than

its counter action. Consider state
✂
, since there are three edges from this state, we have☛

APP � ✁ ✂ ✥ ☛✂✁ ✆ . In the figure, we assume that
☛
APP � ✁ ✂ ✥ ☛ ✡ ✆ . This gives a total of 9

joint actions used for marking. Only 3 of these are environment actions paired with

their counter system action.

Proof. By the definition of valid precomponents, the function PRECOMP called by NDP

terminates. By Lemma B.3, we have that
✡ ✙ � ✡ ✙✄✂✳✜

after completion of iteration
✯
.

However, since the state space is finite, the number of iterations then also must be finite.
✁

B.4 Strong

Lemma B.4 PRECOMPS is a valid precomponent function.

Proof. Follows directly from the definition of PRECOMPS and PREIMGSA.
✁

Lemma B.5 If ✆ ✁
PRECOMPS ✢ ✡ ✤ then � ✢ ✆ ✤ ✣ STATES ✢ ✆✣✤ ✎ ✁ ✒✁�

✡
.

Proof. By definition of PRECOMP ✢ ✡ ✤ , ✆ ✁ ✮ ✟ ✚ ✣ � ✡ ✛ ✚ ✁ ✡ ✽ NEXT ✢ ✚ ✣ � ✤ ✓ ✡ ✆✁✌ ✽ NEXT ✢ ✚ ✣ � ✤ ✓ ✡ ✁ ✌ ✲ . Thus, for any ✚ ✁ STATES ✢ ✆✣✤ , we have for each ✚ ☞ where✟ ✚ ✣ ✚ ☞ ✡ ✁ ✄
of � ✢ ✆✣✤ that ✚ ☞ ✁ ✡

, which implies � ✢ ✆✣✤ ✣ ✚ ✎ ✁ ✒✁�
✡

.
✁

Lemma B.6 For STRONG ✢ ✚ ✞ ✣ ✆ ✤ , we have � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✒✁� ✆
.

190 APPENDIX B. PROOFS

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. We have � ✢ ✌ ✤ ✣ ✆ ✎ ✁ ✒✁� ✆
,
✡ ✞ ✁ ✆

, and
✠ ✞ ✁ ✌

. Thus, � ✢ ✠ ✞ ✤ ✣☛✡ ✞ ✎ ✁ ✒✂� ✆
.

Case
✯ ✝ ✟

The induction hypothesis is � ✢ ✠ ✙✄✂✳✜ ✤ ✣☛✡ ✙✄✂✳✜ ✎ ✁ ✒✁� ✆
. By Lemma B.5 and✠ � ✮ ✁

PRECOMPS ✢ ✡ ✙ ✂✳✜ ✤ , we get � ✢ ✠ � ✮ ✤ ✣ STATES
✢ ✁ � ✮ ✤ ✎ ✁ ✒✁�

✡ ✙ ✂✳✜
. Combined with the

induction hypothesis, we get � ✢ ✠✁� ✮ ✕ ✠ ✙✄✂✳✜ ✤ ✣ STATES ✢ ✠ � ✮ ✤ ✕ ✡ ✙✄✂✳✜ ✎ ✁ ✒✂� ✆
which is equal

to � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✒✁� ✆
.

✁

Theorem B.2 (Soundness) STRONG is sound.

Proof. If STRONG ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ after iteration
✯

then ✆ ✁ ✠ ✙
and ✚ ✞ ✁ ✡ ✙

.

Thus, by Lemma B.6, � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✁� ✆
.

✁

Lemma B.7 For STRONG ✢ ✚ ✞ ✣ ✆ ✤ , we have ✚ ✁ ✆P✙ ◆ SDIST ✢ ✚ ✣ ✆ ✤ ✁ ✯
.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. By definition of
✆ ✞ and SDIST, we have ✚ ✁ ✆ ✞ ◆ ✚ ✁ ✆ ◆ SDIST ✢ ✚ ✣ ✆ ✤ ✁

✟
.

Case
✯✞✝ ✟

. The induction hypothesis is ✚ ✁ ✆ ✓ ◆ SDIST ✢ ✚ ✣ ✆ ✤ ✁ ✎
for
✎✒✑ ✯

.

“ ❑ ”: Assume ✚ ✁ ✆P✙
. By definition of

✆ ✙
and PRECOMPS, we get

✚ ✁ STATES ✢ ✮ ✟ ✚ ☞
✣ � ☞ ✡ ✛ ✚ ☞ ✆✁ ✡ ✙✄✂✳✜ ✽ NEXT ✢ ✚ ☞

✣ � ☞ ✤ ✓ ✡ ✙ ✂✳✜ ✆✁ ✌ ✽ NEXT ✢ ✚ ☞
✣ � ☞ ✤ ✓ ✡P✙ ✂✳✜ ✁ ✌ ✲ ✤ ✂

This implies that there exists a set of SAs ✆ such that � ✢ ✆ ✤ ✣ ✚ ✎ ✁ ✒✁�
✡ ✙✄✂✳✜

. Combining this

with the induction hypothesis, we get SDIST ✢ ✚✥✤ ✌ ✯
. However, if SDIST ✢ ✚✥✤ ✁ ✪ ✑ ✯

then

✚ ✁ ✆ ✕
according to the induction hypothesis. This is in conflict with the assumption that

✚ ✁ ✆ ✙
. Thus, SDIST ✢ ✚ ✣ ✆ ✤ ✁ ✯

.

“ � ”: Assume SDIST
✢ ✚ ✣ ✆ ✤ ✁ ✯

. By definition of SDIST, there exists an action � such

that
■ ✚ ☞ ✁ NEXT ✢ ✚ ✣ � ✤ ✂ SDIST ✢ ✚ ☞

✣ ✆ ✤ ✌✟✯ ☎ ✞ . Thus, by the induction hypothesis and

Lemma B.1, NEXT
✢ ✚ ✣ � ✤ ✞ ✡ ✙✄✂✳✜

. It must be the case that ✚ ✆✁ ✡ ✙✄✂✳✜
since ✚ ✁ ✡ ✙ ✂✳✜

contra-

dicts the induction hypothesis. But then by definition of PRECOMPS, ✚ ✁ STATES ✢ PRE-

COMPS ✢ ✡ ✙✄✂✳✜ ✤☞✤ which by definition of
✆P✙

gives ✚ ✁ ✆P✙
.

✁

Theorem B.3 (Completeness) STRONG is complete.

Proof. If a valid solution exists then SDIST
✢ ✚ ✞ ✣ ✆ ✤ ✆✁ ✆ . Assume SDIST

✢ ✚ ✞ ✣ ✆ ✤ ✁ ✪
.

then by definition of SDIST there exists
✪ ✜ ✞ states ✿ ✞ ✣✦✥✧✥✧✥❙✣ ✿ ✕

such that SDIST ✢❄✿ ✙ ✣ ✆ ✤ ✁ ✯
,✿ ✕ ✁ ✚ ✞ , and ✿ ✞ ✁ ✆

. Thus, by Lemma B.7,
✆ ✙ ✆✁ ✌

for
✯ ✌ ✪

and ✚ ✞ ✁ ✆ ✕
. Since✆ ✙ ✁

STATES ✢ ✠ � ✮ ✤ , we have
✠ � ✮ ✆✁ ✌

for
✯✟✌ ✪

. Thus, STRONG ✢ ✚ ✞ ✣ ✆ ✤ will not terminate

with failure in the first
✪

iterations. Also it will not terminate with success in the first✪ ☎ ✞ iterations since by Lemma B.2, ✚ ✞ ✆✁ ✆P✙
for

✯ ✑ ✪
. However, since ✚ ✞ ✁ ✆ ✕

, it will

terminate with success in iteration
✪

.
✁

B.5. WEAK 191

Lemma B.8 For STRONG ✢ ✚ ✞ ✣ ✆ ✤ , we have
■ ✚ ✁ ✆P✙ ✂ MAX ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁ ✯

.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

: Let ✚ ✁ ✆ ✞ . By definition of
✆ ✞ , ✚ ✁ ✆

, but then by definition of MAX,

MAX ✢ ✚ ✣ ✆ ✣ ✌ ✤ ✁
MAX ✢ ✚ ✣ ✆ ✣ ✠ ✞ ✤ ✁ ✟

Case
✯ ✝ ✟

: The induction hypothesis is
■ ✚ ✁ ✆ ✓ ✂ MAX ✢ ✚ ✣ ✆ ✣ ✠ ✓ ✤ ✁ ✎

for
✎ ✑✑✯

. Let

✚ ✁ ✆P✙
. Then by definition of

✆ ✙
and PRECOMPS ✢ ✡ ✙✄✂✳✜ ✤ , ✚ ✁ STATES ✢ ✮ ✟ ✚ ☞

✣ � ☞ ✡ ✛ ✚ ☞ ✆✁✡ ✙ ✂✳✜ ✽ NEXT
✢ ✚ ☞
✣ � ☞ ✤ ✓ ✡ ✙✄✂✳✜ ✆✁ ✌ ✽ NEXT

✢ ✚ ☞
✣ � ☞ ✤ ✓ ✡ ✙✄✂✳✜ ✁ ✌ ✲ ✤ . Thus, by definition

of PRECOMPS,
■ ✟ ✚ ☞

✣ � ☞ ✡ ✁ ✠ � ✮ ✂ NEXT ✢ ✚ ☞
✣ � ☞ ✤ ✞ ✡ ✙✄✂✳✜ ✽ NEXT ✢ ✚ ☞

✣ � ☞ ✤ ✓ ✡ ✙✄✂✳✜ ✆✁ ✌
. We

have
✠ ✙ ✁ ✠ ✙ ✂✳✜ ✕ ✠ � ✮

and ✚ ✁ STATES
✢ ✠ � ✮ ✤ . Further, it follows from the definition

of
✡ ✙

and Lemma B.1 and Lemma B.2 that
✠ ✙✄✂✳✜ ✓ ✠ � ✮ ✁ ✌

. Thus, by the induction

hypothesis and by definition of MAX, MAX
✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✌ ✯

