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Retinal vessel segmentation has high value for the research on the diagnosis of diabetic retinopathy, hypertension, and car-
diovascular and cerebrovascular diseases. Most methods based on deep convolutional neural networks (DCNN) do not have large
receptive fields or rich spatial information and cannot capture global context information of the larger areas. .erefore, it is
difficult to identify the lesion area, and the segmentation efficiency is poor. .is paper presents a butterfly fully convolutional
neural network (BFCN). First, in view of the low contrast between blood vessels and the background in retinal blood vessel images,
this paper uses automatic color enhancement (ACE) technology to increase the contrast between blood vessels and the
background. Second, using the multiscale information extraction (MSIE) module in the backbone network can capture the global
contextual information in a larger area to reduce the loss of feature information. At the same time, using the transfer layer
(T_Layer) can not only alleviate gradient vanishing problem and repair the information loss in the downsampling process but also
obtain rich spatial information. Finally, for the first time in the paper, the segmentation image is postprocessed, and the Laplacian
sharpening method is used to improve the accuracy of vessel segmentation..emethod mentioned in this paper has been verified
by the DRIVE, STARE, and CHASE datasets, with the accuracy of 0.9627, 0.9735, and 0.9688, respectively.

1. Introduction

Ophthalmology is an important research area of contem-
porary medicine. Eye health is closely related to people’s
lives. .ere is a wide variety of ophthalmic diseases, such as
cataract, glaucoma, and diabetic retinopathy that have a high
incidence, and diabetic retinopathy is one of the main causes
of blindness [1]. Because retinal blood vessels provide the
only noninvasive view of the cardiovascular system, they are
the key feature that can be referenced for the diagnosis of
ophthalmic diseases [2]. .e main structure of a normal
retinal fundus image is the optic disc, macular, and blood
vessels. Hard exudation, soft exudation, microaneurysm,
and other structures may be observed in the fundus image of
the diseased retina. .e morphology of blood vessels is a key
indicator for early detection of retinal disease and under-
standing of the severity of the disease. Ophthalmologists
usually perform blood vessel segmentation manually
through retinal images to extract lesion information.
However, even for an experienced doctor, this work is
cumbersome, error-prone, and time-consuming [3].

In recent years, with the development of computer vision
technology, many fundus blood vessel analysis methods
have been proposed [4–21]. .e computer can quickly,
automatically, and accurately segment retinal blood vessels,
which will greatly improve the diagnosis rate and work
efficiency of doctors. .ere are two major types of the
analysis methods: supervised learning method and unsu-
pervised learning method [22]. .e unsupervised learning
method is designed based on the inherent properties of
blood vessels and does not need to refer to manually labeled
tags. However, compared with the supervised learning
method, there are some problems with the unsupervised
learning method. Due to noise and pathological patterns, the
performance and generality of the unsupervised method are
poor. Morphological processing can segment the vascular
structure, but it must be combined with other methods to
obtain accurate results [4]. Hoover et al. proposed a
threshold detection technique of a matched filter response
image. .is method can complement the local blood vessel
attributes with the region-based network attributes to
achieve the purpose of segmenting blood vessels [5]. Several
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studies used matched Franci and Gabor wavelet filters, both
individually and together, to enhance blood vessels and
improve segmentation [6–8]. Saffarzadeh et al. used mul-
tiscale methods to segment blood vessels, but small blood
vessels with low contrast cannot be detected [9, 10]. Roy-
chowdhury et al. [11] proposed a region growing method for
segmenting blood vessels, but specialized knowledge was
required in the setting of blood vessel seed points and the
formulation of termination rules. By combining a trainable
B-COSFIRE filter with an adaptive threshold method, Ali
et al. [12] proposed the improvement over the current
method of retinal blood vessel segmentation. .e proposed
method can automatically configure selectivity in a proto-
type mode check. Chen [13] proposed a novel hybrid active
contour model for automatic segmentation of fundus
images.
.e supervised learning method for retinal blood

