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Abstract—Recognizing the very size of the brain’s circuits,
hyperdimensional (HD) computing can model neural activity
patterns with points in a HD space, that is, with HD vectors.
Key examined properties of HD computing include: a versatile
set of arithmetic operations on HD vectors, generality, scalability,
analyzability, one-shot learning, and energy efficiency. These
make it a prime candidate for efficient biosignal processing where
signals are noisy and nonstationary, training data sets are not
huge, individual variability is significant, and energy efficiency
constraints are tight. Purely based on native HD computing oper-
ators, we describe a combined method for multiclass learning and
classification of various ExG biosignals such as electromyography
(EMG), electroencephalography (EEG), and electrocorticography
(ECoG). We develop a full set of HD network templates that
comprehensively encode body potentials and brain neural activity
recorded from different electrodes into a single HD vector without
requiring domain expert knowledge or ad-hoc electrode selection
process. Such encoded HD vector is processed as a single unit
for fast one-shot learning, and robust classification. It can be
interpreted to identify the most useful features as well. Compared
to state-of-the-art counterparts, HD computing enables online,
incremental, and fast learning as it demands less than a third as
much training data as well as less preprocessing.

Index Terms—Brain-inspired computing, Hyperdimensional
computing, Vector symbolic architectures, Network architectures,
One-shot learning, Interpretable machine learning, Biosignal
classification, EMG, EEG, ECoG, Error-related potential, Motor
imagery, Human–machine interface, Brain–machine interface,
seizure detection.

I. INTRODUCTION

Some of the most compelling application domains of the

Internet of things (IoT) relate to how humans interact with
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the world around them and with the cyberworld through

“wearable” devices. The growing sophistication of these de-

vices requires a continuous reduction in energy-per-operation.

Unfortunately, with the slowdown of traditional semiconductor

scaling, leakage and uncertainty [1] limit the amount of energy

scaling that can be reached [2]. The only viable solution is

to rethink functionality to cope with uncertainty by adopting

computational approaches that are inherently robust to un-

certainty [3]. Advances in learning-based computing for IoT

increase energy-efficiency towards TOPS/Watt [4], but further

improvement requires a novel look at data representations,

associated operations, circuits, and materials and substrates

that enable them [5]. Monolithic 3D integrated nanotechnolo-

gies [6], [7] combined with novel brain-inspired computational

paradigms that support fast learning and fault tolerance could

lead the way [5].

Emerging hyperdimensional (HD) computing [8] is based on

the understanding that brains compute with patterns of neural

activity that are not readily associated with scalar numbers.

In fact, the brain’s ability to calculate with numbers is feeble.

However, due to the very size of the brain’s circuits, we can

model neural activity patterns with points of a HD space,

that is, with HD vectors. When the dimensionality is in the

thousands, operations on HD vectors create a computational

behavior with unique features in terms of robustness and

efficiency [9], [10].

HD computing brings into play the rich and subtle mathe-

matics of HD spaces. It relates partly to the linear algebra and

probabilities of artificial neural nets, and partly to the abstract

algebra and geometry of HD spaces. Groups, rings, and fields

over HD vectors become the underlying computing struc-

tures, with permutations, mappings, and inverses as primitive

computing operations, and with randomness programmatically

inscribed in the way new objects and entities are labeled.

However, its performance depends on good design—instead

of automated training—of a network architecture that consists

entirely of the HD primitive operations [11], [12], [13].

In this article, we first focus on the key properties of HD

computing resulting from the application of a well-defined

set of arithmetic operations on HD vectors. Key properties

that are examined include: generality, scalability, analyzabil-

ity, one-shot learning, energy efficiency, natural performance

without domain expert knowledge and less preprocessing [5],

[14], [15], [16], [17], [18], [19]. These leading properties
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take HD computing beyond the typical text and language

applications [20], [21], [22], [23], [24], [25], [26], and make

it a prime candidate for a new category of applications: inte-

grated learning-based wearable/implantable devices, for which

biosignal training data sets are small, individual variability is

significant, privacy, latency, and energy efficiency demands are

tight [27], [28], [29], [30].

More specifically, we design a full set of HD network

templates to ease constructing an efficient and complete

representational architecture for handling both learning and

classification tasks in the domain of personalized devices. The

proposed templates collectively handle various types of biosig-

nals including electromyography (EMG), electroencephalog-

raphy (EEG), and electrocorticography (ECoG)—collectively

referred to as ExG. As concrete examples, we target multiclass

learning and inference in (1) EMG-based hand gesture recog-

nition for human–machine interfaces, (2) EEG-based brain–

computer interfaces, and (3) ECoG-based seizure detection.

Our network templates encode body potentials or brain neural

activity recorded from various electrodes into a single HD

vector capturing the temporal and spatial features of the sig-

nals, without requiring any ad-hoc electrode selection process

or domain expert knowledge. The encoded HD vector is used

for fast learning and robust classification; besides, it can be

exploited to identify the most useful features. Remarkably, the

network templates are designed purely based on the native HD

operations without involving any biologically implausible or

inefficient optimization algorithm such as gradient descent and

backpropagation. Such simplicity of networks enables efficient

implementation of both learning and classification tasks with

fully binary operations leading to significant energy saving,

e.g. [16].

Further, HD learning follows the “one-shot” approach, that

is object categories are learned from one or few examples

and only in a single pass (i.e., one epoch) over the train-

ing data. We demonstrate the benefits of HD computing

by comparing it with the state-of-the-art machine learning

methods for biosignal processing including support vector

machines (SVMs) [31], [32], [33], Gaussian classifiers [34],

feedforward multilayer perceptron (MLP) [33], and convolu-

tional neural networks (CNNs) [35]. Compared to the state-

of-the-art counterparts, our experimental results show that

HD computing enables online, incremental, and fast learning

as it demands less than a third as much training data and

preprocessing. While this paper focuses on EMG, EEG, and

ECoG signals, other streaming multidimensional sensor data

such as electrocardiography (ECG), speech, or smell could

equally be applicable [36], [37], [38].

This paper is organized as follows. In Section II, we intro-

duce HD computing (with concise description in Appendix A).

In Section III, we discuss key properties of HD computing

for designing efficient biosignal processing architectures. In

Section IV, we present our main contributions by proposing a

full set of HD network templates to efficiently learn and clas-

sify various types of biosignals. Our experimental results are

described in Section V followed by discussion in Section VI.

Section VII concludes the paper.

II. BACKGROUND IN HD COMPUTING

This section provides a background in HD computing. The

brain’s circuits are massive in terms of numbers of neurons

and synapses, suggesting that large circuits are fundamental

to the brain’s function. HD computing explores this idea by

looking at computing with HD vectors as ultra-wide words.

It is rooted in the observation that key aspects of human

memory, perception, and cognition can be explained by the

mathematical properties of HD spaces, and that a powerful

system of computing can be built on the rich algebra of HD

vectors. The difference between traditional computing and HD

computing is apparent in the elements that we compute with.

In traditional computing the elements are Booleans, numbers,

and memory pointers, whereas in HD computing they are

HD vectors. HD vectors are d-dimensional (the number of

dimensions is in the thousands) and (pseudo)random with

independent and identically distributed (i.i.d.) components.

They thus conform to a holographic or holistic representation:

the encoded information is distributed equally over all the

d components such that no component is more responsi-

ble to store any piece of information than another. Such

representation maximizes robustness for the most efficient

use of redundancy [8]. Other examples of such computing

structures include Holographic Reduced Representations [39],

Semantic Pointer Architecture [40], Binary Spatter Codes [21],

Multiply–Add–Permute coding [41], Random Indexing [20],

and Vector Symbolic Architectures (VSAs) [11], with a quick

summary in [5].

The number of different, nearly orthogonal HD vectors is

very large when the dimensionality is in the thousands [9], [8].

Two such HD vectors can now be combined into a new HD

vector using simple vector-space operations, while preserving

the information of the composing HD vectors with high

probability. Computing with HD vectors begins with selecting

a set of random HD vectors to represent basic objects. These

HD vectors are also thought of as random labels. For example

in a language recognition application [23], [24], the letters of

the alphabet as the inputs can be the basic objects, and they

are assigned to random labels. In the same vein, in a biosignal

processing application each input electrode is assigned to a

random label, independently of all the other labels. They serve

as seed HD vectors, and they are used to make representations

for more complex objects. To generate seed HD vectors, we

use bipolar dense codes of equally probable +1s and −1s,

i.e., {−1,+1}d where d = 10, 000; this dimensionality works

particularly well for our applications, but it is essentially a

hyperparameter that can be tuned [42]. In the following, we

describe similarity measure and arithmetic operations using

this code.

A. Similarity Measurement of HD Vectors

An essential operation in HD computing is the computation

of the distance (or similarity) between two HD vectors. For

dense bipolar HD vectors1, we use cosine similarity as the

distance metric between two HD vectors by measuring the

1In this article, we use only capitalized italic letters to indicate HD vectors;
they may also appear with a subscript.
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cosine of the angle between them using a dot product. It is

defined as cos(A,B) = |A′ ∗ B′|, where A′ and B′ are the

length-normalized vectors of A and B, respectively, and |C|
denotes the sum of the elements in C. It is thus a measure

of orientation and not magnitude: two HD vectors with the

same orientation have a cosine similarity of 1, two orthogonal

HD vectors have a similarity of 0, and two HD vectors

diametrically opposed have a similarity of −1.

B. Arithmetic Operations on HD Vectors

HD computing builds upon a well-defined set of arithmetic

operations with random HD vectors. These arithmetic opera-

tions are used for encoding and decoding patterns. The power

and versatility of the arithmetic derives from the fact that the

basic operations, namely addition and multiplication, form an

algebraic structure resembling a field, to which permutations

give further expressive power.

