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Abstract

Belief propagation over pairwise connected Markov

Random Fields has become a widely used approach, and

has been successfully applied to several important com-

puter vision problems. However, pairwise interactions are

often insufficient to capture the full statistics of the problem.

Higher-order interactions are sometimes required. Unfor-

tunately, the complexity of belief propagation is exponential

in the size of the largest clique. In this paper, we introduce

a new technique to compute belief propagation messages in

time linear with respect to clique size for a large class of

potential functions over real-valued variables.

We demonstrate this technique in two applications. First,

we perform efficient inference in graphical models where

the spatial prior of natural images is captured by 2 × 2
cliques. This approach shows significant improvement over

the commonly used pairwise-connected models, and may

benefit a variety of applications using belief propagation to

infer images or range images. Finally, we apply these tech-

niques to shape-from-shading and demonstrate significant

improvement over previous methods, both in quality and in

flexibility.

1. Introduction

In the past few decades, the application of probabilis-

tic models for solving computer vision problems has lead

to significant advances. Many of these probabilistic mod-

els can be simplified by factoring large probability distri-

butions using graphical models. Recently, the method of

loopy belief propagation has been shown to produce ex-

cellent results in several real-world computer vision prob-

lems [4, 19, 20, 10, 13]. However, this method has some

drawbacks. The most serious is that the running time of

belief propagation is exponential in the size of the largest

graph clique. This means that for problems with many la-

bels or real-valued variables, graphical representations are

typically limited to pairwise interactions between variables.

Unfortunately, for many problems in computer vision, pair-

wise interactions fail to capture the rich statistical distribu-

tion of the problem domain. For example, natural images

exhibit rich higher-order statistics that cannot be captured

by pairwise connected Markov Random Fields (MRFs). In

section 3, we introduce a new technique to compute belief

propagation messages in time linear with respect to clique

size that works for a large class of potential functions with-

out resorting to approximation. In section 3.4, we further

improve on the efficiency and performance of belief prop-

agation by presenting a nonparametric, particle-like repre-

sentation of belief propagation messages that is simultane-

ously compatible with higher-order non-pairwise interac-

tions and also with recent extensions to belief propagation

that guarantee convergence [6].

These advancements allow us to efficiently solve infer-

ence problems that were previously unavailable to belief

propagation. In section 4, we show that a prior model of

natural images using 2 × 2 MRF cliques strongly outper-

forms pairwise-connected models. The ability to use more

accurate models of image or range image priors has the po-

tential to significantly aid the performance of several com-

puter vision applications, including stereo [19], photomet-

ric stereo [20], shape-from-shading (section 5) and image-

based rendering. Finally, in section 5, we apply our methods

to the problem of shape-from-shading. We show that our

approach leads to significant advancements in performance

over previous methods. Additionally, due to the flexible

nature of belief propagation, rather than hardcoding a re-

flectance function into the algorithm, our approach can sup-

port not only arbitrary reflectance functions, but also uncer-

tainty in reflectance, lighting direction, and surface albedo.

2. Belief Propagation

Belief propagation is a method for estimating the mar-

ginals of a multivariate probability distribution of the form:

p( ~X) =
∏

φi(~xi) ~xi ⊂ ~X (1)

Such probability distributions are often represented in the

form of a factor graph. A factor graph is a bipartite graph



in which each potential function φi(~xi) is represented by a

factor node f , which is connected to one variable node v
for each element of the vector ~xi. An example factor graph

is depicted in figure 3. Sum-product belief propagation es-

timates the marginals b(xi) =
∑

X\xi
p(~x) by iteratively

computing messages along each edge of the graph accord-

ing to the equations:

mt
i→f (xi) =

∏

g∈N (i)\f

mt−1
g→i(xi) (2)

mt
f→i(xi) =

∑

~xN(f)\i



φf

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f (xj)



 (3)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (4)

where f and g are factor nodes, i and j are variable nodes,

and N (i) is the set of neighbors of node i [6]. Here, bi(xi)
is the estimated marginal of variable i. The expected value

of ~X , or equivalently, the minimum mean-squared error

(MMSE) point estimate, can be computed by finding the

mean of each marginal. If the most likely value of ~X is

desired, also known as the maximum a posteriori (MAP)

point estimate, then the integrals of equation 3 are replaced

by supremas. This is known as max-product belief propa-

gation.