vessel segmentation using label data includes two steps:
(1) blood vessel feature extraction and (2) pixel classi-
fication. Wang [14] proposed a method for segmenting
retinal blood vessels in color fundus images based on
supervised learning, using a nonlinear support vector
machine (SVM) classifier to classify image pixels into
vascular and nonvascular. K-nearest neighbor (KNN)
classifier is used for soft segmentation of retinal blood
vessels, classifying each image pixel as blood vessel or
nonvascular to generate the final segmented image [15].
Compared with the traditional neural network, U-Net
[16] with the fully convolutional neural network (FCN)
structure has attracted more attention due to its ability to
obtain from coarse to fine representation. Fu [17] pro-
posed a method of the convolutional neural network
(CNN) combined with the fully connected conditional
random field (CRF) to perform retinal blood vessel
segmentation. Li [18] proposed a wide and deep neural
network with strong induction ability to segment retinal
images. Liskowski and Krawiec trained CNNs with
fundus image patches, which were preprocessed by zero-
phase whitening, global contrast normalization, and
gamma correction [19]. Lin et al. [20] proposed a deep
learning method combining global nested edge detection
and the conditional random field. In the study by Samuel
and Veeramalai [21], a multilayer/multiscale deep su-
pervised layer technique was proposed to better segment
retinal blood vessels.
Low-quality and artefact-ridden images can affect the

performance of segmentation methods. .erefore, the
proposed models usually have the following problems [23]:
(1) the downsampling factor of the model is too large, which
leads to the feature information of a large number of small
blood vessels that is lost in the retinal image, and the in-
formation eventually cannot be recovered; (2) the receptive
field of the model is too small, which leads to insufficient
understanding of local context information, and it is im-
possible to accurately distinguish pathological regions and
blood vessels in the retinal image, causing the incorrect
segmentation; (3) the feature extraction capacity of the
network structure is insufficient, it is difficult to restore low-
level detailed feature information, and a lot of noise is

generated in the segmented blood vessel image; and (4) the
inability to obtain the accurate information of blood vessels
of different sizes results in the inability to accurately detect
blood vessel edges and small blood vessels.
In view of the above issues, this paper proposes a retinal

blood vessel segmentation model based on the deep FCN.
.e main work is as follows:

(1) An image preprocessing method based on automatic
color enhancement (ACE) technology is proposed to
improve the image quality, make the vascular area
more obvious, and achieve better segmentation
results.

(2) An improved deep FCN called the butterfly full
convolutional neural network (BFCN) for automatic
segmentation of retinal blood vessels. Compared
with basic the FCN, the BFCN has the following
advantages: (i) multiscale input can effectively im-
prove the quality of segmentation; (ii) using dilated
convolution with different expansion rates to obtain
larger receptive fields and rich spatial information is
helpful in fully understanding local context infor-
mation; and (iii) the transfer layer performs the
global average pool on the output of the encoding
path and calculates the attention vector to guide the
feature map learning. It can improve the network’s
sensitivity to information features. In the absence of
any supervisory information, the feature information
is of great significance to the decoder, and effective
encoder information can make better predictions.

(3) A sharpening method is brought forth to postprocess
the predicted segmented image to improve the ac-
curacy of retinal vessel segmentation.

.e paper proceeds as follows. Section 2 of the paper
mainly expounds the aforementioned method. Section 3
outlines the results and validates the proposed BFCNmodel.
Section 4 summarizes the proposed methods.

2. Method

2.1. Datasets. .is paper used three public datasets: Digital
Retinal Images for Vessel Extraction (DRIVE) [24], Struc-
tured Analysis of the Retina (STARE) [5], and CHASE_DB1
Retinal Image Database (CHASE) [25] for blood vessel
extraction and to verify the performance of the BFCNmodel.
Figure 1 shows an original picture and corresponding
ground truth in these three datasets.
.e DRIVE dataset consists of 40 retinal fundus blood

vessel images, corresponding ground truth images, and
corresponding masks images from the diabetic retinopathy
screening program in the Netherlands. .e size of each
image is 565× 584 (http://www.isi.uu.nl/Research/
Databases/DRIVE/).
.e STARE dataset consists of 20 retinal fundus blood

vessel images, corresponding real labeled images, and cor-
responding masks images. Each image is digitized to
700× 605 pixels (http://www.ces.clemson.edu/ahoover/
stare/).
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.e CHASE dataset consists of left and right eye fundus
images, corresponding real labeled images, and corre-
sponding masks images of 14 students. .ere are 28 images
in total, each with a resolution of 1280× 960 (https://blogs.
kingston.ac.uk/retinal/chasedb1/).

