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Abstract. We consider schemes for recursively dividing a set of geometric objects by 

hyperplanes until all objects are separated. Such a binary space partition, or BSP, is 

naturally considered as a binary tree where each internal node corresponds to a 

division. The goal is to choose the hyperplanes properly so that the size of the BSP, 

i.e., the number of resulting fragments of the objects, is minimized. For the two- 

dimensional case, we construct BSPs of size O(n log n) for n edges, while in three 

dimensions, we obtain BSPs of size O(n 2) for n planar facets and prove a matching 

lower bound of f~(n2). Two applications of efficient BSPs are given. The first is an 

O(n2)-sized data structure for implementing a hidden-surface removal scheme of 

Fuchs et al. [6]. The second application is in solid modeling: given a polyhedron 

described by its n faces, we show how to generate an O(n2)-sized CSG (constructive- 

solid-#eometry) formula whose literals correspond to half-spaces supporting the faces 

of the polyhedron. The best previous results for both of these problems were O(n3). 

1. Introduction 

Recursive partitioning is a basic problem-solving technique which has proven to be 

most useful in algorithm design. For geometric problems where the input is a set of 

objects in the plane or in space, it is natural for this "divide-and-conquer strategy" 

to be employed in such a way that the divide step is accomplished by making a 
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linear cut of the input, that is, by splitting the objects along a line (in the two- 

dimensional case) or along a plane (in the three-dimensional case). This creates two 

subproblems which can then be divided recursively, again by linear cuts, until 

finally subproblems of some trivial size are obtained. Since each divide step may 

split some of the objects into several parts, the process described above can lead to 

a proliferation of objects and result in an inefficient algorithm. Thus, we are 

motivated to choose the dividing cuts carefully so that fragmentation of the input 

objects is kept to a minimum. The recursive partition mentioned above was first 

considered by Fuchs et al. [61 and is called a binary space partition (or BSP). 
We are interested in the question of constructing BSP trees whose size is not too 

large as a function of the original input size. In the three-dimensional formulation 

of the problem, we take the input to consist of a set of n nonintersecting convex 

polygons in R 3, since polygonal tiling is common for representing surfaces in space. 

Let p(n) be the maximum value over all inputs of cardinality n of the size of a 

minimal BSP tree. (Precise definitions of binary space partitions and p(n) are given 

in Section 2.) A straightforward upper bound for p(n) is O(n3). One of the main 

results of this paper is that p(n)= O(n2). A corresponding lower bound of 

p(n) = ~')(n 2) follows from an example due to Eppstein [5]. 

In this paper we prove upper and lower bounds for BSPs in the general case. 

Better bounds can be obtained in several important special cases. In [14] we 

consider BSPs for orthogonal sets of elements and derive exact bounds of ®(n) and 
O(n 3/2) for the two- and three-dimensional cases, respectively. 

As applications of efficient BSPs, we describe two well-known problems in 

computer graphics and show that solutions better than those previously known 

can be obtained readily from our results. The first problem arises in removing 

hidden surfaces in real-time. In some graphics applications such as flight simula- 

tion and computer animation, it is necessary to generate rapidly images of a three- 

dimensional scene as viewed from changing positions. A good strategy is to 

preprocess the scene suitably so as to simplify the hidden-surface computation at 

runtime. In [6] it was observed that if the objects comprising the scene are 

represented as a BSP tree, then traversal of the tree in a symmetric order relative to 

the viewing position will produce a correct priority order of (the fragments of) the 

objects for achieving the desired obscuring effect. In this scheme, storage space as 

well as tree traversal time is proportional to the size of the tree. The only previous 

bound known for the tree size is O(n 3) [6]. As a direct consequence of our main 

theorem, this bound can be improved to O(n2). 

The second application of BSPs is found in converting boundary representa- 

tions of three-dimensional objects into constructive-solid-geometry (CSG) repre- 

sentations. The boundary representation of an object specifies the surface elements 

forming its boundary. In contrast, the CSG representation expresses the interior of 

the object by a boolean formula where the operations are intersection and union 

and the literals are primitive solids such as boxes, cylinders, etc. It is important in 

solid modeling to be able to convert efficiently between the two styles of 

representation. In a special type of CSG representation considered by Peterson 

[ 15], the literals correspond to the half-spaces supporting faces of the given object. 

A natural question is: given a polyhedron described by its n faces, can a short 
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Peterson-style formula be generated? A straightforward upper bound on the size of 

the formula is O(n3). We will show that our result on BSPs implies an O(n 2) bound 

on formula size. 

Other applications of BSPs include point location, and the convex decomposi- 

tion of polygons and polyhedra. Previous work on BSP trees and their uses in 
graphics applications can be found in [11] and [17]. 