. However, MAX
✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✑ ✯

implies SDIST ✢ ✚ ✣ ✆ ✤ ✑✴✯
which contradicts Lemma B.7, since we assume ✚ ✁ ✆✾✙

. Thus,

MAX
✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁ ✯

.
✁

Theorem B.4 (Optimality) If ✆ is a solution returned by STRONG ✢ ✚ ✞ ✣ ✆ ✤ then

MAX ✢ ✚ ✞ ✣ ✆ ✣ ✆✣✤ ✁
SDIST ✢ ✚ ✞ ✣ ✆ ✤✫✂

Proof. Combining Lemma B.7 and Lemma B.8 gives

■ ✚ ✁ ✆ ✙ ✂ MAX ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁
SDIST ✢ ✚ ✣ ✆ ✤

which implies the result.
✁

B.5 Weak

Lemma B.9 PRECOMPW is a valid precomponent function.

Proof. This follows directly from the definition of PRECOMPW and PREIMGSA.
✁

Lemma B.10 If ✆ ✁
PRECOMPW ✢ ✡ ✤ then � ✢ ✆✣✤ ✣ STATES ✢ ✆ ✤ ✎ ✁ ✁☎� ✡

.

Proof. By definition of PRECOMPW ✢ ✡ ✤ , we have ✆ ✁ ✮ ✟ ✚ ✣ �☛✡ ✛ ✚ ✆✁ ✡ ✽ NEXT ✢ ✚ ✣ � ✤ ✓✡ ✆✁ ✌ ✲ . Thus, for any ✚ ✁ STATES ✢ ✆✣✤ , we have
❏ ✚ ☞ ✁ ✡ ✂✩✟ ✚ ✣ ✚ ☞ ✡ ✁ ✄

of � ✢ ✆✣✤ . This

implies � ✢ ✆ ✤ ✣ ✚ ✎ ✁ ✁✂� ✡
. Thus, � ✢ ✆ ✤ ✣ STATES ✢ ✆✣✤ ✎ ✁ ✁✂� ✡

.
✁

Lemma B.11 For WEAK ✢ ✚ ✞ ✣ ✆ ✤ , we have � ✢ ✠ ✙ ✤ ✣☎✡ ✙ ✎ ✁ ✁☎� ✆
.

192 APPENDIX B. PROOFS

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. We have � ✢ ✌ ✤ ✣ ✆ ✎ ✁ ✁✂� ✆
,
✡ ✞ ✁ ✆

, and
✠ ✙ ✁ ✌

. Thus, � ✢ ✠ ✞ ✤ ✣☛✡ ✞ ✎ ✁ ✁☎� ✆
.

Case
✯ ✝ ✟

. The induction hypothesis is � ✢ ✠ ✙✄✂✳✜ ✤ ✣☛✡ ✙✄✂✳✜ ✎ ✁ ✁✂� ✆
. By Lemma B.10, the

induction hypothesis, and
✠✁� ✮ ✁

PRECOMPW ✢ ✡ ✙✄✂✳✜ ✤ , we get

� ✢ ✠ � ✮ ✕ ✠ ✙✄✂✳✜ ✤ ✣ STATES ✢ ✠ � ✮ ✤ ✕ ✡ ✙ ✂✳✜ ✎ ✁ ✁✂� ✆

which is equal to � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✁✂� ✆
.

✁

Theorem B.5 (Soundness) WEAK is sound.

Proof. If WEAK ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ after iteration
✯

then ✆ ✁ ✠ ✙
and ✚ ✞ ✁ ✡ ✙

. Thus

by Lemma B.11, � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
.

✁

Lemma B.12 For WEAK ✢ ✚ ✞ ✣ ✆ ✤ , we have ✚ ✁ ✆P✙ ◆ WDIST ✢ ✚ ✣ ✆ ✤ ✁ ✯
.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. By definition of
✆ ✞ and WDIST, ✚ ✁ ✆ ✞ ◆ ✚ ✁ ✆ ◆ WDIST

✢ ✚ ✣ ✆ ✤ ✁ ✟
.

Case
✯✞✝ ✟

. The induction hypothesis is ✚ ✁ ✆ ✓ ◆ WDIST ✢ ✚ ✣ ✆ ✤ ✁ ✎
for
✎ ✑ ✯

.

” ❑ ”: Assume that ✚ ✁ ✆P✙
. By definition of

✆ ✙
and PRECOMPW, we get

✚ ✁ STATES
✢ ✮ ✟ ✚ ☞

✣ � ☞ ✡ ✛✝✚ ☞ ✆✁ ✡ ✙✄✂✳✜ ✽ NEXT
✢ ✚ ☞
✣ � ☞ ✤ ✓ ✡ ✙✄✂✳✜ ✆✁ ✌ ✲ ✤

. Thus by the induction hypothesis and Lemma B.1, WDIST
✢ ✚ ✣ ✆ ✤ ✌ ✯

. However, if

WDIST ✢ ✚ ✣ ✆ ✤ ✁ ✪ ✑✡✯
then ✚ ✁ ✆ ✕

according to the induction hypothesis which is in

conflict with the assumption that ✚ ✁ ✆ ✙
. Thus, WDIST

✢ ✚ ✣ ✆ ✤ ✁ ✯
.

” � ”: Assume WDIST ✢ ✚ ✣ ✆ ✤ ✁ ✯
. Then by definition of WDIST,

❏ ✚ ☞
✣ � ✂ ✚ ☞ ✁ NEXT ✢ ✚ ✣ � ✤ ✽

WDIST
✢ ✚ ☞ ✤ ✁ ✯ ☎ ✞ . Thus, by the induction hypothesis and Lemma B.1, ✚ ☞ ✁ ✡ ✙✄✂✳✜

. It must

be the case that ✚ ✆✁ ✡ ✙✄✂✳✜
since ✚ ✁ ✡ ✙✄✂✳✜

contradicts the induction hypothesis. But then

by definition of PRECOMPW, ✚ ✁ STATES ✢ PRECOMPW ✢ ✡ ✙✄✂✳✜ ✤ ✤ which by definition of
✆ ✙

gives ✚ ✁ ✆P✙
.

✁

Theorem B.6 (Completeness) WEAK is complete.

Proof. If a valid solution exists then WDIST
✢ ✚ ✞ ✣ ✆ ✤ ✆✁ ✆ . Assume WDIST

✢ ✚ ✞ ✣ ✆ ✤ ✁ ✪
.

Then by definition of WDIST there exists
✪ ✜ ✞ states ✿ ✞ ✣★✥✧✥✧✥★✣ ✿ ✕

such that WDIST ✢❄✿ ✙ ✤ ✁ ✯
for

✟ ✌ ✯ ✌ ✪
, ✿ ✕ ✁ ✚ ✞ , and ✿ ✞ ✁ ✆

. Thus by Lemma B.12,
✆ ✙ ✆✁ ✌

for
✟ ✌✴✯ ✌ ✪

, and

✚ ✞ ✁ ✆ ✕
. Since

✆P✙ ✁
STATES ✢ ✠ � ✮ ✤ , we have

✠ � ✮ ✆✁ ✌
for ✞ ✌ ✯ ✌ ✪

. Thus, WEAK ✢ ✚ ✞ ✣ ✆ ✤
will not terminate with failure in the first

✪
iterations. Also, it will not terminate with

success in the first
✪ ☎ ✞ iterations, since by Lemma B.2 ✚ ✞ ✆✁ ✆ ✙

for
✟✒✌ ✯ ✑ ✪

. However,

since ✚ ✞ ✁ ✆ ✕
, it will terminate with success in iteration

✪
.

✁

B.6. STRONG CYCLIC 193

Lemma B.13 For WEAK ✢ ✚ ✞ ✣ ✆ ✤ , we have
■ ✚ ✁ ✆P✙ ✂ MIN ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁ ✯

.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. Let ✚ ✁ ✆ ✞ .By definition of
✆ ✞ , we have ✚ ✁ ✆

. But then by definition of

MIN, MIN ✢ ✚ ✣ ✆ ✣ ✌ ✤ ✁
MIN ✢ ✚ ✣ ✆ ✣ ✠ ✞ ✤ ✁ ✟

.

