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ABSTRACT

A bipartite network is a network with two disjoint vertex sets
and its edges only exist between vertices from di�erent sets. It has
received much interest since it can be used to model the relationship
between two di�erent sets of objects in many applications (e.g.,
the relationship between users and items in E-commerce). In this
paper, we study the problem of e�cient bi-triangle counting for a
large bipartite network, where a bi-triangle is a cycle with three
vertices from one vertex set and three vertices from another vertex
set. Counting bi-triangles has found many real applications such as
computing the transitivity coe�cient and clustering coe�cient for
bipartite networks. To enable e�cient bi-triangle counting, we �rst
develop a baseline algorithm relying on the observation that each
bi-triangle can be considered as the join of three wedges. Then,
we propose a more sophisticated algorithm which regards a bi-
triangle as the join of two super-wedges, where a wedge is a path
with two edges while a super-wedge is a path with three edges.
We further optimize the algorithm by ranking vertices according
to their degrees. We have performed extensive experiments on
both real and synthetic bipartite networks, where the largest one
contains more than one billion edges, and the results show that the
proposed solutions are up to �ve orders of magnitude faster than
the baseline method.
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1 INTRODUCTION

A bipartite network is a networkwith two disjoint vertex sets and its
edges only exist between vertices from di�erent sets. It has received
much interest because in many applications, it can be used to model
the relationship between two di�erent sets of objects. For example,
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Figure 1: An example of bipartite networks.
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(a) A triangle.

u1 u2 u3

l1 l2 l3
(b) A bi-triangle.

Figure 2: Formation of triangles and bi-triangles (Note that dashed

lines denote the additional edge and additional wedge in (a) and (b),

respectively).

in E-commerce, the purchase relationship between users and items
can be modeled as a bipartite network, in which users as a whole
form one vertex set and items as a whole form another, while each
edge means that a user purchases an item. Figure 1 depicts such a
network with four users (i.e., u1, · · · , u4) and four items (i.e., l1, · · · ,
l4). Moreover, in coding theory [55], bipartite networks are used
to represent the interactions between codewords. In graph theory,
hypergraphs [15] are usually represented as bipartite networks.

In classic unipartite networks, the triangle is one of the most
fundamental structures, which is formed by a wedge closed by an
additional edge (see Figure 2(a)), where a wedge is a path with two
edges. Triangles play important roles in various network analysis
tasks, such as computing clustering coe�cient [36], thematic struc-
tures analysis [9], social relationships analysis [11, 12, 22, 35, 50],
triangle-based community computation [10, 20, 21, 23], and so on.
However, when analyzing a bipartite network, these measures and
algorithms are not applicable, because there is no triangle in a bi-
partite graph. To �ll this gap, Opsahl et al. proposed the structure
of bi-triangle [37], which is de�ned as a 6-cycle, or a cycle with
three vertices from one vertex set and three vertices from another
vertex set. Essentially, a bi-triangle is formed by two connected
wedges closed by an additional wedge, serving as the counterpart
of the classic triangle in bipartite networks. For example, Figure
2(b) presents a bi-triangle in the bipartite network of Figure 1.

In this paper, we study the problem of bi-triangle counting, that
is to compute the number of bi-triangles in a bipartite network.
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The importance of bi-triangle counting has been demonstrated by
many graph analysis tasks. Below are some typical examples:

(1) Transitivity coe�cient: The transitivity coe�cient (TC) [47]
evaluates how strong the vertices in a network are aggregated. In
[37], Opsahl extended this measurement for bipartite networks;
that is, given a bipartite network G, with two disjoint sets of ver-
tices U and L, its TC for its vertices set L is de�ned as TC(G,L)

=
3×total number of bi-tr ianдles
number of 4-paths centered in L

, where a 4-path is a path with

four edges inG (for the other set of verticesU , TC(G,U ) is de�ned
similarly). As the number of 4-paths can be e�ciently obtained in
O(|V |+α |E |) time [7], whereV , E, and α (α is always much less than√
|E |) are the vertex set, edge set, and the arboricity of G respec-

tively, the e�ciency of computing the TC largely depends on how
e�ciently we count bi-triangles. The TC is useful for measuring
the quality (cohesiveness) of communities in bipartite networks,
which are very useful for various tasks in e-commerce and social
networks. We will demonstrate its usefulness in such applications
by presenting a case study in Section 7.

(2) Clustering coe�cient: The clustering coe�cient (CC) [36, 37]
measures the ability of a vertex to cluster its neighbors. More pre-
cisely, given a bipartite network G, the CC of a vertex v ∈ G

is the ratio of the number of bi-triangles containing v over the
number of paths with four edges that center at v , i.e., CC(G,v) =
number of bi-tr ianдles containinд v
number of 4-paths centered at v

. Clearly, the e�ciency of bi-

triangle counting has a great e�ect on the computation of the CC.
(3) Truss computation over bipartite networks: Recently, Yang et

al. have proposed a novel k-truss model over heterogeneous infor-
mation networks (HINs) [57]. When the HIN is simply a bipartite
network, the model is then based on bi-triangles, thus a key step of
truss computation is to e�ciently obtain the number of bi-triangles.

Despite the wide usefulness of bi-triangle counting, little re-
search attention has been paid to this topic yet. We would like to
note that in the literature, there is a group of highly related works
[41, 43, 51], called butter�y counting on bipartite networks, where
a butter�y is a 4-cycle, or a cycle with two vertices from one vertex
set and two vertices from another vertex set. However, bi-triangles
are inherently di�erent from butter�ies, because a butter�y can
only capture the relationship between two vertices in each vertex
set, rather than three vertices like what the bi-triangle does. More
speci�cally, from the perspective of an important cohesiveness,
the bi-triangle based TC [37] measures the cohesiveness of a set
of vertices from a single side only (e.g., either users or items in
user-item networks), while the butter�y based TC [42] measures
the cohesiveness of a whole bipartite network with two sides. Thus,
the bi-triangle based TC is more useful when measuring the cohe-
siveness of vertices from a single side, and we will show this by a
case study in Appendix [58]. In addition, some key measures on
unipartite networks, such as local clustering coe�cient which is
the ratio of the number of triangles containing a vertex over the
number of “open-triangles” (or paths with two edges) that center
at this vertex, cannot be extended for bipartite networks based on
butter�ies, since an “open-butter�y” (or a path with three edges)
does not have a center vertex.

Challenges. Technically, the problem of bi-triangle counting is
very challenging because the number of bi-triangles in a bipartite
network is often much larger than the size of the network. Let

U and L denote the two disjoint sets of vertices in the bipartite
network respectively. If the sizes ofU and L are n, then the number
of bi-triangles could be up to O(n6), since a bi-triangle is a cycle
with six vertices. Besides, our problem is more computationally
expensive than many other related counting problems such as but-
ter�y counting [1, 39, 41], due to the same reason. For example, the
bipartite network Trackers, which contains around 4.0×107 vertices
and 1.4× 108 edges, has only 2.01× 1013 butter�ies, but 4.92× 1028

bi-triangles. Hence, it is desirable to develop e�cient solutions for
counting bi-triangles on large-scale bipartite networks.

Our contributions. As shown in the literature [1, 39, 41], to
count the number of instances of a relatively complicated pattern
P in a network, a general fundamental idea is to split P into several
small patterns, then count the numbers of these small patterns,
and �nally derive the total number of P based on the numbers
of small patterns. Note that counting the number of P is often
cheaper than enumerating P . More speci�cally, we �rst derive a
formula for counting the number of bi-triangles over three vertices
by simply checking how many wedges connecting them. Then, by
aggregating the number of bi-triangles for each triplet of vertices,
the total number of bi-triangles can be derived. Since this algorithm
is based on “wedge join”, we call it WJ-Count.

Although WJ-Count is straightforward, it is ine�cient for large
bipartite networks, since it needs to enumerate an extremely large
number of vertex triplets, i.e., if each vertex set of the bipartite
network contains n vertices, then the total number of triplets could
be up to n

3, which greatly limits its e�ciency on large bipartite
networks, as we will explain in Sections 3 and 7. To alleviate this
issue, we propose another counting algorithm based on the key
observation that a bi-triangle can be considered as the join of two
super-wedges. Here, a super-wedge is a simple path with three
edges, or two connected wedges that share an edge. The main
advantage of this algorithm over WJ-Count is that it allows us
to avoid enumerating the excessively large number of triplets of
vertices that inherently narrows WJ-Count’s optimization potential.
However, joining two super-wedges to generate bi-triangles may
result in complicated invalid cases. To solve this challenge, we
propose a two-stage counting strategy where the �rst stage counts
both the valid and invalid cases and the second stage counts the
invalid cases, respectively. We will discuss the technical details in
Section 4. We denote this algorithm by SWJ-Count, since it is based
on “super-wedge join”.

