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Abstract. This paper proposes a new efficient signature scheme from
bilinear maps that is secure in the standard model (i.e., without the
random oracle model). Our signature scheme is more effective in many
applications (e.g., blind signatures, group signatures, anonymous cre-
dentials etc.) than the existing secure signature schemes in the stan-
dard model such as the Boneh-Boyen [6], Camenisch-Lysyanskaya [10],
Cramer-Shoup [15] and Waters [33] schemes (and their variants). The
security proof of our scheme requires a slightly stronger assumption, the
2SDH assumption, than the SDH assumption used by Boneh-Boyen. As
typical applications of our signature scheme, this paper presents effi-
cient blind signatures and partially blind signatures that are secure in
the standard model. Here, partially blind signatures are a generalization
of blind signatures (i.e., blind signatures are a special case of partially
blind signatures) and have many applications including electronic cash
and voting. Our blind signature scheme is much more efficient than the
existing secure blind signature schemes in the standard model such as
the Camenisch-Koprowski-Warinsch [8] and Juels-Luby-Ostrovsky [22]
schemes, and is also almost as efficient as the most efficient blind sig-
nature schemes whose security has been analyzed heuristically or in the
random oracle model. Our partially blind signature scheme is the first
one that is secure in the standard model and it is very efficient (almost
as efficient as our blind signatures). We also present a blind signature
scheme based on the Waters signature scheme.

1 Introduction

1.1 Background

Digital Signatures. The concept of digital signatures was invented by Diffie
and Hellman [17], and their security was formalized by Goldwasser, Mical and
Rivest [21]. A secure signature scheme exists if and only if a one-way function
exists [26,32]. However, the general solution is far from yielding any practical
applications.

Using the random oracle model, much more efficient secure signature schemes
have been presented such as RSA-FDH, RSA-PSS, Fiat-Shamir and Schnorr
signature schemes. However, the random oracle model cannot be realized in the
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standard (plain) model. In addition, signatures with hash functions (random
oracles) are less suitable to several applications (e.g., group signatures).

Several efficient schemes that are secure in the standard model have recently
been presented. There are two classes of such schemes, ones are based on the
strong RSA assumption (i.e., based on the integer factoring (IF) problem), while
the others are based on bilinear maps (i.e., based on the discrete logarithm
(DL) problem). The Camenisch-Lysyanskaya [10], Cramer-Shoup [15], Fischlin
[19] and Gennaro-Halevi-Rabin [20] schemes are based on the strong RSA as-
sumption. The Boneh-Boyen [6], Camenisch-Lysyanskaya [10], and Waters [33]
schemes are based on bilinear maps.

Digital signatures not only provide basic signing functionality but also are
important building blocks for many applications such as blind signatures (for
electronic voting and electronic cash), group signatures and credentials. In the
light of these applications, the schemes based on bilinear maps (i.e., based on
the discrete logarithm problem) are better than those based on the strong RSA
assumption (i.e., based on the integer factoring problem), since we can often more
easily construct efficient protocols based on the DL problem (because the order of
a DL-based group can be published but the order of an IF-based multiplicative
group cannot), and the data size is shorter with bilinear maps than with IF
problems.

Among the bilinear-map-based schemes, the Boneh-Boyen scheme is not suit-
able to many applications such as blind signatures and credentials, since the
signature forms σ ← g1/(x+m+sy), where (x, y) is the secret key, m is a mes-
sage and (σ, s) is the signature, so it is hard to separate an operation (blinding,
encryption etc.) with m from another operation that uses the secret key.

The Waters scheme is better than the Boneh-Boyen scheme, since a message
operation, through the form

∏
i∈M ui, can be separated from another operation

that uses the secret key. However, as shown in Section 9 the protocol of proving
the knowledge of a message is not so efficient.

Blind Signatures. Since the concept of blind signatures was introduced by
Chaum [13], it has been used in numerous applications, most prominently in
electronic voting and electronic cash. Informally, blind signatures allow a user
to obtain signatures from a signer on any document in such a manner that the
signer learns nothing about the message that is being signed. The security of
blind signatures was formalized by [22,28].