2.2. Image Preprocessing. As a means of image processing,
ACE technology can effectively improve the visual effect of
the image, enhance the recognition rate of information,
and highlight differences or characteristics of the target
object to extract the target object from the background
information more accurately. In deep learning, pre-
processing usually makes the input more suitable for a
specific application, narrows the range of pixel value
intensities, and highlights interesting areas. .e reduction
of the pixel value intensity range will reduce the amount of
training calculations. .is paper proposes an image
preprocessing method based on ACE technology. Com-
pared with the red or blue channel image in the retinal
fundus image, the green channel image shows the best
contrast between the retinal vessels and the retinal
background. .e preprocessing has five steps: (1) extract
the green channel in the original image as the first channel;
(2) apply contrast-limited adaptive histogram equaliza-
tion (CLAHE) [26] to the green channel as the second
channel; (3) after removing the gamma correction oper-
ation on the green channel, it is used as the third channel;
(4) combine these three channels to reconstruct a three-
channel image; and (5) single-channel grayscale images
show better blood vessel background contrast than RGB
images [27]..erefore, the combined three-channel image
is converted into a grayscale image. Figure 2 shows the
effect of this preprocessing method.

2.3. BFCN. Retinal vascular segmentation is mainly the ten-
sion between semantics and location.While global information
eases semantic problems, local information can alleviate lo-
cation problems, and the combination of fine layers and coarse
filter layers enables themodel tomake local predictionswithout
violating global results and minimizes the tension between
semantics and location..e BFCN proposed in this paper has a
similar overall structure to that of the standard FCN [28],
including the encoding process and decoding process, which
are symmetrically up and down. .e encoding path is capable
of encoding low-dimensional input images using richer filters
to capture semantic or context information..e decoding path
performs upsampling and fusion of low-dimensional features
to realize the inverse operation of coding and the restoration of
spatial information, so as to achieve precise positioning. .e
differences between the BFCN and standard FCN are as fol-
lows: (1) add side input, which is used to build the input of the
image pyramid to realize the fusion of the hierarchical per-
ception field; (2) the encoding process uses a multiscale in-
formation extraction (MSIE) module (Figure 3) and multiple
convolution layers with different expansion rates instead of a
convolution layer to expand the receptive field range without
increasing the amount of calculation; and (3) the use of the
T_Layer can provide the necessary details and combine the
features of the lower layer with that of the higher layer to
accurately reconstruct the shape of the segmentation boundary.
.e network structure is shown in Figure 4.

2.3.1. Receptive Field and Dilated Convolution. .e receptive
field is the size of the area on the input image where the
pixels on the feature map output by the CNN are mapped.
.e larger the size of the receptive field is, the larger the size
of the receiving field, and the larger the original image range

(a) (b) (c)

Figure 1: .e dataset used. .e first row is the original image, and the second row is the ground truth. (a) DRIVE, (b) STARE, and (c) CHASE.
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that can be accessed, which also means it may contain more
global features with higher semantic hierarchy. On the
contrary, the smaller the size is, the more local and detailed
the features it contains tend to be. .erefore, the size of the
receptive field can be used to roughly judge the abstraction
level of each layer, as shown in Figure 5(a).
.e traditional FCN is to convolute the image before

pooling, reducing the size of the image, and increasing the
size of the receptive field. Reducing the image size contin-
uously will cause the loss of information. .e advantage of
dilated convolution [29] is that under the situation of no loss
of information caused by pooling operation, the receptive
field size can be increased, and multiscale context infor-
mation can be captured to make each convolution output
contain a larger range of information. .e formula for

calculating the actual convolution kernel size of dilated
convolution (1) is

K � k +(k − 1) ×(r − 1). (1)
In the formula, k is the size of the standard convolution

kernel, and r is the parameter expansion rate of the dilated
convolution. When the dilation rate equals to 1, the dilation
convolution is the same as the standard convolution. .e
changing process of the dilated convolution receptive field is
shown in Figure 5(b) [30]. Our Figure 4(b) is mainly borrowed
from the article [31]..e receptive field of a dilated convolution
with a convolution kernel of 3× 3 and an expansion rate of 2 is
equivalent to a normal convolution with a convolution kernel
of 5× 5, without increasing the number of convolution kernel
parameters while maintaining the same feature resolution.