When the underlying factor graph is a tree, one iteration

of sum-product belief propagation is guaranteed to compute

the correct marginals [21]. When the factor graph contains

loops, the messages must be updated iteratively until con-

vergence is reached. This is known as loopy belief propa-

gation (LBP), and convergence is no longer guaranteed.

3. Efficient Belief Propagation

Belief propagation has been applied successfully to a va-

riety of computer vision problems [4, 19, 20]. However, in

many computer vision problems, belief propagation is pro-

hibitively slow. The high-dimensional summation in equa-

tion 3 has a complexity of O(MN ), whereM is the number

of possible labels for each variable, and N is the number of

neighbors of f . In many computer vision problems, vari-

ables are continuous or have many labels. In these cases,

applications of belief propagation have nearly always been

restricted to pairwise connected Markov Random Fields,

where each potential function in equation 1 depends on only

two variable nodes [4, 19]. However, pairwise connected

models are often insufficient to capture the full complex-

ity of the joint distribution of the problem. In this section,

we describe methods to efficiently compute belief propaga-

tion messages over continuous random variables for a wide

range of higher-order (non-pairwise) potential functions.

3.1. Linear Constraint Nodes

Consider potential functions of the form

φ(~x) = g(~x · ~v) (5)

where ~x and ~v are vectors of length N . Normally, com-

puting messages from this factor node takes O(MN ) time.

Here, we show that, using a change of variables, this com-

putation can be done in O(NM2) time. For notational

simplicity, we illustrate this using N = 4, although the

method extends easily to arbitrary N . For shorthand, let

Mi ≡ mf→i and mi ≡ mi→f Then we have:

M1(x1) =

∫ ∫ ∫

g(v1x1 + v2x2 + v3x3 + v4x4)

m2(x2)m3(x3)m4(x4)dx2 dx3 dx4 (6)

=

∫ ∫ ∫

J g(v1x1 + y1)m2(
y1 − y2
v2

)

m3(
y2 − y3
v3

)m4(
y3
v4

)dy1 dy2 dy3 (7)

∝
∫

g(v1x1 + y1)

(∫

m2(
y1 − y2
v2

)

(∫

m3(
y2 − y3
v3

)m4(
y3
v4

)dy3

)

dy2

)

dy1 (8)

where J is the (constant) Jacobian corresponding to the

change of variables. Since belief propagation messages are

only defined up to a constant for most variations of LBP, the

Jacobian can be safely ignored in this case. Here we have

used the change of variables y3 = v4x4, y2 = v3x3 + y3,

and y1 = v2x2 + y2. This allows us to perform the inte-

grands one at a time. The transformation of variables used

here works for any vector ~v. However, there are many pos-

sible transformations. Clever choice of transformation of

variables may allow one to reuse intermediate computations

during the computation of other messages, or to embed ad-

ditional nonlinear potential functions of pairs of variables

yi and yi+1 at no extra computational cost.

If vi = ±1 for all i, and messages are represented as

uniform-width histograms, then each integrand in equation

8 can be reduced to a O(M logM) computation using dis-

crete Fourier transforms as in [3]. Although we describe

our approach for sum-product belief propagation, the same

approach is valid for max-product belief propagation. For

max-product belief propagation, each maximal in equation

8 can be closely approximated in linear time using the dis-

tance transform methods described in [3].