Even in the random oracle model, only a few secure blind signature schemes
have been proposed [1,4,27,28,29,30]; [4] requires a non-standard strong assump-
tion and [28,29,30] only allow a user to make a poly-logarithmically (not poly-
nomially) bounded number of interactions with a signer, while [1,27] are secure
for a polynomially number of interactions.

Only two secure blind signature schemes have been presented in the standard
model [8,22]. However, the construction of [22] is based on a general two-party
protocol and is thus extremely inefficient. The solution of [8] is much more ef-
ficient than that of [22], but it is still much less efficient than the secure blind
signature schemes in the random oracle model [1,4,27,28,29,30]. For example,
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the protocol of [8] is much more complicated (where proofs of knowledge for at
least 40 variables are required for a user) than that of [4,28,29], and requires
many interactions between user and signer. Recently, a new blind signature
scheme that is concurrently secure without random oracles has been presented
[23], but it is not in the standard model but in the common reference string
(CRS) model.

Partially Blind Signatures. One particular shortcoming of the concept of
blind signatures is that, since the singer’s view of the message to be signed is
completely blocked, the signer has no control over the attributes except for those
bound by the public key. For example, a shortcoming can be seen in a simple
electronic cash system where a bank issues a blind signature as an electronic
coin. Since the bank cannot set the value on any blindly issued coin, it has to
use different public keys for different coin values. Hence the shops and customers
must always carry a list of those public keys in their electronic wallet, which is
typically a smart card whose memory is very limited. Some electronic voting
schemes also face the same problem.

A partially blind signature scheme allows the signer to explicitly include com-
mon information in the blind signature under some agreement with the receiver.
This concept is a generalization of blind signatures since the (normal) blind
signatures are a special case of partially blind signatures where the common
information is a null string.

The notion of partially blind signatures was introduced in [2], and the formal
security definition and a secure partially blind signature scheme in the random
oracle model were presented by [3]. However, no partially blind signature scheme
secure in the standard model has been proposed.

1.2 Our Result

This paper proposes new digital signatures, blind signatures, and partially blind
signatures that are secure in the standard model:

– (Digital signatures:)
We propose a new efficient signature scheme secure in the standard model
that is more suitable to many applications than the existing signature
schemes secure in the standard model [6,10,15,33]. The security proof of
our scheme requires a slightly stronger assumption, the 2SDH assumption,
than the SDH assumption used by [6].

– (Blind signatures:)
We propose a secure blind signature scheme in the standard model that
is almost as efficient as the most efficient blind signature schemes whose
security has been analyzed heuristically or in the random oracle model.

– (Partially blind signatures:)
We propose the first secure partially blind signature scheme in the standard
model. This scheme is almost as efficient as our blind signatures.

The proposed (partially) blind signature scheme is secure for polynomially
many synchronized (or constant-depth concurrent) attacks, but not for general
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concurrent attacks. This paper presents an efficient way to convert our (partially)
blind signature scheme in the standard model to a scheme secure for general
concurrent attacks in the common reference string (CRS) model.

This paper also presents (partially) blind signatures from the Waters scheme
that are secure in the standard model under the BDH assumption. The (par-
tially) blind signatures are much less practical than the above-mentioned pro-
posed scheme.

2 Preliminaries

2.1 Definition of Secure (Partially) Blind Signature Scheme

In this section we recall the definition of a secure partially blind signature scheme
[3,8]. Note that this definition includes that of a secure blind signature scheme
[22] as a special case where the piece of information shared by the signer and
user, info, is a null string, ⊥ (i.e., info = ⊥).

Although our definition is based on [3,8], our blindness definition is slightly
stronger than [3,8] as follows:

– Signer S∗ can arbitrarily choose pk in ours, while pk must be honestly gen-
erated in [3,8].