In Section 2 we give the definition and basic properties of binary partitions. In 

Sections 3 and 4, partitions of size O(n log n) for the planar case are presented. 

Section 5 contains our main result, an algorithm to find partitions of size O(n 2) in 

three dimensions, which is complemented by the ~q(n 2) lower bound of Section 6. 

The applications are discussed in Section 7, and we conclude with some comments 

and open problems in Section 8. 
A preliminary version of this paper appeared in [13]. 

2. Preliminaries 

In this section we give the mathematical formulation of the partitioning problem, 

and discuss some basic properties of BSPs. 

A d-dimensional binary partition P is a recursive partition of d-dimensional 

Euclidean space, R a, defined by a set of hyperplanes. Let ~ be a collection of 

(oriented) hyperplanes that are organized as a binary tree and labeled accordingly 

as Hx, Ho, H1, Hoo, Hot . . . .  (see Fig. 1). Then ,,~ defines a binary partition P 
under which R d is first partitioned by the root hyperplane Hx into two open 

half-spaces, H ; ,  H~', and H~ itself. Recursively, H ;  and H~ are partitioned by the 

subtrees rooted at Ho and H1, respectively. We refer to the hyperplanes 

H i ~ 9~, i ~ {0, 1}*, as the cut hyperplanes (in particular, cut lines when d = 2 and 

cut planes when d = 3) of the partition. For any node v of the tree we define R(v) to 
be the convex region which is the intersection of all the open half-spaces defined at 

the (proper) ancestor nodes of v. The components of the partition P then consist of 

R(v) for each leaf node v, and, for every internal node v, the intersection of R(v) with 

H v, the hyperplane at v. 

Let F be a collection of facets, i.e., convex polytopes of dimension (d - 1) or less, 

in R d. One-dimensional facets are line segments and two-dimensional facets are 
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convex polygons. A binary partition P naturally induces a decomposition of F. For 

any node v of P, let F(v) denote the collection of subfacets, F c~ R(v). For  a given F, 

we are interested in binary partitions P of R d with the property that, at each leaf v, 

the set F (v) is empty; we refer to such a P as a BSP ofF.  We define the weight of an 

internal node v to be the number of subfacets of F(v) that lie within H v- The size, 
IP[, of a BSP of F is the total weight of its internal nodes, which is also the total 

number of subfacets generated by P. The partition complexity of F, denoted by p(F), 

is min{tPl lP  is a BSP of F}. Define p(n) = m a x { p ( r ) l l r l  = n}. 
Note that if F has no co(hyper)planar facets, then the weight of an internal node 

in a BSP is always one or zero. In any case, for simplicity of presentation, we are 

not concerned with further partitioning of the subfacets at internal nodes of the 

tree. The reduction in dimension allows a simple recursive structure and we 

concentrate on the broader complexity issues presented in the top dimension. 

We could alternatively define the size of a BSP to be the number of leaves of the 

tree, i.e., the number of convex regions of the partition space. This number is at 

least [PI + 1, assuming that F has no coplanar facets, and is at most 2[PI if trivial 

cuts are avoided so that each leaf region contains at least one subfacet in its 

boundary. The measure [PI that we have chosen seems the most convenient to 

work with. 

Figure 2 shows a BSP where F consists of six edges forming a close polygon. The 

BSP has size 8, and decomposes the interior of the polygon into three convex 

regions, ~i, %,  ~3. For each cut line the positive half-plane is the upper half-plane 

in the diagram. 

The description size of a facet or set of facets is the total number of boundary 

elements of all dimensions for these facets. To simplify our treatment of BSPs we 

assume a fixed bound on the description size of each initial facet. In particular, in 

R 3 the input facets are polygons with a bounded number of edges. Thus, for all F, 

the description size of F is O([ Fi). We naturally define the description size of a BSP 
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to be the description size of the corresponding set of subfacets. In R 3 it is easy to 

bound the description size of a BSP. 

Lemma 1. Let P be a BSP of F in R 3. 

(description size of P) = O((description size o fF)  + [P I) = O(1P 1). 

Proof. Each division of a subfacet into two introduces four new edges: two by 

dividing two existing edges and two from the new boundary edges created. Hence 

number of edges of P = number of edges of F + 4(t P l - I FI). 

The lemma follows from this and the bound on the description size of F given 

above. [ ]  

For any facet A, we define hyperplane(A) to be the hyperplane through A with 

some definite (but arbitrary) orientation. In two and three dimensions we use the 

terms line(A) and plane(A), respectively. 