Linear potential functions of the form in equation 5 are

quite flexible. In fact, for any multivariate potential function

φ(~x), we can approximate φ by a product of linear potential

functions φ(~x) ≈ ∏

i φi(~x · ~vi). To see this, note that the

integral transform

R†[ψ] =

∫

|v|=1

ψ(~x · ~v,~v) d~v (9)



is the adjoint of the Radon transform [2]. Since the Radon

transform is invertible, its adjoint must also be invertible.

This means that for any potential function φ(~x), there exists

a function ψ(r,~v) such that log φ( ~X) = R†[ψ]. Thus, given

enough unit vectors ~vi, log φ(~x) can be represented almost

exactly by a sum
∑

i log φi(~x · ~vi).
If the nonlinearity g is a delta function, then the first in-

tegral in equation 8 is not necessary. We refer to such fac-

tor nodes as hard linear constraint nodes. Hard linear con-

straint nodes are useful because they allow overcomplete

representations of the problem space ~X to be used in graphi-

cal models. For any computational problem, finding the best

way to represent the problem state space is crucial; some

problems can be solved much more easily given the right

representation. A single complete representation forces us

to decide on only one representation, whereas overcomplete

representations allow us to retain the benefits of multiple

complete representations. One example of the use of over-

complete representations is multi-scale approaches in com-

puter vision, which have been very successful in several do-

mains. Another example can be found in the primate visual

cortex, which is overcomplete by a factor of at least 200:1

relative to retinal input.

When the representation of ~X is overcomplete, then

there are linear dependencies among the variables of ~X of

the form ~x ·~v = 0. These dependencies must be enforced to

prevent computing estimates that are internally inconsistent.

Using standard belief propagation (equation 3), enforcing

such constraints would be intractable. Using the methods

in equation 8, these constraints can be efficiently enforced

using a set of hard linear constraint nodes. Section 5 gives

an application of hard linear constraint nodes.

3.2. Nonlinear Constraint Nodes

We now extend our method to include potential functions

of the form

φ(~x) = g(g1(x1) + · · · + gN (xN )) (10)

For the sake of brevity, we consider the case where N =
3, although the same method works for cliques of arbitrary

size. If gi is invertible for all i, then we can apply a change

of variables to equation 3 to get:

M1(x1) =

∫ ∫

g(g1(x1) + g2(x2) + g3(x3))

m2(x2)m3(x3)dx2 dx3 (11)

=

∫ ∫

g(g1(x1)+x̂2+x̂3)m̂2(x̂2)m̂3(x̂3)dx̂2dx̂3 (12)

where m̂i(x̂i) = mi(g
−1
i (x̂i))

∂

∂x̂i

g−1
i (x̂i) (13)

We can then apply the methods of section 3.1 to get

M1(x1) =

∫

g(g1(x1)+y1)

∫

m̂2(y1−y2)m̂3(y2)dy2dy1

(14)

where we have made the change of variables y1 = x̂2 + x̂3

and y2 = x̂3.

If gi is not invertible, we can still apply the same tech-

nique if we integrate equation 3 separately for each branch

of g−1
i (xi). For example, if gi(xi) = x2

i , simply integrate

over the range (−∞, 0], and then over the range (0,+∞),
and add the two integrals together. gi(xi) has an inverse

within both of these ranges.

Using these techniques, belief propagation can be per-

formed efficiently for a wide range of high dimensional po-

tential functions. These include all axis-aligned general-

ized Gaussian distributions and Gaussian Scale Mixtures,

which are popular for natural image models and denoising

[14]. Since additional nonlinear potential functions of pairs

of variables yi and yi+1 can be embedded into equation 14

at no additional computational cost, many non axis-aligned

Gaussians and other potential functions can also be com-

puted efficiently using these methods.

3.3. Convergent Loopy Belief Propagation

One of the biggest shortcomings of loopy belief prop-

agation is that it is not guaranteed to converge. Conver-

gence becomes increasingly unlikely when the factor graph

contains many tight loops, or when potential functions are

“high energy,” or nearly deterministic [5]. The models we

will be exploring later in this paper have both of these prob-

lems. In fact, we have found empirically that standard loopy

belief propagation typically fails to converge for the model

of figure 3, even using a variety of dampening, scheduling,

and reweighting techniques.

