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Abstract. We tackle the problem of finding a team of experts from a so-
cial network to complete a project that requires a set of skills. The social
network is modeled as a graph. A node in the graph represents an expert
and has a weight representing the monetary cost for using the expert
service. Two nodes in the graph can be connected and the weight on the
edge represents the communication cost between the two corresponding
experts. Given a project, our objective is to find a team of experts that
covers all the required skills and also minimizes the communication cost
as well as the personnel cost of the project. To minimize both of the
objectives, we define a new combined cost function which is based on
the linear combination of the objectives (i.e. communication and person-
nel costs). We show that the problem of minimizing the combined cost
function is an NP-hard problem. Thus, one approximation algorithm is
proposed to solve the problem. The proposed approximation algorithm
is bounded and the approximation ratio of the algorithm is proved in the
paper. Three heuristic algorithms based on different intuitions are also
proposed for solving the problem. Extensive experiments on real datasets
demonstrate the effectiveness and scalability of the proposed algorithms.

1 Introduction

Team formation has been traditionally studied in operational research. Most of
the traditional approaches do not consider the network structure behind the
individuals. Nowadays, various forms of online social networks have been devel-
oped, making it possible to consider the relationships among individuals when
forming a team to complete a task or project. Recently, some works have been
devoted to find a team of experts from a social network that minimizes the cost
of communication among the experts [11,10]. Such a team should possess a set of
skills in order to complete the task or project. While effective communication is
indeed important for the success of a project, there are some other factors that
are also important but have not been considered in team formation from social
networks. One of these factors is the personnel cost. In reality, people normally
need to be paid for working on a project, and it is desirable to find a team of
experts with a reasonable personnel cost.

In this paper, we tackle the problem of finding the best team of experts that pos-
sess a set of skills whileminimizing both the communication cost and the personnel
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cost. We use a graph to model a social network in which nodes represents experts,
each having a set of skills and a cost for using his/her service. Two nodes in the
graph can be connected and the weight on an edge represents the communication
cost between the two connected experts. Generally, more previous collaborations
between two experts, the lower the communication cost between them.

Clearly, our problem is a constrained bi-criteria optimization problem. A com-
mon approach to solving such a problem is to combine the two objectives into a
single objective. In this paper, we take this approach and show that the problem
of optimizing the combined objective function is NP-hard. Thus, we propose an
approximation algorithm and three heuristic algorithms to efficiently solve the
problem in polynomial time. The approximation algorithm is based on convert-
ing the input graph with both node and edge weights into a graph with weights
on only edges. It has a performance guarantee with an approximation ratio of 2.
The heuristic methods are based on either iteratively replacing cheapest experts
with more expensive ones to improve the combined cost or incrementally adding
experts with minimum cost contribution. We conduct extensive experiments on
real data sets to show the effectiveness and efficiency of the proposed methods.

The paper is organized as follows. Related work is presented in Section 2.
Problem statements and definitions are given in section 3. The algorithms for
finding the best team of experts are presented in section 4. The experimental
results are illustrated in section 5 and section 6 concludes the paper.

2 Related Work

Discovering a team of experts in a social network is introduced in [11]. The
authors propose two functions for evaluating the communication cost among the
members of a team. The communication cost functions are improved in [10]. The
new function in [10] considers all the edges of the induced sub-graph, and is thus
more stable to small or radical changes than the ones in [11]. The problem of
finding a team of experts with a leader is also introduced in [10]. The problem is
generalized by associating each required skill with a specific number of experts
in [12]. The maximum load of the experts in the presence of several tasks is
minimized in [1], but it does not consider finding teams with low communication
cost. Recently, the problem of online team formation is studied in [2], which
creates teams of experts with minimized work load and communication cost. The
personnel cost of the experts is not considered in [2]. In this work, in addition
to finding a team of experts with low communication cost, we also minimize the
personnel cost of the team.