Case
✯ ✝ ✟

. The induction hypothesis is,
■ ✚ ✁ ✆ ✓ ✂ MIN ✢ ✚ ✣ ✆ ✣ ✠ ✓ ✤ ✁ ✎

for
✎ ✑ ✯

. Let

✚ ✁ ✆P✙
. Then by definition of

✆ ✙
and PRECOMPW ✢ ✡ ✙ ✂✳✜ ✤ ,

✚ ✁ STATES ✢ ✮ ✟ ✚ ☞
✣ � ☞ ✡ ✛✝✚ ☞ ✆✁ ✡ ✙✄✂✳✜ ✽ NEXT ✢ ✚ ☞

✣ � ☞ ✤ ✓ ✡ ✙✄✂✳✜ ✆✁ ✌ ✲ ✤ ✂
Thus, there exists an action � such that ✟ ✚ ✣ �☛✡ ✁ ✠✁� ✮

and NEXT ✢ ✚ ✣ � ✤ ✓ ✡ ✙✄✂✳✜ ✆✁ ✌
. Since✠ ✙ ✁ ✠ ✙✄✂✳✜ ✕ ✠ � ✮

, we get from the induction hypothesis that MIN ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✌ ✯
. However,

MIN ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✑ ✯
implies WDIST ✢ ✚ ✣ ✆ ✤ ✑ ✯

which contradicts Lemma B.12 since we

assume that ✚ ✁ ✆P✙
. Thus, MIN ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁ ✯

.
✁

Theorem B.7 (Optimality) If ✆ is a solution returned by WEAK ✢ ✚ ✞ ✣ ✆ ✤ then

MIN ✢ ✚ ✞ ✣ ✆ ✣ ✆✣✤ ✁
WDIST ✢ ✚ ✞ ✣ ✆ ✤ ✂

Proof. Combining Lemma B.12 and Lemma B.13 gives

■ ✚ ✁ ✆ ✙ ✂ MIN ✢ ✚ ✣ ✆ ✣ ✠ ✙ ✤ ✁
WDIST ✢ ✚ ✣ ✆ ✤

which implies the result.
✁

B.6 Strong Cyclic

Lemma B.14 PRECOMPSC is a valid precomponent function.

Proof. By inspection of PRECOMPSC ✢ ✡ ✤ (l.4) it follows that if ✟ ✚ ✣ �☛✡ ✁ PRECOMPSC ✢ ✡ ✤
then �✔✁ APP

✢ ✚ ✤ and ✚ ✆✁ ✡
. To prove that PRECOMPSC ✢ ✡ ✤ terminates, we first ob-

serve that PRUNEOUTGOING terminates since it consists of a single preimage computa-

tion. PRUNEUNCONNECTED must also terminate since ✠ ❆✞� ✁ ✁
clearly grows in each iter-

ation and the number of SAs is finite. To prove that SCPLANAUX terminates, we have

just shown that PRUNEOUTGOING and PRUNEUNCONNECTED terminates. By defini-

tion of PRUNEOUTGOING and PRUNEUNCONNECTED it is clear that ✁ ✁ ✙ ☎ ✜ ✞ ✁ ✁ ✙
in

SCPLANAUX . Thus, as long as the loop in SCPLANAUX continues, we have ✁ ✁ ✙ ☎ ✜ ☛
✁ ✁ ✙

. Since the number of SAs is finite, SCPLANAUX eventually must terminate. PRE-

COMPSC must terminate since every call to SCPLANAUX terminates and
� ✁ ✁

grows in

each iteration. Thus, PRECOMPSC can only complete a finite number of iterations since

the number of SAs is finite.
✁

194 APPENDIX B. PROOFS

Lemma B.15 In each iteration of PRUNEUNCONNECTED , we have

� ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✣ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁☎� ✡ ✂
Proof. By induction on

✯
.

Case
✯ ✁ ✟

. ✠ ❆✞� ✁ ✁ ✞ ✁ ✌
which trivially fulfills the requirement.

Case
✯✞✝ ✟

The induction hypothesis is � ✢ ✠ ❆✞� ✁ ✁ ✙ ✂✳✜ ✤ ✣ STATES ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✎ ✁ ✁✂� ✡ . We

have

✠ ❆✞� ✁ ✁ ✙ ✞ PREIMGSA ✢ ✡ ✕ STATES ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤☞✤✞ ✮ ✟ ✚ ✣ �☛✡ ✛ NEXT ✢ ✚ ✣ � ✤ ✓ ✢ ✡ ✕ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✂✳✜ ✤☞✤ ✆✁ ✌ ✲ ✂
This means � ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✣ STATES

✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁✂� ✢ ✡ ✕ STATES
✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✤ . Combined

with the induction hypothesis, we get � ✢ ✠ ❆✞� ✁ ✁ ✙ ✕ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✣ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✕
STATES

✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✎ ✁ ✁☎� ✡ . Since clearly ✠ ❆✞� ✁ ✁ ✙ ☞ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜
, we have

� ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✣ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁☎� ✡ ✂
✁

Lemma B.16 If SCPLANAUX ✢ ● ❂ ❈ ❃✤❂ ✁ ✁ ✣☛✡ ✤ returns ✆ then � ✢ ✆ ✤ ✣ STATES ✢ ✆✣✤ ✎ ✁ ✒✂✄ ✁✂� ✡

Proof. By inspection of SCPLANAUX , we have

✆ ✁
PRUNEUNCONNECTED ✢ PRUNEOUTGOING ✢ ✆ ✣ � ✤ ✣ � ✤ ✂

By definition of PRUNEOUTGOING , if ✟ ✚ ✣ �☛✡ ✁ ✆ then ✟ ✚ ✣ � ✡ ✆✁ PREIMGSA ✢ ✡ ✕ STATES ✢ ✆✣✤ ✤ .
Thus, if ✚ ☞ ✁ ✡ ✕ STATES

✢ ✆✣✤ then ✟ ✚ ✣ ✚ ☞ ✡ ✆✁ ✄
of � ✢ ✆✣✤ . this proves that any execution path

in EXEC ✢❄✿ ✞ ✣ ✆✣✤ where ✿ ✞ ✁ STATES ✢ ✆✣✤ can not reach a state outside of
✡ ✕ STATES ✢ ✆✣✤ .

However, we still need to prove that there is an execution path reaching
✡

for each state in

✆ . Since ✆ is returned from PRUNEUNCONNECTED , we have ✆ ✁ ✠ ❆✞� ✁ ✁ ✙
for some it-

eration of PRUNEUNCONNECTED . From Lemma B.15, we then get � ✢ ✆✣✤ ✣ STATES
✢ ✆✣✤ ✎ ✁

✒✂✄✝✁☎� ✡ .
✁

Lemma B.17 For STRONGCYCLIC ✢ ✚ ✞ ✣ ✆ ✤ , we have � ✢ ✠ ✙ ✤ ✣☎✡ ✙ ✎ ✁ ✒☎✄✝✁✂� ✆
.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. We have � ✢ ✌ ✤ ✣ ✆ ✎ ✁ ✒✂✄ ✁✂� ✆
,
✡ ✞ ✁ ✆

, and
✠ ✞ ✁ ✌

. Thus, � ✢ ✠ ✞ ✤ ✣☎✡ ✞ ✎ ✁
✒✂✄✝✁☎� ✆

.

Case
✯ ✝ ✟

. The induction hypothesis is � ✢ ✠ ✙✄✂✳✜ ✤ ✣☛✡ ✙✄✂✳✜ ✎ ✁ ✒✂✄ ✁✂� ✆
. By Lemma B.16,

� ✢ ✠ � ✮ ✤ ✣ STATES
✢ ✠ � ✮ ✤ ✎ ✁ ✒☎✄✝✁✂� ✡ ✙ ✂✳✜

. Combined with the induction hypothesis this gives

� ✢ ✠ � ✮ ✕ ✠ ✙✄✂✳✜ ✤ ✣ STATES ✢ ✠ � ✮ ✤ ✕ ✡ ✙✄✂✳✜ ✎ ✁ ✒✂✄ ✁✂� ✆
. Which is equal to � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✒✂✄✝✁☎� ✆

.
✁

B.6. STRONG CYCLIC 195

Theorem B.8 (Soundness) STRONGCYCLIC is sound.

Proof. If STRONGCYCLIC ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ after iteration
✯

then ✆ ✁ ✠ ✙
and

✚ ✞ ✁ ✡ ✙
. Thus by Lemma B.17, � ✢ ✆ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆

.
✁

Lemma B.18 If � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄ ✁✂� ✆
and

✆ ✞ ✡
then

✬ ✢ ✆ ✏ ✡ ✸ ✁✄✂ ❂ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁☎� ✡ ✂
Proof. Clearly � ✢ ✆ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁☎� ✡

since
✆ ✞ ✡

. In addition, we can remove SAs within✡
from ✆ since they are not necessary to fulfill � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✡

. Thus,

✬ ✢ ✆ ✏ ✡ ✸ ✁✄✂ ❂ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁☎� ✡ ✂
✁

Lemma B.19 If � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✡
then there exists a ✆ ☞ ✞ FIXEDPOINT

✢ ✡ ✤ where

� ✢ ✆ ☞ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✡
.

Proof. Let
✠

denote the prefixes of any execution path in EXEC ✢ ✚ ✞ ✣ ✆✣✤ that starts in ✚ ✞
and ends in a state in

✡
. Let ✆ ☞ denote the SAs associated with the paths in

✠
. We have

� ✢ ✆ ☞ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄ ✁✂� ✡
since otherwise there would exist an execution path in EXEC ✢ ✚ ✞ ✣ ✆✣✤

reaching a state from which
✡

is unreachable. By definition of PREIMGSA, we have

that FIXEDPOINT ✢ ✡ ✤ contains any SA associated with any finite path that starts from a

state in
✡

and ends at a state in
✡

. Thus, due to the definition of ✆ ☞ , we have ✆ ☞ ✞
FIXEDPOINT ✢ ✡ ✤ . ✁

Theorem B.9 (Completeness) STRONGCYCLIC is complete.