Fortunately, it was recently discovered that when stan-

dard sum-product loopy belief propagation converges, the

resulting marginals minimize a quantity from statistical

physics known as the Bethe free energy [21]. This has

lead to the development of belief propagation algorithms

that minimize the Bethe free energy directly [22, 6], and do

so while ensuring convergence.

In the examples presented here, we use the algorithm de-

scribed in [6], which modifies equations 2 and 3 by:

mt
i→f (xi) = mt

f→i(xi)
1−ni

ni

∏

g∈N (i)\f

mt−1
g→i(xi)

1
ni (15)

mt
f→i(xi) =

∑

~xN(f)\i



φ̃f

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f (xj)



 (16)

φ̃f (~xN (f)) = φf (~xN (f))
∏

j∈N (f)

bτj (xj)
nj−1

nj (17)

where bτj (xj) is the belief at variable node j the last time the

algorithm converged. Once convergence is reached, bτj (xj)



is updated according to bti(xi) ∝
∏

g∈N (i)m
t
g→i(xi)

1
ni and

the algorithm continues until bτj (xj) itself converges.

Not only does this approach guarantee convergence, but

we have found that the results are often superior to standard

LBP when standard LBP does converge.

One drawback to Heske’s convergent algorithm is that

it is not compatible with max-product belief propagation.

However, when maximum a-posteriori point estimates are

desired, we can achieve them using the approach proposed

by Yuille [22], which introduces a temperature T , and re-

places the energy function of equation 1 with
∏

φi(~xi)
1
T .

As the algorithm converges, T is reduced. As T approaches

zero, the computed marginals will approximate the “maxi-

mals” of max-product belief propagation.

3.4. Nonparametric Message Representation

For continuous random variables, the integrals of equa-

tion 6 or 8 typically cannot be computed analytically. In

these cases, the beliefs bi(xi) and messages mi→f (xi) are

often approximated by discrete histograms. However, dis-

cretization error can be a serious issue for histogram rep-

resentations, especially for highly kurtotic or near-certain

beliefs. These errors can propagate across nodes and accu-

mulate over iterations. Using histograms with many bins

can help to alleviate this error, but only at the cost of com-

putational efficiency and working memory requirements.

Some applications have achieved good results by repre-

senting messages using a single Gaussian [13, 20]. How-

ever, for many vision applications, marginals are often

highly non-Gaussian. For example, in the application of

section 5, messages are typically bimodal.

Another approach, referred to as particle-based or non-

parametric belief propagation (NBP) [18, 8] is to repre-

sent each message as a mixture of Gaussians. Belief prop-

agation for real-valued variables using these techniques

has been shown to achieve superior performance and with

much greater efficiency than discrete representations. How-

ever, these methods were developed for pairwise connected

Markov Random Fields using standard belief propagation

(equations 2 - 4). Both higher-order potential functions and

Heske’s convergent belief propagation pose several addi-

tional obstacles for nonparametric belief propagation.

Nonparametric belief propagation becomes inefficient

when the number of factor nodes connected to each vari-

able node (call this D) becomes high, because it requires

sampling from a product of D different mixtures of several

Gaussians. The method is typically considered impractical

forD > 8 [8]. Graphical models with higher order potential

functions tend to have high values of D. For instance, the

denoising problem in section 4 uses a network withD = 12.

This problem is exacerbated by the corrections applied in

equation 17. Finally, the exponent introduced in equation

15 means that instead of sampling from a product ofD mix-

tures of Gaussians (already a difficult problem for large D),

one must instead sample from such a product raised to an

arbitrary exponent (a far more difficult problem).