The problem of team formation has also been studied in the operation research
community. Simulated annealing, branch and bound and genetic algorithms are
used for solving the problem [4,13,14,7]. The main difference between this work
and the works in operation research is that the experts are not connected through
a social network in their work. The authors of [8], consider the effect of different
graph structures among the members on the performance of the team. They
performed their studies in an experimental setting and they do not study the
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problem from a computational point of view. Dynamics of group formation and
its effect on the formation of groups in the network is considered in [3]. A game
theoretic approach to this problem is discussed in [9]. Although these studies are
not directly related to our setting, they might be considered as a complementary
work for our problem.

The authors of [6] consider a bicriteria team formation problem. One objective
is the communication cost and the other is the level of skills of the experts. It
does not consider the personnel cost of the team. It produces a solution using a
simulated annealing method and no approximation bound is given.

3 Problem Statement

Let C = {c1, c2, . . . , cm} denote a set of m experts, and S = {s1, s2, . . . , sr}
denote a set of r skills. Each expert ci has a set of skills, denoted as Q(ci),
and Q(ci) ⊆ S. If sj ∈ Q(ci), expert ci has skill sj . In addition, a subset of
experts C′ ⊆ C have skill sj if at least one of them has sj . For each skill sj ,
the set of all experts having skill sj is denoted as C(sj) = {ci|sj ∈ Q(ci)}. A
project P ⊆ S is defined as a set of skills which are required for the completion
of the project. A subset of experts C′ ⊆ C is said to cover a project P if
∀sj ∈ P ∃ ci ∈ C′, sj ∈ Q(ci).

The experts are connected together in a social network and it is modeled as
an undirected and weighted graph (G). Each node in G represents an expert in
C. Terms node and expert are used interchangeably through this paper. Two
nodes are connected by an edge if the experts have collaborated before. The
weight of an edge represents the communication cost between two experts. The
lower the weight of the edge between two nodes, the more easily the two experts
can collaborate or communicate, and the lower the communication cost between
them. Each expert in the graph is also associated with a cost representing the
monetary cost for using the expert service. The cost of an expert ci is denoted
as t(ci).

The distance between two nodes ci and cj , denoted as d(ci, cj), is the sum
of weights on the shortest path between them in G. It should be noted that the
shortest distance function is a metric and satisfies the triangle inequality. If
ci and cj are not connected in G (directly or indirectly), the distance between
them is ∞.

Definition 1. (Team of Experts) Given a set of experts C and a project P
that requires a set of skills {s1, s2, . . . , sp}, a team of experts for P is a set of p
skill-expert pairs: {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}, where csj is an expert in C
having skill sj for j = 1, . . . , p. A skill-expert pair 〈si, csi〉 means that expert csi
is responsible for skill si in the project.

Note that an expert may be responsible for more than one skill in a project. The
same as our previous work [10], to evaluate the communication cost among the
experts in a team T , we use the sum of distances among the experts of a team
defined as follows.
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Definition 2. (Sum of Distances) Consider a graph G whose nodes represent
experts and whose edges are weighted by the communication cost between two
experts. Given a team T of experts from G for a project: {〈s1, cs1〉, 〈s2, cs2〉,
. . . , 〈sp, csp〉}, the sum of distances of T with respect to G is defined as

SDG(T ) =

p∑

i=1

p∑

j=i+1

d(csi , csj )

where d(csi , csj ) is the distance between nodes csi and csj in G (as defined
earlier).

To measure the personnel cost of a team, the following function is defined:

Definition 3. (Personnel Cost) Consider a graph G whose nodes represent
experts and each expert is associated with a cost. Given a team T of experts from
G for a project: {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}, the personnel cost of T with
respect to G is defined as

PCG(T ) =

p∑

i=1

t(csi)

where t(csi) is the cost of expert csi .

In this cost model an expert x is paid k×t(x), where k is the number of skills the
expert is responsible for in the project. This is reasonable because more skills
the expert uses, more responsibility or tasks he/she has in the project.