– Even if only one of two users, U0 or U1, outputs a valid signature, S∗ is
allowed to obtain the valid signature and output the decision, b′, in our
definition, while only when both users, U0 and U1, output valid signatures,
S∗ is allowed to obtain them in [3,8].

Partially Blind Signature Scheme. In the scenario of issuing a partially
blind signature, the signer and the user are assumed to agree on a piece of com-
mon information, denoted as info. In some applications, info may be decided
by the signer, while in other applications it may just be sent from the user to
the signer. Anyway, this negotiation is done outside of the signature scheme,
and we want the signature scheme to be secure regardless of the process of
agreement.

Definition 1. (Partially Blind Signature Scheme) A Partially blind signature
scheme is made up of four (interactive) algorithms (machines) (G,S,U ,V).

– G is a probabilistic polynomial-time algorithm that takes security parameter
n and outputs a public and secret key pair (pk, sk).

– S and U are a pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
work tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
and the output tapes are write-only. The private work tape is read-write.
The public input tape of U contains pk generated by G(1n) and info. The
public input tape of S contains info. The private input tape of S contains
sk, and that for U contains message m. S and U engage in the signature
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issuing protocol and stop in polynomial-time in n. When they stop, the public
output tape of S contains either completed or not-completed. Similarly,
the private output tape of U contains either ⊥ or (m,σ).

– V is a (probabilistic) polynomial-time algorithm that takes (pk, info,m, σ) and
outputs either accept or reject.

Definition 2. (Completeness) If S and U follow the signature issuing protocol
with common input (pk, info), then, with probability of at least 1−1/nc for suffi-
ciently large n and some constant c, S outputs completed, and U outputs (m,σ)
that satisfies V(pk, info,m, σ) = accept. The probability is taken over the coin
flips of G, S and U .

We say message-signature tuple (info,m, σ) is valid with regard to pk if it leads
V to accept.

Partial Blindness. To define the blindness property, let us introduce the fol-
lowing game among adversarial signer S∗ and two honest users U0 and U1.

1. Adversary S∗(1n, info) outputs pk and (m0,m1).
2. Set up the input tapes of U0, U1 as follows:

– Randomly select b ∈ {0, 1} and put mb and mb̄ on the private input
tapes of U0 and U1, respectively (b̄ denotes 1 − b hereafter).

– Put (info, pk) on the public input tapes of U0 and U1.
– Randomly select the contents of the private random tapes.

3. Adversary S∗ engages in the signature issuing protocol with U0 and U1.
4. If U0 and U1 output valid signatures (info,mb, σb) and (info,mb̄, σb̄), respec-

tively, then give those outputs to S∗ in random order. If either U0 or U1
outputs a valid signature, (info,mb, σb) or (info,mb̄, σb̄), then give this out-
put to S∗. Give ⊥ to S∗ otherwise.

5. S∗ outputs b′ ∈ {0, 1}.

We define
Advblind

PBS = 2 · Pr[b′ = b] − 1,

where the probability is taken over the coin tosses made by S∗, U0 and U1.

Definition 3. (Partial Blindness) Adversary S∗ (t, ε)-breaks the blindness of a
partially blind signature scheme if S∗ runs in time at most t, and Advblind

PBS is
at least ε. A partially blind signature scheme is (t, ε)-blind if no adversary S∗

(t, ε)-breaks the blindness of the scheme.

Remark. (Partially Perfect Blindness) As usual, one can go for a stronger notion
of blindness depending on the power of the adversary and its success probability.
A scheme provides partially perfect blindness if it is (∞, 0)-blind.

Unforgeability. To define unforgeability, let us introduce the following game
among adversarial user U∗ and an honest signer S.

1. (pk, sk) is generated by G(1n), pk is put on the public input tapes of U∗ and
S, and sk is put on the private input tape of S.
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2. For each run of the signature issuing protocol with S, adversary U∗ outputs
info, which is put on the public input tape of S. Then, U∗ engages in the
signature issuing protocol with S in a concurrent and interleaving way.