We use a variant of the Multiply–Add–Permute (MAP)

coding described in [41]. The MAP operations on HD vectors

are defined as follows. Pointwise multiplication of two HD

vectors A and B is denoted by A ∗B, and pointwise addition

is denoted by A + B. Multiplication2 takes two vectors and

yields a third, A ∗ B , that is dissimilar (approximately

orthogonal) to the two and is suited for variable binding; and

addition, or bundling, takes several vectors and yields vector

[A+B+...+X] that is maximally similar to them and is suited

for representing sets. The brackets [· · · ] mean that the sum

vector is normalized to {+1,−1}d based on the sign, with ties

broken at random. Finally, the third operation is permutation,

ρ, that rotates the coordinates of HD vector. A simple way to

implement this is as a cyclic right-shift by one position. All

these operations have a complexity of O(d) and produce a

d-dimensional vector.

The usefulness of HD computing comes from the nature

of the operations. Specifically, addition produces a vector

that is similar to the argument vectors—the inputs—whereas

multiplication and random permutation produce a dissimilar

vector; multiplication and permutation are invertible, addition

is approximately invertible; multiplication distributes over

addition; permutation distributes over both multiplication and

addition; multiplication and permutation preserve similarity,

meaning that two similar vectors are mapped to equally similar

vectors elsewhere in the space.

Operations on HD vectors can produce results that are

approximate or “noisy” and need to be associated with the

“exact” vectors. For that, a list of known (noise-free) seed

HD vectors is maintained in a so-called “item” or “clean-up”

memory. When presented with a noisy HD vector, the item

memory outputs the HD vector that is most-similar or closest.

Making this work reliably requires high-dimensionality. With

10,000-bit HD vectors, 1/3 of the bits can be flipped at random

and the resulting HD vector can still be identified with the

originally stored one with very high probability.

The operations make it possible to encode and manipulate

sets, sequences and lists—in essence, any data structure. A

2By default, we refer to the pointwise multiplication (∗) unless otherwise
mentioned.

data record consists of a set of fields (keys, variables, or

attributes) and their values (fillers). A data record consisting

of fields x, y, z with values a, b, c can be encoded into a HD

vector H as follows. First, random seed HD vectors are chosen

for the fields and the values (X,Y, Z,A,B,C), and are stored

in the item memory. We then encode the record by binding

the fields to their values with multiplication and by adding

together the bound pairs:

H = [(X ∗A) + (Y ∗B) + (Z ∗ C)]

This resulting representation is holographic because the fields

are superposed over each other—there are no spatially iden-

tifiable fields. Importantly, the value of x can be extracted

from this holographic representation by multiplying H with

the inverse of X , which for ∗ is X itself: A′ = X ∗H . The

resulting HD vector A′ is given to the item memory which

returns A as the most-similar stored HD vector. An analysis

of this example would show how the properties of addition and

multiplication come to play (see also Appendix A). A thing

to note about the operations is that addition and multiplication

approximate an algebraic structure called a field, to which

permutation gives further expressive power.

The permutation is a reversible mapping that generates a

dissimilar quasiorthogonal HD vector of its input. In geometry

sense, the permutation rotates the HD vector in the space.

The rotated HD vector is uncorrelated with all the other HD

vectors. The permutation can be used to encode a sequence of

items, e.g., a sequence of three letters abc called a trigram. We

make a trigram HD vector by permuting the first letter vector

twice, the second letter vector once, and use the third letter

vector as is, and then by multiplying the three HD vectors

component by component as:

ρ(ρA ∗B) ∗ C = ρρA ∗ ρB ∗ C

This efficiently distinguishes the sequence abc from e.g., acb
or any other trigram that may share letters or differ only in

letter order.

HD computing has been described above in terms of dense

bipolar HD vectors. The representational system is closed

under the aforementioned MAP operations. Throughout this

paper, we refer to this representational bipolar space and the

related MAP operations unless otherwise stated. Note that HD

computing supports one more operation that is rarely used:

scalar multiplication (weighting). The scalar multiplication

of an HD vector A with a scalar value v is denoted by

v · A. This results in the scaled version of A since every

component of the HD vector is multiplied with the same

scalar value. If the scalar value belongs to real numbers, the

result of scalar multiplication is in real space too, and is often

combined with addition. Sections IV-A3 and IV-B4 use the

scalar multiplication operation.

III. KEY PROPERTIES OF HD COMPUTING FOR EFFICIENT

BIOSIGNAL PROCESSING

In this section, we first present some compelling applica-

tions of biosignal processing and describe their challenges.

We then highlight how key properties of HD computing can

respond to these challenges.
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To focus the discussion, this paper considers three types

of biosignals: (1) EMG signals as recording of the electrical

activity produced by the skeletal muscles; (2) EEG signals

as recording of the electrical activity of the brain from the

scalp; (3) ECoG, or intracranial EEG (iEEG), as a type of

recording that uses electrodes placed directly on the exposed

surface of the brain. EMG is widely used in various directions

to create a human–machine interface at the neuromuscular

level [43]. We specifically target the processing task of the

neuromuscular EMG signals; one possible outcome is the

recognition of gestures that can serve as the primary com-

mands to control a prosthetic arm [44], [45]. In contrast, brain–

computer interfaces based on EEG signals aim to provide a

communication and control channel between the human brain

and external devices. We focus on two types of brain activity

measured by the noninvasive EEG signals to recognize a user’s

intentions: error-related potentials and motor imagery. When

a user recognizes an error during monitoring of an external

agent, an error-related potential (ERP) can be measured in the

EEG signal; recognition of the ERP can be utilized to correct

and improve the behavior of the external agent [46], [47],

[34]. Alternatively, in motor imagery (MI) brain–computer

interface, a user is asked to imagine movements of different

parts of the body that arises the brain activity of the motor

cortical areas; this MI recording can be decoded to recognize

the desired movement commands [48], [32], [49], [30]. Finally,

we focus on a seizure detection task based on ECoG signals

for patients with drug-resistant epilepsy [50].

Processing and classification of these biosignals pose a

number of challenges including the following. Operating with

a variety of biosignal acquisitions ranging from a pair of differ-

ential EMG electrodes in time-domain to complex acquisitions

with more EEG electrodes in frequency-domain demands a

versatile learning and inference (classification) method. Fur-

ther, these biosignals are noisy and nonstationary—especially

the brain signals change over time—with large individual vari-

ability among subjects that demand continuous recalibration

and personalized (subject-specific) learning. Such personalized

learning should be effective with small training data, and

for on-chip operation with limited amount of resources and

energy. The on-chip learning reduces privacy and security risks

by limiting the attack surface to only the personalized device,

rather than device, gateway, and cloud, which is aligned with

the concept of federated learning [28] based on the principle

of focused collection or data minimization [29]. At the same

time, the learning should be interpretable with the goal to

understand the underlying features related to the classification

task [51]. In the following, we describe how HD computing

can address these challenges.

A. Scalable Computational Paradigm with Versatile Arith-

metic Operations

HD computing offers a simple and complete computational

paradigm based on learning, and builds upon a well-defined

and versatile set of operations with random HD vectors.

The MAP (Multiply–Add–Permute) arithmetic operations can

encode and decode patterns in a huge quasiorthogonal hyper-

space [41]. The encoding/decoding is scalable and versatile.

HD computing has been initially used to operate with a single

streaming input of characters to encode texts [23], [24]; we

have extended the encoder to operate with simultaneous analog

biosignal inputs [14], [15], [17], [16], [19]. The encoder

flexibly operates with various types of ExG biosignal acquisi-

tions, and simply scales with different numbers of electrodes

(see Table I): ranging from 36–100 ECoG electrodes with

the highest signal-to-noise ratio (SNR) [19], to EMG signals

with relatively lower SNR using few patch electrodes [14]

or denser flexible electrode array [15], and finally to 16–

64 EEG electrodes with the lowest SNR [17]. Execution of

HD computing on an 8-core parallel ultra-low-power (PULP)

accelerator shows that the EMG encoder can scale to process

up to 256 electrodes while meeting the 10 ms classification

constraint for real-time EMG tasks [16]. Besides versatile clas-

sification, which finds associations of a new item with a set of

known items associated with a label, the arithmetic operations

can be used for query processing too, which answers desired

questions about a particular stored item [22].

B. Learning Transparent Codes with Interpretable Features

Thanks to the well-defined set of arithmetic operations with

inverses, HD computing produces transparent (i.e., analyzable)

codes with interpretable features. For example, in the typical

application of EEG ERP, a domain expert carefully determines

a subset of relevant electrodes (e.g., two electrodes out of 64),

depending upon the subject; this subset of selected electrodes

is used for subsequent classification [34]. At first, HD com-

puting does not require such domain expert knowledge for the

electrode selection process, and hence operates naturally with

all the 64 electrodes at negligible loss of accuracy. Besides, the

learned HD vectors can be analyzed to identify what electrodes

provide meaningful data for the classification. It has been

shown that instead of asking for the domain expert knowledge,

HD computing can identify the same subset of electrodes

as relevant by measuring the relative distances between the

learned prototype HD vectors [18]. Producing such transparent

codes also enables verification of the learned model [52],

and is in sharp contrast to blind application of conventional

learning methods that produce a “black box.”