Proof. By contradiction. Assume that � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒☎✄✝✁✂� ✆
, but STRONGCYCLIC ✢ ✚ ✞ ✣ ✆ ✤

terminates in iteration
✯

with “no solution exists”. The
✯
th call to PRECOMPSC is find-

ing a strong cyclic precomponent of
✡ ✙ ✂✳✜

. Since STRONGCYCLIC terminates in itera-

tion
✯
, we must have that PRECOMPSC ✢ ✡ ✙ ✂✳✜ ✤ ✁ ✌

. Since
� ✁ ✁ in PRECOMPSC ✢ ✡ ✙✄✂✳✜ ✤

is updated in the same way as � in the FIXEDPOINT algorithm, there must exist an it-

eration
✪

of PRECOMPSC ✢ ✡ ✙✄✂✳✜ ✤ where
� ✁ ✁✁� ✁

FIXEDPOINT
✢ ✡ ✙✄✂✳✜ ✤ . Let ✆ ☞ ✁ ✆ ✏✡ ✙ ✂✳✜ ✸ ✁✄✂ ❂ . Since

✆ ✞ ✡ ✙✄✂✳✜
, Lemma B.18 gives that � ✢ ✆ ☞ ✤ ✣ ✚ ✞ ✎ ✁ ✒☎✄✝✁✂� ✡ ✙✄✂✳✜

. But

then by Lemma B.19, there exists a set of SAs ✆ ☞ ☞ ✞ FIXEDPOINT
✢ ✡ ✙ ✂✳✜ ✤ ✁ � ✁ ✁ ✕

such that � ✢ ✆ ☞ ☞ ✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁☎� ✡ ✙✄✂✳✜
. Consider the pruning of

� ✁ ✁ ✕
in SCPLANAUX . Ac-

cording to the proof of Lemma B.19, ✆ ☞ ☞ can be chosen such that it has no SAs leading

out from STATES ✢ ✆ ☞ ☞ ✤ ✕ ✡ ✙✄✂✳✜
, and any SA in ✆ ☞ ☞ is associated with an execution path

connected to
✡ ✙ ✂✳✜

. Thus, no SAs will be pruned from ✆ ☞ ☞ by PRUNEOUTGOING and

PRUNEUNCONNECTED . Consequently, SCPLANAUX returns a non-empty result which

in turn causes PRECOMPSC ✢ ✡ ✙✄✂✳✜ ✤ to return a non-empty result, which is impossible.
✁

196 APPENDIX B. PROOFS

B.7 GNDP

For all guided non-deterministic planning algorithms, we will assume that there are � par-

titions of the disjunctive branching partitioning used by the algorithms. Further, recall that

for a map
✩

,
✬

denotes the union of the entries in
✩

. To simplify the presentation, we as-

sume that for a queue
✆

, the symbol
✆

both denotes the queue and the union of the entries

in it.

Lemma B.20 if
✡ ✙

exists then
✡ ✙✁� ✡ ✙✄✂✳✜

.

Proof. If
✡ ✙

is computed then by line 6-7,
✡ ✙ ✁ ✡ ✙ ✂✳✜ ✕ STATES ✢ ✠ � ✮ ✤ where STATES ✢ ✠ � ✮ ✤ ✆✁✌

(otherwise GNDP terminates in line 4). By definition of valid guided precomponents,

we have STATES ✢ ✠ � ✮ ✤ ✓ ✡ ✙✄✂✳✜ ✁ ✌
. Thus,

✡ ✙✁� ✡ ✙✄✂✳✜
.

✁

Theorem B.10 (Termination) GNDP terminates.

Proof. By definition of valid guided precomponents, the function GPRECOMP called by

GNDP must terminate. By Lemma B.20, we have that
✡ ✙ � ✡ ✙✄✂✳✜

after completion of

iteration
✯
. However, since the state space is finite the number of iterations must also be

finite.
✁

B.8 Guided Strong

Lemma B.21 For GPRECOMPS ✢ � ✤ , we have

PRECOMPS ✢ ✡ ✤ ✁

✟ � ✟✑
✓ ✚✢✜

✗✑
✙✛✚✢✜ PRECOMPS

✙ ✢ ✡P✣ � ✑ ✣ ✓ ✘ ✤
Proof. By definition of PRECOMPS

✙
,✗✑

✙✛✚✢✜ PRECOMPS
✙ ✢ ✡P✣ � ✑ ✣ ✓ ✘ ✤ ✁

✗✑
✙✛✚✢✜ ✢ PREIMGSA

✙ ✢ � ✑ ✣ ✓ ✘ ✤ ✏ PREIMGSA ✢ ✡ ✤☞✤ ✏ ✡ ✸ ✁ ✂ ❂ ✂
Thus, by definition of PREIMGSA and the fact that a disjunctive partitioning contains all

the transitions of the transition relation✗✑
✙ ✚✢✜ PRECOMPS

✙ ✢ ✡ ✣ � ✑ ✣ ✓ ✘ ✤ ✁
✗✑
✙✛✚✢✜ ✮ ✟ ✚ ✣ � ✡ ✛✄✟ ✚ ✣ �☛✡ ✁ PREIMGSA

✙ ✢ � ✑ ✣ ✓ ✘ ✤ ✽
✟ ✚ ✣ �☛✡ ✆✁ PREIMGSA ✢ ✡ ✤ ✽ ✚ ✆✁ ✡ ✲

✁ ✮ ✟ ✚ ✣ �☛✡ ✛ ✟ ✚ ✣ � ✡ ✁ PREIMGSA ✢ � ✑ ✣ ✓ ✘ ✤ ✽✟ ✚ ✣ �☛✡ ✆✁ PREIMGSA ✢ ✡ ✤ ✽ ✚ ✆✁ ✡ ✲

B.8. GUIDED STRONG 197

From this we get ✟ � ✟✑
✓ ✚✢✜

✗✑
✙ ✚✢✜ PRECOMPS

✙ ✢ ✡ ✣ � ✑ ✣ ✓ ✘ ✤ ✁

✮ ✟ ✚ ✣ �☛✡ ✛☎✟ ✚ ✣ � ✡ ✁
✟ � ✟✑

✓ ✚✢✜ PREIMGSA ✢ � ✑ ✣ ✓ ✘ ✤ ✽ ✟ ✚ ✣ � ✡ ✆✁ PREIMGSA ✢ ✡ ✤ ✽ ✚ ✆✁ ✡ ✲ ✁

✮ ✟ ✚ ✣ �☛✡ ✛☎✟ ✚ ✣ � ✡ ✁ PREIMGSA ✢ ✡ ✤ ✽ ✟ ✚ ✣ �☛✡ ✆✁ PREIMGSA ✢ ✡ ✤ ✽ ✚ ✆✁ ✡ ✲ ✁

PRECOMPS ✢ ✡ ✤✫✂
✁

Lemma B.22 GPRECOMPS is a valid guided precomponent function.

Proof. By Lemma B.21,
✆

contains a partitioning of a strong precomponent. For each

partition, the correct ✣ -value ✣ ✁ ✣ ✓ ☎ � ✣
✙

is associated with the states by INSERT . Since a

map with the top node of
✆

is returned by GPRECOMPS, the output from GPRECOMPS has

the correct form. Finally, we have that GPRECOMPS terminates, since all subcomputations

terminates and the loops are finite.
✁

Lemma B.23 If
✂☎✄ ✁

GPRECOMPS ✢ � ✤ then � ✢ ✠ � ✤ ✣ STATES ✢ ✠ � ✤ ✎ ✁ ✒✁�
✡

.

Proof. From Lemma B.21, we have that
✠✁� ✞ PRECOMPS ✢ ✡ ✤ . But then it follows from

the proof of Lemma B.5 that � ✢ ✠ � ✤ ✣ STATES ✢ ✠ � ✤ ✎ ✁ ✒✁�
✡

.
✁

Lemma B.24 For GUIDEDSTRONG ✢ ✚ ✞ ✣ ✆ ✤ , we have � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✒✁� ✆
.

Proof. Similar to Lemma B.6 when using Lemma B.23 instead of Lemma B.5.
✁

Theorem B.11 (Soundness) GUIDEDSTRONG is sound.

Proof. If GUIDEDSTRONG ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ after iteration
✯

then ✆ ✁ ✠ ✙
and

✚ ✞ ✁ ✡ ✙
. Thus by Lemma B.24, � ✢ ✆ ✤ ✣ ✚ ✞ ✎ ✁ ✒✁� ✆

.
✁

Lemma B.25 If
✡ ☞ ✩ ✕ ✂✳✜

�
✚ ✞ ✁ � � ✢✂✁ ✤ and ✁ � ✕ ✢✂✁ ✤ ✏ ✡ ✆✁ ✌

then PRECOMPS ✢ ✡ ✤ ✆✁ ✌
.

Proof. Let ✚ ✁ ✁ � ✕ ✢✂✁ ✤ ✏ ✡
. Since ✚ ✁ ✁

☞ ✕ ✢✂✁ ✤ , there exists an action � where

� ✟ ✚ ✣ �☛✡ ✁ PREIMGSA ✢ ✡ ✤ ☞ PREIMGSA ✢ ✩ ✕ ✂✳✜
�
✚ ✞ ✁ � � ✢✄✁ ✤☞✤ ,

� ✟ ✚ ✣ �☛✡P✆✁ PREIMGSA ✢ ✡ ✤ ✞ PREIMGSA ✢ ✩ ✕ ✂✳✜
�
✚ ✞ ✁ � � ✢✄✁ ✤ ✤ .