3. Autopartitions 

A natural class of BSPs can be obtained by imposing the restriction that each cut 

hyperplane be hyperplane(A) for some facet A in F. Such a partition will be called 

an autopartition. 

Note that a minimum partition for F is not always achievable by an auto- 

partition. 

Example 1. In Fig. 3, F consists of three sets of r parallel segments, where the sets 

would cut each other cyclically. It can be verified that any autopartition of F has 

size at least 41, but a partition that begins with a cut line such as L shows that 

p(F) = 3r. 
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Fig. 4 

In three dimensions we can demonstrate a greater disparity between autoparti- 

tions and general BSPs. 

Example 2. Consider a configuration with two sets of r parallel squares as 

illustrated in Fig. 4. In this case every autopartition has size exactly r 2 +  2r, 

but there is a BSP which begins with a plane separating the two sets and has size 

only 2r. 

The above example generalizes readily to d dimensions. 

Theorem 1. For any d > 2, there is a configuration o f  size n in R a which has a B S P  

o f  size n but for  which every autopartition is o f  size f~(n a- 1). 

Proof. We define ( d -  1) families of facets where, for i =  1 , . . . ,  d -  1, family 

Fi = {(xi = j ,  2i - 1 < x d < 2i)[j = 1 . . . . .  rl} and n = )-'~_--~ ri. Since these families 

are easily separable from each other by ( d -  1) hyperplanes orthogonal to the 

xd-axis, there is a BSP of size n. We can prove by induction on the number of facets 

that the size of any autopartition is 1-I~-~ (r~ + 1) -- 1. The first hyperplane of 

any autopartition, x k = s say, decomposes the configuration into two smaller sub- 

configurations of the same type and 

There is a simple yet useful device which could prevent excessive fragmentation 

of F during a partition. If a hyperplane H can partition F nontrivially without 

dividing any facet of F, then, obviously, H can be used as a cut hyperplane in an 

optimal partition. The cut by H is referred to as a f ree  cut. 

One particular type of free cut presents itself naturally in the course of a 

partition. Consider the two-dimensional case. Assume that at some stage of a 

partition we have a region S and a segment A which is a chord of S. (See Fig. 5.) 

Then A divides S into two regions, S O and $1, and any other segment o f f  c~ S must 

lie completely within one of these regions. In such a situation, an immediate 

partition of S along A is advantageous, since the cut is free and it prevents the 
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segment A c~ S from ever being cut. More generally, in higher dimensions, the 

above observation holds for any region which is completely separated by some 

facet A. We term the free cut defined by hyperplane(A) in such a situation a 

bounded cut. 

4. O(n log n) Partitions in Two Dimensions 

In this section and the next we consider the two-dimensional partitioning problem. 

The motivation is twofold. Some special forms of three-dimensional objects such as 

prisms can be treated as two-dimensional objects directly, and the algorithms 

introduced in Section 4 provide useful insight for the higher-dimensional case later. 
A recursive procedure which performs binary splitting on the set of endpoints of 

the segments and takes advantage of bounded cuts yields our first result. 

Theorem 2. For any n disjoint line segments in the plane, there is a BSP of  size 

O(n tog n), i.e., p(n) = O(n log n). 

Proof. Let F be a set of input line segments, and let V be the set of endpoints of F. 

Our algorithm initially finds two points Pmin and Pmax of V with minimum and 

maximum y-coordinates. Thus all segments of F lie in the strip bounded by the two 

horizontal lines Hma~ and Hmin going through P,~ax and Pmin, respectively. In each 

stage of the algorithm, we select a point Po of Vwhich has the median y-coordinate 

among all points of V. The horizontal line Ho going through Po splits F into two 

sets of segments F~ and Fb, which lie above and below Ho, respectively. Let 

AI, A2 . . . .  , As be the segments in F, which intersect both Hma x and Ho. Bounded 

cuts using these segments divide the strip between Hmx and Ho into s + 1 regions 
ordered from left to right. We use ~i, for 0 < i < s, to denote the region that lies 

between Ai and As+ 1. Similarly, if B1, B2 . . . . .  B t are the segments that intersect 

both Hmi n and Ho, then bounded cuts with these segments separate F~ into t + 1 

disjoint regions ordered from left to right, denoted by B j, for 0 < j < t. (See Fig. 6.) 

We then repeat the partitioning for each of the ~i and/~j separately. 
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The partition scheme given above can be represented by a multiway tree. (See 

Fig. 7.) This tree eventually needs to be transformed into a BSP but the analysis is 

based on the multiway tree structure. 