(a) (b) (c) (d) (e) (f ) (g)

Figure 2: Preprocessing effect diagram. .e first row is the DRIVE dataset, the second row is the STARE dataset, and the third row is the
CHASE dataset. (a).e original image of each dataset, (b) the corresponding real ground truth, (c) the red (R) channel image of the original
image, (d) the green (G) channel image of the original image, (e) the original image for the blue (B) channel image, (f ) a preprocessed three-
channel image, and (g) a process for converting the preprocessed three-channel image into a grayscale image.
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convolution kernel of 3× 3, stride of 1, and padding of 0, and (b) the changing process of the dilated convolution receptive field with the
convolution kernel of 3× 3, stride of 1, padding of 0, and expansion rate of 2.
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2.3.2. MSIE Module. Because the blood vessels in retinal
images have different sizes and low contrast with the
background, in order to better segment retinal blood vessels
of different sizes, the encoding path in this paper uses a
richer filter to encode low-dimensional input images to
capture semantic and context information. In this paper, the
MSIE module uses dilated convolution with different ex-
pansion rates for multiscale feature capture to segment
blood vessel edges and tiny blood vessels accurately [32]..e
MSIE module (Figure 4) contains 4 parallel dilated con-
volutions with different expansion rates, a common 1× 1
convolution layer and a feature reweighting layer. Four
dilated convolutions reduce cost of computation and the
number of parameters while maintaining the good perfor-
mance. Multiscale context feature information can be
captured through dilated convolution with four different

expansion rates, while the 1× 1 convolutional layer retains
feature information of the current scale. .e feature reca-
libration layer aims at explicitly establishing the interde-
pendence between the features and the channels,
automatically knowing the importance of each channel
through learning, and obtaining the global context infor-
mation of image. .e feature reweighting layer first pool the
global average of the feature map X to transfer each two-
dimensional feature channel into a real number rϵR. .is
real number has a global receptive field to some extent, and
the number of output channels and the number of channels
in the original feature map are the same. Next, change the
identification of R into R′ by the two layers of 1× 1 con-
volution, then R′′ is output by R′ through the sigmoid
activation function, and finally Xmultiplied by R′′ is output:

R � G(X) � ∪C
′

c�0
∑W
w�0

∑H
h�0

xw,h,c
(W ×H)

 , x ∈ X , X ∈ RW′×H′×C′ , (2)

R′ � F(R),

R ∈ R1×1×C′ ,
(3)

R″ � S R′( ) � ∪C′
c�0

1

1 + e
− r1,1,c′

, r′ ∈′, R′ ∈ R
1×1×C′ , (4)

U � H X, R″( ) � ∪
c�0

C′ ∪
w�0

W′ ∪
h�0

H′

xw,h,c × r1,1,c″ , x ∈ X, r″ ∈ R″, R″ ∈ R1×1×C′ , U ∈ RW′×H′×C′ , (5)

where X represents the input feature map, G(·) is the global
average pooling operation, F(·) is the two-layer convolution
operation, S(·) is the sigmoid activation function, and H(·)
is the dot product operation. .e U indicates element-wise
value.

2.3.3. Transfer Layer Module. .e skip connection in U-Net
has the advantages of alleviating the problem of gradient
vanishing and repairing the information loss during
downsampling [33]. In this paper, the skip connection is
added to the transfer layer in the BFCN model, and certain
changes are made (Figure 6). Similar to U-Net, except that
the transfer layer is embedded in the skip connection, and
the output of the coding layer is input to the corresponding
decoding layer through the transfer layer. Use the transport
layer to improve the sensitivity of the network to infor-
mation, and at the same time, the effective information of the
feature is selected in the encoder to obtain more detailed
target information that needs attention and suppress useless
information. It is very important for the decoder that has no

regulatory information. .e proposed transfer layer is
shown in Figure 6. It consists of five 1× 1 convolutional
layers, two sigmoid activation functions, two pooling layers,
and two channel processing layers. First, perform max-
pooling and mean-pooling operations on feature maps,
respectively, to output X′ and X″, and then perform 1× 1
convolution before their adding results are activated by
sigmoid to obtain the gate control coefficient a. Next,
perform the maximized processing and mean processing of
channel on α×X, respectively, and then perform 1× 1
convolution before performing sigmoid activation to obtain
the gating coefficient β. Finally, multiply X and β to obtain
the output Y of the transfer layer. Experiments prove that it
achieves higher accuracy.

2.3.4. Decoder. .e decoder uses deconvolution to
upsample the feature map layer by layer, with the upsam-
pling factor of 2, and finally restores to the same resolution as
that of the input image. .e feature information of the
feature map output byMSIE is concatenated with the feature
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information obtained by deconvolution of the same layer in
the decoding path; thereby, the situation where some thin-
walled blood vessels and vessel edge information are difficult
to recover during upsampling is eliminated. .e quality of
cascaded feature information is improved by two 3× 3
convolutional layers. Finally, the eventual segmentation
result is output.