198 APPENDIX B. PROOFS

Since also ✚ ✆✁ ✡
, we get by definition of PRECOMPS that ✚ ✁ PRECOMPS ✢ ✡ ✤ . Thus

PRECOMPS ✢ ✡ ✤ ✆✁ ✌
.

✁

Lemma B.26 If ✁ � ✕ ✢ ✆ ✤ ✆✁ ✌
and GUIDEDSTRONG ✢ ✚ ✞ ✣ ✆ ✤ returns “no solution exists”

then there exists an iteration
✯

of GUIDEDSTRONG where
✩ ✕

�
✚ ✞ ✁ � � ✢ ✆ ✤ ✞ ✡ ✙

.

Proof. By induction on
✪
.

Case
✪ ✁ ✟

. By definition of SDIST, ✁ � ✞ ✢ ✆ ✤ ✁ ✆
. Since

✡ ✞ ✁ ✆
, we have

✯ ✁ ✟
.

Case
✪ ✝ ✟

. The induction hypothesis is that if ✁ � ✕ ✂✳✜ ✢ ✆ ✤ ✆✁ ✌
and GUIDEDSTRONG

✢ ✚ ✞ ✣✆ ✤ returns “no solution exists” then there exists an iteration
✯ ☞ of GUIDEDSTRONG where✩ ✕ ✂✳✜

�
✚ ✞ ✁ � � ✢ ✆ ✤ ✞ ✡ ✙ ☞ .
Assume ✁ � ✕ ✢ ✆ ✤ ✆✁ ✌

. Then by definition of SDIST, ✁ � ✕ ✂✳✜ ✢ ✆ ✤ ✆✁ ✌
. Thus, by

the induction hypothesis, GUIDEDSTRONG will not terminate before an iteration
✯ ☞ where✩ ✕ ✂✳✜

�
✚ ✞ ✁ � � ✢ ✆ ✤ ✞ ✡ ✙ ☞ .
Consider an iteration

✎ ☛✔✯ ☞ . Let
✄ ✓ ✁ ✁ � ✕ ✢ ✆ ✤ ✏ ✡ ✓ denote the states in ✁ � ✕ ✢ ✆ ✤ not

covered by the plan. By Lemma B.25 and Lemma B.21, the queue in GPRECOMPS can

only be empty if
✄ ✓ ✁ ✌

. Thus at some iteration
✯ ☛✂✯ ☞ before GUIDEDSTRONG terminates

with “no solution exists”, it must be the case that
✩ ✕

�
✚ ✞ ✁ � � ✢ ✆ ✤ ✞ ✡ ✙

.
✁

Theorem B.12 (Completeness) GUIDEDSTRONG is complete.

Proof. By contradiction. Assume a solution exists, but GUIDEDSTRONG ✢ ✚ ✞ ✣ ✆ ✤ terminates

with failure. Since a solution exists, we have SDIST
✢ ✚ ✞ ✣ ✆ ✤ ✆✁ ✆ . Assume SDIST

✢ ✚ ✞ ✣ ✆ ✤ ✁

✪
. We then have ✁ � ✕ ✢ ✆ ✤ ✆✁ ✌

. Thus, by Lemma B.26 GUIDEDSTRONG will continue to

an iteration
✯

where ✁ � ✕ ✢ ✆ ✤ ✞ ✡ ✙
. Since ✚ ✞ ✁ ✁ � ✕ ✢ ✆ ✤ this will cause GUIDEDSTRONG

to terminate with success, which is impossible.
✁

B.9 Guided Weak

Lemma B.27 For GPRECOMPW ✢ � ✤ , we have

PRECOMPW ✢ ✡ ✤ ✁

✟ � ✟✑
✓ ✚✢✜

✗✑
✙✛✚✢✜ PRECOMPW

✙ ✢ ✡ ✣ � ✑ ✣ ✓ ✘ ✤

Proof. Similar to Lemma B.21.
✁

Lemma B.28 GPRECOMPW is a valid guided precomponent function.

B.9. GUIDED WEAK 199

Proof. By Lemma B.27,
✆

contains a partitioning of a weak precomponent. For each par-

tition, the correct ✣ -value ✣ ✁ ✣ ✓ ☎ � ✣
✙

is associated with the states by INSERT. Since a

map with the top node of
✆

is returned by GPRECOMPW, the output from GPRECOMPW

has the correct form. Finally, we have that GPRECOMPW terminates, since all subcompu-

tations terminates and the loops are finite.
✁

Lemma B.29 If
✂☎✄ ✁

GPRECOMPW ✢ � ✤ then � ✢ ✠ � ✤ ✣ STATES ✢ ✠ � ✤ ✎ ✁ ✁✂� ✡ .

Proof. From Lemma B.27, we have that
✠✁� ✞ PRECOMPS ✢ ✡ ✤ . But then it follows from

the proof of Lemma B.10 that � ✢ ✠ � ✤ ✣ STATES ✢ ✠ � ✤ ✎ ✁ ✁☎� ✡ .
✁

Lemma B.30 For GUIDEDWEAK ✢ ✚ ✞ ✣ ✆ ✤ , we have � ✢ ✠ ✙ ✤ ✣☛✡ ✙ ✎ ✁ ✁✂� ✆
.

Proof. Similar to Lemma B.11 when using Lemma B.29 instead of Lemma B.10.
✁

Theorem B.13 (Soundness) GUIDEDWEAK is sound.

Proof. If GUIDEDWEAK ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ after iteration
✯

then ✆ ✁ ✠ ✙
and

✚ ✞ ✁ ✡ ✙ . Thus by Lemma B.30, � ✢ ✆ ✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
.

✁

Lemma B.31 If
✡ ☞ ✩ ✕ ✂✳✜

�
✚ ✞ ✂ � � ✢✄✁ ✤ and

✂ � ✕ ✢✂✁ ✤ ✏ ✡ ✆✁ ✌
then✠

✄ ✁ ✡ ✁ ✂ ✻ ✁ ✢ ✡ ✤ ✆✁ ✌
.

Proof. Let ✚ ✁ ✂ � ✕ ✢✄✁ ✤ ✏ ✡ . Since ✚ ✁ ✁
☞ ✕ ✢✄✁ ✤ , there exists an action � where

✟ ✚ ✣ � ✡ ✁ PREIMGSA ✢ ✡ ✤ ☞ PREIMGSA ✢
✕ ✂✳✜

✑
�
✚ ✞

✂ � � ✢✄✁ ✤☞✤

Since also ✚ ✆✁ ✡ , we get by definition of PRECOMPW that ✚ ✁ PRECOMPW ✢ ✡ ✤ . ✁

Lemma B.32 If
✂ � ✕ ✢ ✆ ✤ ✆✁ ✌

and GUIDEDWEAK ✢ ✚ ✞ ✣ ✆ ✤ returns “no solution exists”

then there exists an iteration
✯

of GUIDEDWEAK where
✩ ✕

�
✚ ✞ ✂ � � ✢ ✆ ✤ ✞ ✡ ✙

.

Proof. By induction on
✪

.

Case
✪ ✁ ✟

. By definition of WDIST,
✂ � ✞ ✢ ✆ ✤ ✁ ✆

. Since
✡ ✞ ✁ ✆

, we have
✯ ✁ ✟

.

Case
✪ ✝✠✟

. The induction hypothesis is that if
✂ � ✕ ✂✳✜ ✢ ✆ ✤ ✆✁ ✌

and GUIDEDWEAK ✢ ✚ ✞ ✣ ✆ ✤
returns “no solution exists” then there exists an iteration

✯ ☞ of GUIDEDWEAK where✩ ✕ ✂✳✜
�
✚ ✞ ✂ � � ✢ ✆ ✤ ✞ ✡ ✙ ☞ .
Assume

✂ � ✕ ✢ ✆ ✤ ✆✁ ✌
. Then by definition of WDIST,

✂ � ✕ ✂✳✜ ✢ ✆ ✤ ✆✁ ✌
. Thus, by

the induction hypothesis, GUIDEDWEAK will not terminate before an iteration
✯ ☞ where✩ ✕ ✂✳✜

�
✚ ✞ ✂ � � ✢ ✆ ✤ ✞ ✡ ✙ ☞ .

200 APPENDIX B. PROOFS

Consider an iteration
✎ ☛✂✯ ☞ . Let

✄ ✓ ✁ ✂ � ✕ ✢ ✆ ✤ ✏ ✡ ✓ denote the states in
✂ � ✕ ✢ ✆ ✤ not

covered by the plan. By Lemma B.31 and Lemma B.27, the queue in GPRECOMPW can

only be empty if
✄ ✓ ✁ ✌

. Thus at some iteration
✯✟☛ ✯ ☞ before GUIDEDWEAK terminates

with “no solution exists”, it must be the case that
✩ ✕

�
✚ ✞ ✂ � � ✢ ✆ ✤ ✞ ✡ ✙

.
✁

Theorem B.14 (Completeness) GUIDEDWEAK is complete.

Proof. By contradiction. Assume a solution exists, but GUIDEDWEAK
✢ ✚ ✞ ✣ ✆ ✤ terminates

with failure. Since a solution exists, we have WDIST ✢ ✚ ✞ ✣ ✆ ✤ ✆✁ ✆ . Assume WDIST ✢ ✚ ✞ ✣ ✆ ✤
✁ ✪

. We then have
✂ � ✕ ✢ ✆ ✤ ✆✁ ✌

. Thus, by Lemma B.32 GUIDEDWEAK will continue to

an iteration
✯

where
✂ � ✕ ✢ ✆ ✤ ✞ ✡ ✙

. Since ✚ ✞ ✁ ✂ � ✕ ✢ ✆ ✤ this will cause GUIDEDWEAK

to terminate with success, which is impossible.
✁

B.10 Guided Strong Cyclic

Lemma B.33 If
✎ ✆ ✎ ✁ ✟

in iteration
✯

of the repeat loop of GPRECOMPSC ✢ � ✤ then
� ✁ ✁ ✙ ✁

FIXEDPOINT ✢ ✡ ✤ .