We further optimize SWJ-Count by ranking vertices according
to their degrees. The intuition is that vertices with higher degrees
tend to be involved in more bi-triangles, which implies that if we
perform counting for vertices with higher degrees priorly, we may
count more bi-triangles together, allowing us to achieve higher
e�ciency. Compared with SWJ-Count, the ranking mechanism may
result in even complicated invalid cases. To tackle this challenge,
we introduce the novel concept of the anchor-vertex, and then
by using the anchor-vertex, we can divide the invalid cases into
four types such that each type can be counted easily during the
process of counting all the valid cases. We denote the optimized
algorithm by RSWJ-Count, as it incorporates a ranking mechanism.
It is worthwhile mentioning that the three counting algorithms
above can be easily parallelized to achieve better e�ciency.

985



In addition, we study two variants of the bi-triangle counting
problem, also called local bi-triangle counting, which aim to count
the numbers of bi-triangles that contain a speci�c vertex or edge,
respectively. These variants are useful in some real applications,
such as computing the local clustering coe�cient. We also develop
two e�cient counting algorithms for solving these two variants.

We have performed extensive experiments on both real and
synthetic datasets, such as the e�ciency and scalability test. The ex-
perimental results show that RSWJ-Count and SWJ-Count are much
faster than the baselinemethod WJ-Count. Particularly, RSWJ-Count
can process billion-scale networks while WJ-Count and SWJ-Count
can merely handle small and million-scale networks, respectively.

In summary, our principal contributions are as follows:

• We develop a baseline algorithm WJ-Count which counts the
number of bi-triangles by joining wedges.

• We devise a faster algorithm SWJ-Count that represents a
bi-triangle as the join result of two super-wedges.

• We further optimize SWJ-Count by introducing a ranking
mechanism and get an optimized algorithm RSWJ-Count.

• We study the problems of local bi-triangle counting, and pro-
pose e�cient counting algorithms.

• We conduct an extensive experimental evaluation and the re-
sults show that our proposed counting algorithms are e�cient
and RSWJ-Count is the fastest one.

Outline. We formalize the problem de�nition in Section 2. Sec-
tion 3 presents our baseline algorithm WJ-Count. Section 4 presents
SWJ-Count. Section 5 presents the best algorithm RSWJ-Count. Sec-
tion 6 presents the problems and solutions of local bi-triangle count-
ing. The experimental results are reported in Section 7. We review
the related work in Section 8 and conclude in Section 9.

2 PROBLEM DEFINITION

Definition 1. Bipartite network [37]: A bipartite network is

an undirected network G = (V=(U ∪ L), E), where V is the vertex set

and E is the edge set s.t. (1) V consists of two disjoint sets, i.e., the set

of vertices in the upper layer U and the set of vertices in the lower

layer L, where V = U ∪ L andU ∩ L = ∅; and (2) each edge e=(u, l)

∈ E connects a vertexu ∈ U and a vertex l ∈ L, i.e., E ⊆ U ×L. (Please

note that in this paper, all the bipartite networks are unweighted).

Definition 2. Bi-triangle [37]:Given a bipartite networkG =

(V=(U ∪ L), E), a bi-triangle is a 6-cycle, or a cycle with a length of

6 having three vertices in U and three vertices in L. Besides, we use

v1-v2-v3-v4-v5-v6-v1 to denote the bi-triangle composed of vertices

v1, v2, · · · , v6 and edges (v1, v2), (v2, v3), · · · , (v6, v1).

Example 1. In the bipartite network of Figure 1, the upper and

lower layer vertex sets are U = {u1, u2, u3, u4} and L = {l1, l2, l3,

l4}, respectively. Vertices {l1, l2, l3, u1, u2, u3} can form a bi-triangle,

i.e., l1-u1-l2-u3-l3-u2-l1. Notice that unlike triangles in unipartite

networks, the same set of vertices may be involved in several bi-

triangles since they can be linked by di�erent sets of edges. For instance,

vertices {l2, l3, l4,u2,u3,u4} in Figure 1 participate in two bi-triangles,

i.e., l2-u2-l3-u4-l4-u3-l2 and l2-u3-l3-u4-l4-u2-l2.

Definition 3. Wedge: Given a bipartite networkG = (V=(U ∪

L), E), a vertex triplet (u, v ,w) forms a wedge, if {u, v ,w} ⊆ V and

{(u, v), (v ,w)} ⊆ E. We callw the middle-vertex of the wedge.

Table 1: Notations and meanings.

Notation Meaning

G=(V =(U∪L), E) a bipartite network
n,m the numbers of vertices and edges inG resp.

e = (u , l ) an edge between vertices u and l
w = (x , y , z) a wedge with three vertices x , y , and z

s = (x , y , z , t )
a super-wedge constituted by edges
(x , y), (y , z), (z , t ) ∈ E

N (v) the set of neighbors of vertex v
Nk (v) the set of k -hop neighbors of vertex v
d (v) the degree of vertex v
dk (v) the number of k -hop neighbors of vertex v

d̂ the maximum degree of vertices inG

d̄ the average degree of vertices inG

Definition 4. Super-wedge: Given a bipartite network G =

(V=(U ∪ L), E), a vertex quadruplet (u, v ,w , t) is a super-wedge, if

{u, v , w , t} ⊆ V and {(u, v), (v , w), (w , t)} ⊆ E. We call v and w

middle-vertices.

Clearly, a super-wedge can be considered as two connected
wedges that share an edge. A bi-triangle can also be considered as
the join result of three wedges or two super-wedges.

Example 2. In the bipartite network of Figure 1, (l1, u1, l2) forms

a wedge and (l1, u1, l2, u2) is a super-wedge.

Problem 1. Bi-triangle counting: Given a bipartite network

G = (V=(U ∪ L), E), return the total number of bi-triangles in G.

3 A WEDGE BASED ALGORITHM

In this section, we present a baseline bi-triangle counting algorithm,
called WJ-Count. It borrows the key idea of triangle counting algo-
rithm [17] on the unipartite network: speci�cally, for each vertex
v , it enumerates each vertex pair (x , y) among v’s neighbors, and
checks whether (v , x , y) form a triangle. To adapt this idea for
bi-triangle counting, we enumerate all the vertices in a speci�c
layer (say lower layer) and for each vertex v , we enumerate each
vertex pair (x , y) among v’s 2-hop neighbors, and then count the
number of bi-triangles containing the triplet of v , x , and y. Finally,
we aggregate the count on each vertex to get the total count of
bi-triangles.

In the following, we �rst discuss how to count the number of
bi-triangles containing three vertices, which is a key step, and then
present the overall algorithm.

3.1 Bi-triangle counting for three vertices

We start from the concept of wj-unit, which describes the intuition
that a bi-triangle can be regarded as three wedges joining together.

Definition 5. wj-unit:Given a bipartite networkG = (V=(U∪

L), E), a wj-unit is a connected subgraph formed by three wedges

wi = (xi , yi , zi ) (1 ≤ i ≤ 3), s.t. z1=x2, z2=x3, and z3=x1.

It is easy to observe that a bi-triangle must be a wj-unit, but
a wj-unit may not correspond to a bi-triangle, because a wj-unit
may be acyclic, i.e., its wedges may share the same middle vertex.
According to the ways of sharing the middle vertex, we divide the
acyclic wj-units into two types:

• Type-α : A wj-unit is a type-α acyclic wj-unit, if two of its
wedges share the same middle vertex.
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• Type-β : A wj-unit is a type-β acyclic wj-unit, if all of its
wedges share the same middle vertex.

Example 3 illustrates these two types of acyclic wj-units.

u1 u2 u3

l1 l2 l3

Figure 3: An example of wj-unit.

u2 u3

l1 l2 l3

(a) Type-α .

u2

l1 l2 l3

(b) Type-β .

Figure 4: Illustrating acyclic wj-units.

Example 3. In the bipartite network of Figure 1, the three wedges

(l1, u2, l2), (l2, u3, l3), and (l3, u2, l1) form a type-α acyclic wj-unit,

since (l1, u2, l2), and (l3, u2, l1) share the same middle vertex u2 (see

Figure 4(a)). The three wedges (l1, u2, l2), (l2, u2, l3), and (l3, u2, l1)

form a type-β acyclic wj-unit, because they share the same middle

vertex u2 (see Figure 4(b)).