We are interested in finding a team of experts that minimizes both the person-
nel and communication costs. Thus, our problem is a bi-objective optimization
problem. One way to solve a bi-criteria optimization problem is to convert the
problem into a single objective problem by combining the two objective func-
tions into a single one. In this paper, we take this approach and define a single
objective function that combines the communication and personnel costs with a
tradeoff parameter (i.e., λ) as follows.

Definition 4. (Combined Cost Function) Given a team T of experts from
graph G for a project and a tradeoff λ between the communication and personnel
costs, the combined cost of T with respect to G is defined as

ComCostG(T ) = (p− 1)(1− λ)× PCG(T ) + 2λ× SDG(T )

where p is the number of required skills.

The parameter λ varies from 0 to 1 and indicates the tradeoff between the
communication and personnel costs. Since the values of PCG(T ) and SDG(T )
may have different scales, PCG(T ) and SDG(T ) should be normalized before
using the formula so that they both fall into the same range. The reason for
having (p − 1) in the first term and 2 in the second is to scale up the terms

because PCG(T ) is the sum of p expert costs while SDG(T ) is the sum of p(p−1)
2

pairwise communication costs. Given the combined cost function, we define the
problem tackled in this paper as follows:
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Problem 1. (Team Formation by Minimizing the Combined Cost) Given
a project P , a graph G representing the social network of a set of experts and a
tradeoff λ between the communication and personnel costs, the problem of team
formation tackled in this paper is to find a team of experts T for P from G so
that it covers all of the required skills and minimizes the combined cost function
ComCostG(T ) defined in 4.

Theorem 1. Problem 1 is an NP-hard problem.

Proof. Finding a team of experts from graph G while minimizing the sum of
distances (SDG(T )) is proved to be an NP-hard problem in [10]. Since SDG(T )
is linearly related to ComCostG(T ) (the objective function of Problem 1), then
minimizing ComCostG(T ) is also an NP-hard problem.

Since Problem 1 is an NP-hard problem, we have to rely on approximation or
heuristic algorithms. Therefore, in the next section, we propose a 2-approximation
algorithm and three heuristic algorithms for solving the problem.

4 Algorithms

4.1 Approximation Algorithm

In this section, we propose an approximation algorithm for solving Problem 1
with an approximation ratio of 2. The algorithm is based on converting the input
graph (where the costs are associated with both nodes and edges) into a graph
with costs/weights on only edges. The new graph G′ has the same sets of nodes
(experts) as the original graph G, but the node costs in G are moved onto edges
in G′. In G′, the edge weight between nodes u and v is defined as follows:

d′(u, v) = (1 − λ)(t(u) + t(v)) + 2λd(u, v) (1)

where t(x) is the cost of node/expert x in the original graph G, d(u, v) is the
shortest distance between experts u and v in G, and λ is the tradeoff between
the communication and personnel costs.

Below we show that the combined cost of a team T of experts with respect to
graph G is the same as the Sum of Distances of T with respect to the converted
graph G′.

Lemma 1. For any team T of experts from graph G for a project, the following
holds:

ComCostG(T ) = SDG′(T )

where G′ is converted from G by moving the node weights in G onto edges using
Equation (1).
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Proof. Let T = {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}. According to Definition 2,

SDG′(T ) =

p∑

i=1

p∑

j=i+1

d′(csi , csj )

where p is the number of required skills in the project. According to the definition
of d′, we have:

SDG′(T ) =

p∑

i=1

p∑

j=i+1

((1− λ)(t(csi ) + t(csj )) + 2λd(csi , csj ))

= (1 − λ)

p∑

i=1

p∑

j=i+1

(t(csi ) + t(csj )) + 2λ

p∑

i=1

p∑

j=i+1

d(csi , csj )

= (p− 1)(1− λ)

p∑

i=1

t(csi) + 2λSDG(T )