2.3.5. Image Postprocessing. Image preprocessing is widely
used in deep learning. It is a necessary means to improve
model performance. Based on this, the postprocessing of
the segmented images is proposed in this paper, aiming at
improving the accuracy of retinal blood vessel segmenta-
tion..e function of sharpening is to enhance the grayscale
contrast, the image edge sharpening process can enhance
the grayscale contrast, and the edges and contours in the
image are located in the place where the grayscale changes,
so the sharpening can enhance the contour edges and
details in the image, and a complete object boundary is
formed to separate the object from the image. .e root
cause of the smooth image becoming blurred is that the
image has been subjected to averaging or integration op-
erations, so the blurred image can be inversely calculated to
make the image clear. In order to make the edges and
contour lines that extend in any direction in the middle of
the image clearly visible, this article hopes that certain
operations on the image are isotropic, and gradient algo-
rithm can meet this requirement, and the gradient algo-
rithm can make the image uniform. .e direction of the
gradient is the direction of the image change rate. .e
amplitude ratio of the gradient is equivalent to the dif-
ference in grayscale of adjacent pixels. For the image F (x,
y), the gradient at the point (x, y) is defined as

∇F(x, y) �
zF/zx

zF/zy
[ ]. (6)

Its magnitude is

|∇F(x, y)| �

�������������
zF

zx
( )2 + zF

zy
( )2

√√
. (7)

For discrete images, the differential method of adjacent
phase difference is substituted for differentiation; so, for-
mula (6) can be defined as

∇F(x, y) ≈ |[F(x, y) − F(x + 1, y)]| +|[F(x, y) − F(x, y + 1)]|2.
(8)

With the gradient F(x, y), the sharpening result can be
obtained according to the gradient. .is paper uses the
Laplacian algorithm [34]. .e Laplacian algorithm is a linear
quadratic differential operator. Like the gradient operator, it
has rotational invariance. .ereby, the edge sharpening
requirements of images in different directions can be met.
Including more detailed information, the obtained borders
are thinner. Laplacian operator can be defined as

∇2F(x, y) � z
2F(x, y)

zx2
+
z
2F(x, y)

zy2
. (9)

Its discrete form is

∇2F(x, y) � F(x + 1, y) + F(x − 1, y) + F(x, y + 1)

+ F(x, y − 1) − 4F(x, y).

(10)
Laplacian operator is used to perform sharpening, and

the sharpening output G(x, y) is

G(x, y) � F(x, y) − ∇2F(x, y). (11)

Transform formula (10) into a coefficient form, Lap-
lacian operator,

L �

0 −1 0

−1 4 −1

0 −1 0

 ⟶ Extension template

1 1 1

1 −8 1

1 1 1

  ⟶abs()/10
0.1 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.1

 .
(12)

.is paper will sharpen the predicted probability map.
.e value of each pixel (x, y) is related to its neighborhood
pixel value. .e pixel value of (x, y) is reset by the Laplacian
operator that is transformed by the formula (12). .e reset
pixel value shows a strong relationship with its neighbor-
hood pixel values. It has a certain enhancement effect on the
continuity of the end of small blood vessels.

3. Experiments

3.1. Training and Test Patches. During the training process,
10480 image patches with a size of 128×128 were randomly
extracted from the training set of each dataset. At the same
time, 10480 real label patches with a size of 128×128 are
extracted from the corresponding real labels at the same
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Channel max

Channel mean

Conv 1 × 1 Conv 1 × 1

Conv 1 × 1

Conv 1 × 1 Conv 1 × 1

×

×

x

α

β
y

Figure 6: Structure of the transfer layer.
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location to calculate the loss and train the network..ere are
16 images input into the network each time. In testing stage,
the image patches are extracted from each tested picture of
each dataset, in the sequence of the way of sliding window.
.e size of the sliding window was 128×128, and the sliding
stride is 5 pixels. .e part of sliding window that exceeds the
picture was filled with 0. Similarly, there were 16 images
input to the network each time.

3.2. Implementation Details. .e method in this paper is
based on the deep learning open source framework PyTorch
[35] and is implemented on a server of an operating system
configured with Intel (R) Xeon (R) E5-2620 V3 2.40GHz
CPU, Tesla K80 GPU, and Ubuntu64. In the training stage,
the Adam optimizer [36] (the parameters were set as:
β1� 0.9, β2� 0.999 and ε� 10

−8, and the learning rate lr was
initialized as 0.001) was used to make the learning rate
attenuated by the Plateau [37] method. .e training circle
was 200, the training batch was 16, and the loss function uses
a cross-entropy loss function. It is defined as follows:

Lossce(y, ŷ) � −∑yilog ŷi + 1 − yi( )log 1 − ŷi( ), (13)

where yi represents the real label, and ŷi represents the
predicted image. .resholds were set as 0.6, 0.43, and 0.65
when the performance of the DRIVE, STARE, and CHASE
datasets is evaluated.