Proof.

“ ✞ ”. Assume that ✟ ✚ ✣ �☛✡❖✁ � ✁ ✁ ✙
. By following the parent nodes in the search tree im-

plicitly represented by
✆

, we get that ✟ ✚ ✣ �☛✡ lies on a path ✚ ✻ ☞ ✻ ☞ ☞
✥✧✥✧✥

connected to
✡

where

✚ �
✝ ✻ ☞ . Thus, by definition of FIXEDPOINT ✢ ✡ ✤ , ✟ ✚ ✣ �☛✡ ✁ FIXEDPOINT ✢ ✡ ✤ .

“ ☞ ”. Assume ✟ ✚ ✣ � ✡ ✁ FIXEDPOINT
✢ ✡ ✤ . Thus, ✟ ✚ ✣ � ✡ lies on a path connected to

✡
. As-

sume without loss of generality that this path is ✻ ★ ✥✧✥✧✥ ✻ ✞ where ✻ ★ ✁ ✚ and ✻ ✞ ✁ ✡
. Before

the first iteration of the repeat loop, Lemma B.27 gives, ✿ ✜ ✁ STATES
✢ ✆ ✤ . But then

✆
can

not be empty before ✿ ✜ is expanded. If ✿ ✟ ✆✁ STATES ✢ � ✁ ✁ ✤ before ✿ ✜ is expanded then ✿ ✟
is inserted in

✆
when ✿ ✜ is expanded. Otherwise another node has inserted ✿ ✟

in
✆

before✿ ✜ was expanded. In both cases,
✆

can not be empty before ✿ ✟
is inserted. Applying this

argument inductively, we get that
✆

is not empty before ✻ ★ ✂✳✜
has been inserted. Thus, at

some point before iteration
✯

of the repeat loop, ✟ ✚ ✣ � ✤ ✁ � ✁ ✁
.

✁

Lemma B.34 GPRECOMPSC is a valid guided precomponent function.

Proof. Lemma B.33 gives that GPRECOMPSC ✢ ✡ ✤ returns a map with valid SAs of
✡

. By

inspection of GPRECOMPSC, we see that the INSERT function associates states in
✆

with

their correct ✣ -value. Thus, all states in STATES ✢ � ✁ ✁ ✤ are associated with their correct

✣ -value by ✝✁� in line 13. By inspection of line 21 to 22, we therefore get that the map

of SAs returned by GPRECOMPSC ✢ ✡ ✤ associates the states of the SAs with their correct

✣ -value.

B.11. WEAK ADVERSARIAL 201

To prove that GPRECOMPSC ✢ ✡ ✤ terminates, we first observe that line 1 to 6 termi-

nates since the loops are finite. The repeat loop must also terminate, since in the proof of

Lemma B.33
� ✁ ✁ reaches a max size at some point, due to the finite number of SAs, such

that no new nodes are inserted on
✆

.
✁

Theorem B.15 (Soundness) GUIDEDSTRONGCYCLIC is sound.

Proof. This follows from Lemma B.16 and an adoption of Lemma B.17.
✁

Theorem B.16 (Completeness) GUIDEDSTRONGCYCLIC is complete.

Proof. By contradiction. Assume that � ✢ ✆✣✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆
, but GUIDEDSTRONGCYC-

LIC
✢ ✚ ✞ ✣ ✆ ✤ terminates in iteration

✯
with “no solution exists”. The

✯
th call to GPRECOMPSC

is finding a strong cyclic precomponent of
✡ ✙✄✂✳✜

. Since GUIDEDSTRONGCYCLIC termi-

nates in iteration
✯
, we must have GPRECOMPSC ✢ ✡ ✙✄✂✳✜ ✤ ✁ ✌

. This is only possible if✎ ✆ ✎ ✁ ✟
in some iteration of the repeat loop. But then by Lemma B.33, we have that

prior to this
� ✁ ✁ ✁

FIXEDPOINT
✢ ✡ ✙✄✂✳✜ ✤ . We have shown in the completeness proof of

STRONGCYCLIC that this leads to SCPLANAUX ✢ � ✁ ✁ ✤ ✆✁ ✌
, which is impossible since

GPRECOMPSC then would return with a non-empty map.
✁

B.11 Weak Adversarial

Lemma B.35 PRECOMPWA is a valid precomponent function.

Proof. This follows from PRECOMPWA ✢ ✡ ✤ ✞ PREIMGSSA ✢ ✡ ✤ ✏ ✡ ✸ ✁✄✂ ❂ ✒ and the fact

that both PREIMGSSA and FAIRSTATES terminates.
✁

Lemma B.36 If ✆ ✒ is returned by PRECOMPWA ✢ ✡ ✤ then

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ STATES ✒ ✢ ✆ ✒ ✤ ✎ ✁ ✁☎� ✡ ✂
Proof. By definition of PRECOMPWA ✢ ✡ ✤ , we have

✆ ✒ ✁ ✮ ✟ ✚ ✣ � ✒ ✡ ✛☎✟ ✚ ✣ � ✒ ✡ ✁ PREIMGSSA ✢ ✡ ✤ ✽ ✚ ✆✁ ✡ ✽■ � ✕ ✁ APP ✕ ✢ ✚✥✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ PREIMGSSA ✢ ✡ ✤ ✏ ✡ ✸ ✁ ✂ ❂ ✒ ✣ ✚ ✤ ✣ ✚ ☞ ✁ ✡ ✂ ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ ✲ ✂
Let ✚ ✁ STATES ✒ ✢ ✆ ✒☞✤ and let ✆ ✕ ✁ ✑ ☎✕ . Then by definition of ✑ ☎✕ , we have

✌ ☛
ACT ✕ ✢ ✆ ✕ ✣ ✚✥✤ ✞ APP ✕ ✢ ✚ ✤ . Assume � ✕ ✁ ACT ✕ ✢ ✆ ✕ ✣ ✚✥✤ . Then by definition of ✆ ✒ there exists

a counter system action � ✒ such that ✟ ✚ ✣ � ✒ ✡ ✁ ✆ and ✚ �
☞ ✡ ☞

�
☞

☎ ✝ � where � ✁ ✡
. By definition of✄

of � ✢ ✆ ✒ ✣ ✆ ✕☞✤ , we get ✟ ✚ ✣ � ✡ ✁ ✄
. But then clearly � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✎ ✁ ✁✂� ✡

.
✁

202 APPENDIX B. PROOFS

Lemma B.37 For WEAKADVERSARIAL ✢ ✚ ✞ ✣ ✆ ✤ , we have

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙ ✣
✆ ✕☞✤ ✣☛✡ ✙ ✎ ✁ ✁✂� ✆ ✂

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. For any ✆ ✕ ✁ ✑ ☎✕ , we have � ✢ ✌ ✣ ✆ ✕ ✤ ✣ ✚ ✎ ✁ ✁✂� ✆
if ✚ ✁ ✆

. Thus, since
✡ ✞ ✁ ✆

and
✠ ✞ ✁ ✌

, we get
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✞ ✣ ✆ ✕ ✤ ✣☎✡ ✞ ✎ ✁ ✁✂� ✆

.

Case
✯ ✝ ✟

. The induction hypothesis is
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙✄✂✳✜ ✣

✆ ✕ ✤ ✣☛✡ ✙✄✂✳✜ ✎ ✁ ✁✂� ✆
. From

Lemma B.36 and
✠ � ✮ ✁

PRECOMPWA ✢ ✡ ✙✄✂✳✜ ✤ , we get
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ � ✮ ✣

✆ ✕☞✤ ✣ STATES ✒ ✢ ✠ � ✮ ✤✎ ✁ ✁✂� ✡ ✙✄✂✳✜
. Thus, by the induction hypothesis, it must hold that

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ � ✮ ✕
✠ ✙ ✂✳✜✤✣

✆ ✕☞✤ ✣ STATES ✒ ✢ ✠ � ✮ ✤ ✕ ✡ ✙✄✂✳✜ ✎ ✁ ✁✂� ✆
, which is equal to

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙ ✣
✆ ✕☞✤ ✣☎✡ ✙ ✎ ✁

✁✂� ✆
.

✁

Theorem B.17 (Soundness) WEAKADVERSARIAL is sound.

Proof. If WEAKADVERSARIAL ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ ✒ after iteration
✯

then ✆ ✒ ✁ ✠ ✙
and ✚ ✞ ✁ ✡ ✙

. Thus, by Lemma B.37
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆

.
✁

Lemma B.38 If there exists a system plan ✆ ✒ where

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✎ ✁ ✁☎� ✡

then there exists a weak marked adversarial DAG
✁ �✂� ✢ ✚ ✣☛✡ ✤ .

Proof. If ✚ ✁ ✡
then

✁ � � ✢ ✚ ✣☛✡ ✤ is the single terminal state ✚ . Otherwise assume ✚ ✆✁ ✡
.

Since
✡

can be reached from ✚ for any non-empty environment plan there must exist a set

of finite prefixes
✠

of execution paths in
✩ ✍ ☞ ✪ ✒

�
☞

EXEC ✢ ✚ ✣ ✆ ✒ ✣ ✆ ✕ ✤ that reaches a state in
✡

.