= (p− 1)(1− λ)PC(T ) + 2λSDG(T )

= ComCostG(T )

Based on the above lemma, finding a team of experts from graph G that mini-
mizes the combined cost function (defined in Definition 4) is equivalent to finding
a team of experts from graph G′ that minimizes the Sum of Distances function
(defined in Definition 2) based on d′. In [10], we proved that finding a team of ex-
perts while minimizing sum of distances is an NP-hard problem and proposed an
approximation algorithm that finds a team of experts that minimizes the Sum of
Distances. The approximation ratio of the algorithm is 2 as long as the pairwise
distance function used in the Sum of Distances definition satisfies the triangle
inequality. Below we show that function d′ satisfies the triangle inequality.

Lemma 2. The distance function d′(u, v) defined in Equation (1) satisfies the
triangle inequality.

Proof. Function d(u, v) in Equation (1) is the shortest distance between two
nodes u and v in graph G. Since the shortest distance satisfies the triangle
inequality, function d satisfies the triangle inequality. Thus, we have d(a, b) ≤
d(a, c)+d(c, b), where {a, b, c} is an arbitrary triplet of nodes. Then, the following
inequality holds since 0 ≤ λ ≤ 1:

2λd(a, b) ≤ 2λd(a, c) + 2λd(c, b)

Thus,

(1− λ)(t(a) + t(b)) + 2λd(a, b) ≤ (1 − λ)(t(a) + t(b)) + 2λd(a, c) + 2λd(c, b)

≤ 2(1− λ)t(c) + (1− λ)(t(a) + t(b)) +

2λd(a, c) + 2λd(c, b)

Based on the definition of d′, the last inequality is equivalent to d′(a, b) ≤
d′(a, c) + d′(c, b). Since {a, b, c} are chosen arbitrarily, d′ satisfies the triangle
inequality.
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Since d′ satisfies the triangle inequality, we can use the 2-approximation algo-
rithm that we proposed in [10] to find a team T of experts in graph G′ that
minimizes the Sum of Distances function, SDG′(T ). Based on Lemma 1, such a
team also minimizes the combined cost, ComCostG(T ), with respect to graph
G. The pseudo-code of this algorithm is presented in Algorithm 1. The major
difference between Algorithm 1 and the one in [10] is that Algorithm 1 takes
two more inputs, namely, the expert costs t and the tradeoff λ between the
communication and personnel costs, and uses distance function d′ to compute
the sum of distances of a team. The algorithm finds an approximate solution by
using an expert (e1 in the pseudo-code) with a required skill as a seed in a team
and adding its nearest expert with each of other required skills into the team.
After checking all such teams, the team with the smallest sum of distances to
the seed (calculated based on d′) is returned as the best team. More explanation
about the algorithm can be found in [10]. Note that two pre-built indexes are
used as inputs to the algorithm. One is an inverted index for accessing C(si),
the set of experts in G having skill si. The other is a hash index that stores
the shortest distances d of all pairs of experts in G. Both indexes can be pre-
built because they are independent of the input project. The time complexity of
this algorithm is O(p2 × (Cmax)

2), where p is the number of required skills, and
Cmax = max1≤i≤p |C(si)| in which |C(si)| is the cardinality of C(si).

Theorem 2. Algorithm 1 finds the team T of experts that minimizes
ComCostG(T ) with 2-approximation.

Proof. In [10], we proved that Algorithm 1 is a 2-approximation algorithm for
finding a team that minimizes the Sum of Distances. Since SDG′(T ) based
on d′ is equivalent to ComCostG(T ) according to Lemma 1, Algorithm 1 is
a 2-approximation algorithm for finding a team of experts that minimizes the
ComCostG(T ).