C. Learning Is One-shot, Fast, and Computationally Balanced

with Respect to Classification

In contrast to other neuro-inspired approaches in which

learning is computationally much more demanding than sub-

sequent classification, learning in HD computing is based on

the same algorithms as classification. The learning algorithm

works in “one-shot,” namely, object categories are learned

from one or few examples, by using only a portion of training

data, in a single pass without impacting the classification

accuracy. For instance, state-of-the-art SVM [31] for the EMG

classification task reaches to 97.8% accuracy by using the full

set of training data, while the HD algorithm achieves the same

level of accuracy by using only 1/3 of the training data in one

pass [14]. Using a larger number of 64 EMG electrodes, HD

computing demonstrates one-shot learning—in the true sense

of the word—by training from a single gesture per class [15].
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We also observe that HD computing quickly learns from one

or two seizures and perfectly detects unseen seizures for the

majority of patients (10 out of 16) [19]. Similar benefit is

observed for the EEG ERP classification task [17], [18]: the

HD algorithm learns ≈ 3× faster by using only 34% of

training trials while maintaining an average accuracy of 70.5%,

which is higher than the state-of-the-art classifier using the full

set of training trials.

In addition, since the same algorithm is used for learning

and classification, the architecture is ideal for online and

continuous learning. The new examples can be learned by

incrementally updating the associative memory described in

Section IV-C. This enables the fast learning to be executed in

a real-time online fashion, and the classifier can be updated

(i.e., partially retrained) with new samples to address the

nonstationary nature of biosignals.

D. Less Preprocessing

Most preprocessing of the electrode signal can be eliminated

in HD computing as it can operate with noisy inputs; it is also

robust to electrodes that do not carry meaningful information.

In the EMG-based gesture recognition task, HD computing can

maintain its accuracy when the four patch electrodes are re-

placed by 64 flexible noisier electrodes with a lower SNR [15].

Similarly, HD computing can continue its natural operation

with all 64 electrodes and less preprocessing by removing a

common average reference (CAR) filter [53] from EEG signals

that results in only a slight loss of accuracy (from 74.5% to

71.7%) [17]. Overall, we have observed that HD computing

is a nice fit for fast and one-shot learning and classification

of noisy ExG signals with minimal information about the

task: e.g., in the absence of domain expert knowledge, and

by training with much less data and preprocessing.

E. Energy Efficiency

At its very core, HD computing is about manipulating and

comparing large patterns within the memory itself. The MAP

operations allow a high degree of parallelism by needing

to communicate with only a local component or its imme-

diate neighbors. Distance computation can be performed in

a distributed fashion; it is the only operator proportional to

vector dimension. An architecture based on HD computing

can be seen as an extremely wide dataflow processor with

small instruction set of bit-level operations. Further, logic can

be tightly integrated with the memory and all computations

are fully distributed that can save energy [6], [7]. This forms

a fundamental departure from the traditional von Neumann

architectures where data has to be transported to the processing

unit and back, creating the infamous memory wall.

Further, simplicity of HD computing is another important

factor for energy efficiency. HD computing requires far fewer

operations than other approaches such as SVMs, CNNs, k-

nearest neighbors (KNN), and MLP for the same functional-

ity [14], [16], [24], [19]. For instance, in the EMG classifica-

tion task, we use the SVM with fixed-point operations, instead

of floating-point, that leads to best performance preserving

the accuracy [54]. HD computing achieves the same level of

accuracy as the SVM on a commercial embedded ARM Cortex

M4 using only 1/2 as much power [16]. This is due to the fact

that HD computing mostly uses basic bitwise operations. This

simplicity allows scalable execution on the embedded 8-core

PULP accelerator with bitmanipulation instruction extensions

that achieves 10× higher energy efficiency than the ARM

Cortex M4 [16].

The same is true about memory accesses. This compensates

for the very wide words used in HD computing. The memory

requirement for HD computing scales linearly: e.g., in the

language recognition task, by moving from a trigram (n = 3)

to pentagram (n = 5), HD computing requires two more extra

HD vectors whereas the memory required by the baseline

KNN grows exponentially with n. Using pentagrams of letters,

the baseline requires 500× larger memory than HD [24], or

some hashing-based algorithm to manage the memory, yet

requiring more of it than the HD-based approach. As another

example, in the seizure detection task, the MLP demands 5×–

13× larger memory than HD computing to store its weights,

even if we optimistically assume that all its weights could be

quantized to 1 bit [19]. In the following, we describe two more

properties of HD computing that can further improve energy

efficiency:

(1) Robustness under low SNR. By its very nature, HD

computing is extremely robust in the presence of failures,

defects, variations, and noise of computing fabrics, all of

which are synonymous to ultra low energy computation. It

has been shown that HD computing degrades very gracefully

in the presence of temporary and permanent faults compared

to a baseline KNN classifier for the language recognition task:

by injecting the intermittent hardware-induced errors in both

classifiers, HD computing tolerates 8.8× higher probability

of failure per individual memory cells [24]; considering the

permanent hard errors, HD computing tolerates 60× higher

probability of failures [7]. The robust operation under low

SNR conditions and high variability perfectly matches with

emerging nanotechnologies promising to deliver substantial

energy savings [7], [5], [6].

Such robustness of HD computing is achieved by its in-

spiration from brain’s circuits: (pseudo)randomness, hyperdi-

mensionality, and fully distributed holographic representation.

Symbols represented with HD vectors begin with i.i.d. compo-

nents and when combined with the MAP operations, the com-

posite HD vectors also appear as identically distributed random

vectors, and the independence of the individual components

is mostly preserved. Specifically, the pointwise multiplication

and addition are i.i.d.-preserving; when the permutation is

combined with the multiplications to encode n-grams, we end

up with vectors whose components are identically distributed

and nearly independent. This means that a failure in a compo-

nent of a HD vectors is not “contagious”. At the same time,

failures in a subset of components are compensated for by the

holographic nature of the data representation i.e., the error-

free components can still provide a useful representation that is

similar enough to the original HD vector. This inherent robust-

ness also eliminates the need for asymmetric error protection

in memory units. This type of robustness is absolutely unique,

and enables both aggressive scaling of device dimensions and
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Fig. 1. How properties of HD computing lead to ultra low energy computing.

integration complexity as well as SNR levels.

(2) Sparsity in time and space. Biologically plausible spar-

sity [55] is essential to the efficiency of the fully distributed

computational paradigms offered by HD computing [56],

[57], [58], [59], [60]. At any point only a fraction of the

memory/logic fabric should be active leading to a “mostly-dark

operational” model. However, it requires both representations

that are intrinsically sparse and new operations that preserve

them along with asynchronous execution. For instance, a

sparse binary representation—where the number of ones is

significantly less than zeros—along with a componentwise

context-dependent thinning operation can lower the switching

activity and hence power consumption [59]. This is applied to

various pattern recognition tasks including the EMG classifica-

tion with detail discussions about choice of density, operations,

and capacity in [59].

Overall, Fig. 1 provides a perspective on the above-

mentioned attributes of HD computing responsible for ultra

low energy computation. The equation for total energy con-

sumption (E) consists of two major components, the dynamic

and the static dissipations, where P is total power, f is

frequency, α is switching activity, Ctot is total load and short-

circuit capacitances, Vswing is voltage swing, VDD is supply

voltage, Istatic is static and leakage current, and T is time

period. Fig. 1 illustrates how these various terms of power

consumption are impacted by the properties of HD computing.

For instance, sparsity directly lowers the switching activity

factor, α, of dynamic power. Targeting VDD, robustness of

HD computing perfectly copes with the uncertainty which

is the largest hindrances to lower VDD; besides, VDD can

be further lowered by slowing down the execution enabled

by the massively parallel HD operations. These properties in

combination can significantly reduce energy consumption.

IV. HD NETWORK TEMPLATES FOR COMBINED

LEARNING AND CLASSIFICATION OF BIOSIGNALS

In this section, we present the main contributions of the

paper. Note that HD computing offers a simple and complete

computational paradigm that is easy to work with at the

level of HD vector representation and related mathematical

operations. Nevertheless, it is relatively harder to work at the

level of complete representational architectures as mentioned

Signals
Mapping to 

HD Space
Encoding

Associative 

Memory

Original 
Representation HD Representation 

Original 
Representation 

Labels

Fig. 2. A universal HD architecture for combined learning and classification
that is composed of: mapping, encoding, and associative memory. Proposed
HD network templates are shown in Fig. 4 and Fig. 4(d) for mapping and
encoding, an in Fig. 5 for associative memory.

by R. W. Gayler in his inspiring paper [11], p.6: “Typi-

cal connectionist architectures rely on training procedures to

achieve their effectiveness. However, VSAs [Vector Symbolic

Architectures, or HD computing architectures] provide no

opportunity for training to substitute for architectural effective-

ness. That is, good performance depends on good design rather

than automated training, and this is a harder research task.” To

address this issue for biosignal processing, we design a full

set of efficient network templates based on HD computing.

These few HD network templates ease constructing a complete

representational architecture by providing predefined options

that can be configured to meet specific goals. Each HD

network template generates HD vectors for different types of

inputs—including time-domain or frequency-domain ExG—

and chooses how to combine these symbolic level HD vectors

to create more complex representations. More importantly, the

templates are purely constructed based on the native operations

of HD computing, and do not require any inefficient or

biologically implausible algorithm, such as backpropagation

for optimizations and weight tuning. This enables efficient

implementation of the constructed architecture—to perform

combined learning and classification tasks—with fully binary

operations.

Fig. 2 illustrates a universal HD architecture, for solving

supervised classification tasks, that is uniformly composed

of three main modules: mapping, encoding, and associative

memory. For each of these modules, we design the network

templates providing predefined options and attributes for a

variety of purposes. The three modules can be then configured

and cascaded to essentially build an HD data flow processor.