We show that in the partition defined above, each original segment of F is cut 

into at most O(log n) pieces. In any region R(v), let re(v) be the number of endpoints 

of F that are in the interior of R(v). Then, since Ho is a median divider, each of the 

regions ~i, 0 < i < s, and/~, 0 < j < t, has m < m(o)/2. Thus the multiway partition 

tree has depth at most log2 n. If segment E of F is cut into two pieces for the first 

time at some node v, then each of the two pieces can be further cut only along the 

unique path from v leading to the node v' such that R(v') contains the endpoint of 

that piece. Along any other path a subsegment of ~ is eliminated by a bounded cut. 

Hence ~ is cut into at most 2 log2 n fragments. [] 

A specific example F which achieves the worst-case bound O(n log n) under the 

above procedure can be easily constructed. 

Although our major concern is to minimize the size of the partition, the 

construction time and, in some applications, the depth of the corresponding tree 

may also be important. Both concerns are addressed in the following strengthening 
of Theorem 2.1 

AI'A2'A3 ) 
/ /  

Fig. 7 

A referee has pointed out that our construction is similar to that used by Preparata [16] for planar 
point location. 
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Theorem 3. There is an O(n log n)-time algorithm which,for n disjoint line segments 

in the plane, produces a complete BSP of size O(n log n) and depth O(log n). 

Proof. We outline an algorithm which has the stated bounds. In the scheme used 

in the proof of Theorem 2, we can achieve logarithmic depth by constructing a 

balanced BSP after applying bounded cuts to some horizontal strip. Suppose the 

number of endpoints in ~ is m i, then using the balancing algorithm due to Gilbert 

and Moore [7] (see Section 6.2.2 of [10]) on the sequence of weights m 1, m 2 . . . . .  the 

depth of ~i in the binary expansion of the multiway branch is at most 2 + 

log/(Emj) - log2(mi). In the worst case the depth of the resulting partition is at 

most 3 log 2 n + O(1). The running time of this step is O(Y.i(log(Y_,mj) - log(m~))), 

and contributes a total of only O(n log n) to the running time. 

The entire construction can be completed in O(n log n) time by an algorithm of 

the following kind. Since the median splitting is done with respect to the original 

endpoints, if these points are sorted initially by their y-coordinates, then all the 

splits can be made by index calculations on the sorted list. The separation of 

segments and subsegments by the bounded cuts is more of a problem; for example, 

segment u may lie entirely to the left of segment v but a slanting cut can put u into a 

region to the right of that containing v. 

The latter difficulty can be overcome by using a total "right-to-left" ordering, ~-, 

of all the segments with the property that if u ~ v, then no subsegment of u can ever 

be in a region in the same horizontal slice as, and to the left of, a region containing a 

subsegment of v. The partial order "xdom," introduced by Guibas and Yao [8], is 

defined by "u xdom v" if some point of u has the same y-coordinate as, but a larger 

x-coordinate than, some point of v. It can be verified that any extension of xdom to 

a total order will serve our purpose. Such a total order can be found in O(n log n) 

time by using a plane-sweep algorithm [8]. 
While our partitioning procedure is working on some slice, it will have available 

the restriction to this slice of the " ~ - "  relation. When a horizontal cut is made, the 

two resulting restrictions can be produced in linear time; and when a sequence of 

bounded cuts is made the restrictions to each subregion are found by partitioning 

the total order with respect to the cutting segments. 
Our claim that the total running time is O(n log n) is proved by showing that, 

after an initial O(n log n) preprocessing stage, each level of the depth-O(log n) 

partition tree is generated in only O(n) time. [] 

5. Probabilistic Methods for Planar Partitions 

In this section we begin by presenting two randomized algorithms for planar 

partitions; while the first is somewhat simpler, the second generalizes more readily 

to higher dimensions. For each algorithm an O(n log n)-size bound will be proved 

using probabilistic arguments. We also give a corresponding deterministic algo- 

rithm for finding an O(n log n) autopartition. 

We define a special form of autopartition in which the facets of F are used as 

cutting hyperplanes according to some specified linear order. 
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Let the facets in F be denoted by {ul, u2 . . . . .  un}, and let n be a permutation of 

{ 1, 2 . . . . .  n}. A unique BSP based on n is obtained by the following construction. 

Procedure for P~ 

F o r k =  1 t o n d o  

Stage k: For  each 

hyperplane(uk). 

region intersected by u k, make a cut with 

The resulting partition is the autopartition with respect to n, written as P~. 

The size of the autopartition P~ on n line segments in the plane for a random 

choice of rt is shown below to be O(n log n). 

Theorem 4. The expected size of  the autopartition P~ for n segments in R 2 when n is 

chosen uniformly over all n! possibilities is O(n log n). 