3. For each info, let �info be the number of executions of the signature issuing
protocol where S outputs completed, given info on its input tape. (For info
that has never appeared on the input tape of S, define �info = 0.) Even when
info = ⊥, �⊥ is also defined in the same manner.

4. U∗ wins the game if U∗ output � valid signatures (info,m1, σ1), . . . ,
(info,m�, σ�) for some info such that
(a) mi �= mj for any pair (i, j) with i �= j (i, j ∈ {1, . . . , �}).
(b) � > �info.

We define Advunforge
PBS to be the probability that U∗ wins the above game, taken

over the coin tosses made by U∗, G and S.

Definition 4. (Unforgeability) An adversary U∗ (t, qS , ε)-forges a partially blind
signature scheme if U∗ runs in time at most t, U∗ executes at most qS times the
signature issuing protocol, and Advunforge

PBS is at least ε. A partially blind signature
scheme is (t, qS , ε)-unforgeable if no adversary U∗ (t, qS , ε)-forges the scheme.

2.2 Bilinear Groups

This paper follows the notation regarding bilinear groups in [7,6]. Let (G1, G2)
be bilinear groups as follows:
1. G1 and G2 are two cyclic groups of prime order p, where possibly G1 = G2,
2. g1 is a generator of G1 and g2 is a generator of G2,
3. ψ is an isomorphism from G2 to G1, with ψ(g2) = g1,
4. e is a non-degenerate bilinear map e : G1 × G2 → GT , where |G1| = |G2| =

|GT | = p, i.e.,
(a) Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab,
(b) Non-degenerate: e(g1, g2) �= 1 (i.e., e(g1, g2) is a generator of GT ),

5. e, ψ and the group action in G1, G2 and GT can be computed efficiently.

3 Assumptions

Here we introduce a new assumption, the 2-variable strong Diffie-Hellman
(2SDH) assumption on which the security of the proposed signature scheme
is based.

q 2-Variable Strong Diffie-Hellman (q-2SDH) Problem. Let (G1, G2) be
bilinear groups shown in Section 2.2. The q-2SDH problem in (G1, G2) is defined

as follows: given a (2q + 6)-tuple (g1, g2, g
x
2 , . . . , gxq

2 , gy
2 , gyx

2 , . . . , gyxq

2 , g
y+b
x+a

2 , a, b)

as input, output pair (g
1

x+c

1 , c) where c ∈ Z∗
p. Algorithm A has advantage,

Adv2SDH(q), in solving q-2SDH in (G1, G2) if

Adv2SDH(q) ← Pr[ A(g1, g2, g
x
2 , . . . , gxq

2 , gy
2 , gyx

2 , . . . , gyxq

2 , g
y+b
x+a

2 , a, b)=(g
1

x+c

1 , c) ],

where the probability is taken over the random choices of g2 ∈ G2, x, y, a, b ∈ Z∗
p,

and the coin tosses of A.
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Definition 5. Adversary A (t, ε)-breaks the q-2SDH problem if A runs in time
at most t and Adv2SDH(q) is at least ε. The (q, t, ε)-2SDH assumption holds if
no adversary A (t, ε)-breaks the q-2SDH problem.

Variant of q 2-Variable Strong Diffie-Hellman (q-2SDHS) Problem.
The q-2SDHS problem in (G1, G2) is defined as follows: given a (3q + 4)-tuple

(g1, g2, g
x
2 , gy

2 , g
y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , ga1
2 , . . . , g

aq

2 , b1, . . . , bq) as input, output a pair

(g
y+d
x+c

1 , gc
2, d) where b1, . . . , bq, d ∈ Z∗

p and d �∈ {b1, . . . , bq}. Algorithm A has
advantage, Adv2SDHS

(q), in solving q-2SDHS in (G1, G2) if

Adv2SDHS
(q)

← Pr[ A(g1, g2, g
x
2 , gy

2 , g
y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , ga1
2 , . . . , g

aq

2 , b1, . . . , bq)=(g
y+d
x+c

1 , gc
2, d)],

where b1, . . . , bq, d ∈ Z∗
p and d �∈ {b1, . . . , bq}, and the probability is taken over

the random choices of g2 ∈ G2, x, y, a1, b1, . . . , aq, bq ∈ Z∗
p, and the coin tosses

of A.