The mapping module first maps the input biosignals from the

original representation to the HD vectors where they can be

manipulated by means of the versatile arithmetic operations

reside in the encoder module. The output of the encoder is

another HD vector that encloses our event of interest for

learning/classification in the HD space. Finally, the associative

memory module turns the output of the encoder to a prototype

HD vector representing a given class. During training, the

associative memory stores and updates a set of prototype HD

vectors; it finds the closest one to the output of the encoder

during testing. Following is a detailed description of the three

modules.

A. Mapping to HD Space

The fist step is to map raw inputs or features from the

original representation to the HD representation space. The

HD representation is typically produced through a mapping

aka projection. In the following, we present three projection
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options that can be chosen based on the type of inputs

or features; we later discuss about other options, including

learning a projection in Section VI.

1) Orthogonal Mapping: When an input can be described

by a finite alphabet of independent symbols, its mapping to

the HD vectors is simple. This can be done by a class of

data-analysis methods that is referred to as symbolization [61].

Symbolization describes the process of transforming raw ex-

perimental measurements into a series of discrete symbols.

Each symbol can be simply assigned to a unique HD vector

that is chosen randomly. We can maintain all these HD vectors

in the item memory (IM). The IM here acts as a symbol

table or dictionary of all the HD vectors defined in the

system. For instance, in the European language recognition

task [23], [24], the discrete inputs (the 26 letters of the

alphabet and the space) are the initial items, and they are

assigned to random HD vectors with i.i.d. components. On

the other hand, in a biosignal processing task the electrodes

with unique names are the primary inputs, e.g., four electrodes

in the EMG task namely ‘e1’, ‘e2’, ‘e3’, and ‘e4’. Since the

name of every electrode is a unique string, it can be easily

mapped to an HD vector using the IM with four entries.

The IM, shown in Fig. 3, represents the four basic electrodes

by assigning a unique quasiorthogonal HD vector to every

electrode: E1 ⊥ E2 ⊥ E3 ⊥ E4. They stay fixed throughout

the computation, and they serve as seeds from which further

representations are made.

As another alternative, projection to the binary HD vectors

can be implemented by means of a cellular automaton [62],

[63]. The input features in the original representation can

be first binarized and then passed through several steps of

computation with a cellular automaton. A cellular automaton

consists of a regular grid of cells each in one of the binary

states. Every cell evolves in time according to a fixed rule

with a chaotic behavior that can produce a sequence of

(pseudo)random HD vectors. The state of a cell on the next

computational step depends solely on its current state and the

states of its neighbors. After several steps of computation, the

time-space state of cellular automaton is the projection to HD

space as described in [64].

One other option is to exploit the random process variations

that are naturally present in any deeply scaled and low voltage

nanotechnology process [7], [6], [38]. The application of

the use of process variations in HD mapping is reported

in [38], where groups of randomized delay lines are used to

perform random indexing. Another approach is to make use

of linear feedback shift registers (LFSR) to produce sequences

of random seeds with pseudo-i.i.d. behavior. One caveat is

that a generated seed may be close to the permuted version

of the previous seed (see Section II-B for the realization of

permutation operation), as both rely in single bit shifts. We

therefore need to use a second permutation that interferes

minimally with circular shit.

2) Continuous Mapping that Preserves Similarity: The

aforementioned orthogonal mapping is well-matched to the

output of symbolization, or to the input data and features in

the form of discrete symbolic primitives (letters or words)

that can be readily mapped to the HD vectors. However, in

 

Fig. 3. Comparison between cosine similarity matrices of mapped items using:
(1) Orthogonal mapping of 4 electrode names via the IM, in the left; (2)
Continuous mapping of quantized electrode signals with m=21 levels via the
CIM, in the right.

the biosignal processing applications each electrode produces

an analog time-varying signal where the signal level has an

amplitude in real values. Hence, we decouple mapping of

the name and the signal level of an electrode. The latter

one demands a different mapping method to the HD space

to preserve “similarity” between a range of real values in

the original representation to their corresponding mapped HD

vectors.

For this method of mapping, we limit our case to signal

levels that are first quantized using a quantization step with

a fixed number of levels (m). Accordingly, we have extended

the notion of IM to a continuous item memory (CIM) that can

map a range of quantized signal levels [14]. The CIM utilizes

a method [65] of mapping quantities “continuously” to the

HD vectors that is simpler than the method in [36]. In this

continuous vector space, two orthogonal endpoint HD vectors

are generated for the minimum and the maximum levels in the

range. HD vectors for intermediate levels are then generated

by linear interpolation between these two endpoints so that the

cosine similarity of HD vectors corresponds to the closeness

of levels.

For example, the quantization with 21 levels (m = 21) are

suitable for electrodes with an amplitude of 0 mV to 20 mV in

the EMG-based hand gesture recognition task. We choose a

random HD vector for the minimum level (Vmin) and randomly

flip d/2/(m− 1) of its bits for each successively higher level

(once flipped, a bit will not be flipped back). The HD vectors

for the minimum and the maximum levels will then be d/2 bits

apart or orthogonal to each other, i.e., Vmin ⊥ Vmax. These HD

vectors are stored in the CIM for reuse. Fig. 3(right) illustrates

the cosine similarity between each pair of HD vectors in

the CIM. As shown, by this mapping a linearly decreasing

similarity is preserved between the HD vectors from Vmin to

Vmax; however, it could be nonlinear based on the nature of

input data or features as described in [59].

3) Mapping with Scalar Multiplication (Weighting): For

those real valued features that is not clear how the quantization

should be done, we can use a method of mapping with

weighting. The mapping with weighting directly projects a real
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valued feature, with full range, to the HD space; this projection

results in a HD vector whose components are real values.

The projection can be done by a pair of IM and the scalar

multiplication (·) as the basic operation in the linear algebra

described in Section II-B. The IM first assigns a random

bipolar HD vector to the entity of a feature (F1). Then, by

means of scalar multiplication F1 is multiplied by the scalar

real value of the feature (v) that produces a real valued HD

vector: v ·F1. This scalar multiplication, or weighting, scales

the initially assigned HD vector by modulating magnitude of

the vector components without changing its direction.

Although the method of mapping with weighting is simple,

normalized, and seamlessly operational with any range of

features, it requires energy-hungry floating-point operations

and storage. Hence, this style of operation should be avoided

as much as possible. During the early design phase, we can

initially use this mapping option when we have no information

about how the quantization and mapping should be performed.

Next, we can replace it by a CIM that is able to reflect well

the real valued features in the HD space; the CIM can be

evaluated by different techniques that linearly or nonlinearly

change the similarity between the mapped bipolar HD vectors.

By providing an example in Section V-D1, we show the trade-

off between these two methods of mapping.

B. Encoding

After projection to the HD space, further progressive rep-

resentations should be formulated to encode the event of

interest for learning and classification. The events of interest

in biosignals processing, e.g., the hand gestures or the mental

commands, have typically spatial and temporal components

to be captured. Following is a detailed description of such

encoding options that can be chosen as appropriate.

1) Spatial Encoder: As we described in Section IV-A, an

electrode maps its name to an HD vector (e.g., E1) via the

IM; it separately maps its signal level at a time point t to

V 1t via the CIM. This mapping is illustrated in Fig. 4(a).

The purpose of a spatial encoder is to combine these mapped

HD vectors across all the electrodes at a given time-aligned

sample (t), and represent them in a single HD vector. To do

so, we draw an analogy from [22] to generate a holistic HD

vector representing data from all the electrodes by using a set

of field–value pair. The electrode name corresponds to a field

of a traditional data record, and its signal level corresponds

to the value for the field. As shown in Section II-B, the field

and the value can be bound by the multiplication operation.

With this, for example for the first electrode, we can jointly

project its name and its signal value to a bipolar bound HD

vector: E1 ∗ V 1t. To complete the holistic record, we bundle

(via the addition) all such bound HD vectors to construct a

single spatial HD vector as shown in Fig. 4(a):

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)]

The aforementioned spatial encoder outputs a bipolar HD

vector, and works well when the number of electrodes is odd.

However, when the number of electrodes is even (as well

as small), pointwise addition of the bipolar HD vectors may

produce 0s, so we end up with a ternary system unless we

break the ties. The ties should be broken randomly and repro-

ducibly. It can be done for example by adding an additional

random HD vector to the record; however it makes the encoder

noncausal: two equal sets of input data in the original space

become slightly dissimilar in the projected HD space [63].

Alternatively, using a constant HD vector would lead to all

output HD vectors being slightly similar to each other even

if they are supposed to be orthogonal. To address this issue,

instead of choosing a random/constant HD vector we compute

an augmented HD vector [63] that is reproducible with the

same set of input data, e.g., by further binding two already

bound HD vectors: (E1 ∗ V 1t) ∗ (E2 ∗ V 2t). We add this

augmented HD vector to the record, for example:

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)

+ ((E1 ∗ V 1t) ∗ (E2 ∗ V 2t))]

2) Temporal Encoder: The spatial encoder captures a ver-

tical slicing of signals among all the electrodes at a given

time. However, the events of interest for learning and clas-

sification have time-dependent components, e.g., a series of

samples over time. We can temporally encode a sequence of

symbols by using the permutation operation, ρ. As described

in Section II-B, the permutation can encode a sequence of n
letters to form an n-gram HD vector. By analogy, a sequence

of three spatial HD vectors with consecutive time stamps

(St−2, St−1, and St) is encoded as follows: the first HD vector

St−2 is permuted twice ρ2St−2, the second HD vector St−1 is

permuted once ρSt−1, and finally there is no permutation for

the last HD vector St. These three new HD vectors are then

combined with the pointwise multiplication into a trigram HD

vector: T = ρ2St−2 ∗ ρSt−1 ∗ St. For n-grams at large this

becomes:

T =
n−1∏

i=0

ρiSt−i

Fig. 4(a) shows the temporal encoder that computes the n-

gram recursively where a single sample delay is denoted by

z−1. This eases the implementation of the temporal encoder

by using the distributivity of the permutation over the multi-

plication as described in Section II-B. The temporal encoder is

applied in cascade after the spatial encoder. Hence, HD vector

T is the output of spatial-temporal encoding for representing

the EMG hand gestures. T can be seen as the outcome of

encoding module for the associative memory (referring to

Fig. 2).