The use of variable-width bin histograms (where each

bin may have a different width) has been used success-

fully to boost the performance of the join tree algorithm

[9]. Here we show that such a representation, when applied

to belief propagation, can overcome the obstacles encoun-

tered in applying particle-based representations to Heske’s

guaranteed-convergent LBP variation [6], or to problems

with highly-connected graphs. We require that each mes-

sage mi→f (xi) at a given variable node i must have the

same bin edges. Because of this, and because histogram

bins are non-overlapping (unlike Gaussian kernels), both

multiplication and exponentiation now become trivial:
(

(
M
∑

k=1

αkhk(x))(

M
∑

k=1

βkhk(x))

)η

=
M
∑

k=1

(αkβk)ηhk(x)

(18)

where hk(x) is 1 when x is within the range of bin k, and

zero otherwise. Thus, equation 15 can be computed effi-

ciently, even for high values of D.

The edges of each bin can be updated after the comple-

tion of each inner-loop, when bτj (xi) is updated. In this pa-

per, the bin edge locations are adjusted so that the likelihood

of each bin (according to beliefs b(xi)) is roughly equal.

Updating the locations of bin edges requires the corrections

bτj (xi) be interpolated, but the variable’s beliefs and mes-

sages can remain unchanged until they are replaced in the

next update. Note that the use of adaptive histograms is

related to approaches to improve the efficiency of LBP by

adaptively restricting the search space to only those states

with high predicted likelihoods [1].

4. Application: Higher-Order Spatial Priors

Several state-of-the-art computer vision algorithms use

belief propagation. A number of these, including stereo

[19] and photometric stereo [20] work over a grid at the

pixel level. These algorithms solve ambiguous and under-

constrained problems, where having a strong prior for im-

ages or 3D shape is essential. However, the computational

complexities of belief propagation has constrained these al-

gorithms to weak pairwise interactions between neighbor-

ing pixels. These pairwise interactions capture the smooth-

ness properties of images, but they overlook much of the

rich statistics of natural scenes. Finding a way to exploit

stronger prior image models using belief propagation could

greatly enhance the performance of these algorithms.

One promising recent model for capturing natural image

statistics beyond pairwise interactions is the Fields of Ex-

perts model (FoE), which provides a way to learn an image

model from natural scenes [17]. FoE has shown itself to

be highly effective at capturing complex image statistics by



a) Original Input b) Noisy Image (σ = 20)
PSNR = 21.11

c) Pairwise MRF
PSNR = 27.03

d) High-Order 2× 2 Factors
PSNR = 28.83

Figure 1. Using higher-order Fields of Experts to perform image denoising. a) A cropping from the original image (from [14]). b) The

original image with additive Gaussian noise of σ = 20. c) The output of a pairwise-connected Markov Random Field, similar to the model

described in [3]. Pairwise models tend to produce piecewise constant image regions [10]. d) Results using three 2 × 2 Field of Experts

filters learned from natural images, using the graphical model of figure 2 and the methods described in section 3.

performing well at image denoising and image inpainting

(filling in holes) using a gradient descent algorithm. The

FoE model describes the prior probability of an image as

the product of several student-T distributions:

p(~I) ∝
∏

C

K
∏

i=1

(

1 +
1

2
(~IC · ~Ji)

2

)−αi

(19)

where C is the set of all (overlapping) n× n patches in the

image, and ~Ji is an n × n filter. The parameters ~Ji and αi

are learned from a database of natural images.

Recently, an attempt was made at performing inference

in Fields of Experts models using loopy belief propagation,

and the approach was tested on an image denoising problem

[10]. The authors showed that using three 2 × 2 Field of

Experts filters yields a significant improvement over pair-

wise models. In their approach, the authors mitigate the

computational complexity of equation 3 by restricting the

intensity at each pixel to lie within a range defined by its

immediate neighbors within the noisy image. Specifically,

the true intensity value of each pixel is assumed to lie be-

tween the brightest and darkest of its nearest four neighbors

within the noisy image, after a slight Gaussian blur is ap-

plied. Thus, computational complexity of each message is

still O(MN ), but M (the number of possible labels) is sig-

nificantly reduced (note that here, N = 4). One drawback

of this approach is that it is particular to image denoising.