Definition 6. Adversary A (t, ε)-breaks the q-2SDHS problem if A runs in time
at most t and Adv2SDHS

(q) is at least ε. The (q, t, ε)-2SDHS assumption holds
if no adversary A (t, ε)-breaks the q-2SDHS problem.

Remark 1. We occasionally drop t and ε and refer to the q-2SDH (or q-2SDHS)
assumption rather than the (q, t, ε)-2SDH (or (q, t, ε)-2SDHS) assumption. We
also sometimes drop q- and S and refer to the 2SDH assumption rather than the
q-2SDH or q-2SDHS assumption.

Remark 2. (Relation between the 2SDH and 2SDHS assumptions)

The 2SDH and 2SDHS assumptions are closely related in a manner similar to
the equivalence of (q−1)-wDHA assumption and q-CAA assumption [25], where

the q-wDHA problem is to output g
1
x
1 , given a (q + 2)-tuple (g1, g2, g

x
2 , . . . , gxq

2 )

as input, and the q-CAA problem is to output pair (g
1

x+c

1 , c) where c ∈ Z∗
p and

c �∈ {a1, . . . , aq}, given a (2q + 3)-tuple (g1, g2, g
x
2 , g

1
x+a1
2 , . . . , g

1
x+aq

2 , a1, . . . , aq)
as input.

4 The Proposed Signature Scheme

This section presents the proposed secure signature scheme in the standard
model under the 2SDH assumption.

Let (G1, G2) be bilinear groups as shown in Section 2.2. Here, we assume that
the message, m, to be signed is an element in Z∗

p, but the domain can be extended
to all of {0, 1}∗ by using a collision resistant hash function H : {0, 1}∗ → Z∗

p, as
mentioned in Section 3.5 in [6].
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4.1 Signature Scheme

Key Generation. Randomly select generators g2, u2, v2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), and v1 ← ψ(v2). Randomly select x ∈ Z∗

p and compute
w2 ← gx

2 ∈ G2. The public and secret keys are:

Public key: g1, g2, w2, u2, v2
Secret key: x

Signature Generation. Let m ∈ Z∗
p be the message to be signed. Signer S

randomly selects r and s from Z∗
p, and computes

σ ← (gm
1 u1v

s
1)

1/(x+r).

Here 1/(x+r) mod p (and m/(x+r) mod p and s/(x+r) mod p) are computed.
In the unlikely event that x+r ≡ 0 mod p, we try again with a different random
r. (σ, r, s) is the signature of m.

Signature Verification. Given public-key (g1, g2, w2, u2, v2), message m, and
signature (σ, r, s), check that m, r, s ∈ Z∗

p, σ ∈ G1, σ �= 1, and

e(σ,w2g
r
2) = e(g1, g

m
2 u2v

s
2).

If they hold, the verification result is valid; otherwise the result is invalid.

Remark. Here we assume that g1 = ψ(g2) has been confirmed when the public-
key is registered. Alternatively, g1 = ψ(g2) can be confirmed in the signature
verification procedure, or g1 is not included in the public-key and g1 = ψ(g2) is
calculated in the signature verification process.

4.2 A Performance Improvement Technique (Precomputation)

By introducing additional secret key y, z ∈ Z∗
p such that u2 = gy

2 and v2 = gz
2 ,

we can apply a precomputation technique for signature generation.
Before getting message m, signer S randomly selects r, δ from Z∗

p, and com-

putes σ ← g
δ/(x+r)
1 as the precomputation of a signature. Given message m, S

computes s such that s ← (δ − m − y)/z mod p, where 1/z mod p can be also
precomputed.