3.3.EvaluationMetrics. In order to evaluate the effectiveness
of this method for retinal vascular segmentation, the analysis
on the performance of sensitivity, specificity, accuracy, and
F-measure evaluation indicators is performed by making
confusion matrix:

accuracy �
TP + TN

TP + FN + TN + FP
, (14)

sensitivity �
TP

TP + FN
, (15)

specificity �
TN

TN + FP
, (16)

precision �
TP

TP + FP
, (17)

F � 2 ×
Prec.Sens.

Prec. + Sens.
, (18)

here, TP is the correctly identified blood vessel pixel, and TN
is the correctly identified background pixel. FP is the
background pixel that is incorrectly segmented into blood
vessel pixels, and FN is a blood vessel that is incorrectly
marked as a background pixel.

3.4. Comparison of Model Improvement Results. .e data
preprocessing techniques, basic network, and postprocess-
ing of segmented images are combined to verify their ef-
fectiveness through using the DRIVE, STARE, and CHASE
datasets. In the table, ACE represents an image pre-
processing technology of the color enhancement, MSIE is a
multiscale information extraction module, T_Layer indi-
cates a conversion layer module, and Sharp indicates a
sharpening method of postprocessing the segmented image.
.e experimental results are shown in Tables 1–3.

Table 1: Comparison among the results of DRIVE dataset model changes.

ACE MSIE T_Layer Sharp Sensitivity Specificity Accuracy F-measure

1 √ 0.7453 0.9845 0.9540 0.8051
2 √ √ 0.7681 0.9820 0.9550 0.8129
3 √ √ √ 0.7749 0.9725 0.9586 0.8164
4 √ √ √ 0.8252 0.9732 0.9571 0.8217
5 √ √ √ √ 0.8124 0.9822 0.9627 0.8294

Table 2: Comparison among the results of STARE dataset model changes.

ACE MSIE T_Layer Sharp Sensitivity Specificity Accuracy F-measure

1 √ 0.7163 0.9911 0.9625 0.7992
2 √ √ 0.7806 0.9806 0.9659 0.8234
3 √ √ √ 0.7722 0.9807 0.9666 0.8235
4 √ √ √ 0.8274 0.9882 0.9698 0.8334
5 √ √ √ √ 0.8288 0.9896 0.9735 0.8442

Table 3: Comparison among the results of CHASE dataset model changes.

ACE MSIE T_Layer Sharp Sensitivity Specificity Accuracy F-measure

1 √ 0.7626 0.9845 0.9640 0.7941
2 √ √ 0.7900 0.9762 0.9645 0.8070
3 √ √ √ 0.7744 0.9782 0.9663 0.8036
4 √ √ √ 0.8440 0.9836 0.9664 0.8091
5 √ √ √ √ 0.8323 0.9851 0.9688 0.8102
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Tables 1–3 is the combined verification results of each
part on the DRIVE, SATRE, and CHASE datasets, respec-
tively. In Tables 1–3, the experimental results in the first row
show that the MSIE module proposed in this paper can
effectively segment the retinal blood vessels and achieve
good effects. .rough the comparison between the first row
and the second row, the experimental results show that
T_Layer can select the effective feature information in the
encoder to obtain more detailed information of the target
that needs attention. And with the comparison between the
second row and the third row, the experimental results show
that the ACE data preprocessing proposed in this paper can
have a positive impact on the segmentation of blood vessels,
which can make an improvement in accuracy of these three
standard datasets. With the comparison between the second
row and the forth row, the experimental results show that the
sharpening postprocessing of the segmented image pro-
posed in this paper can further process the segmented image
to alleviate the fracture problem of small blood vessels in the
segmented image and improve the accuracy. .e segmen-
tation accuracy is increased by 0.21%, 0.39%, and 0.19% in
DRIVE, STARE, and CHASE datasets, respectively.With the
comparison between the fifth row and other rows, it shows

that the network architecture proposed in this paper can
segment the retinal fundus vessels well. Experiment data
show that the efficiency of segmentation is the highest after
combining all the modules. And the accuracy and F-measure
on the DRIVE, STARE, and CHASE datasets reached
0.9627/0.8294, 0.9735/0.8442, and 0.9688/0.8102,
respectively.
Figure 7 shows the ROCAUC curve analysis after com-