As a result, a natural idea of counting the number of bi-triangles
containing three given vertices is to �rst obtain all the wj-units by
performing wedge join, and then subtract the number of acyclic
wj-units, as stated in Theorem 1.

Theorem 1. Given a bipartite networkG = (V=(U ∪ L), E), and
three vertices li , lj , and lk ∈ L, the number of bi-triangles containing
these vertices can be computed by the following formula:

|N (li ) ∩ N (lj ) | |N (lj ) ∩ N (lk ) | |N (lk ) ∩ N (li ) | −
(
|N (li ) ∩ N (lj ) |

+ |N (lj ) ∩ N (lk ) | + |N (lk ) ∩ N (li ) | − 2
)
|N (li ) ∩ N (lj ) ∩ N (lk ) |

Proof. First, it is obvious that the total number of wj-units
containing li , lj , and lk is |N (li )∩N (lj )| |N (lj )∩N (lk )| |N (lk )∩N (li )|.
Next, we discuss how to calculate the number of acyclic wj-units.
Assume that the three wedges of an acyclic wj-unit that contain li ,
lj , and lk are (li , x , lj ), (lj , y, lk ), and (lk , z, li ) respectively. In case
that the acyclic wj-unit is a type-α acyclic wj-unit, then two of the
three middle vertices are the same vertx. W.l.o.g., we assume that
the wedges (li , x , lj ) and (lj ,y, lk ) share the same middle vertex, i.e.,
x=y which must be in the set N (li ) ∩ N (lj ) ∩ N (lk ). This implies
that there are |N (li ) ∩ N (lj ) ∩ N (lk )| choices for x = y, so for a
given x = y, the number of choices for z is |N (li ) ∩ N (lk )|–1, since
z ∈ N (li ) ∩ N (lk ) and z , x = y. Thus, in this case, the number of
type-α acyclic wj-units is |N (li )∩N (lj )∩N (lk )|

(
|N (li )∩N (lk )−1|

)

In case that the acylic wj-unit is a type-β acyclic wj-unit, its three
wedges share the same middle vertex, i.e., x=y=z, so the number of
type-β acyclic wj-units is |N (li ) ∩ N (lj ) ∩ N (lk )|.

Finally, by combining the analysis above, we can derive the
formula shown in Theorem 1. □

Clearly, by Theorem 1, we can compute the number of bi-triangles

containing any three speci�c vertices in O(d̂) time, since we only
need to collect the sets of common neighbors of each pair of vertices

which takes O(d̂) time.

3.2 The overall algorithm of WJ-Count

Based on the wj-unit and Theorem 1, we develop the algorithm,
denoted by WJ-Count, as shown in Algorithm 1. First, it initializes
a variable Λ=0 (line 1) to keep the number of bi-triangles. Then, for
each vertex l in L, it collects l ’s 2-hop neighbors in a set S (lines 3-7).
Note that to avoid recomputation over the same vertex triplet, S
only keeps vertices whose ids are larger than l ’s id (lines 6-7). Next,
it enumerates each pair among l ’s 2-hop neighbors set, and for each
such pair (x , y), it counts the number of bi-triangles containing l ,
x , and y using Theorem 1, and updates Λ accordingly (lines 8-9).
Finally, it returns Λ as the result (line 10).

Algorithm 1: WJ-Count

Input: G = (V=(U ∪ L), E)

Output: The number of bi-triangles in G

1 Λ← 0

2 foreach l ∈ L do

3 S ← ∅

4 foreach x ∈ N (l ) do

5 foreach y ∈ N (x ) do

6 if y’s id is larger then l ’s id then

7 add y into S

8 foreach pair (x , y) among S do

9 Λ← Λ + |N (l ) ∩ N (x ) | |N (l ) ∩ N (y) | |N (x ) ∩ N (y) | −

( |N (l ) ∩ N (x ) | + |N (x ) ∩ N (y) | + |N (y) ∩ N (l ) | −

2) |N (l ) ∩ N (x ) ∩ N (y) |

10 return Λ

Complexity. The time complexity of WJ-Count is O
(
d̂ ×

∑
l ∈L

(d2(l))
2
+

∑
u ∈U d(u)2

)
. The space complexity of WJ-Count isO

(
m+n

)
.

Please see details for the analysis in the Appendix [58].
Limitations. Although WJ-Count is intuitive, it has two major

limitations: (1) It su�ers from a serious issue of recomputation, since
a pair of vertices x and y may be contained in many vertex triplets,
leading to heavy recomputation of |N (x) ∩ N (y)|. For example,
in the bipartite network of Figure 1, the pair of vertices l1 and
l2 is in a triplet of l1, l2, and l3, and another triplet of l1, l2, and
l4, so |N (l1) ∩ N (l2)| will be computed twice. (2) The number of
enumerated vertex triplets is too large. For example, the Discogs
network, which contains 2,025,596 vertices and 5,320,276 edges, has
8.19×1015 triplets that WJ-Count will enumerate.

To tackle these limitations, a simple idea is to project the bipartite
network into a unipartite network, say GL , such that its vertex
set is L and there is an edge between any pair of vertices if they
are contained in at least one wedge in G. Then, for each edge (x ,
y) ∈ GL , we assign it a weight denoting the number of wedges
connecting x and y. By doing this, the recomputation issue can be
avoided since we can look up the edges’ weights in GL to get the
size of common neighbors set. Meanwhile, the number of triplets
enumerated can be reduced, since for any bi-triangle, its three
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vertices in the lower layer L must form a triangle in GL , making
us only need to enumerate triplets whose vertices form triangles
inGL . However, this idea is still problematic becauseGL is dense
and large, which implies that (1) although the number of triplets
enumerated is reduced, the number of triangles in GL is still very
large; and (2) GL cannot be kept in the main memory even for
moderate-size networks (e.g., the Discogs network in Table 2 has
5,302,276 edges, but its projected network has 19,534,205,828 edges).
Hence, it is desirable to develop more e�cient counting algorithms
with di�erent paradigms.

4 A SUPER-WEDGE BASED ALGORITHM

To avoid the limitations of WJ-Count, in this section we propose
a more e�cient algorithm, called SWJ-Count, which counts bi-
triangles based on the join of super-wedges.

4.1 The main idea of SWJ-Count

We begin with a novel concept of swj-unit.

Definition 6. swj-unit:Given a bipartite networkG = (V=(U∪

L), E), an swj-unit is a connected subgraph formed by two super-

wedges si=(xi , yi , zi , ti ) (1≤i≤2), which satisfy x1=x2 and t1=t2.

As shown in Figure 5, an swj-unit can be formed by three di�er-
ent pairs of super-wedges. For example, in the bipartite network of
Figure 1, super-wedges s1=(l2, u1, l1, u2) and s2=(l2, u3, l3, u2) form
an swj-unit (see Figure 5(a)).

u1 u2 u3

l1 l2 l3

(a)

u1 u2 u3

l1 l2 l3

(b)

u1 u2 u3

l1 l2 l3

(c)

Figure 5: An swj-unit with three di�erent pairs of super-wedges

(each super-wedge is in a type of dashed lines).

Similar to wj-unit, a bi-triangle must be an swj-unit, but an swj-
unit may not correspond to a bi-triangle, as its super-wedges may
share the same middle vertex, i.e., y1=y2 or z1=z2, and we call it
an acyclic swj-unit. Note that we ignore the case of sharing two
middle vertices (i.e., y1=y2 and z1=z2), since s1 is identical to s2 in
this case. There are two types of acyclic swj-units, both of which
can be considered as a butter�y with an additional edge:

• Type-L: The two super-wedges of the swj-unit share a mid-
dle vertex in the lower layer.
• Type-U: The two super-wedges of the swj-unit share a mid-
dle vertex in the upper layer.

Example 4. In the bipartite network of Figrue 1, super-wedges

s1=(l2, u2, l3, u4) and s2=(l2, u3, l3, u4) form a type-L acyclic swj-unit

(see Figure 6(a)), while super-wedges s2=(l2, u3, l3, u4) and s3=(l2, u3,

l4, u4) form a type-U acyclic swj-unit (see Figure 6(b)).

A straightforward idea to count bi-triangles using swj-units,
similar to WJ-Count, works as follows: (1) for two vertices l and u
connected by a super-wedge, we count the number of swj-units and
acyclic swj-units containing them respectively, so the number of

u2 u3 u4

l2 l3
(a) Type-L.

u3 u4

l2 l3 l4
(b) Type-U.