4.2 Iterative Replace Algorithm

In this section, a heuristic algorithm is proposed for finding the best team of
experts. The basic idea is as follows. Again, we use C(si) to denote the set
of experts that hold skill si. The algorithm consists of two phases. In the first
phase, for each required skill si, the experts in C(si) are sorted based on their
cost in ascending order, and a team T is initialized by selecting the first expert
in each C(si) (i.e. the cheapest expert with the required skill si). This is the
cheapest feasible team without consideration of the communication cost. In the
second phase, each remaining expert in each C(si) is tested to replace an expert
in T which is currently assigned to skill si. If the replacement decreases the
value of ComCostG(T ), then the replace operation is applied permanently on
T . The pseudo-code of the above procedure is presented in Algorithm 2. Note
that C(si)j means the j-th expert in the sorted list of C(si).

Since the algorithm needs to sort each C(si), its run time is O(Cmax log(Cmax)
+ Cmax × p), where p is the number of required skills, and Cmax = max1≤i≤p

|C(si)|. Note that if the experts in the initial team formed in the first phase are
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Algorithm 1. The Approximation Algorithm for Finding Best Team

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: leastSumDistance←∞
2: bestT eam← ∅
3: for i← 1 to p do
4: for each expert e1 ∈ C(si) do
5: sumDistance← 0
6: T ← {〈si, e1〉}
7: for j ← 1 to p and j �= i do
8: closestDistance =∞
9: for each expert e2 ∈ C(sj) do
10: d′(e1, e2)← (1− λ)(t(e1) + t(e2)) + 2λd(e1, e2)
11: if d′(e1, e2) < closestDistance then
12: closestDistance = d′(e1, e2)
13: closestNeighbor = e2
14: add 〈sj , closestNeighbor〉 to T
15: sumDistance← sumDistance+ closestDistance
16: if sumDistance < leastSumDistance then
17: leastSumDistance← sumDistance
18: bestT eam← T
19: return bestT eam

Algorithm 2. The Iterative Replace Algorithm for Finding Best Team

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: for i← 1 to p do
2: sort the experts in C(si) based on their cost (i.e. t function) in ascending order.
3: T ← ∅
4: for i← 1 to p do
5: add 〈si, C(si)1〉 to the T
6: indexi ← 1
7: while at least one indexi has not reached |C(si)| do
8: for i← 1 to p do
9: if indexi < |C(si)| then
10: indexi ← indexi + 1
11: Tnew ← T
12: replace the holder of si in Tnew with C(si)indexi .
13: if ComCostG(Tnew) < ComCostG(T ) then
14: T ← Tnew

15: return T
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disconnected from all the other experts with a required skill, no expert in the
initial team will be replaced in the second phase, and thus the cheapest team
is returned as the best team. However, the communication cost of the cheapest
team can be very high (e.g., when any two members are disconnected from each
other). Thus, when the graph is disconnected, this algorithm may return a poor
team in terms of the combined cost. This problem can be alleviated by using the
largest connected subgraph (i.e., the core of the graph) as the input data to the
algorithm. Therefore, in our experiments, if the team produced by the algorithm
is disconnected, we run the algorithm one more time on the core of the graph.

4.3 Minimal Cost Contribution Algorithm

In this section, another heuristic algorithm is proposed. The general structure of
the algorithm is similar to Algorithm 1 in that they both seed a team with an
expert with a required skill and add new members to the team to cover all the
other required skills. The teams with different seeds are compared to select the
best team. The difference is in how to expand the team with other experts. In
Algorithm 1, the team was expanded by adding the nearest neighbor (according
to the d′ function) from each C(sj) where sj is a required skill not covered by
the seed expert. In that team expansion process, only the seed expert affects
the addition of other members and the relationships among other experts in the
team are not considered.