bining the various parts on the DRIVE, STARE, and CHASE
datasets. AUC represents the area under the ROC curve..e
larger the AUC value is, the more likely the current clas-
sification algorithm will rank positive samples before neg-
ative samples, to better classify. In Figure 7, the
ACE+MSIE +T_Layer + sharp combination has higher
ROCAUC value than other combinations. .e ROCAUC value
on the DRIVE, STARE, and CHASE datasets is 0.9790,
0.9827, and 0.9851, respectively.
In order to further prove the advantages of the data

preprocessing technology, basic network, and postprocess-
ing of segmented images proposed in this paper, this paper
compares the experimental segmented images combined by
each part. In Figure 8, through locally enlarging the cor-
responding combined segmented images and comparing the
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Figure 7: Comparison among ROC curves of theMSIE, T_Layer, ACE, and Sharpmodules on the DRIVE, STARE, and CHASE datasets. (a)
DRIVE, (b) STARE, and (c) CHASE.
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Figure 8: Comparison between model changes and segmentation images. Row (a) is the images of the DRIVE dataset, and row (b) is a local
enlargement of the images in row a; row (c) is the images of the STARE dataset, and row (d) is a local enlargement of the images in row (c);
row (e) is the images of the CHASE dataset, and row (f) is a local enlargement of the images in row (e). .e dark blue in Figure 8 is the
background..e yellow in the figure is blood vessels, and the light blue that appears in yellow blood vessels is also blood vessels, but the pixel
value of this part of the blood vessel is low, which is easier to segment and break.
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locally enlarged images of different combinations, it is ob-
vious that the ACE data preprocessing technology and basic
network proposed in this paper are effective for retinal vessel
segmentation. Compared with the combination without
segmentation image sharpening and postprocessing oper-
ation, the combination with these operations has a certain
repair effect on the fracture of small blood vessels.

3.5. Comparison among Results of Different Segmentation
Algorithms. In order to further prove the effectiveness of
this method for retinal vessel segmentation, this paper
compared the STARE, DRIVE, and CHASE datasets with the
methods in some references, respectively, and judged the
performance of the vascular segmentation by sensitivity,
specificity, accuracy, and F-measure. Table 4 compares the
performance of different methods for retinal vessel seg-
mentation on the DRIVE dataset. Compared with references
[21, 40, 42–44], the sensitivity index is low, since many

background pixels are still classified as vascular pixels by this
method in this paper, but the specificity, accuracy, and F-
measure indicators are all optimal. Compared with the
method in the study by Samuel and Veeramalai [21], the
specificity of this paper’s method was improved by 0.84%.
On the STARE dataset, specificity of the BFCN method

has increased by 1.58% compared with that of the method in
the study by Samuel and Veeramalai [21] (Table 5). Although
the method in this paper does not achieve its highest value in
the aspect of F-measure and sensitivity, the accuracy rate of
the BFCNmethod is 0.9735, which is 1.26% higher than that
of the method in the study by Samuel and Veeramalai [21].
Table 6 compares the performance of different methods

for retinal vessel segmentation on the CHASE dataset.
Compared with other studies [27, 41–45], the method in this
paper reaches the highest value of sensitivity, specificity,
accuracy, and F-measure. .rough the analysis of
Tables 4–6, some indicators of the method in this paper have
been improved compared with that of the listed references.

Table 4: Comparison between the results of the BFCN and other methods on the DRIVE dataset.

Method Year Sensitivity Specificity Accuracy F-measure

Singh and Srivastava [8] 2016 0.7594 0.9723 0.947 —
Zhang et al. [10] 2015 0.7812 0.9668 0.9504 —
Lázár and Hajdu [38] 2015 0.7646 0.9723 0.9458 —
Zhao et al. [39] 2017 0.782 0.979 0.957 —
Zhang et al. [40] 2017 0.7861 0.9712 0.9527 0.7953
Yan et al. [41] 2018 0.8282 0.9738 0.9609 —
Alom [42] 2018 0.7792 0.9813 0.9556 0.8171
Zhuang [43] 2018 0.7856 0.9810 0.9560 0.8202
Wang et al. [44] 2019 0.7940 0.9816 0.9567 0.8270
Samuel and Veeramalai [21] 2019 0.8282 0.9738 0.9609 —
Ours 2019 0.8124 0.9822 0.9627 0.8294

Table 5: Comparison between the results of the BFCN and other methods on the STARE dataset.