Figure 6: Illustration for acyclic swj-units.

l1 li l100 l101 l102

u1 u2

Figure 7: A bipartite network (1 ≤ i ≤ 100).

bi-triangles containing them can be derived quickly; and (2) we do
(1) for all the pairs of vertices that are connected by super-wedges
to get the total count of bi-triangles.

Although the approach above is simple, it may involve much
recomputation when computing. For example, on the bipartite net-
work in Figure 7, we will show that the number of butter�ies con-
taining u1 and u2 can be recomputed at least 100 times. First, when
computing the number of the type-U acyclic swj-units containing
vertices l1 and u2, it needs to computes the number of butter�ies
containing the u1 and u2, as each such butter�y can form a type-U
acyclic swj-units with l1; Similarly, when computing the number of
type-U acyclic swj-units containing vertices li and u2 for all i = 2,
3, ..., 100, the number of butter�ies containing the u1 and u2 will be
computed repeatedly. Hence, the butter�y counting over vertices
u1 and u2 will be repeated at least 100 times. Clearly, the number

of butter�ies over a vertex pair may be recomputed for d̂ times and
there are up to n2 vertex pairs that are linked by wedges, so there

could be up to O(d̂ × n2) times of recomputation.
To avoid the recomputation above, we propose another approach:

instead of conducting counting for each vertex pair that is con-
nected by a super-wedge, we propose a two-stage strategy where
the �rst stage globally counts the numbers of swj-units, and the sec-
ond stage globally counts acyclic swj-units on the entire network,
respectively; and then derive the total number of bi-triangles by
subtracting the latter one from the �rst one. The intuitions behind
are that: (1) the number of swj-units containing two vertices that
are connected by a super-wedge can be obtained easily; and (2) the
number of acyclic swj-units over two vertices that are connected
by a wedge can be obtained e�ciently by Lemma 1.

Lemma 1. Given a bipartite network G = (V=(U ∪ L), E), for

any two vertices li , lj ∈ L, the number of type-L acyclic swj-units

containing them is
( |N (li )∩N (lj ) |

2

)
(d(li )+d(lj )−4); for any two vertices

ui ,uj ∈ U , the number of type-U acyclic swj-units containing them

is
( |N (ui )∩N (uj ) |

2

)
(d(ui ) + d(uj ) − 4).

Proof. We only prove the case of type-L, since the proof for

the case of type-U is similar. For li and lj , there are
( |N (li∩Nlj ) |

2

)

butter�ies containing them [43]. For each butter�y, there are d(li )−
2 edges adjacent to li that can form acyclic swj-units with the
butter�y, and d(lj ) − 2 edges adjacent to lj that can form acyclic
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Algorithm 2: SWJ-Count

Input: G = (V=(U ∪ L), E)

Output: The number of bi-triangles in G

1 Λ← 0, Λ← 0

2 foreach l ∈ L do

3 S ← ∅, H ← ∅

4 foreach u ∈ N (l ) do

5 foreach x ∈ N (u)/{l } do

6 if x < S .keySet () then S .inser t ((x , 0))

7 S [x ] ← S [x ] + 1

8 foreach x ∈ S .keySet () do

9 Λ← Λ +
(S [x ]

2

)
× (d (x ) − 2)

10 foreach y ∈ N (x ) do

11 if y < H .keySet () then H .inser t ((y , 0))

12 H [y] ← H [y] + S [x ]

13 foreach y ∈ H .keySet () do

14 if y ∈ N (l ) then H [y] ← H [y]–d(y)+1

15 Λ← Λ +
(H [y]

2

)

16 foreach u ∈ U do

17 T ← ∅

18 foreach l ∈ N (u) do

19 foreach t ∈ N (l )/{u } do

20 if t < T .keySet () then T .inser t ((t , 0))

21 T [t ] ← T [t ] + 1

22 foreach t ∈ T .keySet () do

23 Λ← Λ +
(T [t ]

2

)
× (d (t ) − 2)

24 return
Λ−(Λ)

3

swj-units with the butter�y. Hence, there are
( |N (li )∩N (lj ) |

2

)
(d(li ) +

d(lj ) − 4) acyclic type-L swj-units containing li and lj . □

Following the intuitions above, we have Theorem 2.

Theorem 2. Given a bipartite network G = (V=(U ∪ L), E), if

there are Λ swj-units in G and Λ acyclic swj-units in G, then the

number of bi-triangles is
(Λ−Λ)

3 .

Proof. The theorem holds obviously, since each bi-triangle can
be represented by three swj-units (see Figure 5). □

4.2 The overall algorithm of SWJ-Count

Based on the discussions above, we propose SWJ-Count, whose key
steps are as follows: First, for each vertex l ∈ L, we enumerate l ’s-2
hop neighbors and count the number of type-L acyclic swj-units
containing l and each of its 2-hop neighbors. Based on l ’s 2-hop
neighbors, we further enumerate l ’s 3-hop neighbors and count the
number of swj-units containing l and each of its 3-hop neighbors.
Then, we count the number of type-U acyclic swj-units over the
upper layer in a similar manner. Finally, we get the number of bi-
triangles, by subtracting the number of acyclic swj-units from the
total number of swj-units.

Algorithm 2 shows SWJ-Count. First, it initializes two variables

Λ and Λ (line 1), where Λ and Λ keep the numbers of swj-units and
acyclic swj-units respectively. Then, for each vertex l ∈ L (line 2),

it initializes two maps S and H (line 3), where S ’s keys are l ’s 2-hop
neighbors, values are numbers of wedges (2-paths) connecting l
and its 2-hop neighbors; and H has a similar function for l ’s 3-
hop neighbors. Next, it enumerates l ’s neighbors’ neighbors sets
to get S (lines 4-7). After that, the for-loop (lines 8-12) continues

to enumerate l ’s 3-hop neighbors and builds H . Meanwhile, Λ is
updated by adding the number of type-L acyclic swj-units that
containing l and x (line 9). Then, the for-loop (lines 13-15) computes
the number of swj-units adjacent to l and updates the variable Λ.
As the values in H may be larger than the number of super-wedges
connecting l and y (e.g., sequences like l , y, x , y is contained), it
subtracts the number of self-intersected 3-paths (line 14). Later,
the for-loop (lines 16-23) computes the number of type-U acyclic

swj-units and updates Λ. Finally, it returns Λ−Λ
3 (line 24).

Example 5. For the bipartite network in Figure 1, SWJ -Count

starts from l1 and enumerates its 2- and 3-hop neighbors to build the

2- and 3-hop neighbor maps S=[(l2, 2), (l3, 1), (l4, 1)] and H=[(u1, 2),

(u2, 4), (u3, 4), (u4, 2)], respectively. Meanwhile, Λ is updated as
(2
2

)

× 1 +
(1
2

)
× 1 +

(1
2

)
× 1 = 1, and Λ is updated as 7. Then, it continues

to process l2, l3 and l4 in the same way, and Λ and Λ are updated to

11 and 34 respectively. Finally, it enumerates vertices ofU to get the

number of type-U acyclic swj-units, and returns 3.

Complexity. The time compleixty of SWJ-Count is O
( ∑

l ∈L

(

d(l)2+d3(l)+
∑
x ∈N2(l ) d(x)

)
+
∑
u ∈U d(u)2

)
. The space complexity of

SWJ-Count isO(m+n). Please see details for the analysis in Lemma
7 in the Appendix [58].

SWJ-Count v.s. WJ-Count. It may not be easy to theoretically
judge which one runs faster. Instead, we compare them in terms of
the operations regarding a vertex l ∈ L. In the beginning, they take
the same cost to build l ’s 2-hop neighbors (lines 2-7 in Algorithm
1 and lines 2-7 in Algorithm 2). Next, WJ-Count enumerates all

the
(d2(l )

2

)
≈
(d2(l ))

2

2 vertex pairs among S (lines 8-9 in Algorithm
1), while SWJ-Count enumerates all l ’s 3-hop neighbors to build
H (lines 8-15 in Algorithm 2), which has

∑
x ∈N2(l ) d(x) ≈ d2(l)d̄

operations (here d̄ denotes the average degree). In practice, since

for most l ∈ L,
(d2(l ))

2

2 ≫ d2(l)d̄ , SWJ-Count runs much faster.