With the temporal encoding, one important step is to deter-

mine the proper size of an n-gram to be able to capture the

entire event of interest. It has been done by downsampling the

signal and statistically measuring the number of downsamples

available in a hand gesture, or in a mental command. For

instance, the EMG hand gestures can be represented by n-

grams where n ∈ {3, 4, 5} [14] whereas the ERP EEG

decoding require larger n-gram sizes where n ∈ {16, . . . , 29}.

With this larger n-gram size, we choose to change the order

of encoders for the ERP EEG task as shown in Fig. 4(b): first

doing the temporal encoding of every electrode, and then doing

the addition to compute the spatial HD vector (S) as the output
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Fig. 4. HD network templates to encode time-domain EMG (a), ERP EEG (b), and ECoG (c) signals: (1) preprocessing or symbolization in the original
representation space; (2) mapping to the HD space; (3) spatial (S), temporal (T ), and histogram (H) encoders. HD network template to encode frequency-
domain features for the MI EEG task (d): (1) preprocessing and feature extraction in frequency-domain of original representation; (2) mapping selected
features to the HD space with weighting methods; (3) spatial encoder. The output of encoding (Q) is used in the associative memory (Fig. 5) for learning
and inference.

of encoding. First doing the temporal encoding allows us to

analyze the n-gram HD vector produced from each electrode

to distinguish meaningful electrodes from irrelevant electrodes

in Section V-B3.

3) Spatial Encoder and Histogram Generation: Here, we

describe a version of spatial encoder that is followed by a

histogram generation to reflect the distribution of symbols over

a specific window of time. This encoding is useful for ECoG

signals that are directly transformed to symbols via symboliza-

tion (see Fig. 4(c)). Symbolization may be efficiently achieved

by mapping a sequence of ECoG samples into an l-bit code,

i.e. a one-dimensional local binary pattern (LBP) [66]. A LBP

code reflects the relational aspects between consecutive values

of the ECoG signals, i.e., whether their amplitudes increase

or decrease. Our symbolization considers 6 consecutive ECoG

samples to compute a 6-bit (l=6) LBP code, and moves by one

sample [19]. These LBP codes generate 2l different symbols

that are fed into the IM for mapping to the HD space. The

IM assigns a quasiorthogonal HD vector to every LBP code

(totally, 64 different LBP codes). To combine these HD vectors

across all the electrodes, the encoder generates a spatial record

(S), in which an electrode name is treated as a field, and

its LBP code as the value of this field. Hence, the IM also

maps the name of electrodes to quasiorthogonal HD vectors,

E1⊥E2 . . .⊥E100, for a patient with the maximum number

of 100 electrodes (see Fig. 4(c)). This allows, for example, to

bind the name of the first electrode (E1) to its corresponding

LBP code at time t (C1t). This binding (E1 ∗C1t) generates

a new set of quasiorthogonal HD vectors to represent LBP

codes per electrode that effectively reduces the size of IM from

64×100 HD vectors to 64+100 HD vectors. The spatial record

(S) is then constructed by bundling the bound HD vectors of

all electrodes:

St = [E1 ∗ C1t + E2 ∗ C2t + ...+ E100 ∗ C100t]

The HD vector St is computed for every new sample, and

holographically represents the spatial information about the

LBP codes of all electrodes. The next step is to compute

the histogram of LBP codes inside a moving window that

should be wide enough to theoretically permit at least a single
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occurrence of all possible LBP codes [67]. Considering a

sampling frequency of 512 Hz, a window of 0.5 s contains

256 LBP codes that provides a high probability for every

code to occur inside this window because 256 > 2l+1. The

histogram computed from this window can be used as a

signature for seizures: interictal (between seizures) and ictal

(during seizures) states show different distributions of LBP

codes [66], [67]. This shows that the distribution of LBP

codes, not necessarily their sequence, is an important indicator

to distinguish between ictal and interictal state. To estimate

the histogram of LBP codes inside the window, a multiset of

temporally generated St vectors is computed as:

H = [S1 + S2 + ...+ S256]

The bundling is applied in the temporal domain through

accumulation of St vectors t ∈ {1, ..., 256}, that are produced

within the window, and then thresholding at half (i.e, normal-

ization).

4) Spatial Encoder with Weighting: When we are given

a set of extracted features that are not from the time-domain,

and collectively capture the entire event of interest, we can use

the spatial encoder to combine all of them into a spatial HD

vector. Since these features are often complicated and mixed

(e.g., multiscale), the weighting method (in Section IV-A3)

can be used as an option to map them. Hence, we propose to

construct a spatial encoder with weighting that is well-suited to

holistically map a feature set without quantization. Examples

include the frequency-domain features for the MI EEG task,

in which we extract power spectral density (PSD) for different

frequency bands, and finally select 9 top features among all

the electrodes as shown in Fig. 4(d).

The mapping requires an IM to assign a unique set of or-

thogonal HD vectors to the feature set, i.e., F1 ⊥ F2... ⊥ F9.

The extracted features have scalar values, e.g., v1 for the first

feature. To represent this feature in the HD space, we perform

a scalar multiplication between the value of feature and its

corresponding HD vector: v1 · F1. These scaled HD vectors

are added across all the features to compute the real valued

spatial HD vector:

S = v1 · F1 + v2 · F2 + ...+ v9 · F9

This new spatial encoder computes the pointwise sum of the

feature HD vectors weighted by the scalers. This encoder is a

perfect match to automatically map any given feature set when

there is no scheme for the feature quantization and mapping.

This is done by working with real instead of bipolar vector

components. The cost of this is so large that it should be used

only when necessary (see Section VI).

C. Associative Memory

In the proposed HD architecture (see Fig. 2), the last module

is the associative memory (AM) that directly operates with

the output of encoding (Q). This output HD vector can come

from any previously proposed encoders, for instance from

the spatial-temporal encoding (Fig. 4(a)) that makes Q = T ,

likewise from the temporal-spatial encoding (Fig. 4(b)) and the

spatial encoding with weighting (Fig. 4(d)) by Q = S. The
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Fig. 5. Two compatible associative memory (AM) architectures. Both support
different number of classes, and two modes of operations: train and test.

AM completes the supervised learning method by assigning a

label to the output of encoding module. The method is based

on the notion of a class prototype. The class prototype is an

HD vector (P ) representing all items from the entire class

aligned with the notion of prototypical networks [68].

The AM initially allocates a set of class prototypes whose

number (k) is equal to the number of classes in the task.

As shown in Fig. 5(a), during training, for every trial, the

AM selects a related class prototype HD vector based on

the provided label, and updates it by adding the HD vector

produced from the output of encoding (Q). For learning from

the current training trial with a label of e.g., ‘Label1’, the AM

selects the corresponding class prototype HD vector (P1) and

bundles it via the addition operation to the output of encoding:

P1 += Q. This ensures that a single prototype representation

emerges for each class. Such accumulative updates continue

until the end of training. Simplicity of this update operation

enables incremental learning from different examples during

the course of online functioning. By the end of training,
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the AM contains all the class prototype HD vectors—as

the learned distributed patterns—that are organized based on

their labels. The class prototype vectors can be normalized

to {+1,−1}d based on the sign of components. Note the

difference between the associative memory (AM) and the item

memory (IM): the IM holds seed HD vectors that are assigned

constants and stand for electrodes/letters/signal levels, while

the AM holds prototype HD vectors that are learned and stand

for classes.

The same mapping and encoding are used for both learning

(training) and classification (inference, or testing); however,

the AM has a train vs. test mode. When testing, we call

the output of the encoder a query HD vector since its class

label is unknown. The query HD vector of the test trial is

then sent to the AM to identify its source class. The AM

in the test mode determines the class of the test trial by

comparing its query HD vector to all the learned prototype HD

vectors using the cosine similarity. The cosine similarity search

computes k similarity scores among which the AM selects the

highest one and returns its associated label as the class that the

query HD vector has been generated from. Efficient solutions

are required to search through a large AM [69]. The initial

implementation of the AM on the PULP accelerator with 8

cores and specialized bitwise instructions shows 10× faster

execution compared to a single core without optimized bitwise

instructions [16].

1) Associative Memory with a Unified Prototype: Fig. 5(b)

illustrates another version of the AM that requires only one

unified prototype HD vector (P ). This AM, instead of storing

the prototype HD vectors separately per class, computes a

single prototype HD vector as a record where the “fields”

are the prototype HD vectors and the values are their mapped

class labels in the HD space. To map the class labels to the

HD space, we pair the AM to the IM that assigns a set of

orthogonal HD vectors to the label set. For every training trial,

its associated label is mapped to an HD vector (L) which

is bound to the output of encoding, L ∗ Q; this bound pair

is added to the unified prototype HD vector: P += L ∗ Q.

During testing, we retrieve the label of test trial by unbinding

the query HD vector from the unified prototype HD vector,

L′ = Q ∗P , that results in the noisy HD vector of label (L′).