In addition,
✠

can be chosen such that

1. from each state ✏ on a path in
✠

visited prior to a state in
✡

, a counter system action

for each applicable environment action APP ✕ ✢ ✏ ✤ exists, and

2. all system actions associated with paths in
✠

are counter actions.

The first property is fulfilled since no non-empty environment plan exists making
✡

un-

reachable. The second property holds since, in order for
✡

to be reachable, it is sufficient

only to apply a single counter action for each environment action that may transition to a

state closer to
✡

.

Let the level of a state ✿ on one of these paths be defined by the maximum distance from✿ to
✡

for any of the paths visiting ✿ . The paths then form a weak marking
✁ � � ✢ ✚ ✣☛✡ ✤ of

an adversarial DAG
✁ � ✢ ✡ ✤ of

✡
.

✁

B.12. STRONG CYCLIC ADVERSARIAL 203

Theorem B.18 (Completeness) WEAKADVERSARIAL is complete.

Proof. By contradiction. Assume that a system plan ✆ ✒ exists such that
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣

✆ ✕ ✤ ✣ ✚ ✞ ✎ ✁ ✁✂� ✆
and WEAKADVERSARIAL

✢ ✚ ✞ ✣ ✆ ✤ terminates with “no solution exists”.

By Lemma B.38, a weak marked adversarial DAG
✁ � � ✢ ✚ ✞ ✣ ✆ ✤ exists. By the definition

of
✁ �✁� ✢ ✚ ✞ ✣ ✆ ✤ we have that all states at level

✯
are fair with respect to their applicable

system actions and the states at level
✎ ✑✟✯

. Thus, since PRECOMPWA prunes unfair

states from the preimage of
✡

, all states in
✁ �✂� ✢ ✚ ✞ ✣ ✆ ✤ at level 1 are in

✡ ✜
, all states

at level 2 are in
✡ ✟

etc.. Hence, if
✡

has reached a maximum size (which must happen

since WEAK terminates with failure) then
✡

includes all states in
✁ �✂� ✢ ✚ ✞ ✣ ✆ ✤ . However,

then WEAKADVERSARIAL returns with success since ✚ ✞ ✁ WEAKADVERSARIAL ✢ ✚ ✞ ✣ ✆ ✤ ,
which is impossible.

✁

B.12 Strong Cyclic Adversarial

Lemma B.39 Let ✁
✙

be defined recursively by

✁ ✞ ✁ ✌ ✣
✁
✙ ✁ ✁ ✁ ✓ FAIRSTATES ✢ ✁ ✁ ✣☛✡ ✕ STATES ✒ ✢ ✁ ✙✄✂✳✜ ✤ ✤ ✸ ✁✄✂ ❂ ✒ ✂

then ✁
✙ ☎ ✜ ☞ ✁

✙
.

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. Trivial since ✁ ✞ ✁ ✌
.

Case
✯✞✝ ✟

. The induction hypothesis is ✁
✙ ☞ ✁

✙✄✂✳✜
. We have

✁
✙ ☎ ✜ ✁ ✁ ✁ ✓ FAIRSTATES ✢ ✁ ✁ ✣☛✡ ✕ STATES ✒ ✢ ✁ ✙ ✤ ✤ ✸ ✁✄✂ ❂ ✒✫✂

Thus, by definition of FAIRSTATES

✁
✙ ☎ ✜ ✁ ✁ ✁ ✓ ✮✗✚✜✛ ■ � ✕ ✁ APP ✕ ✢ ✚✥✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ ✁ ✁ ✣ ✚✥✤ ✣

✚ ☞ ✁ ✡ ✕ STATES ✒ ✢ ✁ ✙ ✤ ✂ ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ ✲ ✸ ✁ ✂ ❂ ✒✫✂
The induction hypothesis is ✁

✙ ☞ ✁
✙✄✂✳✜

which means

✁
✙ ☎ ✜ ☞ ✁ ✁ ✓ ✮✗✚✜✛ ■ � ✕ ✁ APP ✕ ✢ ✚✥✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ ✁ ✁ ✣ ✚✥✤ ✣

✚ ☞ ✁ ✡ ✕ STATES ✒ ✢ ✁ ✙ ✂✳✜ ✤ ✂ ✚ �
✡ ☞

�
☞

☎ ✝ ✚ ☞ ✲✾✸ ✁✄✂ ❂ ✒
✁ ✁

✙ ✂
✁

204 APPENDIX B. PROOFS

Lemma B.40 PRECOMPSCA is a valid precomponent function.

Proof. By inspection of
✠

✄ ✁ ✡ ✁ ✂ ✻ ✁ ✡ ✄ ✢ ✡ ✤ , we have

✠
✄ ✁ ✡ ✁ ✂ ✻ ✁ ✡ ✄ ✢ ✡ ✤ ✞ FIXEDPOINT ✢ ✡ ✤ ✂

Thus, if ✟ ✚ ✣ �☛✡ ✁ PRECOMPSCA ✢ ✡ ✤ then � ✁ APP ✢ ✚✥✤ and ✚ ✆✁ ✡
. To prove that PRECOMP-

✁
✡ ✄ ✢ ✡ ✤ terminates, we observe that the only difference between PRECOMPSC ✢ ✡ ✤ and

PRECOMPSCA ✢ ✡ ✤ is that the subfunction PRUNEUNCONNECTED has been substituted

with PRUNEUNFAIR . We can therefore reuse the proof for termination of PRECOMPSC ✢ ✡ ✤
except that we need to show that PRUNEUNFAIR terminates. Assume that PRUNEUNFAIR

diverges. By Lemma B.39 ✠ ❆✞� ✁ ✁ ✙ ☎ ✜ ☞ ✠ ❆✞� ✁ ✁ ✙ . However, since PRUNEUNFAIR di-

verges, we must have ✠ ❆✞� ✁ ✁ ✙ ☎ ✜ � ✠ ❆✞� ✁ ✁ ✙ for
✯ ✝ ✟

, which is impossible since the

number of SSAs is finite.
✁

Lemma B.41 In each iteration
✯

of PRUNEUNFAIR ✢ ✁ ✁ ✣☛✡ ✤ , we have■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙ ✣ ✆ ✕ ✤ ✣ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁✂� ✡ ✂
Proof. By induction on

✯
.

Case
✯ ✁ ✟

. ✠ ❆✞� ✁ ✁ ✞ ✁ ✌
which trivially fulfills the requirement.

Case
✯✞✝ ✟

. The induction hypothesis is■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜❙✣ ✆ ✕ ✤ ✣ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✎ ✁ ✁✂� ✡ ✂
We have

✠ ❆✞� ✁ ✁ ✙ ✁ ✁ ✁ ✓ FAIRSTATES ✢ ✁ ✁ ✣☛✡ ✕ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✤ ✸ ✁✄✂ ❂ ✒
Thus by definition of FAIRSTATES

✠ ❆✞� ✁ ✁ ✙ ✁ ✁ ✁ ✓ ✮✗✚✜✛ ■ � ✕ ✁ APP ✕ ✢ ✚ ✤ ✂ ❏ � ✒ ✁ ACT ✒ ✢ ✁ ✁ ✣ ✚ ✤ ✣
✚ ☞ ✁ ✡ ✕ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✂ ✚ �

✡ ☞
�

☞
☎ ✝ ✚ ☞ ✲✾✸ ✁ ✂ ❂ ✒✫✂

Let ✚ ✁ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ then obviously■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙ ✣ ✆ ✕ ✤ ✣ ✚ ✎ ✁ ✁✂� ✡ ✕ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✂✳✜ ✤ ✂
Thus,■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙ ✣ ✆ ✕ ✤ ✣ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁✂� ✡ ✕ STATES ✢ ✠ ❆✞� ✁ ✁ ✙ ✂✳✜ ✤ ✂
Combined with the induction hypothesis, we get

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙ ✕ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜✫✣ ✆ ✕ ✤ ✣
STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✕ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ✤ ✎ ✁ ✁✂� ✡ ✂ Thus, since by Lemma B.39 ✠ ❆✞� ✁ ✁ ✙☞ ✠ ❆✞� ✁ ✁ ✙✄✂✳✜ ■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ❆✞� ✁ ✁ ✙ ✣ ✆ ✕ ✤ ✣ STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✙ ✤ ✎ ✁ ✁✂� ✡ ✂

✁

B.12. STRONG CYCLIC ADVERSARIAL 205

Lemma B.42 If SCAPLANAUX ✢ ● ❂ ❈ ❃✤❂ ✁ ✁ ✣☛✡ ✤ returns ✆ ✒ then■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕ ✤ ✣ STATES ✢ ✆ ✒☞✤ ✎ ✁ ✒✂✄✝✁✂� ✡ ✂
Proof. By inspection of SCAPLANAUX , we have

✆ ✒ ✁
PRUNEUNFAIR ✢ PRUNEOUTGOING ✢ ✆ ✒ ✣☛✡ ✤ ✣☛✡ ✤ ✂

By definition of PRUNEOUTGOING , if ✟ ✚ ✣ � ✒ ✡ ✁ ✆ ✒ then

✟ ✚ ✣ � ✒ ✡ ✆✁ PREIMGSSA ✢ ✡ ✕ STATES ✒ ✢ ✆ ✒ ✤☞✤✫✂
Thus, for all ✆ ✕ ✁ ✑ ☎✕ if ✚ ☞ ✁ ✡ ✕ STATES ✒ ✢ ✆ ✒☞✤ then ✟ ✚ ✣ ✚ ☞ ✡ ✆✁ ✄

of � ✢ ✆ ✒ ✣ ✆ ✕ ✤ . This

means that no execution path in EXEC ✢❄✿ ✞ ✣ ✆ ✒ ✣ ✆ ✕☞✤ where ✿ ✞ ✁ STATES ✒ ✢ ✆ ✒☞✤ can reach a

state outside of
✡ ✕ STATES ✒ ✢ ✆ ✒ ✤ . We still need to show that for all ✆ ✕ ✁ ✑ ☎✕ there is an

execution path reaching
✡

for each state in ✆ ✒ . However, this follows from Lemma B.41,

since there exists an
✯

such that ✆ ✒ ✁ ✠ ❆✞� ✁ ✁ ✙
of PRUNEUNFAIR . From the above, it

follows ■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ STATES ✒ ✢ ✆ ✒ ✤ ✎ ✁ ✒✂✄ ✁✂� ✡ ✂
✁

Lemma B.43 For STRONGCYCLICADVERSARIAL
✢ ✚ ✞ ✣ ✆ ✤ , we have■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙ ✣ ✆ ✕ ✤ ✣☛✡ ✙ ✎ ✁ ✒✂✄ ✁✂� ✆ ✂

Proof. By induction on
✯
.