Proof For line segments u, v, we define index(u, v) = i if line(u) intersects i - i 

other segments before hitting v, and index(u, v) = oo if line(u) c~ v = ~ .  Since a 

segment u can be extended in two directions, we may have index(u, v) = i for two 

different v's. (See Fig. 8 where index(u, v) = 3.) We say for short that "u cuts v" 

when line(u) divides segment v in the partition. 

First we show that the probability that u cuts v in P,  for a random n is at most 

1/(index(u, v) + 1). Assume index(u, v) = i, and let u 1, u2 . . . . .  u~_ 1 be the segments 

that line(u) intersects before hitting v, The event "u cuts v" can happen only if u is 

chosen as a cut line before any of {ul, u2 . . . . .  ui-1, v} is chosen. The probability of 

the latter event is 1/(i + 1). 

The size of an autopartition is equal to the number of fragments generated, i.e., n 

plus the number of intersections. Therefore the expected size, E(P~), of P~ satisfies 

E(P~) = n + ~ Prob(u cuts v in P~) 
tl~ t~ 

I 

< n + ~ (index(u, v) + 1) 
U, O 

n-1 1 

< n + 2 ~  ~ i + 1 , - - 1  

< n + 2nlnn .  [] 

Fig. 8 
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Note that the autopartition P~ did not make use of possible free cuts. In the 

following alternative partition, P*, bounded cuts are made wherever possible. For  

definiteness, when there are several possible bounded cuts we choose the one which 

is earliest according to n. 

Procedure for P* 

F o r k = l  t o n d o  

Stage k: For each nonempty region, make a cut with hyperplane(uk). 

While there is some bounded cut, make that bounded cut which is 

earliest in the ordering n. 

In comparison with P~, although P* benefits from bounded cuts, it also allows a 

region to be cut by hyperplane(u) even when u does not intersect the region. 

We analyze P* in the two-dimensional case as a precursor to the three- 

dimensional case in the next section. 

Theorem 5. The expected size o f  the autopartition P* fo r  n segments in R 2 when ~ is 

chosen uniformly over all n! possibilities is O(n log n). 

Proof. For  a given segment v, consider the set of all segments whose extensions 

can intersect v, and label these segments as ul, uz . . . .  , uk, based on the order in 

which the intersections occur on v from left to right. 

The effect of bounded cuts can be illustrated in the configuration shown in Fig. 

9. Suppose that the ordering induced by rc is ul,  u3, u4, u2, v. Then v is cut by ul,  ua, 

and u4, but not by u z. As soon as the cuts by u 1 and u 3 are made the subsegment of 

v between these cuts is removed by a bounded cut using line(v). In other words, an 

intersection of v with some line(u) results in an actual cut in P* only if u's 

intersection point on v is not sandwiched between two earlier intersections. 

Thus, in an autopartition P*, ui can cut v only if either ui precedes all of 

v, ul, u2 . . . . .  u~_ t in the ordering ~, or u~ precedes all of v, u~+ 1, u2 . . . . .  u k. (Both 

conditions hold when u~ is the first of all of v, u~, u2 . . . . .  Uk, which has a probability 

O f 1/(k + 1).) Therefore, 

1 1 1 
Prob(u~ cuts v) _< ~ + k _ i + 2 k + l '  

S 

u l /  

Fig. 9 
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e ( e D  _< n + ,=1 F+- i  k - i + 2  k + l  

_<n+  2 + . . . +  k + l  

< n + 2nlnn. [] 

A specific permutation rc which achieves the O(n log n)-size bound can be easily 

constructed. 

Theorem 6. For any n disjoint line segments in the plane, an autopartition of size 

O(n log n) can be found in O(n 2) time. 

Proof A permutation rc is constructed in reverse order. We first choose n(n) 

arbitrarily. Now suppose that n(k + 1) . . . . .  n(n) have been chosen. For each of 

u,tk+~) . . . . .  u~t,), we find the ordered set of intersection points with the lines 

through the remaining k segments. There are at most 2(n - k) extreme intersection 

points on the segments u,t k + ~ . . . . .  u,t,), so for one of the k remaining segments, u~ 

say, its line accounts for no more than 2(n - k)/k of these. We choose rt(k) = j, and 

continue in this way until n is complete. Summing the number of cuts, we have 

size(P*) < n + ~ 2(n ~- k) 

k=l 

< 2 n l n n - n .  

A fairly simple O(n 2 log n)-time algorithm would find all O(n 2) line intersections 

and then sort the intersections which occur on each segment. After this stage, the 

selection and updating required for the construction described above can be easily 

accomplished in O(n) time per step. To reduce the total time to O(n 2) we perform 

the first stage in the following manner. The line graph of the n lines can be set up in 

the O(n 2) time [1], and then, for each segment, to find the ordered sequence of 

intersections with the other lines takes only O(n) time. [ ]  

6. Partitions of Size O(n 2) in Three Dimensions 

The ideas of the previous section can be extended to three dimensions to yield both 

randomized and deterministic algorithms for constructing et~cient BSPs. 