To do the clean-up we use the IM that returns L based on

similarity search.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results for the

proposed HD network templates developed in Matlab3. We

show how they can be configured to be used in different biosig-

nal processing applications, compare them with the state-of-

the-art counterparts, and highlight their benefits. Table I gives

an overview of these configured HD network templates—

simply referred to as HD classifiers from here on—and their

assigned biosignal processing tasks. We start from the simple

task of multiclass EMG hand gesture recognition from few

time-domain inputs, and move, step by step, to other tasks

3A collection of projects and codes based on HD computing is available
at:https://github.com/HyperdimensionalComputing/collection
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Fig. 6. Learning curve in the EMG task: the HD classifier learns 3.2× faster
than the SVM to reach to the maximum accuracy of 97.8%.

with increased complexity. Next, we consider the EEG ERP

binary classification task with 64 time-domain inputs. We then

consider the ECoG-based seizure detection task that demands

a universal encoder to operate with different patients having

36 to 100 electrodes implanted. Finally, we consider two

challenging tasks for the MI EEG: (1) a task of classifying

three classes with frequency-domain features extracted from

16 electrodes; (2) a task of four-class classification from a large

number of multiscales features extracted from 22 electrodes.

In the following subsections, we describe each of these tasks in

detail and present our findings. The accuracy term throughout

this paper is referred as macroaveraging test accuracy that

computes a simple average over classes for the test set.

A. EMG-based Hand Gesture Recognition

The EMG data acquisition is based on four sensors that

cover the muscles involved in the hand movement from a

physiological point of view. The dataset [14] for five subjects

is based on the recording of the EMG signals of the common

hand gestures in a daily life. The selected gestures are:

closed hand, open hand, 2-finger pinch, point index, and rest

position, forming five classes. For every gesture, the recording

is composed of 10 repetitions of the gesture, each with 3

seconds (3 s) of the muscular contraction. Every contraction

is followed by 3 s rest position.

The gestures are sampled at 500 Hz, and for the prepro-

cessing a low pass filter extracts the envelope of the signal,

and a notch filter removes the residual power-line interference.

The preprocessed signals from the four electrodes are down-

sampled by 250. These four preprocessed and downsampled

values are used as the input features. The SVM, as the state-

of-the-art method [31], learns and classifies with these four

time-aligned features. However a gesture is spanned over time

for 3 s, and generates up to 6 sequences of such time-aligned

features that makes a linear growth in the number of features

from 4 to 24. The SVM cannot efficiently classify with this

linearly increased number of features and its accuracy drops

significantly [14]. On the other hand, the configured HD

https://github.com/HyperdimensionalComputing/collection
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TABLE I
OVERVIEW OF VARIOUS BIOSIGNAL PROCESSING APPLICATIONS AND THEIR RELATED HD COMPUTING ARCHITECTURE.

Task Complexity Configured HD Network Template (HD Classifier)
Recording No. Elec. No. Classes No. Subjects Classifier’s Inputs Mapping Encoder Associative Memory

EMG 4 5 5 Time series IM+CIM (m=21, linear) Spatial-temporal 5 prototypes
EEG ERP 64 2 6 Time series IM+CIM (m=100, linear) Temporal-spatial 2 prototypes
ECoG 36–100 2 16 Symbols (LBP) IM Spatial-histogram 2 prototypes
EEG MI 16 3 5 Features Weighting Spatial 3 prototypes
EEG MI 22 4 9 Features Weighting Spatial 4 prototypes
EEG MI 22 4 9 Features IM+CIM (m=100, logarithmic) Spatial 4 prototypes

classifier for the EMG task, shown in the first row of Table I

and Fig. 4(a), can capture the temporal component of gestures.

This is accomplished by the spatial-temporal encoding that

uses an n-gram where n ∈ {3, 4, 5}; the size of n-gram is set

per subject.

Fig. 6 compares the learning curves of HD classifier and

the SVM: plotting the classification vs. the number of training

trials. The bars show the average accuracy, and the errors are

the standard deviation across five subjects. The HD classifier

shows an average accuracy of 86.8% (7% higher than the

SVM) when only 10% of the total dataset is used for training.

Although the classification accuracy is improved by increasing

the training trials for both of them, the learning slope of HD

is superior to the SVM. By increasing the training trials to

25%, the HD classifier reaches to 97.8% which is 8.1% higher

than the SVM. After this learning point, increasing the number

of training trials is not useful for the HD classifier as it has

already learned and is able to generalize very well. However,

this is not the case for the SVM since it requires 3.2× as

much training data (i.e., 80% of total trials) to reach the level

of accuracy as the HD classifier with 25% of trials.

HD classifier shows further advantages using 64 high-

density flexible EMG electrodes [15]: It achieves an average

classification accuracy of 96.64% for five gestures, with only

7% degradation when training and testing across different

days—a large improvement over degradations of more than

30% using the SVM. Moreover, HD maintains this accuracy

when trained with only three trials of gestures; it also demon-

strates comparable accuracy with the SVM when trained with

one trial per gesture—one-shot learning.

B. Single-trial Binary Classification of EEG ERPs

We consider a dataset of EEG ERPs for six subjects [70].

The subjects are seated in front of a computer screen where

a cursor moves horizontally (to left or right) in order to

reach a target. The subject has no control over the cursor’s

movement and is asked only to observe the performance of

an autonomous agent that controls the cursor, knowing that

the goal is to reach the target. To study the EEG ERPs

generated by observing an erroneous movement of the cursor,

there is a probability of ≈ 0.20 in every trial for the cursor

to move in the wrong direction (i.e., opposite to the target

location). A trial is labeled as “correct” if the cursor moves

toward the target; otherwise it is labeled as “error”. Trials

have an approximate duration of 2 s. There are two recording

sessions, the first one for training and the second for testing.

Each experimental session consists of ≈ 640 trials. Full

details of the experimental protocol are provided in [34]. In

the following, we explain their method for the EEG signal

acquisition, preprocessing, and classification. We refer to it as

the baseline for comparing with our HD classifier.

The EEG signals are recorded at a sampling rate of 512 Hz

using 64 electrodes according to the standard 10/20 interna-

tional system. For the preprocessing, the signals are spatially

filtered using common average reference (CAR) [53]. By

applying the CAR filter to an electrode, the average signal

level of the entire electrode array is subtracted from that of the

electrode of interest. If the entire head is covered by equally

spaced electrodes and the potential on the head is generated by

point sources, the CAR results in a spatial voltage distribution

with a mean of zero [71]. We will demonstrate later that

this spatial filter can be eliminated from the preprocessing

with negligible effect on our classification accuracy as the

HD classifier can work on raw data. Then, a 1–10 Hz band-

pass filter (BPF) is applied to remove the unwanted frequency

components. For every subject, a time window corresponding

to the erroneous and the correct cursor movements is extracted

for further analysis and classification.

As the state-of-the-art, a Gaussian statistical classifier is

used for binary classification of a single trial [34]. The

Gaussian classifier estimates the posterior probability of a

given trial corresponding to one of the two classes. Following

domain expert knowledge [47], specific electrodes (FCz, Cz,

or both, based on the sensitivity of subjects) are chosen to be

used as the inputs to the classifier. The classifier parameters

are then tuned using a stochastic gradient descent on the mean

square error [46]. Our aim is to replace the aforementioned

baseline preprocessing and classification by an efficient and

fast HD classifier that enables a natural operation with all the

64 electrodes, and with less training and preprocessed data. For

this task, the HD classifier is configured with the IM and the

CIM for mapping, the temporal-spatial encoder (Fig 4(b)), and

two prototypes in the associative memory for the two classes

(P1 for the correct and P2 for the error) as summarized in

Table I.

1) Fast Learning: We assess how fast the training of

HD classifier can be done while maintaining a classification

accuracy as high as the baseline. We have observed that only

some of the training trials can produce a nonredundant HD

vector to be added to the class prototype [18]. Hence, during

the training session, every time a new nonredundant trial

is encountered, the associative memory is updated and the

classification accuracy is measured for the entire test set. For

the very first trials, the associative memory is almost empty,
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Fig. 7. Comparison of the HD classifier with the baseline Gaussian classifier
in the EEG ERP task.

but as new trials are encountered it will be lightly populated

leading to an increase in the accuracy.

We target the classification accuracy of the baseline that is

achieved by using all available trials in the training session,

working with the one or two selected electrode(s), and with

the CAR preprocessing method. We provide the same setup for

the HD classifier, but with fewer training trials, to assess how

fast the target baseline accuracy can be reached. As shown in

Fig. 7(a), the HD classifier is able to learn faster with some

variation across subjects reflecting the significant individual

variability: it requires only 0.3% of the nonredundant training

trials for S6, and up to 96% for S1. On average, across

all the subjects, the HD classifier reaches the target baseline

classification accuracy of 70.5% when trained with only 34%

of nonredundant training trials. This translates directly to ≈
3× faster learning.

2) No Electrode Selection and Less Preprocessing: We

assess the ability of the HD classifier to operate with noisy

inputs and electrodes that do not carry meaningful information.

Fig 7(b) compares the classification accuracy of the baseline

method with two instances of our HD classifier. The first one

has a setup equivalent of the baseline as aforesaid: uses one

or two electrode(s) depending on the subjects, applies the

CAR preprocessing filter on every electrode before the BPF

step, and uses all training trials. As shown in Fig 7(b), this

instance of the HD classifier surpasses the baseline accuracy
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Fig. 8. Analyzability of the learned HD code that identifies the most useful
electrodes (FCz, Cz). X-axis shows the sorted electrodes (the top 32 out of
64) based on the average score across the 6 subjects.

across the six subjects. The HD classifier exhibits 67.7–82.7%

classification accuracy, with an average of 74.5%, which is 5%

higher than the baseline with the same conditions.