In many problems requiring a strong image or range image

prior such as stereo and other depth inference algorithms, it

can be difficult to restrict the search space of each variable

based solely on the algorithm input. We seek to develop

an implementation of Fields of Experts for belief propaga-

tion that can be applied to arbitrary image or range image

inference problems.

Using the methods of section 3, efficient belief propa-

Figure 2. A factor graph used to perform image denoising using

three 2 × 2 Fields of Experts filters. Each variable node, shown

here as circles, represents the true image intensity at a given pixel.

The three gray squares represent factor nodes corresponding to the

three 2× 2 Fields of Experts filters.

gation is possible in higher-order Fields of Experts factor

graphs without relying on simplifying assumptions specific

to image denoising. In this section, in order to demonstrate

the viability of this approach, we apply our methods to the

image denoising problem, using the same 2 × 2 filters as

[10]. Although we use image denoising as an example prob-

lem, note that this approach is not specific to image denois-

ing, and can be used as a spatial prior for a variety of com-

puter vision applications.

In the denoising problem described here, we are given

a natural image that has been corrupted with additive

Gaussian noise of known variance. The object is to remove

this noise and recover the original image. The Field of Ex-

perts spatial prior is implemented according to the factor

graph in figure 2. Here, the Gaussian likelihood is absorbed

into the factor nodes neighboring each pixel, and requires

no additional messages. Note that the model is capable of

performing denoising in a variety of other noise circum-

stances, such as non-Gaussian or multiplicative noise.



Noise Pairwise 2 × 2 Model 2 × 2 Model

Level MRF from [10] from [10] from Fig. 2

σ = 10 30.73 30.89 31.62

σ = 20 26.66 27.29 27.40

Table 1. Peak signal-to-noise ratio for pairwise and higher-order

models, averaged over ten images.

Results from our approach are shown in figure 1. As

shown in figure 1c, pairwise-connected Markov random

fields tend to produce piecewise constant results [10]. Re-

sults using higher order factor nodes (figure 1d) are able

to overcome this limitation. We measured the mean peak

signal to noise ratio (PSNR) for these results over the

same set of 10 images from the Berkeley segmentation

database [12] that was used in [10]. Here, PSNR =
20 log10(255/

√
MSE), where MSE is the mean squared

error. These results are shown in table 1. Our results show

a significant improvement over pairwise connected MRFs.

We also record an improvement over the higher-order Fields

of Experts model described in [10], which uses the same

statistical model of natural images. This is most likely due

to the convergent variant of belief propagation [5] and non-

parametric message representations used here.

More importantly, using the methods of section 3, belief

propagation can be performed efficiently in higher-order

factor nodes without relying on domain-specific approxi-

mations or simplifying assumptions. On a 2.2GHz Opteron

275, our algorithm takes under two minutes for each iter-

ation on a 256 × 256 image. By comparison, the method

of [10] took 16 minutes per iteration on a 3GHz Xeon, and

benefited from a reduced search space. Convergence typi-

cally required around 30 iterations.

5. Application: Shape From Shading

Shape-from-shading (SFS) is a classic computer vision

problem that has been studied since photometric investiga-

tions of the lunar surface were performed in the 1920s [7].

The goal of SFS is to recover the 3D surface shape given a

single image, where all light comes from a single, known

direction, and the surface is assumed to have a Lambertian

(matte) reflectance and constant albedo (no surface mark-

ings). Under these conditions, the image can be computed

from the 3D surface according to the Lambertian equation.