Let F = {ul . . . . .  u,} be n facets in R 3. We consider the expected size of the 

autopartition P* of F when rc is a random permutation. Let Irk be the number of 

additional facets created at the kth stage of P*, i.e., by plane(u~tk~) after the cuts by 

unto, . . . ,  u~ k_ ~ have been made. 
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L e m m a  2. E(Yk), the expected size of Yk, is O(n). 

Proof Let Y~.~ be the contribution to Yk from facet u E F, i.e., Yk,, is the number of 

extra subfacets created on facet u by cut plane u,~). We will show that E(Yk.,) = 

O(1). Consider the arrangement L~,k of the set of lines, {l~(lp . . . ,  l~k)}, where the 

line l~( 0 is the intersection of plane(u~ti) ) with facet u for 1 < i < k. To calculate Yk.,, 

consider the subfacets of u which are cut by plane(u~ck) ) in P*. In P~, i.e., without 
bounded cuts, these subfacets would correspond exactly to those regions of L~.~_ 1 

which are intersected by I~(k). However, in P*, any of the regions of L~, k_ 1 which 

are internal, i.e., are bounded entirely by cuts, would have been eliminated earlier 

by bounded cuts, so that Yk,, is just the number of external regions intersected by 

l~(k). For any arrangement H ofk lines, hi, h 2 . . . . .  hk, on facet u and any i, 1 < i < k, 

define x(H, i) to be the number of external regions in the line arrangement H - {hi} 

that are intersected by h~, and denote the average (l/k) ~ =  1 x(H, i) by ~(H). Note 

that the sum ~ =  ~ x(H, i) is equal to the total number of edges of those regions in 

the arrangement H which are intersected by the boundary of the facet u. (In Fig. 10 

the edges bounding these regions are marked by dashed lines.) It is known [2], [4] 

that the number of bounding edges corresponding to any segment, such as side AB, 
is O(k). (This is the point where the constant bound on the number of edges for 

each original facet is needed.) 

Thus the sum ~ =  i x(H, i) is bounded above by O(k), hence ~(H) < O(1). Now, 

E(Yk.~) = I ~ x(L~, k, 

= ~ ~ ~(L.,k). 

= o(1). 

Thus E(Y~) = O(n). [] 

A 

C 

Fig. 10 
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Theorem 7. The expected size of the autopartition P ' f o r  n facets in R 3 when rc is 

chosen uniformly is O(n2). There are sets of n facets in R3 for which the size of every 

autopartition is fl(n2). 

Proof. From Lemma 2, it follows that the total number of facets created by P* is 

given by ~ ,=  x E(Yk) = O ( n 2 )  . Example 2 yields the lower bound. []  

Theorem 8. An autopartition of size O(nZ) for n facets in R 3 can be constructed in 

O(n 3) time. 

Proof. The existence of such an autopartition P* follows from Theorem 7. We 

must consider both the time required to find a suitable permutation n and the time 

to construct P*. 
By Lemma 2, the following iterative procedure generates an appropriate 

ordering, n, in reverse order. 

Choose n(n) arbitrarily. 

F o r k = n -  1 . . . . .  2 , 1 d o  
Select: Assume n(k + 1) . . . . .  rffn) have been chosen. For each of 

U~k + ~ . . . . .  U~t~, find the line arrangement on that facet generated by 

its intersections with the planes of the remaining k facets. Examine 

the boundary regions in each arrangement and find which of the 

unselected k facets generates the smallest total number of bounding 

edges summed over all the (n - k) arrangements. Choose this for the 

kth cut. 

In each Select we have to construct one new line arrangement for O(n) lines and 

update O(n) other arrangements by the removal of the line corresponding to the 

most recently chosen facet. Hence each Select takes time O(n 2) (see [2] and [4]). 

Once the permutation ~ has been determined, we can construct the BSP tree P* 

in O(n 3) time as follows. The facets are initially sorted according to zt, and this list of 

facets is associated with the roof node of the BSP tree we will construct. Assume 

now that we have constructed some initial subtree of the BSP, and at any frontier 

node v we have a representation of F(v), the collection of subfacets F n R(v), 

arranged in two sorted lists. The first list contains the "bounded"  subfacets, i.e., 

those whose boundary contains no part of an original edge from F, and the second 

list contains the other subfacets. Each list is sorted according to n and the first list is 

regarded as preceding the second. 