5 A RANKED SUPER-WEDGE BASED
ALGORITHM

In this section, we further optimize SWJ-Count by introducing a
ranking mechanism. Recall that SWJ-Count processes all the super-
wedges from vertices in the layer L, but each super-wedge can be
processed from any of its end vertices in either L or U . We have
the intuition that vertices with higher degrees always have more
adjacent super-wedges. Hence, processing super-wedges from ver-
tices with higher degrees may speed up the process by sharing
some computation. We illustrate this by the network in Figure
8. (1) If we process all the super-wedges from vertices in L, then
for each vertex l , to �nd the super-wedges ending at l , we need
to sequentially enumerate the neighbor sets of l , l ’s 1-hop neigh-
bors, and l ’s 2-hop neighbors, which take d(l),

∑
x ∈N (l ) d(x), and∑

x ∈N2(l ) d(x) operations respectively, so processing vertices from

l1 to l102 takes
∑102
h=1

(
d(lh ) +

∑
x ∈N (lh )∪N2(lh ) d(x)

)
=41,200 opera-

tions to �nd all the super-wedges. (2) Similarly, if we process all

989



the super-wedges from vertices in U , we also need 41,200 opera-
tions. (3) If we process super-wedges in the left part of G (with
vertices u1, u2, l1, · · · , l100) from vertices in U , and then process
super-wedges in the right part of G (with vertices l101, l102, u3, · · · ,
u102) from vertices in L, then we only need

∑
v ∈{u1,u2,l201,l202 }

(
d(v)

+

∑
x ∈N (v)∪N2(v) d(x)

)
=2,000 operations. Clearly, by ranking ver-

tices according to their degrees, the process can bene�t from search-
ing super-wedges from vertices with higher degrees; moreover, the
ranking mechanism can allow to us to complete counting by pro-
cessing only a small fraction of swj-units, which are termed as
rswj-units as explained in the following.

l1 li l100 l101 l102

u1 u2 u3 up u102

Figure 8: A bipartite network.

5.1 The main idea of RSWJ-Count

We begin with some key concepts in RSWJ-Count.

Definition 7. Vertex rank: Given a bipartite network G =

(V=(U ∪ L), E), a vertex rank σ over G is a bijective mapping σ :

V → {1, 2, · · · , |V |}.

In this section, we focus on vertex rank according to degrees, de-
noted as DegRank. More speci�c, a rank σ is DegRank if σ satis�es
that if u,v ∈ V s.t. d(u) < d(v), then σ (u) > σ (v).

We use notations Φk (r , v)={u |u∈Nk (v) ∧ σ (u)<r } and Ψk (r ,
v)={u |u∈Nk (v)∧σ (u)>r } to describe the subsets ofv’s k-hop neigh-
bors with ranks smaller and larger than r , respectively. Besides,
we use ϕk (r , v) and ψk (r , v) to denote |Φk (r , v)| and |Ψk (r , v)|
respectively. When k=1, subscripts are omitted.

Definition 8. r-super-wedge and r-wedge: Given a bipartite

network G = (V=(U ∪ L), E) and a rank σ , we say a super-wedge

(x , y, z, t) is an r-super-wedge if σ (x)=min{σ (x), σ (y), σ (z), σ (t)}.

Similarly, we say a wedge (x , y, z) is an r-wedge if σ (x)=min{σ (x),

σ (y), σ (z)}.

Based on the above de�nitions, we introduce the concept of
rswj-unit and Theorem 3.

Definition 9. rswj-unit: In a bipartite network G with rank

σ , an swj-unit is an rswj-unit if it is composed of two r-super-wedges.

Theorem 3. Given a bipartite network G, each bi-triangle of G

can be represented as a unique rswj-unit.

Proof. Figure 5 shows that each bi-triangle can be represented
by three di�erent swj-units composed of three pairs of super-
wedges respectively. However, if we focus on the vertex v whose
σ (v) is the smallest and search super-wedges starting from v in the
bi-triangle, then we can only get one pair of super-wedges. It is easy
to see that this pair of super-wedges are all r-super-wedges. □

Similar to the swj-unit and wj-unit, some rswj-units cannot form
bi-triangles, which are also called acyclic rswj-units. Speci�cally, let
r1=(x , y1, z1, t) and r2=(x , y2, z2, t) be two r-super-wedges. Then,
the types of acyclic rswj-units they can form are as follows:

x

y1

z1 z2

t

(a) Type-1.1.

x

y1

z1 z2

t

(b) Type-1.2.

x

y1

z1 z2

t

(c) Type-1.3.

x

y1 y2

z1

t

(d) Type-2.

Figure 9: Illustration for acyclic rswj-units (start-vertices are in

black; anchor-vertices are in gray).

• Type-1: they form a type-1 acyclic rswj-unit, if they share
the �rst middle vertex, i.e., y1=y2, denoted by y. For better
illustration of algorithms, we introduce a concept of anchor-
vertex, based on which we further divide this type into three
sub-types. Let S={y, z1, z2, t}. Then, the anchor-vertex a is

a ← argmin
x ∈S

{σ (x)}. (1)

The three sub-types are:

– Type-1.1: If a is y (see Figure 9(a)).
– Type-1.1: If a is z1 or z2 (see Figure 9(b)).
– Type-1.3: If a is t (see Figure 9(c)).

• Type-2: they form a type-2 acyclic rswj-unit, if they share
the second middle vertex, i.e., z1=z2 (see Figure 9(d)). We call
x is the anchor-vertex of the type-2 acyclic rswj-unit.

Next, Lemmas 2-4 illustrate how to count the number of acyclic
rswj-units in each type for any two vertices in a bipartite network
G = (V=(U ∪ L), E).

Lemma 2. Given a bipartite network and its two vertices v1 and v2
with σ (v1) < σ (v2), the number of type-1.1 acyclic rswj-units, which

containv1 andv2 wherev1 is the anchor-vertex, is
( |Π(v1 , v2) |

2

)
ϕ(σ (v1),

v1), where Π(v1, v2) denotes the set Ψ(σ (v1), v1) ∩ N (v2).

Proof. It is easy to see that there are
( |Π(v1 , v2) |

2

)
butter�ies con-

taining v1 and v2. Also, for each such butter�y, there are ϕ(σ (v1),
v1) edges which can form type-1.1 acyclic rswj-units with the but-
ter�y; hence, the lemma holds. □

Lemma 3. Given a bipartite network and its two vertices v1 and v2
with σ (v1) < σ (v2), the number of type-1.2 acyclic rswj-units, which

contain v1 and v2 where v1 is the anchor-vertex, is (|Π(v1, v2)| −

1)×
∑

u ∈Π(v1 , v2)
ϕ(σ (v1), u).

Proof. For each u ∈ Π(v1, v2), there are |Π(v1, v2) − 1| vertices
which can form a butter�y withu,v1 andv2; besides,u has ϕ(σ (v1),
u) adjacent edges which can form type-1.2 acyclic rsjw-units with
the butter�y. Hence, the number of acyclic rswj-units can be calcu-
lated as (|Π(v1, v2)| − 1)×

∑
u ∈Π(v1 , v2)

ϕ(σ (v1), u). □

Lemma 4. Given a bipartite network and its two vertices v1 and

v2 with σ (v1) < σ (v2), the number of type-1.3 and type-2 acyclic

990



rswj-units, which contain v1 and v2 where v1 is the anchor-vertex, is( |Π(v1 , v2) |
2

) (
d(v2) − 2

)
.

Proof. It is easy to see that there are
( |Π(v1 , v2) |

2

)
butter�ies

containing v1 and v2. Besides, for each such butter�y, there are
ϕ(σ (v1), v2) edges which can form type-1.3 acyclic rswj-units with
the butter�y andψ (σ (v1),v2)-2 edges which can form type-2 acyclic

rswj-units with the butter�y; hence, there are
( |Π(v1 , v2) |

2

)
(d(v2)−2)

type-1.3 and type-2 acyclic rswj-units. □

Besides, the following de�nition and the lemma gives us a prun-
ing technique based on the (2, 2)-core [30, 52].

Definition 10. Given a bipartite network G = (V=(U ∪ L),

E) and two integers α and β , the (α , β)-core [30] of G is the largest

subgraph ofG such that any of its vertex inU has a degree at least α ,

and any of its vertex in L has a degree at least β .

Lemma 5. Given a bipartite network G = (V=(U ∪ L), E), all the

bi-triangles of G must be contained in its (2, 2)-core.

Theorem 4. Given a bipartite network G = (V=(U ∪ L), E), if

there are Λ rswj-units and Λ acyclic rswj-units, then there are (Λ−Λ)

bi-triangles.