Case
✯ ✁ ✟

. We trivially have■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✞ ✣ ✆ ✕☞✤ ✣ ✁ ✎ ✁ ✒☎✄✝✁✂� ✆

for ✁ ✁ ✆
. Thus, ■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✞ ✣ ✆ ✕ ✤ ✣☛✡ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆ ✂

Case
✯✞✝ ✟

. The induction hypothesis is■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙✄✂✳✜✫✣ ✆ ✕ ✤ ✣☛✡ ✙✄✂✳✜ ✎ ✁ ✒✂✄ ✁✂� ✆ ✂
From Lemma B.42 and

✠ � ✮ ✁
PRECOMPSCA ✢ ✡ ✙✄✂✳✜ ✤ , we get■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ � ✮ ✣

✆ ✕ ✤ ✣ STATES ✒ ✢ ✠ � ✮ ✤ ✎ ✁ ✒✂✄✝✁☎� ✡ ✙✄✂✳✜ ✂
Combined with the induction hypothesis, we get■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ � ✮ ✕ ✠ ✙✄✂✳✜✤✣ ✆ ✕☞✤ ✣ STATES ✒ ✢ ✠ � ✮ ✤ ✕ ✡ ✙ ✂✳✜ ✎ ✁ ✒✂✄✝✁✂� ✆ ✂
Which is equal to ■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✠ ✙ ✣ ✆ ✕ ✤ ✣☛✡ ✙ ✎ ✁ ✒✂✄ ✁✂� ✆ ✂

✁

206 APPENDIX B. PROOFS

Theorem B.19 (Soundness) STRONGCYCLICADVERSARIAL is sound.

Proof. If STRONGCYCLICADVERSARIAL ✢ ✚ ✞ ✣ ✆ ✤ returns a solution ✆ ✒ after iteration
✯

then

✆ ✒ ✁ ✠ ✙
and ✚ ✞ ✁ ✡ ✙

. Thus, by Lemma B.43
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆

.
✁

Lemma B.44 If there exists a system plan ✆ ✒ where

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✎ ✁ ✒✂✄ ✁✂� ✡

then there exists a strong cyclic marked adversarial DAG
✁ � ✶ ✎ ✢ ✚ ✣☛✡ ✤ .

Proof. If ✚ ✁ ✡
then

✁ � ✶ ✎ ✢ ✚ ✣☛✡ ✤ is the single terminal state ✚ . Otherwise, assume

✚ ✆✁ ✡
. Let

�
denote the set of states that can be visited by any execution path in✩ ✍ ☞ ✪ ✒

�
☞

EXEC ✢ ✚ ✣ ✆ ✒ ✣ ✆ ✕ ✤ prior to a state in
✡

. For each state in ✏ ✁ �
, we have

■ ✆ ✕ ✁
✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕ ✤ ✣ ✏ ✎ ✁ ✒✂✄✝✁✂� ✡

. Thus, it must be possible to define a counter system action

for each applicable environment action APP ✕ ✢ ✏ ✤ such that a set of finite paths reaching
✡

exists where the states of the paths are in
�

and the associated system actions are counter

actions. Let the level of a state ✿ on one of these paths be defined by the maximum distance

from ✿ to
✡

for any of the paths visiting ✿ . The paths can then be represented by a DAG

which is a subset of an adversarial DAG
✁ � ✢ ✡ ✤ of

✡
. Since the states of this DAG is

�

and ✚ ✁ �
, a strong cyclic marking of the DAG exists that is equal to a valid strong cyclic

marking
✁ � ✶ ✎ ✢ ✚ ✣☛✡ ✤ of

✁ � ✢ ✡ ✤ . ✁

Lemma B.45 If a strong cyclic marked adversarial DAG
✁ � ✶ ✎ ✢ ✚ ✣☛✡ ✤ exists and✁ �

✏ ✌✶ ✎ ✢ ✚ ✣☛✡ ✤ ✞ ✁ ✁
then

✁ �
✏ ✌✶ ✎ ✢ ✚ ✣☛✡ ✤ ✞ PRUNEUNFAIR ✢ ✁ ✁ ✣☛✡ ✤ .

Proof. By inspection of PRUNEUNFAIR
✢ ✁ ✁ ✣☎✡ ✤ , it follows that all SSAs of a state ✚ in ✁ ✁

is included in ✠ ❆✞� ✁ ✁ ✙ ☎ ✜ if ✚ is fair with respect to the SSAs associated with ✚ and the states

in ✠ ❆✞� ✁ ✁ ✙
. Since all the states at level 0 in

✁ �
✏ ✌✶ ✎ ✢ ✚ ✣☛✡ ✤ are in

✡
, we get that all SSAs of

states at level 1 are included in ✠ ❆✞� ✁ ✁ ✜
. Similarly, in iteration 2, we get that all SSAs of

states at level 2 are included in ✠ ❆✞� ✁ ✁ ✟
and PRUNEUNFAIR

✢ ✁ ✁ ✣☎✡ ✤ does not terminate in

iteration 1 if some states at level 2 are not in STATES ✒ ✢ ✠ ❆✞� ✁ ✁ ✜ ✤ . Thus, by induction, an

iteration
✪

is reached where
✁ �

✏ ✌✶ ✎ ✢ ✚ ✣☛✡ ✤ ✞ ✠ ❆✞� ✁ ✁ ✕
.

✁

Theorem B.20 (Completeness) STRONGCYCLICADVERSARIAL is complete.

Proof. By contradiction. Assume that
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄ ✁✂� ✆

, but STRONG-

CYCLICADVERSARIAL ✢ ✚ ✞ ✣ ✆ ✤ terminates in iteration
✯

with “no solution exists”. The
✯
th

call to PRECOMPSCA is finding a strong cyclic adversarial precomponent of
✡ ✙✄✂✳✜

. Since

STRONGCYCLICADVERSARIAL terminates in iteration
✯
, we must have PRECOMPSCA ✢✡ ✙✄✂✳✜ ✤ ✁ ✌

. Since
■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁✂� ✆

, we also have

■ ✆ ✕ ✁ ✑ ☎✕ ✂ � ✢ ✆ ✒ ✣ ✆ ✕☞✤ ✣ ✚ ✞ ✎ ✁ ✒✂✄✝✁☎� ✡ ✙✄✂✳✜

B.12. STRONG CYCLIC ADVERSARIAL 207

since by Lemma B.3
✡ ✙ ✂✳✜ ☞ ✆

. Thus, by Lemma B.44 a strong cyclic marked adversarial

DAG
✁ � ✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙ ✂✳✜ ✤ exists. We have from the completeness proof of STRONGCYCLIC that

in some iteration of PRECOMPSCA ✢ ✡ ✙ ✂✳✜ ✤ , � ✁ ✁ ✁
FIXEDPOINT ✢ ✡ ✙✄✂✳✜ ✤ . From the defini-

tion of
✁ � ✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙✄✂✳✜ ✤ , it is clear that

✁ �
✏ ✌✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙✄✂✳✜ ✤ ✞ FIXEDPOINT

✢ ✡ ✙✄✂✳✜ ✤ . Consider

the pruning of
� ✁ ✁

in SCAPLANAUX . No SSAs in
✁ �

✏ ✌✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙✄✂✳✜ ✤ will be pruned by

PRUNEOUTGOING since
✁ �

✏ ✌✶ ✎ ✢ ✚ ✞ ✣☎✡ ✙✄✂✳✜ ✤ has no SSAs leading out from STATES ✢ ✁ �
✏ ✌✶ ✎ ✢ ✚ ✞✣☎✡ ✙✄✂✳✜ ✤☞✤ ✕ ✡ ✙ ✂✳✜

. In addition, by Lemma B.45 no SSAs in
✁ �

✏ ✌✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙✄✂✳✜ ✤ will be pruned

by PRUNEUNFAIR ✢ ✁ ✄ ✣☛✡ ✙ ✂✳✜ ✤ since
✁ �

✏ ✌✶ ✎ ✢ ✚ ✞ ✣☛✡ ✙ ✂✳✜ ✤ ✞ ✁ ✁
. Thus SCAPLANAUX and

PRECOMPSCA return a non-empty result, which is impossible.
✁