Algorithm 3. The Minimal Cost Contribution Algorithm for Finding Best
Team Using Each of the Experts with a Required Skill as Initial Team Member

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: bestT eam← NULL
2: leastComCost←∞
3: for i← 1 to p do
4: for each expert einitial ∈ C(si) do
5: T ← ∅
6: add 〈si, einitial〉 to T
7: for j ← 1 to p and i �= j do
8: leastMCC ←∞
9: for each expert e ∈ C(sj) do
10: Compute MCC(e, T ) using Formula (2)
11: if MCC(e, T ) < leastMCC then
12: leastMCC ← MCC(e, T )
13: expertWithLeastMCC ← e
14: add 〈sj , expertWithLeastMCC〉 to T
15: if ComCostG(T ) < leastComCost then
16: leastComCost← ComCostG(T )
17: bestT eam← T
18: return bestT eam
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In the new algorithmproposed in this section, newmembers of a team are added
incrementally and each new member is chosen by considering its communication
costs with all the current members (not only the seed member) of the team in
addition to the personnel cost of the new member. Assume that T is the current
team of experts with some (but not all) of the required skills. To add into T an
expert with an uncovered skill sk, our new algorithm selects an expert e from the
set C(sk) of experts with skill sk that minimizes the following function:

MCC(e, T ) = (1 − λ)t(e) + λ

∑|T |
i=1 d(e, ei)

|T | (2)

where ei is the expert responsible for the i-th skill in T and λ is the trade-
off between communication and personnel costs. The first term of this function
considers the personnel cost of expert e and the second considers the average
communication cost between e and each of the current members of T . We refer to
this function as Minimal Cost Contribution (MCC) function because the selected
expert makes the minimal contribution to the total ComCost of the expanded
new team compared to other experts being considered in C(sk).

The pseudo-code of the new algorithm, called the Minimal Cost Contribution
(MCC) algorithm, is presented in Algorithm 3. The algorithm iterates through
each expert with a required skill and uses the expert as the initial member of
a candidate team T . For each candidate team T and each skill sj uncovered by
T , the algorithm incrementally selects and adds to T an expert e from C(Sj)
that minimizes the MCC(e, T ) function. The candidate team T is expanded in
this way until all the required skills are covered by it. If the combined cost of
T , ComCost(T ), is less than the least combined cost among all the previously
generated candidates, T becomes the current best team (held in bestT eam).
After all the candidate teams are generated (each with a different expert as the
initial member), the team in bestT eam is returned1. The time complexity of the
MCC algorithm is O(p3 × (Cmax)

2), where p is the number of required skills,
and Cmax = max1≤i≤p |C(si)| in which |C(si)| is the cardinality of C(si).

1 Note that the MCC algorithm is inspired by the Maximal Marginal Relevance
(MMR) method [5] for increasing diversity in document retrieval results while main-
taining high query relevance in the retrieved documents. The MMR method re-ranks
the search results by using the most relevant document as the the first returned doc-
ument and incrementally adding a new document to the result list by selecting a
document that maximizes the MMR function which combines the relevance of the
document and the dissimilarity of the document to the documents in the current
result list. However, our MCC method is different from the MMR retrieval method
in the following aspects. First, MMR generates the result with only one seed (i.e.,
the most relevant document) while MCC uses each expert with a required skill to
initialize a candidate team and the final team is the one with the least ComCost
among all the candidate teams. Second, the second term in the MMR function mea-
sures the maximal dissimilarity between the new document and the documents on
the current result list, while MCC uses the average distance between the new team
member and the current team members. We believe that the average distance better
reflects the cost contribution of a new member to the team.
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To improve the speed of the algorithm, we propose a variation of the MCC
algorithm by using only an expert with the rarest required skill (i.e., the skill s
whose |C(s)| is the smallest among all the required skills) as the initial member
of a candidate team. Thus, the number of candidate teams is reduced to the
number of the skill holders of the the rarest required skill. We call this variation
of the MCC algorithm MCC-Rare. Its time complexity is O(p2×Cmin×Cmax),
where Cmin = min1≤i≤p |C(si)|.