4.3 Security

Theorem 1. If the (qS + 1, t′, ε′)-2SDH assumption holds in (G1, G2), the pro-
posed signature scheme is (t, qS , ε)-strongly-existentially-unforgeable against adap-
tive chosen message attacks, provided that

ε ≥ 3qSε′, and t ≤ t′ − Θ(q2
ST ),

where T is the maximum time for a single exponentiation in G1 and G2.



88 T. Okamoto

Proof. (Sketch) Assume A is an adversary that (t, qS , ε)-forges the signature
scheme. We will then construct algorithm B that breaks the (qS + 1)-2SDH
assumption with (t′, ε′). Hereafter, we often use q ← qS + 1 (as well as qS).

An informal outline of our proof is as follows: First we classify the output
(forgery) of A into three types (Types-1,2,3). We will then show that any type
of output allows B to break the q-2SDH assumption. Type-1 forgery leads to
breaking the q-SDH (to which q-2SDH is reducible) assumption in a manner
similar to that in [6]. Type-2 forgery leads to breaking the q-2SDH assumption

by producing g
1

x+b

2 from the q-2SDH problem including g
y+a
x+b

2 . Type-3 forgery
leads to breaking the discrete logarithm (to which q-2SDH is reducible).

First, we introduce three types of forgers, A. Let (g1, g2, w2, u2, v2) be given
to A as a public-key, and z ← logg2

v2 ∈ Z∗
p (i.e., v2 = gz

2). Suppose A asks for
signatures on messages m1, . . . , mqS

∈ Z∗
p and is given signatures (σi, ri, si) for

i = 1, . . . , qS on these messages. The three types of forgers are as follows:

Type-1 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗ �∈ {r1, r2,
. . . , rqS

}.
Type-2 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗ ∈ {r1, r2,

. . . , rqS
} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and m∗ + s∗z �≡ mk + skz

(mod p).
Type-3 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗1 ∈ {r1, r2,

. . . , rqS
} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and m∗ + s∗z ≡ mk+ skz

(mod p). Note that in this case s∗ �= sk, since s∗ = sk implies m∗ = mk and
σ∗ = σk.

Algorithm B is constructed as follows:

1. (Input:)
(g1, A0, A1, . . . , Aq, B0, B1, . . . , Bq, C, a, b), where Ai = gxi

2 , Bi = gyxi

2 , and

C = g
y+b
x+a

2 (i = 0, 1, . . . , q).
2. (Coin flip:)

Algorithm B first picks a random value ctype ∈ {1, 2, 3} that indicates its
guess for the type of forger that A will emulate. The subsequent actions
performed by B differ with ctype ∈ {1, 2, 3} as follows:

3. (If ctype = 1;)
In this case, q-SDH assumption is broken in a manner similar to that shown
in [6].

4. (If ctype = 2;)

(a) (Key setup)
B randomly selects z, ri(�= a) (i = 1, . . . , q − 1) from Z∗

p. Let f(X) ←∏q−1
i=1 (X + ri) mod p =

∑q−1
i=0 βiX

i. B can efficiently calculate βi ∈ Z∗
p

(i = 0, . . . , q − 1) from ri (i = 1, . . . , q − 1).
B computes
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g′2 ←
q−1∏
i=0

Aβi

i = g
f(x)
2 , w′

2 ←
q−1∏
i=0

Aβi

i+1 = (g′2)
x,

u′
2 ←

q−1∏
i=0

Bβi

i = (g′2)
y, v′

2 ← (g′2)
z.