Let N = (p, q, 1) be the surface normal vector, and let

S = (ps, qs, 1) be the known illumination vector. Then:

i(x, y) = max(0,
1 + pps + qqs

√

1 + p2 + q2
√

1 + p2
s + q2s

) (20)

Here we leave out known quantities of albedo and illumina-

tion strength. Note that p = ∂z
∂x

, q = ∂z
∂y

. Because our im-

age is spatially discrete, we approximate these as p(x, y) =
z(x + 1, y)−z(x, y) and q(x, y) = z(x, y + 1)−z(x, y).

 

p(1,1) 
  p(2,1) 

  

q(1,1) 
  q(2,1) 

  

p(3,1)
  

q(3,1) 
    

  

Figure 3. Shape-from-shading factor graph for a 3 × 3 image.

Variable nodes are shown as circles, and factor nodes as shown as

squares. Variable nodes include nodes for p = ∂z
∂x

and q = ∂z
∂y

.

Factor nodes include Lambertian constraint nodes (gray), inte-

grability constraint nodes (black), and smoothness nodes (white).

Light gray lines indicate the borders between pixels.

In figure 3, we show the factor graph that we propose

for solving this problem. This graph uses an overcomplete

representation of surface shape: for each pixel, there is a

variable node for both p and q. Because the representation

is overcomplete, there are linear dependencies among the

variables. Specifically, an identity holds that

p(x, y) − q(x, y) + q(x+ 1, y) − p(x, y + 1) = 0 (21)

Failure to enforce these linear dependencies results in inter-

nally inconsistent surface normals that violate the zero curl

requirement, and thus do not integrate to form a valid 3D

surface. Satisfying these constraints has historically been

problematic for SFS. Using the methods of section 3, we

can enforce these linear dependencies efficiently using hard

linear constraint nodes. These integrability constraint nodes

are shown in figure 3 as black squares. These integration

nodes are similar to those used in [13], except that here, the

nonlinear nature of the SFS problem prevents us from ap-

proximating the marginals and messages at each variable as

Gaussians. In fact, the marginals at each variable are often

highly bimodal. Thus, the methods of section 3 are required

to perform belief propagation at these nodes efficiently.

The square nodes shown in gray in figure 3 represent

Lambertian constraint nodes. The potential function at

these nodes is defined to be the joint likelihood of p and

q given image intensity i: φL(p, q) = P (p, q|i). Here,

we define P (p, q|i) = const whenever equation 20 holds,

and zero otherwise. However, any reflectance function

can be used. φL(p, q) could easily be changed to han-



a) Original Image b) Linear Constraint Nodes
Mean Squared Error = 108

c) Lee & Kuo [11]
Mean Squared Error = 3390

d) Zheng & Chellappa [24]
Mean Squared Error = 4240

Figure 4. Comparing our SFS results (column b) with previous energy-minimization approaches (columns c & d). Each column contains a

3D wire mesh plot of the surface (bottom) and a rendering (top) of that surface from a light source at location (1, 0, 1), using the Lambertian

reflectance equation. a) The original 128×128 surface [23]. The rendering in this column serves as the input to the SFS algorithms in the

next three columns. 1001 pixels in this image lie in black shadow. b) The surface recovered using our linear constraint node approach.

Good results (image MSE < 226) were achieved in under 3 hours, the results in column b were run to convergence (MSE = 108 in 24

hours). c) The surface recovered using the energy minimization method described by Lee and Kuo [11] (source code obtained from [23]).

This algorithm performed best out of six SFS algorithms reviewed in the survey paper [23]. d) The surface recovered using the method

described by Zheng and Chellappa [24] (source code obtained from [23]). It is important to note that re-rendering the surface output from

our algorithm (column b) closely resembles the original input image (the mean squared error of each re-rendering is listed above each

image). This means that the Lambertian constraint at each pixel was satisfied, and that any error between the original and recovered surface

is purely the fault of the model of the prior probability of natural 3D shapes that was used (in this case, only smoothness was used).

dle specular surfaces, or even scenes with multiple or dif-

fuse light sources. Furthermore, specifying nondeterminis-

tic φL(p, q) would allow us to perform inference when sur-

face reflectance, surface albedo, or lighting conditions are

uncertain. This feature is not typical of SFS formulations.