5 Experimental Results

In this section, the proposed algorithms for finding a team of experts from a
graph G which minimizes ComCostG(T ) are evaluated. All the algorithms are
implemented in Java. The experiments are conducted on an Intel(R) Core(TM)
i7 2.80 GHz computer with 4 GB of RAM.
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Fig. 1. The combined cost values of different methods on the DBLP dataset

5.1 The Datasets and Experimental Setup

To the best of our knowledge, real datasets that completely match our problem
are not publicly available. Therefore, our proposed algorithms are evaluated on
the datasets that were previously used in this domain [11,10]. The DBLP and
IMDb data sets are used in the experiments. The DBLP XML data2 is used for
producing the DBLP graph. The dataset contains information about a set of
papers and their authors. For each paper, the paper title, the author names, and
the conference where it was published are specified. The same as in [11,10], only
the papers of some major conferences in computer science are used for building
the data graph, which include: sigmod, vldb, icde, icdt, edbt, pods, kdd,
www , sdm, pkdd, icdm, icml, ecml, colt, uai, soda, focs, stoc, and stacs.
The set of experts and their skills are generated in the same way as in [11,10].

2 http://dblp.uni-trier.de/xml/

http://dblp.uni-trier.de/xml/
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The experts are the authors that have at least three papers in the DBLP. The
skills of each expert is the set of keywords (terms) that appear in the titles of at
least two papers of the expert. Two experts are connected together if they have
at least two publications together. The weight of the edge between two experts

ni and nj is equal to 1− |pni
∩ pnj

pni
∪ pnj

| where pni is the set of papers of author ni.

The cost of an expert is set to be the number of publications of the expert. This
is based on the assumption that the more publications an expert has, the more
expertise the expert possesses, and thus the more expensive he/she is. The final
graph has 5,658 nodes (experts) and 8,588 edges.

The same as [10], we use the part of the IMDb dataset which contains in-
formation about the actors and the list of movies that each actor played in3.
It is preprocessed exactly the same as [10]. The communication cost between
each pair of experts are also calculated the same as the DBLP dataset. Due
to the space limit, more details are omitted. The cost of an expert is defined
as the number of movies the actor plays in. The graph has 6,784 nodes and
35,875 edges. Due to the space limit, most of the results are only presented
for the DBLP dataset. However, the results of the IMDb dataset show similar
trend.
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Fig. 2. The combined cost values of different methods on the IMDb dataset

The projects used in the experiments are generated as follows. We set the
number of skills in a project to 4, 6, 8 or 10. For each number of skills, 50
sets of skills are generated randomly, corresponding to 50 random projects. The
average result over the 50 projects for each number of skills is computed for each
algorithm. As a baseline for the comparisons, we also include the results of a
random method, which simply selects, among 10,000 random teams, the team
with the lowest combined cost for the required set of skills. We also include the
results of the Exact algorithm. It simply uses an exhaustive search to find the
best answer among all possible teams.

3 http://www.imdb.com/interfaces

http://www.imdb.com/interfaces
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Exact Random MCC-Rare MCC Replace
3.4% 9.7% 0.3% 3.2% 2.8%
0.000 0.000 0.580 0.000 0.031
Exact Approx MCC-Rare MCC Approx
6.4% 6.6% 3.5% 6.1%
0.000 0.000 0.018 0.000
Exact Replace MCC-Rare MCC
0.3% 12.1% 2.6%
0.034 0.000 0.000
Exact MCC MCC
3.1% 9.8%
0.000 0.000
Exact MCC-Rare
13.7%
0.000
Exact

Random

Approx

Replace

MCC

MCC-Rare

Fig. 3. Results of t-test to show the level of difference between the algorithms on the
DBLP dataset. The number of required skills is set to 4 and λ is set to 0.5.