5.2 The overall algorithm of RSWJ-Count

Algorithm 3 summarizes the key steps of RSWJ-Count. In the outset,
as a preprocessing step, it computes the (2, 2)-core by recursively
removing vertices that are not in it, and builds the DegRank on

the (2, 2)-core (line 1). Then it initializes two variables Λ and Λ for
keeping the numbers of rswj-units and acyclic rswj-units (line 2),
respectively. Next, the for-loop (lines 3-19) enumerates each vertex
v ∈ V to obtain the number of rswj-units and acyclic rswj-units
adjacent to it. Speci�cally, it �rst initializes three maps S , H , and
T , where S and H are used to keep v’s 2- and 3-hop neighbors
respectively, and T keeps the information that will be used in cal-
culating the number of type-1.2 acyclic rswj-units. Then, it builds
maps S andT (lines 5-9). Note that only vertices whose rank values
are larger than v’s rank value are visited (lines 5-6), which further
indicates that S[y] is the number of r-wedges connecting v and y,
andT [y] is

∑
x ∈Π(v,y) ϕ(σ (v), x) (which is a key part of calculating

the type-1.2 acyclic rswj-units). After that, the for-loop (lines 10-16)
enumerates neighbors set of each vertex in S to build H , where for
each ofv’s 3-hop neighbor z,H [z] is the number of r-super-wedges
connecting v and z. Meanwhile, the numbers of type-1.1, type-1.2,
type-1.3, and type-2 acyclic rswj-units are calculated by Lemmas

2–4 and summarized in Λ (lines 14-16). Later, it calculates the num-
ber Λ of rswj-units using H (lines 17-19). Note that line 18 removes

self-intersected 3-paths. Finally, it subtracts Λ from Λ to get the
total count by Theorem 4 (line 21).

Complexity. The time complexity of RSWJ-Count is O
(
m +

n +
∑
v ∈V d(v)

(
ϕ(v)+ϕ2(v)

) )
, where Φk (v) is the abbreviation of

Φk (σ (v), v) and ϕk (v), Ψk (v), ψk (v) have similar meanings. The
space cost of RSWJ-Count is O

(
m+n). Please see details for the

analysis in Lemma 8 in the Appendix [58].

Algorithm 3: RSWJ-Count

Input: G = (V=(U ∪ L), E);

Output: The number of bi-triangles in G ;

1 compute the (2, 2)-core and build the DegRank on it

2 Λ← 0, Λ← 0

3 foreach v ∈ V do

4 S ← ∅, H ← ∅, T ← ∅

5 foreach x ∈ Ψ(σ (v), v) do

6 foreach y ∈ Ψ(σ (v), x ) do

7 if y < S .keySet () then

8 S .inser t ((y , 0)), T .inser t ((y , 0))

9 S [y] ← S [y] + 1, T [y] ← T [y] + ϕ(σ (v), x )

10 foreach y ∈ S .keySet () do

11 foreach z ∈ Ψ(ϕ(v), y) do

12 if z < H .keySet () then H .inser t ((z , 0))

13 H [z] ← H [z] + S [y]

14 Λ← Λ +
(S [y]

2

)
× ϕ(σ (v), v) /* Lemma 2 */

15 Λ← Λ + (S [y] − 1) ×T [y] /* Lemma 3 */

16 Λ← Λ +
(S [y]

2

)
× (d (y) − 2) /* Lemma 4 */

17 foreach z ∈ H .keySet () do

18 if z ∈ N (v) then H [z] ← H [z] −ψ (σ (v), z)

19 Λ← Λ +
(H [z]

2

)

20 return (Λ − Λ)

6 LOCAL BI-TRIANGLE COUNTING

In this section, we study an extension, called local bi-triangle count-
ing, which aims to count the numbers of bi-triangles that contain a
speci�c vertex v0 or edge e0. This problem is useful in many real
applications, such as local clustering coe�cient computation in
bipartite networks [37].

To solve the local counting problem, we adapt our ideas for global
counting. Generally, we have three options, based on representing
bi-triangles as (1) wj-units, (2) swj-units, or (3) rswj-units. First,
option (1) is not a good choice, because it may result in enumerating
a large number of vertex triplets. Next, among options (2) and (3),
it seems that (3) should be the better one, because in the case of
global counting, RSWJ-Count (adopting the idea of (3)) outperforms
SWJ-Count (adopting the idea of (2)). However, in fact, in the case
of local counting, option (3) is the worse choice. The main reason
is that a bi-triangle containing v0 may be composed of two r-super-
wedges whose end vertex is not v0, but v0’s 1, 2, 3-hop neighbors.
Hence, to count these bi-triangles, we have to �nd the r-super-
wedges composing them, which requires us to �rst enumerate v0’s
1, 2, 3-hop neighbors. However, the enumeration of v0’s 1, 2, 3-hop
neighbors already includes the process of all the super-wedges
starting from v0. This indicates that representing bi-triangles as
swj-units and processing these swj-units from v0 is a better choice.
In other words, (2) is better than (3).

6.1 Bi-triangle counting for a query vertex

To count the number of bi-triangles containing v0, we present
an algorithm, denoted by V-LCount, which follows the idea of
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SWJ-Count, but has a key di�erence that it only counts the swj-units
and acyclic swj-units containing v0.

Algorithm 4: V-LCount

Input: G = (V=(U ∪ L), E) and a vertex v0 ∈ V

Output: The number of bi-triangles containing v0;

1 Λ← 0, Λ← 0, S ← ∅, H ← ∅

2 foreach y ∈ N2(v0)/{v0 } do S [y] ← S [y] + 1

3 foreach y ∈ S .keySet () do

4 Λ← Λ +
(S [y]

2

)
× (d (y) − 2)

5 foreach z ∈ N (y) do H [z] ← H [z] + S [y]

6 foreach z ∈ H .keySet () do

7 if z ∈ N (l ) then H [z] ← H [z] − d (z) + 1

8 Λ← Λ +
(H [z]

2

)

9 foreach x ∈ N (v0) do

10 T ← ∅

11 foreach z ∈ N2(x )/{v0 } ∧ z .id < y .id do T [z] ← T [z]+ 1

12 foreach z ∈ T .keySet () do Λ← Λ +
(T [z]

2

)

13 return (Λ − Λ)

Algorithm 4 shows V-LCount. First, it initializes two variables

(i.e., Λ and Λ) and two maps (i.e., S and T ), which have similar
meanings with those in SWJ-Count. Then, the for-loop (line 2)
enumerates v’s 2-hop neighbors to build S . After that, the for-loop
(lines 3-5) enumerates v’s 3-hop neighbors to build H ; meanwhile,

the number of acyclic swj-units are computed and updated inΛ (line
4). Then the for-loop (lines 6-8) enumerates v’s 3-hop neighbors in
H and updates Λ, where line 8 ensures that self-intersected paths
are not included. Lastly, it counts the acyclic swj-units that are

not counted in line 8, updates Λ (lines 9-12), and returns the result
accordingly (line 13).

Complexity. It is easy to observe that V-LCount has the time
complexity: O

(
d3(v0) ×

∑
x ∈N (v0) d(x) +

∑
y∈N2(v0) d(y)

)
, and the

space complexity: O
(
m + n

)
.

6.2 Bi-triangle counting for a query edge

In this section, we present an algorithm E-LCount for counting the
number of bi-triangles containing a query edge e0=(u, l). It also
follows the idea of SWJ-Count and only counts the swj-units and
acyclic swj-units containing e0.

Algorithm 5 presents the pseudocodes. Initially, it creates vari-

ables (i.e., Λ and Λ) and maps (i.e., S , H , and T ), which have similar
meanings with those in V-LCount. Then, we buildT and S by using
two for-loops respectively (lines 2-5). Next, it enumerates the neigh-
bor sets of vertices in S to build H (lines 6-8), and computes the
number of acyclic swj-units (line 7). Finally, it enumerates vertices
in the intersection of H and T to compute the number of swj-units
(lines 9-11) and returns the overall count (line 12).

Complexity. It is easy to observe that E-LCount has the time
complexity ofO

( ∑
x ∈N (u)∪N (l ) d(x)+

∑
y∈N 2(u) d(y)

)
, and the space

complexity of O
(
m + n

)
.

Algorithm 5: E-LCount

Input: G = (V=(U ∪ L), E) and an edge e0=(u , l ) ∈ E

Output: The number of bi-triangles containing e0;

1 Λ← 0, Λ← 0, S ← ∅, T ← ∅, H ← ∅

2 foreach t ∈ N (u)/{l } do

3 foreach w ∈ N (t )/{u } do T [w ] ← T [w ] + 1

4 foreach x ∈ N (l )/{u } do

5 foreach y ∈ N (x )/{l } do S [y] ← S [y] + 1

6 foreach y ∈ S .keySet () do

7 if y ∈ N (l ) then Λ← Λ + S [y] × (d (y) − 2)

8 foreach z ∈ N (y)/{l } do H [z] ← H [z] + S [y]

9 foreach z ∈ H .keySet () ∩T .keySet () do

10 if z ∈ N (l ) then H [z] ← H [z] − d (z) + 1

11 Λ← Λ + H [z] ×T [z]

12 return (Λ − Λ)

7 EXPERIMENTS

In this section, we present the results of empirical studies. We �rst
discuss the setup in Section 7.1 and then present the experimental
results in Section 7.2.