The second instance of the HD classifier operates with all

the 64 electrodes and without the CAR preprocessing filter.

There is no CAR filter in the chain of preprocessing: every

electrode signal is immediately passed through a BPF followed

by the scaling and quantization step before mapping to the

HD space by the CIM. Note that the simple BPF cannot be

removed since the EEG ERPs are in the frequency range of

1–10 Hz.

Despite using the 64 electrodes without any electrode selec-

tion and no CAR filtering, the HD classifier maintains almost

the same range of classification accuracy (i.e., 62.3–79.1%)

across the six subjects as shown in Fig 7(b). This HD classifier

shows on average 2.2% higher classification accuracy com-

pared to the baseline. Note that the HD classifier achieves this

by naturally using largely meaningless electrodes regardless

of the subjects, while the baseline carefully selects a subset of

electrodes per individual subject that can provide meaningful

information for the Gaussian classifier. This also confirms the

amenability of HD classifier to operate with less preprocessed

data. In HD computing, the input data is naturally clustered

in the HD space, and the noise generated by meaningless

electrodes tends to cancel out. This desirable property makes

it possible to apply HD computing for clustering data with

minimal knowledge about the nature of the data.

3) Learning Transparent Codes with Interpretable Fea-

tures: Apart from the excellent performance of HD classifier

with all the 64 electrodes, its learned code is transparent and

can be analyzed to find out the important features related to the

ERP task. More specifically, rather than asking for information

from the domain expert, the learned HD vectors can be used

to identify what electrodes provide meaningful data for the

classification. Using the domain expert knowledge, authors

in [34] identify FCz, Cz, or both electrodes as the most useful

electrodes for their baseline classifier. We observe that the

same subset of electrodes can be identified as useful by the

following HD algorithm.

The algorithm is inspired by the distribution of distances in

the HD space. For each electrode, we compute a score that

measures the distance between two class prototypes that are

generated solely by the electrode. This is supplied by first

doing the temporal encoding in Fig. 4(b); note that in this

encoder if two electrodes i and j receive an identical input

stimuli, their encoded n-gram HD vectors become identical

(Ti = Tj). Before computing the scores for electrodes,
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we need to compute a set of HD vectors P1i where i ∈
{1, . . . , 64}. P1i is computed for every electrode i by adding

its related n-gram HD vector (Ti) over all the trials belonging

to the correct class. Similarly, P2i HD vectors are computed

from the trials related to the error class:

P1i += Ti ∀ Correct trial

P2i += Ti ∀ Error trial

For every electrode i, we can then assign a score by measuring

the distance between their P1i and P2i:

scorei = 1− cos(P1i, P2i)

In other words, this score reflects how well a given electrode

discriminates between the two class prototypes: the larger, the

better.

Fig. 8 shows the computed scores for each electrode and

across the subjects. The electrodes are sorted in the x-axis

according to their average score over the subjects; only the

top 32 electrodes out of 64 are shown. As shown, the FCz

and Cz electrodes are on top of the sorted list and have the

highest discriminative scores for the six subjects, on average.

However, all subjects do not exhibit the same sensitivity to

these two electrodes. For example, S4 does not show a clear

distinction between electrodes.

C. ECoG-based Seizure Detection

We consider an anonymized dataset of 16 patients of the

epilepsy surgery program of the Inselspital Bern for a total

of 99 recordings. Each recording consists of 3 minutes of

interictal segments (immediately preceding the seizure), and

the ictal segment (ranging from 10 s to 1002 s), followed by 3

minutes of postictal time; see [19] for more details. Two recent

state-of-the-art methods use local pattern transformation [33]

for seizure detection: 1) A method uses histograms of LBPs

(2l integer features per electrode) that performs best with a

linear SVM classifier; 2) Akin to LBP, a local gradient pattern

(LGP) is further proposed that with an MLP neural network

outperforms LBP+SVM. We compare the performance of our

HD classifier (see Fig. 4(c) and Table I) with the LBP+SVM

and the LGP+MLP methods by measuring specificity and

sensitivity using a few seizures for training.

For the majority of the patients (10 out of 16), our HD

classifier quickly learns from one or two seizures, and achieves

perfect (100%) specificity and sensitivity with k-fold cross-

validation, where k is the total number of seizures minus the

number of trained seizures. For the remaining minority of 6

patients, our HD classifier requires more seizures (3–6) for

training. For these patients we use 22 seizures for training and

test with the remaining unseen 38 seizures. The HD classifier

almost maintains its top performance with 100% sensitivity

for 5 of 6 patients. In an identical setup, our HD classifier,

on average, achieves higher specificity and sensitivity than the

other methods. Moreover, the low specificity of LBP+SVM

and LGB+MLP clearly limits their usefulness for long-time

recordings [19].
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(a) The MI EEG task with three classes.

7
8

.8
%

5
3

.5
%

8
2

.6
%

6
0

.7
%

5
9

.0
%

4
3

.8
%

8
2

.6
%

8
3

.7
%

8
1

.3
%

6
9

.6
%

8
3

.3
%

5
4
.8

%

7
9

.9
%

6
8

.4
%

5
7

.3
%

5
0

.2
%

8
4

.8
%

8
1

.2
%

7
9

.9
%

7
1

.1
%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 M e a n

T
e
s
t 

A
c
c
u

ra
c

y
 (

%
)

Subjects

CNN

HD

(b) The MI EEG task with four classes.

Fig. 9. Comparison of the HD classifier with the SVM and CNN in two MI
tasks.

D. Multiclass Classification of MI EEG

To increase the complexity of classification task, we move

to multiclass brain–computer interfaces based on the MI

recordings. The classifiers for the MI-based recordings face

particular challenges to operate with complicated frequency-

domain features, and with few training trials (≈15 per class

per run) since the subjects quickly become exhausted. We first

consider a dataset [49] with five subjects that are asked to

imagine three tasks: imagination of left hand, or right hand, or

feet movements. Every subject participates in four runs, each

with 45 trials. The MI-based brain–computer interfaces use

the power of EEG oscillations in different frequency bands

to decode the subject’s intention. Hence, the power spectral

densities (PSD) are extracted as features for the classification.

They are extracted for the frequency bands of 4–48 Hz from

4 s of the MI command recorded from 16 electrodes. After

a normalization and scaling step, the real valued features

are sorted based on a Fisher scoring algorithm as shown in

Fig. 4(d). Fisher score, as a filter-based approach, assesses the

correlations between features and the class labels to find out

features that are efficient for discrimination [72]. It assigns

the highest score to the feature on which the data points of

different classes are far from each other while requiring data

points of the same class to be close to each other. The nine

highest-ranking features are selected to serve as inputs to the
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classifier.

For the baseline classification, we first use a Gaussian classi-

fier [49]. However, the Gaussian classifier fails to achieve high

accuracy with simultaneous classification into three classes,

hence we instead choose the SVM [32] with parameters opti-

mized for larger margin and regularization. We reuse the same

feature extractor for the HD classifier which is configured with

the weighting method for mapping the nine features, the spatial

encoder (Fig 4(d)), and three prototypes in the associative

memory (one for each class), as summarized in Table I. To

evaluate the performance with fewer training trials, one run

(out of four) is used for the training, one for the evaluation (i.e,

model selection), and two for the testing. Fig. 9(a) compares

the average test accuracy of the HD classifier versus the SVM

measured through 4-fold cross validation with two folds for

testing. The HD classifier shows 53–98% accuracy across all

the subjects (77% on average). Compared to the optimized

SVM, the HD classifier improves the minimum, maximum,

and average accuracy by 6%, 4%, and 2%. These accuracy

benefits are achieved by a simpler algorithm that is trained in

a single pass over the training data.

1) MI Classification with Four Classes: Finally, we con-

sider another dataset for the MI-based brain–computer in-

terfaces: the BCI competition IV-2a [73]. This challenging

dataset contains 9 subjects, with four classes (right hand,

left hand, feet, and tongue imaginations) recorded from 22

EEG electrodes. It has two separate sessions for train and

test each with 48 trials. For the preprocessing and feature

extraction, a filter bank (9 filters from 4 to 40 Hz) with

common spatial pattern (CSP) is used [48]. The CSP is a

linear transformation that projects the data into a space where

data variance is maximized for one class relatively to another

one. In addition to these static energy features, dynamic

energy features are computed along with a CNN to improve

classification accuracy [35]. The CNN surpasses the SVM and

achieves an average classification accuracy of 69.6% across the

9 subjects as the state-of-the-art for this dataset [35].

For the HD classifier, we scale the same architecture used

in the previous MI task (Fig. 4(d)), by increasing the number

of input features and the class prototypes (Table I, the forth

row). As shown in Fig. 9(b), the HD classifier achieves a

higher classification accuracy compared to the CNN (71.1%

vs. 69.6%). This confirms the superiority of the proposed HD

templates and their scalability to handle complicated tasks with

a larger number of features and classes. Nevertheless, this HD

classifier uses the spatial encoder with the weighing method

that generates an HD vector with real valued components

requiring floating-point hardware and storage. To reduce the

hardware complexity of the classifier, we substitute its weight-

ing method with a pair of IM and CIM similar to the spatial

encoder in Section IV-B1. We evaluate the linear and nonlinear

quantization and similarity-preserving techniques in the CIM,

and find out that a CIM hard-coded by 100 levels (m = 100)

with logarithmically changing the similarity is a good match

with the features. The configuration of the HD classifier is

shown in the last row in Table I. The HD classifier maps

the real valued input features to the bipolar HD vectors, as

opposed to the HD vectors with real components, and performs

the classification with 1% average accuracy loss (70.1% vs.