Let g′1 ← ψ(g′2), u′
1 ← ψ(u′

2) and v′
1 ← ψ(v′

2).
B gives (g′1, g

′
2, w

′
2, u

′
2, v

′
2) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle)
Upon receiving a query to the signing oracle, B simulates the reply to A
as follows:
Let fi(X) ← f(X)/(X+ri) mod p =

∏q−1
j=1,j �=i(X+ri) mod p =

∑q−2
j=0 γj

Xj . B can efficiently calculate γj ∈ Z∗
p (j = 0, . . . , q − 2) from rl (l �=

i ∧ l = 1, . . . , q − 1).
First, B randomly selects k ∈ {1, 2, . . . , q − 1}.
For each query i ∈ {1, 2, . . . , k − 1, k + 1, q − 1} (i.e., i �= k) with mes-
sage mi from A to the signing oracle, B randomly selects si ∈ Z∗

p, and
computes

σi ←
(q−2∏

j=0

ψ(Aj)γj

)mi+siz

(
q−2∏
j=0

ψ(Bj)γj ) = (g′1)
(mi+y+siz)/(x+ri).

B returns (σi, ri, si) to A as the reply to the query. Clearly this is a valid
signature for public-key (g′1, g

′
2, w

′
2, u

′
2, v

′
2).

For the k-th query with message mk from A to the signing oracle, B
computes ωi, d ∈ Z∗

p (i = 1, . . . , q − 2) such that f(X) = c(X)(X + a) +
d mod p, c(X) ←

∑q−2
i=0 ωiX

i and d ∈ Z∗
p, and computes

σk ← ψ(C)d
(q−2∏

i=0

ψ(Ai)ωi

)b
q−2∏
i=0

ψ(Bi)ωi = (g′1)
(mk+y+skz)/(x+rk),

sk ← (b − mk)/z mod p, rk ← a.

B returns (σk, rk, sk) to A as the reply to the query.
(c) (Output) When A outputs a (valid) forgery (m∗, σ∗, r∗, s∗), B checks

whether r∗ = a and m∗ + s∗z �≡ mk + skz (mod p). If r∗ �= a or m∗ +
s∗z ≡ mk+skz (mod p), then B outputs failure and aborts. Otherwise,
m∗ + s∗z �≡ mk + skz (mod p). Let b∗ ← m∗ + s∗z mod p. (Here b =
mk + skz mod p). Since b∗ �= b, B can compute

η ←
(

(σ∗/σk)1/(b∗−b)∏q−2
i=0 ψ(Ai)ωi

)1/d

= g
1/(x+a)
1 .

B outputs (η, a).
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5. (If ctype = 3;)
(a) (Key setup)

B randomly selects x′, y′ from Z∗
p.

B computes

g′2 ← A0 = g2, w′
2 ← (g′2)

x′
, u′

2 ← (g′2)
y′

, v′
2 ← A1 = gx

2 .

Here we rename x as z′ just for representation, so

v′
2 = (g′2)

z′
.

Let g′1 ← g1.
B gives (g′1, g

′
2, w

′
2, u

′
2, v

′
2) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle) Since B knows x′, the simulation of the
signing oracle exactly replicates the signing oracle.

(c) (Output) When A outputs a (valid) forgery (m∗, σ∗, r∗, s∗), B checks
whether r∗ ∈ {r1, . . . , rqS

} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and
s∗ �= sk. If r∗ �∈ {r1, . . . , rqS

} or s∗ �= sk, then B outputs failure and
aborts. Otherwise, B computes

z∗ ← (mk − m∗)/(s∗ − sk) mod p,

and checks whether A1 = Az∗

0 . If it holds, z∗ = z′ = x. B then randomly
selects c ∈ Z∗

p and can compute η ← g
1/(z∗+c)
1 = g

1/(x+c)
1 .

B outputs (η, c).

Since the value of ctype is independent from the type of forgery, B breaks the
q-2SDH assumption with probability at least ε/(3qS). �

5 Variant of the Proposed Signature Scheme

This section presents a slight variant of the proposed signature scheme presented
in the previous section. This variant is used by our blind signatures.