7.1 Setup

Datasets. We evaluate the algorithms on 11 real networks (see Ta-
ble 2), including a�liation networks (e.g., Actor-Movie, Discogs and
LiveJournal), bibliographic networks (e.g., DBLP and Dewiki), so-
cial networks (e.g., Twitter, Youtube, and Movielens), text networks
(e.g., Reuters and Gottron), and hyperlink networks (e.g., Trackers).
All these datasets are downloaded from KONECT1. Please note that
all the networks are undirected, and we randomly choose one side
as the upper layer and the other one as the lower layer. Besides,
we include one synthetic dataset, namely Syn, which is generated
according to the bipartite network model [4], where the vertices
in the lower and upper layers follow the Power-law degree distri-
bution and the Poisson degree distribution, respectively. Table 2
reports the statistics of these datasets.

Environment. All the experiments are conducted on a machine
with a Linux system, an Intel Xeon E-2288G 3.7GHz CPU, and 64GB
RAM. Note that we manually terminate running an algorithm if it
cannot �nish within 48 hours and mark it as +∞ in Figures 10-17.

7.2 Experimental results

1. E�ciency of bi-triangle counting algorithms. Figure 10 re-
ports the e�ciency of algorithms WJ-Count, SWJ-Count, and RSWJ-
Count, on all the datasets. We can see that SWJ-Count consistently
outperforms WJ-Count, since it represents bi-triangles as swj-units
rather than wj-units, which avoids the enumeration of the exces-
sively large number of vertex triplets as WJ-Count does. Besides,
the fastest algorithm is RSWJ-Count, which is up to �ve orders of
magnitude faster than the baseline algorithm WJ-Count. The reason
is that it not only avoids the enumeration of vertex triplets, but also
takes the advantage of the DegRank and the pruning technique of
exploiting the (2, 2)-core (see Lemma 5).

1http://konect.uni-koblenz.de/networks
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Table 2: Datasets used in the experiments.

Dataset Id Type |U | |L | |E | #wedges #super-wedges #r-super-wedges #bi-triangles

DBPedia D1 bibliographic 18, 422 168, 338 233, 286 1.45 × 108 3.23 × 1010 1.94 × 107 3.62 × 108

Youtube D2 social 30, 088 94, 239 293, 360 7.02 × 107 1.25 × 109 1.26 × 108 2.02 × 1010

Actor-Movie D3 a�liation 383, 641 127, 824 1, 470, 404 3.95 × 107 1.22 × 109 2.09 × 108 1.42 × 109

Twitter D4 social 530, 419 175, 215 4, 664, 605 1.01 × 109 5.51 × 1010 2.32 × 109 1.61 × 1012

Discogs D5 a�liation 1, 754, 824 270, 772 5, 302, 276 6.61 × 109 1.76 × 1012 3.49 × 1010 1.92 × 1014

Movielens D6 social 10, 678 69, 879 10, 000, 054 4.01 × 1010 2.52 × 1013 5.72 × 1012 1.60 × 1018

Dekiwi D7 bibliographic 3, 119, 968 425, 842 26, 011, 353 9.54 × 1010 2.80 × 1013 3.81 × 1012 2.08 × 1017

Reuters D8 text 781, 266 283, 912 60, 569, 726 2.04 × 1011 3.26 × 1014 6.71 × 1013 2.46 × 1019

Gottron D9 text 556, 078 1, 173, 226 83, 629, 405 3.59 × 1011 1.30 × 1019 1.54 × 1014 4.15 × 1020

Livejournal D10 a�liation 7, 489, 074 3, 201, 204 112, 307, 385 6.93 × 1010 3.81 × 1013 3.58 × 1012 6.12 × 1018

Trackers D11 hyperlink 27, 665, 731 12, 756, 245 140, 613, 762 1.42 × 1017 4.45 × 1020 9.14 × 1017 4.92 × 1028

Syn D12 synthetic 5, 000, 000 5, 000, 000 1, 100, 266, 304 6.98 × 1013 2.25 × 1023 5.16 × 1019 6.55 × 1024

DBPedia Youtube Actor-Movie Twitter Discogs Movielens Dewiki Reuters Gottron Livejournal Trackers Syn
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Figure 10: E�ciency of bi-triangle counting on all the 12 datasets.
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Figure 11: Scalability of bi-triangle counting algorithms.
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Figure 12: Comparison of di�erent ranks in RSWJ-Count.
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Figure 13: A case study.
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Figure 14: Parallelizability of RSWJ-Count.
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Figure 16: Query time cost distribution of V-LCount.
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More speci�cally, WJ-Count can only �nish within 48 hours on
the three smallest datasets, i.e., DBPedia, Youtube, and Actor-Movie,
because the number of vertex triplets needed to be enumerated
grows signi�cantly regarding the size of the dataset. In addition,
SWJ-Count can process networks with millions of edges (e.g., Twit-
ter, Discogs, Movielens, Dekiwi, and Reuters), while RSWJ-Count is
able to process all the networks including the billion-scale network
Syn, because these datasets contain many higher degree vertices,
which cannot be well handled by SWJ-Count. In addition, we also
analyse the relationship between the number of key factors and
the running time of the algorithms. As the space limitation, we put
this part in the Appendix [58].

In addition, we include a representative matrix based counting
algorithm–Halford’s algorithm for comparison. As there are many
large matrices used in this algorithm, it can only process small
datasets due to the memory limitation. For DBPedia and Youtube,
we can see that Halford’s algorithm is much slower than SWJ-Count
and RSWJ-Count as it involves much matrix computation.

2. Scalability of bi-triangle counting algorithms. In this ex-
periment, we test the scalability of the three counting algorithms.
Speci�cally, for each real dataset, we randomly select 20%, 40%, 60%,
80%, and 100% of its edges and obtain �ve subgraphs induced by
these edges, respectively. For the synthetic datasets, we generate
smaller graphs where the numbers of the edges are 20%, 40%, 60%,
and 80% of the Syn dataset, keeping other parameters the same.
Then, we perform the bi-triangles counting over these small graphs
using the three counting algorithms and depict the results in Figure
11. For lack of space, we only show the results on three datasets.
We can see that generally, all algorithms scale well.

3. Comparison of di�erent ranks in RSWJ-Count. To com-
pare the e�ciency of di�erent ranks in RSWJ-Count, we exper-
imentally test eight ranks, i.e., DegRank, DegRank−1, LURank,
LURank−1, WRank, WRank−1, SWRank, and SWRank−1, where
DegRank is used in RSWJ-Count, LURank puts vertices of L be-
fore vertice ofU like what SWJ-Count does, WRank ranks vertices
according to the numbers of wedges adjacent to them decreas-
ingly, and SWRank ranks vertices according to the numbers of
super-wedges adjacent to them decreasingly. Note that DegRank−1

denotes the reversed rank of DegRank and this notation has sim-
ilar meanings for others. In the experiment, we run RSWJ-Count

by only replacing its DegRank by each of the above ranks. Figure
12 depicts the results. Clearly, DegRank has the best performance,
which con�rms our observation in Section 5.

4. Investigation of transitivity coe�cient (TC). In this ex-
periment, we conduct a case study of the bi-triangle-based TC [37].
To do this, we collect a dataset of Amazon commerce networks
which contains two types of vertices, i.e., users and products, and
each edge represents a user giving a 5-stars rating for a product.
Then, we run three classic bipartite network community detection
algorithms, which are (α , β)-core [30], k-wing [53] and k-Ctruss

[57], on it by varying k from 3 to 11, and use the TC [37] (See
de�nition in Section 1) to measure the found communities. The
results are shown in Figures 13(a)-(c). Clearly, as the k increases,
the TC values for all the models increase continuously. Moreover,
we include two additional classic bipartite network clustering al-
gorithms which are BRIM [3] and BLP [31]. As reported in [31],
BLP outperforms BRIM. We separately use BRIM and BLP to obtain
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Figure 18: Comparing butter�y based TC and bi-triangle based TC.

clusters and compute the average TC over these clusters. Also, we
randomly divide the network into several clusters and compute the
average TC over these randomly generated clusters. The results
are reported in Figure 13(d). We can see that the clusters found by
BLP have the largest TC values while the random subgraphs have
the lowest ones. Hence, the TC can well measure the quality of the
communities or clusters.