5.2 Evaluation on Combined Cost

Figures 1 and 2 show the average combined cost values of teams for different
algorithms for DBLP and IMDb datasets receptively. Please note that the results
of the Exact algorithm is only provided for four and six skills. It is because by
increasing the number of required skills, the number of possible teams grows
exponentially. Thus, the Exact algorithm does not terminate in reasonable time
for eight or more skills. The results show that all of the algorithms outperform
the Random method. The results also suggest that the MCC method has the
lowest cost values among non-exact methods. The results of MCC-Rare and
Approx are very similar. In most of the cases, the Replace method has higher
combined cost value than other proposed methods. MCC-Rare uses only an
expert with the rarest required skill as the initial member of a candidate team.
Therefore, MCC-Rare considers less number of candidate teams than MCC
and thus its performance in terms of the combined cost is worse than the MCC
algorithm.

To see whether the results of different algorithms are significantly different
from each other, we run a t-test on each pair of methods. The results are shown
in Figure 3. In each cell, the first number shows the percentage difference between
the two methods (i.e., the absolute difference between the two values divided by
the average of the two values). The second number is the p value from the t-test
and the third row indicates which method has lower combined cost value (e.g.
the Exact method always has the lowest combined cost.). In terms of percentage
difference, the closest method to the Exact method is MCC. Their percentage
difference is only 0.3%. Also, the p-values indicate that all pairs of methods are
significantly different from each other except for MCC-Rare and Approx, which
are not significantly different although MCC-Rare is slightly better.
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Fig. 4. The communication cost values of different methods on the DBLP dataset

5.3 Evaluation on Communication Cost

Figure 4 shows the average communication cost values of teams for different algo-
rithms. The same as previous section, the results of the Exact algorithm is only
provided for four and six skills. Please note that none of the algorithms explicitly
minimize the communication cost. However, all of them implicitly minimize it
by minimizing the combined cost function. The results suggest that the Approx
algorithm has the lowest communication cost than among non-exact methods.
In addition, for four skills, its results are very close to the one for the Exact
method. Please note that by increasing the value of λ, the communication cost
decreases. This is an expected result based on Definition 4.

5.4 Evaluation on Personnel Cost

Figure 5 shows the average personnel cost values of teams for different algo-
rithms. As can be seen, MCC-Rare has the lowest personnel cost on all skill
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Fig. 5. The personnel cost values of different methods on the DBLP dataset
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Table 1. Run time in milliseconds of different algorithms on DBLP. λ is set to 0.5.

# Req. Skills Approx Replace MCC MCC-Rare Random Exact

3 2 1 3 1 23 1,331

4 3 1 9 2 37 4,537

5 7 1 15 3 46 86,115

6 28 2 63 5 98 1,415,856

numbers and for all λ values, even lower than the exact algorithm. Note that
the exact algorithm always finds the team with the lowest combined cost, which
may not have the lowest personnel cost. The results also show that the Random
method has the highest personnel cost,and the Approx algorithm has the sec-
ond highest personnel cost. Please note that by increasing the value of λ, the
personnel cost increases. This is also an expected result based on Definition 4.

5.5 The Run Time

Table 1 provides the run time of each method. It shows that the Replace algo-
rithm is the fastest among others. MCC-Rare and Approx are the second and
third respectively. MCC is the slowest among the 4 proposed methods, but still
much faster than the Random method. The results also show the unreasonable
run time of the Exact method and its inapplicability in practice.

6 Conclusions

We have proposed four algorithms for finding a team of experts in a social net-
work that minimizes both the communication cost and the personnel cost of the
team. The first algorithm is an approximation algorithm with a provable per-
formance bound. The other three algorithms use heuristics to find sub-optimal
solutions. Our experiments show that the MCC method has the lowest combined
cost among the non-exact methods, but its run time is higher than other pro-
posed heuristic or approximation algorithms. MCC-Rare reduces the run time
of MCC and has the second lowest combined cost. The Approx algorithm has
similar combined cost to MCC-Rare with a bit higher run time. The Replace
method is the fastest but with the highest combined cost among the proposed
methods. All the proposed methods are much faster than the Random and Exact
methods. The Random method has the highest cost. The results indicate that
the proposed methods are both effective and efficient.
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