Shape from shading is a highly underconstrained prob-

lem. For any input image, there exist many different 3D sur-

faces that render to the same image under identical lighting.

For example, note that for a n×n image, there are 2n(n+1)
variable nodes, but only n2 Lambertian constraints and n2

integrability constraints. That leaves 2n unconstrained di-

mensions. Each surface within this large subspace is a valid

solution. Additionally, for each pixel that lies in shadow, the

Lambertian constraint becomes an inequality at that pixel,

and so the number of degrees of freedom increases.

Many shape from shading methods handle this ambigu-

ity by assuming that the surface shape is known along the

image border [23], or by computing the maximal surface,

where each point is as close to the observer as possible

[16]. If these additional assumptions are met, such tech-

niques can recover the 3D shape fairly well. However, a

more flexible approach is to learn or define a probabilistic

shape prior p(z) that reflects the likelihood that a given sur-

face shape might occur in nature. Then we could select the

3D shape that maximizes this prior while still rendering to

the original input image. In shape-from-shading, this ap-

proach is known as energy-minimization (e.g. [11], [24]).

Unfortunately, due to the nonlinear nature of the problem,

local minima are a serious issue that have prevented energy-

minimization approaches from achieving adequate results

[23]. Belief propagation methods have proven themselves

more robust to local minima, making belief propagation a

promising new approach to shape from shading.

Here, the 3D surface priors used here are modeled by a

product of Laplace distributions:

p(Z) ∝
∏

p,q

exp(−|p| + |q|
σ1

)exp(−|∆p| + |∆q|
σ2

) (22)

Priors of the form exp(− |p|
σ1

) can be absorbed into the factor

nodes adjacent to each variable, and so they require no addi-

tional message passing. Priors of the form exp(− |∆p|
σ1

) are

implemented using an additional set of factor nodes. These

nodes are shown as white squares in figure 3.



In figure 4, we show the results of our SFS model. We

also compare our results with previous energy-minization

methods [11, 24]. Our approach offers a noticeable im-

provement over these methods. Further, notice that the

surface recovered by our method, when re-rendered under

the original lighting conditions, resembles the original in-

put image almost exactly. This means that our approach is

able to find a 3D surface that satisfies both the Lambertian

equations and the integrability constraints. Of those sur-

faces that satisfy these constraints, the algorithm is able to

select one that is considerably more “likely” than the origi-

nal ground-truth 3D surface, according to the surface prior

model in equation 22. Further improvement to the results of

this approach can only be achieved by improving the model

of the 3D surface priors (equation 22).

Note that the model of the 3D surface priors used in this

section use the same weak pairwise form that we improve

upon in section 4. An obvious next step for this model is to

learn Field of Experts filters for 3D surfaces, and then apply

these to our SFS model using the methods of section 4. This

can be expected to improve our results still further. Such

a spatial prior might also be highly useful for stereo [19],

photometric stereo [20], and other forms of depth inference.

6. Conclusions

In this paper, we present methods that are capable of

making belief propagation both efficient and successful for

a powerful class of graphical models that were previously

intractable. To demonstrate this technique, we use our

methods to perform inference over rich spatial priors, and to

solve the problem of shape-from-shading. In addition to im-

proved performance, SFS approached using LBP shows the

potential to generalize to more complex problems, such as

handling uncertainty in surface albedo and lighting condi-

tions, exploiting a strong spatial prior (using the methods of

section 4), and utilizing additional depth information when

available, such as stereo [19], occlusion contours, or sparse,

low-resolution range scans [15]. In general, the ability to

accurately perform inference in Markov random fields with

higher-order, non-pairwise cliques and real-valued variables

may prove to be highly useful for solving a variety of com-

puter vision problems.
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