In addition, we study the di�erence between the butter�y based
TC [42] and bi-triangle based TC [37], where the butter�y based TC
is de�ned as the ratio between the number of 3-paths and the num-
ber of butter�ies. Generally, the bi-triangles based TC measures the
cohesiveness for a set of vertices from a single layer only (e.g., either
users or products in user-product networks), while butter�y based
TC measures the cohesiveness of a whole bipartite network with
two layers. In Figure 18, we show the values of butter�y based TC
and the bi-triangle based TC on the user-product network. Clearly,
the product vertices always have higher bi-triangle based TC. This
is because a user may only buy a few products, but a product is
often bought by many users, making products with higher cohe-
siveness. However, this di�erence between the two vertex layers
cannot be captured by the butter�y based TC.

5. Parallelizability of RSWJ-Count. As our algorithms process
each vertex independently, it is natural to parallelize them to achieve
higher e�ciency. Since WJ-Count and SWJ-Count inherently have
higher time complexities, we focus on parallelizing RSWJ-Count. In
speci�c, we parallelize the for-loop (lines 3-19) of Algorithm 3 by
multiple threads such that di�erent vertices are processed by di�er-
ent threads.We denote the parallelized version by Par-RSWJ-Count,
which adopts the dynamic schedule, i.e., each vertex that has not
been executed will be assigned to an idle thread. We run Par-RSWJ-
Count by varying the number of threads and report the time cost in
Figure 14. Further, we depict the line of the optimal parallelization

which means the running time will be reduced to its 1
k
when k cores

are used. Generally, we can see that as the number of threads in-
creases, the running time decreases continuously. However, we can
also observe that Par-RSWJ-Count is still far from optimal. This is
because we use dynamic scheduling, which is far from optimal [16].
Another reason is that we only parallelize the outer-loop; hence,
the algorithm is not not fully parallized.

6. E�ciency of local bi-triangle counting algorithms. In
this experiment, we evaluate local counting algorithms V-LCount
and E-LCount which are presented in Section 6. Additionally, we
include two more variants RVCount and RECount for counting bi-
triangles contianing a speci�c vertex or edge. These two variants
share the same idea of V-LCount and E-LCount, while the only
di�erence is that the bi-triangles are regarded as rswj-units in-
stead of swj-units. For each dataset we randomly generate 10,000
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query vertices and 10,000 query edges, then run RVCount, V-LCount,
RECount, and E-LCount for all of these query vertices and edges
respectively, and �nally report the average query response time
for �ve datasets in Figure 15. Clearly, V-LCount and E-LCount

are faster than RVCount and RECount, which veri�es our intuition
mentioned in Section 6. Also, V-LCount is slower than E-LCount,
because a vertex is often involved in more bi-triangles than an edge.

In addition, we show how the numbers of bi-triangles containing
the query vertex and query edge a�ect the e�ciency. Speci�cally,
we record the time cost for each query vertex or edge, and depict the
time cost distribution of V-LCount and E-LCount on two datasets
in Figures 16 and 17, respectively, where the horizontal and vertical
axes denote the numbers of bi-triangles containing the query ver-
tex/query edge and the time cost, respectively. Generally, vertices
and edges that are contained in more bi-triangles take more time
cost, since they tend to be linked with more super-wedges and swj-
units, which results in more computational cost. However, there
are some outliers that cost much computation time but are not con-
tained in many bi-triangles. This is because these vertices and edges
are contained in many acyclic swj-units but fewer bi-triangles.

8 RELATED WORKS

The structure of the bi-triangle was �rst introduced by Opsahl et
al. [37]. Despite the wide usefulness of bi-triangles, no one has
systematically studied the problem of bi-triangle counting yet. In
the following, we review several groups of related works.
• Butter�y counting in bipartite networks. The butter�y is one of

the most well-known motifs in bipartite networks. Conceptually, a
butter�y is a complete 2×2 biclique. The problem of butter�y count-
ing was �rst introduced by [2], since it is used in many bipartite
network analysis methods [29, 34]. Vahid et al. [43] proposed both
exact and randomized algorithms for counting butter�ies. Recently,
Wang et al. [51] have developed an improved algorithm based on
the vertex priority, which is the state-of-the-art algorithm. Similar
to Wang’s algorithm, RSWJ-Count also incorporates a vertex prior-
ity mechanism, i.e., the deg-rank. However, counting bi-triangles
meets more challenging invalid cases (i.e., acyclic rswj-units) which
do not appear in counting butter�ies. To tackle this issue, we pro-
pose the novel concept of the anchor-vertex, and then based on
it, we can divide the invalid cases into four types such that each
type can be counted easily during the process of counting all the
valid cases. Besides, based on the butter�y, some novel cohesive
subgraph models have been developed on bipartite networks. In
[59], Zou et al. proposed the bitruss model and a bitruss decompo-
sition algorithm. Later, Wang et al. developed an improved bitruss
decomposition algorithm [53]. In [44], Ahmet and Ali proposed two
cohesive subgraph models (i.e., k-tip and k-wing) using butter�ies.
•Motif counting on unipartite networks. A motif (a.k.a graphlet or

higher-order structure)is a small connected subgraph. The topic of
motif counting on unipartite networks has received much attention
[33, 40], since it has found various real applications (e.g., protein
function prediction in biological networks and spam detection in
email networks). Generally, existing solutions can be classi�ed into
two groups [40], namely network-centric methods [24, 25, 32, 38,
39, 45, 48, 54] and subgraph-centric methods [5, 6, 13, 14, 18], where

network-centric methods assess the frequencies of all the motifs
with k vertices in a graph while subgraph-centric methods only
count the frequency of a speci�c subgraph. In the �rst group, both
exact and approximation algorithms are extensively studied. For
instance, Pinar et al. [39] proposed a counting framework which
cuts motifs into smaller ones and gets the large counts using the
counts of smaller motifs; Madhav et al. [25] and Wang et al. [54]
proposed a randomized algorithm for counting motifs with four
and over �ve vertices respectively. Since these methods count fre-
quencies of a set of motifs, they cannot be directly used for our
bi-triangle counting. For the second group, Floderus et al. [13] pro-
posed algorithms for detecting and counting small motifs; Bressan
et al. [6] proposed complexity bounds for counting a speci�cally
sized subgraph. However, these algorithms often have high time
complexities. Moreover, they are developed based on unipartite
networks and not customized for a cycle with six vertices. Hence,
we do not consider these algorithms in our experiments.
• Subgraph enumeration on unipartite networks. This topic, which

aims to list all the subgraphs of a large network that are isomorphic
to a query subgraph, is fundamental in network analysis. In [49],
Ullmann proposed the �rst subgraph matching algorithm. Later,
VF2 [8] and QuickSI [46] were proposed by considering the order
of vertices, while TurboISO [19] was developed using the concept
of neighborhood equivalence class to accelerate the computation.
There are also many parallel algorithms, such as DualSim [26] and
TwinTwigJoin [27]. DualSim enumerates subgraphs in parallel on a
singlemachine, while TwinTwigJoinworks in a distributed platform
using MapReduce. Detailed surveys can be found in [28, 56].

9 CONCLUSION

In this paper, we examine the problem of bi-triangle counting
over large bipartite networks, which has found many real appli-
cations such as computing transitivity coe�cient and clustering
coe�cient. To count bi-triangles, we �rst propose an intuitive algo-
rithm WJ-Count which represents the bi-triangle as a wj-unit, or
the join of three wedges. We then propose a more e�cient algo-
rithm SWJ-Count, which adopts the concept of super-wedge and
represents each bi-triangle as an swj-unit. Moreover, we optimize
SWJ-Count by incorporating the DegRank over vertices and rep-
resenting each bi-triangle as an rswj-unit. Besides, we develop
two e�cient local counting algorithms V-LCount and E-LCount for
counting bi-triangles containing a given vertex or edge respectively.
The experimental results on both real and synthetic large datasets
show that our algorithms are e�cient, and the best one is up to �ve
orders of magnitude faster than the baseline algorithm.

In the future, we will investigate e�cient parallel and distributed
counting algorithms. Another interesting research direction is to
develop e�cient bi-triangle counting algorithms by exploiting mod-
ern hardwares (e.g., GPU). In addition, we will investigate some
other related meaningful motifs over bipartite networks from the
perspectives of counting and enumeration.
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