One step of the algorithm consists of the following procedure. Choose any 

frontier node v such that F(v) is nonempty, and suppose that u is the first subfacet 

associated with v. We set Hv to be plane(u) and proceed to "cut"  F(v) by Hr. In 

sorted order, each subfacet w of F(o) is processed in turn, by  testing each of its edges 

or vertices against H v. If w is contained in Hv it remains associated with v. If w does 

not intersect H~, then it is assigned to the appropriate new successor node (Vo or v~) 

of v. If w is cut by Hv, then it is divided into two new subfacets Wo, wl, which are 

assigned to v o and vl, respectively. (When u is a bounded facet no such division can 
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occur.) If wi is a bounded subfacet it is appended to the first list at v,, otherwise it is 

appended to the second list. 

The algorithm terminates when, for all frontier nodes v, the set F(v) is empty. 

The running time can be bounded by the depth of the BSP tree multiplied by the 

description size of P since each edge or vertex is tested at most once at each level of 

the tree. By Lemma 1, the total time is O(n × n2). [] 

The previous theorem can be generalized to higher dimensions. 

Theorem 9. An autopartition P* o f  size O(n d- 1)for n facets in R d can be constructed 

in time O(nd+1). There are sets of  n facets in R d for which the size of  every 

autopartition is f~(n d- 1). 

Proof. The proof of the size bounds is analogous to that of Theorem 8. We use the 

following fact, proved in [4], regarding an arrangement A of n hyperplanes in R a 

where d >_ 2. The total number of boundary hyperplanes summed over all regions 

of A that are intersected by any other hyperplane is O(n d- 1). The  lower bound is 

given by Theorem 1. 

We have relaxed the time bound to O(n a+ L) since, for d > 3, the facial structure 

of subfacets is more complex and the simple algorithm for R 3 described above is 

not adequate. We would therefore maintain the complete arrangement for each 

facet at each node instead of just keeping the external regions. [] 

We expect that the time bound in the above theorem can be improved to O(n d) 

by the use of a more elaborate data structure. 

7. A Lower Bound 

Under the restriction to autopartitions, Theorem 9 already gives matching upper 

and lower bounds for all d > 2. For the unrestricted case, we present a lower bound 

on the partition complexity in three dimensions which is due to Eppstein [5]. 

Example 3. Consider first a planar square grid formed by n parallel red lines 

segments intersecting n parallel green lines at right angles. Next we skew the square 

arrangement a little to form part of a hyperbolic paraboloid, with the red and green 

lines belonging to its two families of generators. Finally, the red lines are all moved 

"up"  very slightly so that the surface containing the red lines is above that 

containing the green lines (and the lines no longer intersect). 

A coordinate representation of this configuration is 

{y = j , z  = x j l l  <<.j <_ n} w {x  = i , z  = iy + ~11 < i <_ n} 

and an impression of the configuration with a close-up view of one of the "squares" 

is given in Fig. 11. 
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-SZ- 

Fig. 11 

Theorem 10. In R 3, p(n) = fl(n2). 

Proof. Consider Example 3. Provided that the separation distance between the 

two families of lines is sufficiently small, any complete partitioning of the 

configuration by planes must cut at least one of the four line segments in the 

neighborhood of each skew square. Hence the total number of cuts made by 

the partition is [')(n2), and our lower bound is proved. [] 

An example by Thurston giving a lower bound of fl(n 3/2) for orthogonal line 

segments in three dimensions is presented in [14]. 

8. Applications 

We describe how BSPs can be applied to give O(n 2) solutions to the two problems 

mentioned in the Introduction. 

8.1. Hidden-Surface Removal 

To speed up hidden-surface removal when a three-dimensional scene is viewed 

from different positions, Fuchs et al. [6] proposed preprocessing the scene into a 

BSP tree. The fact that finding efficient BSPs for general three-dimensional scenes 

remained an open problem served as our initial motivation for studying BSPs. 

We first outline the relation between visibility computation and BSPs as 

presented in [6], and then state the new result. 

Definition. Let F = {ul, u2 . . . . .  un} be n facets in R 3, and let w E R  3 be a 

viewpoint. A permutation ~ of { 1, 2 . . . . .  n} is said to be a visibility ordering of F 

with respect to  w if, for any i, j with ~(i) _< n(]) and any point q ~ u~¢~, we have 
d(w, q) c~ u,o ~ = ~ where d(w, q) is the line segment connecting w and q, i.e., facet 

u,{ 0 cannot obstruct the view of u~¢j} from w. 