Method Year Sensitivity Specificity Accuracy F-measure

Singh and Srivastava [8] 2016 0.77939 0.9376 0.9270 —
Lázár and Hajdu [38] 2015 0.7248 0.9751 0.9492 —
Zhao et al. [39] 2017 0.789 0.978 0.956 —
Zhang et al. [40] 2017 0.7882 0.9729 0.9547 0.7815
Yan et al. [41] 2018 0.8979 0.9701 0.9646 —
Lu [45] 2018 0.8090 0.9770 0.9628 —
Jin et al. [27] 2019 0.7595 0.9878 0.9641 0.8143
Li et al. [46] 2019 0.8465 - 0.9673 0.8435
Samuel and Veeramalai [21] 2019 0.8282 0.9738 0.9609 —
Ours 2019 0.8287 0.9896 0.9735 0.8442

Table 6: Comparison between the results of the BFCN and other methods on the CHASE dataset.

Method Year Sensitivity Specificity Accuracy F-measure

Zhang et al. [40] 2017 0.7644 0.9716 0.9502 0.7581
Yan et al. [41] 2018 0.7641 0.9806 0.9607 —
Alom [42] 2018 0.7756 0.9802 0.9634 0.7928
Zhuang [43] 2018 0.7978 0.9818 0.9656 0.8031
Wang et al. [44] 2019 0.8074 0.9821 0.9661 0.8037
Lu [45] 2018 0.7571 0.9823 0.9664 —
Jin et al. [27] 2019 0.8155 0.9752 0.9610 0.7883
Ours 2019 0.8323 0.9851 0.9688 0.8102
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And especially on the CHASE dataset, the BFCN has reached
the highest values of all indicators, which also verifies the
effectiveness of the method for retinal vascular segmentation
in this paper.
Figure 9 is a comparison among the images of seg-

mentation results of the method in this paper and some
references. .e first row of images is from the DRIVE
dataset, and the second row of images is from the STARE
dataset. Both have compared the segmentation results of the
BFCNmethod and that of the methods in the studies by Yan
et al. [41] and Samuel and Veeramalai [21]. In the studies by
Yan et al. [41] and Samuel and Veeramalai [21], the width of
blood vessel extracted by algorithm is so small that many
small blood vessels are not reflected and the completion
degree of the blood vessel extraction is not high. In medical
diagnosis, small blood vessels are of great significance to the
retinal image..e loss of small blood vessels will cause much
adversity in diagnosis. .ere is a more complete extraction
of retinal blood vessels and a fuller extraction of small blood
vessels in this method. .e third row of images is from the
CHASE dataset. .e segmentation results of the BFCN
method are compared with the images of the segmentation
results of the methods in the studies by Zhuang [43] and
Wang et al. [44]. .e method in the studies by Zhuang [43]
andWang et al. [44] will generate lots of artifacts, which will

cause serious interference to the clinical diagnosis, while the
method in this paper generates fewer artifacts. In summary,
the method in this paper can effectively and accurately
segment retinal blood vessel images.

4. Conclusions

.is paper proposes a novel end-to-end DCNN architecture
called the BFCN for automatic segmentation of retinal blood
vessels. In network architecture, ACE data preprocessing
technology enhances the contrast between blood vessels and
background to improve network performance. .e MSIE
module uses dilated convolution with different expansion
rates and feature recalibration layers to capture the infor-
mation of retinal blood vessel with different sizes and global
context information and reduces the number of parameters
to improve model speed. .e conversion layer combines
shallow information and deep information to recover the
lost shallow information and obtain spatial information at
the same time. Segmented image postprocessing technology
is to further process the segmented probabilistic image to
achieve the purpose of repairing the rupture of small blood
vessel. Finally, the proposed method is verified by the
DRIVE, STARE, and CHASE datasets. Experimental results
show that the algorithm proposed in this paper has better

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9: Comparison between the segmented image of the BFCN and other methods on the DRIVE, STARE, and CHASE datasets. (a)
Original image, (b) ground truth, (c) method in the study by Yan et al. [41], (d) method in the study by Samuel and Veeramalai [21], (e) ours,
(f ) original image, (g) ground truth, (h) method in the study by Yan et al. [41], (i) method in the study by Samuel and Veeramalai [21], (j)
ours, (k) original image, (l) ground truth, (m) method in the study by Zhuang [43], and (n) method in the study byWang et al. [44], and (o)
ours.
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performance in retinal vessel segmentation than the mul-
tilevel/multiscale DNN method.
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