71.1%).

VI. DISCUSSION

There are good reasons to prefer to use vectors as a means

of representing items in memory: vector representation allows

items to be treated as complex entities, and also allows for

fuzzy composites of items to be constructed; furthermore,

vectors are amenable to implementation in neural models [13],

[11], [40], [8]. In HD computing, or VSAs, the fixed-size

HD vectors represent symbolic information. These symbols, or

HD vectors, can be combined using a small set of arithmetic

operations (e.g., MAP). At the symbolic level, we should

choose how to map items to the HD vectors, and how to

combine them to create more complex representations. These

choices greatly influence the performance. Text and language

applications are well-matched to this computing framework

because the data already comes in the form of symbolic

primitives (letters or words), which are readily mapped to HD

vectors. However, it is challenging for other types of data such

as time series from multiple sensors.

To address this issue, we provide a small set of network

templates that easily map analog multi-sensory inputs to HD

vectors and construct a complete representational architecture

by careful use of MAP operations. These initial solutions can

be improved in different aspects. Examples includes the use

of thermometer codes (see Appendix A-I), or locality-sensitive

hashing (LSH) for mapping continuous quantities into the HD

vectors. The distance-preserving bit sampling LSH can convert

ℓ1 norm to Hamming distance with successful applications

in arterial blood pressure time series [74], [75]. All these

methods—without learning—come under umbrella of random

projection (see [76] for a review). Nevertheless, a hybrid

approach combining deep learning and HD computing can be

taken where deep learning (either supervised or unsupervised)

is used to learn natural features of the data that allow for

its mapping into an HD vector. These vectors may then be

combined and manipulated within the HD framework for high-

level reasoning tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a full set of HD network templates

for multiclass learning and inference in various biosignal

processing applications. These templates facilitate designing

versatile, fast, robust, and extremely energy-efficient classifiers

by solely using simple native operations of brain-inspired

HD computing without involving any biologically implausi-

ble or inefficient algorithms. Experimental results with the

EMG-based hand gesture recognition, the EEG-based brain–

computer interfaces (both ERP and MI), and the ECoG-based

seizure detection demonstrate that the HD classifier usually

reaches higher classification accuracy (or, at least equal)

compared to the state-of-the-art counterpart. More importantly,

this is accomplished by little or no prior knowledge about the

task: (1) The HD classifier demands much less training data

thanks to its simple and one-shot learning; (2) It also naturally

operates with noisy and less preprocessed inputs; (3) There is
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no need for domain expert knowledge or electrode selection

process. Last but not least, the produced HD code is analyzable

and interpretable.

Future work is focused on efficient hardware implementa-

tion of HD computing for brain–computer interfaces, epileptic

seizure onset detection, and identification of ictogenic brain

regions.
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APPENDIX A

HYPERDIMENSIONAL COMPUTING CONCEPTS

A. Hyperdimensional Space

Dimensionality d = 10,000 is high-dimensional, 10 or 100

are not. Small demonstrations can be made with d = 1,000,

and even very large tasks (e.g., modeling of networks with

billions of nodes) can be managed with d less than a 100,000.

High-dimensionality together with operations of the right

kind are more important than the nature of the dimensions.

Operations and properties that have proven useful are listed

below.

B. Elements/Points of the Space

• HD vectors or, more generally, the elements of a space

of (vector-like) points.

• Similarity metric: based on distance, dot product, cosine,

correlation.

• Orthogonality: Randomly chosen vectors are dissimilar,

unrelated, uncorrelated, quasiorthogonal. Most of the

space is dissimilar—nearly orthogonal—to any given

point. The number of mutually dissimilar vectors far

exceeds dimensionality, and finding one more such vector

is easy.
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C. Operations

Note: The terms “addition,” “multiplication” and “permu-

tation” are meant to be understood in a more general (mod-

ern/abstract algebra) sense.

• Addition is an operation on two or more vectors that

yields a vector.

• Multiplication is an operation on two or more vectors that

yields a vector.

• Permutation is a unary operation on a vector that yields

a vector.

– The number of possible permutations is very large (d!),
but permutations themselves are not elements of the space

of representations.

– Permutation is an example of a more general unary

operation on vectors, namely, multiplication by a matrix.

However, reducing it to a circular shift operation reduces

the complexity of permutation as well as its inverse to

O(d) rather than O(d2).
• Normalization converts an intermediate results of an

operation into an element of the space over which the

operations are defined. For example, if the elements of

the space are binary vectors, the arithmetic sum-vector of

two or more vectors has to be normalized by a threshold

function to make it binary.

• Scalar product or dot product provides a measure of

similarity between two vectors.

D. Properties

Note: The properties refer to (pseudo)random vectors with

i.i.d. components. Thanks to high dimensionality, the condi-

tions listed below need only be satisfied approximately or with

high probability. Notice also that the algebra of addition and

multiplication approximates a field over the vector space.

• Multiplication and permutation are invertible.

• Multiplication distributes over addition.

• Permutation distributes over both addition and multipli-

cation.

• The sum vector is similar to each of its argument vectors.

• The product vector is dissimilar to each of its argument

vectors.

• The result of a (random) permutation is dissimilar to the

argument vector.

• Multiplication and permutation are “randomizing” oper-

ations that preserve similarity.

• Addition and multiplication are associative.

• Addition is commutative.

By the Law of Large Numbers, the reliability/predictability

of the computations is directly related to vector dimensionality.

E. Examples of HD Spaces and Operations

• Real Vectors. Holographic Reduced Representation

(HRR) was the first among these systems. It uses d-

dimensional real vectors whose components are i.i.d.

normal with zero mean and 1/d variance. Addition is by

normalized vector sum, and multiplication is by circular

convolution.

• Complex Vectors. Vector components are random phase

angles, addition is by componentwise complex addition

followed by normalization, and multiplication is by com-

ponentwise complex multiplication (addition of phase

angles).

• 50–50 Binary Vectors. Addition is by componentwise

majority rule followed by tie-breaking, and multiplication

is by componentwise XOR.

• Bipolar (±1) Vectors. The MAP (Multiply–Add–

Permute) architecture uses componentwise addition and

multiplication, followed by normalization and is equiva-

lent to the binary.

An operation can have a property that is useful in some

contexts but needs a work-around in others. An example of

such is the self-inverse property of multiplication of binary

vectors with componentwise XOR. It may work well for

undirected graphs but poorly for directed graphs.

F. Mapping with Vectors

A key notion of HD computing is that a vector can represent

a mapping and that a mapping-vector can be computed from

examples in a single pass using the vector operations. Sim-

ilarly, vectors for composed entities such as a network, are

computed from vectors for the constituents (i.e., the nodes)

with the HD operations in a single pass. This is much like

traditional computing and very different from standard neural

nets that compute mappings with gradient descent (back-

propagation) in multiple passes over a set of examples. To

apply a vector-map to another vector, we simply multiply

with the mapping-vector and possibly follow it with a memory

retrieval.

G. HD Memory

The long-term memory function of standard neural nets

is encoded into—and is confounded with—the same set of

weights that perform mappings between vectors. In HD com-

puting the two are separate. The memory corresponds to

a computer RAM and it stores vectors made with the HD

vector operations. Memory retrieval means finding the best-

matching vector (or vectors, i.e., nearest neighbors) in the set

of vectors stored in the memory, which also yields a measure

of confidence in the retrieved vectors.

H. Generality

The HD operations and memory are sufficient for general

computing. For example, the Lisp programming language

could be implemented with them.

Some computing operations that are native to HD have no

simple counterpart in traditional computing. They include vec-

tors as mappings and as semantic pointers. However, operating

with numbers is awkward and inefficient. Thus traditional

computing can be deemed quantitative and HD computing

qualitative.
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I. Theory on Coding Continuous Values in HD Vectors

Using the 50–50 Binary Vectors (Binary Spatter Codes) we

describe a method to encode graded values (quantities) into

binary HD vectors via the thermometer code (unary coding). A

thermometer code has a number of 1s to represent the quantity,

followed by 0s:

111...111000...000

Assume that x in the range [0,1] is represented by a d-bit

thermometer code, with the number of 1s proportional to x.

If we want the ends of the range have orthogonal HD vectors,

the thermometer code for 0 has no 1s and the thermometer

code for 1 has d/2 1s. For example, 1,000 1s followed by

9,000 0s represents 0.2.

Take the thermometer code for x, T (x), multiply (XOR) it

with a random label, L, and permute the result with a random

permutation (not rotate), ρ. Then the value x is encoded by

the HD vector:

X = ρ(L ∗ T (x))

Multiplying by L makes temperature look random, and per-

muting with ρ scrambles the coordinates. We can then read the

thermometer by counting the number of 1s in L∗(qX), where

q is the inverse permutation of ρ and L is its own inverse. We

can do the same for the y coordinate but need a random label

L′ and a random permutation ρ′ that are unique to the y-axis.

The position (x,y) can then be labeled with X ∗ Y . If we are

given x and the vector X ∗ Y , we can compute y.

The coding maintains temperature differences because nei-

ther XOR nor permutation affects Hamming distance h (both

operations preserve similarity):

h(X1, X2) = h(ρ(L ∗ T (x1)), ρ(L ∗ T (x2)))

= h(L ∗ T (x1), L ∗ T (x2))

= h(T (x1), T (x2))
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