A visibility ordering is a prerequisite for many hidden-surface removal algo- 

rithms. For example, the "painter's algorithm" paints each facet in low-to-high 

priority order onto the screen's image buffer, whereas the output-sensitive algo- 

rithm of Overmars and Sharir [12] processes the facets in the opposite order. Note 

that a visibility ordering depends on the viewing position; also such an ordering 
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may not always exist, as we can easily find an example where three facets block 

each other cyclically. However, if a BSP of the input is made then the resulting set 

of subfacets always permits a visibility ordering for any viewing position w. 

Furthermore, the desired ordering can be computed quickly for any given w via a 

tree traversal. 

Definition. Let P be a BSP tree of F. For any point w e R 3, an in-order traversal of 

P with respect to w is an (otherwise conventional) in-order traversal where at each 
internal node v with cut plane Hv, the half-space of H~ containing w is visited after 

the half-space not containing w. (In the case that w lies on Hv, either half-space may 

be visited first). Let F' denote the set of subfacets produced by P. 

Lemma 3. Let P be a BSP of F with output F'. A visibility ordering of F' with 

respect to any viewing position w can be generated in time O([P[) via an in.order 

traversal of P with respect to w. 

Proof. If w lies in a half-space H +, then no subfacet which lies completely in H -  

can obstruct any subfacet lying completely in H ÷. This justifies assigning larger 

visibility numbers to facets in H ÷ than to those in H- .  The time required for the 

tree traversal is clearly O([P[). [] 

For the BSP illustrated in Figure 2 the visibility ordering generated for the 

indicated viewpoint is e, fo, d, f l ,  al,  c, b, ao. 

Thus, in applying the scheme of [6] to solve hidden-surface removal for real- 

time graphics systems, both the storage space and the tree traversal time are 

proportional to the size of the partition tree. Previously, only an O(n 3) upper 

bound on tree size was known [6]; our results reduce this to O(n2). 

8.2. Constructive Solid Geometry 

Another application of BSPs is to generate a constructive-solid-geometry (CSG) 

representation of an object from its boundary representation. For polyhedral 

objects, Peterson 1-15] considered CSG formulae where the literals are half-spaces 

supporting the faces of the polyhedron and the operations are intersection and 

union; we call such a formula a Peterson-styleformula. A natural question is: given 

a polyhedron described by its n faces, can a short Peterson-style formula be 

generated? In two dimensions, it is known that a formula of size O(n) can be found 

for a simple polygon of n sides ([3]; also see [15]). In three dimensions, it remained 

an open problem [see [3]) whether the straightforward O(n 3) bound on formula 

size could be improved. 

We observe that an autopartition P for the facets of a polyhedron D naturally 

leads to a Peterson-style formulaf(D) of size O([P[) for the polyhedron. If D is a 

half-space, thenf(D) is a single literal. Recursively, if D is divided into two parts by 

a cut plane H (corresponding to some facet of D) at an internal node v of P, then let 

f~(D) = (H ÷ r~ f l )  u (H-  c~ f2), where f1 and f2 a re  the formulae corresponding 
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to the two subtrees of v. For the polygon shown in Fig. 2 the given BSP yields the 

formula 

(d + n ( ( c  + cab- n a - ) w ( c -  c~a- ca f + ) ) ) w ( d -  w e -  ca f+).  

Theorem 8 implies the following result. 

Theorem 11. Every polyhedron in R 3 with n facets has a Peterson-style CSG 

formula of size O(n2). 

9. Conclusion and Open Problems 

Our principal results are summarized here. 

Main Theorem. The worst-case BSP complexity p(n) is bounded in different 

dimensions as foUows: 

(i) in R 2, p(n) = O(n log n), 
(ii) in R 3, p(n) = O(n2), 

(iii) in Ra, f o r d  >_ 3, p(n) = O(na-1). 

Several important questions remain open. Example 3 does not extend immedia- 

tely to higher dimensions, and we have no good lower bounds for p(n) in 

dimensions greater than three. Also we have no tight lower bound for the CSG 

application, so here too a gap remains. 

The technical requirement of a fixed bound on the number of boundary 

elements of each facet could be removed if the following question were resolved. 

Question. Given an arrangement of n hyperplanes and a convex region C in R d, 

what is the total number of bounding facets summed over all those regions of the 

arrangement which intersect the boundary of C? 

It is easy to see that, in two dimensions, the sequence of boundary edges 

corresponds to a Davenport-Schinzel sequence of order 3, and hence the total 

number of such edges is at most O(nct(n)) (see 1"4] and [9]). 

In two dimensions our bounds for p(n) are given by f~(n) < p(n) <_ O(n log n). 

Progress could be made by extending the construction for orthogonal sets given in 

1-14], or by finding linear-size partitions for other special situations. 

Conjecture. In R 2, p(~n) = O(n). 
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