5.1 Signature Scheme

The variant scheme is the same as the proposed signature scheme except for
the signature generation and verification parts as follows: in this variant, the
signature is

(σ ← (gm
1 u1v

s
1)

1/(x+r), α ← gr
2, s),

while in the proposed signature scheme in Section 4, the signature is (σ, r, s).
The signature verification equation of this variant is

e(σ,w2α) = e(g1, g
m
2 u2v

s
2),

while the proposed signature scheme in Section 4, the signature verification equa-
tion is e(σ,w2g

r
2) = e(g1, g

m
2 u2v

s
2).
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5.2 Security

Theorem 2. If the (qS , t′, ε′)-2SDHS assumption holds in (G1, G2), the pro-
posed signature scheme is (t, qS , ε)-existentially-unforgeable against adaptive cho-
sen message attacks, provided that

ε ≥ 2ε′, and t ≤ t′ − O(qST ),

where T is the maximum time for a single exponentiation in G1 and G2.

The proof is shown in the full paper version.

6 The Proposed (Partially) Blind Signature Scheme

This section shows the proposed partially blind signature scheme, which includes
our blind signature scheme as a special case where m0 = 0 or h2 = 1.

6.1 Partially Blind Signature Scheme

Let (G1, G2) be bilinear groups as shown in Section 2.2. Here, we also assume
that the messages, m0 and m1, to be (partially blindly) signed are elements in
Z∗

p, but the domain can be extended to all of {0, 1}∗ by using a collision resistant
hash function H : {0, 1}∗ → Z∗

p, as mentioned in Section 3.5 in [6].

Key Generation. Randomly select generators g2, u2, v2, h2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), v1 ← ψ(v2), and h1 ← ψ(h2). Randomly select x ∈ Z∗

p and
compute w2 ← gx

2 ∈ G2. The public and secret keys are:

Public key: g1, g2, w2, u2, v2, h2
Secret key: x

Partially Blind Signature Generation.

1. Signer S and user U agree on common information m0 (which is info in
Section 2.1) in an predetermined way.

2. U randomly selects s, t ∈ Z∗
p, computes

X ← hm0t
1 gm1t

1 ut
1v

st
1 ,

and sends X to S. Here, m1 is the message to be blindly signed along
with common information m0. In addition, U proves to S that U knows
(t,m1t, t, st) for X = (hm0

1 )tgm1t
1 ut

1v
st
1 using the witness indistinguishable

proof as follows:
(a) U randomly selects a1, a2, a3 from Z∗

p, computes

W ← (hm0
1 )a2ga1

1 ua2
1 va3

1 ,

and sends W to S.
(b) S randomly selects η ∈ Z∗

p and sends η to U .
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(c) U computes

b1 ← a1 + ηm1t mod p, b2 ← a2 + ηt mod p, b3 ← a3 + ηst mod p,

and sends (b1, b2, b3) to S.
(d) S checks whether the following equation holds or not:

(hm0
1 )b2gb1

1 ub2
1 vb3

1 = WXη.

If it holds, S accepts. Otherwise, S rejects and aborts.
3. If S accepts the above protocol, S randomly selects r ∈ Z∗

p. In the unlikely
event that x + r ≡ 0 mod p, S tries again with a different random r. S also
randomly selects � ∈ Z∗

p, computes

Y ← (Xv�
1)

1/(x+r) and R ← gr
2,

and sends (Y,R, �) to U .
Here, Y = (Xv�

1)
1/(x+r) = (hm0

1 gm1
1 u1v

s+�/t
1 )t/(x+r).

4. U randomly selects f ∈ Z∗
p, and computes

τ = (ft)−1 mod p, σ ← Y τ , α ← wf−1
2 Rf , β ← s + �/t mod p.

Here, σ = (hm0
1 gm1

1 u1v
s+�/t
1 )1/(fx+fr) = (hm0

1 gm1
1 u1v

s+�/t
1 )1/(x+(f−1)x+fr) =

(hm0
1 gm1

1 u1v
β
1 )1/(x+δ), and α = wf−1

2 Rf = g
(f−1)x+fr
2 = gδ

2, where δ =
(f − 1)x + fr mod p.

5. (σ, α, β) is the partially blind signature of (m0,m1), where m0 is common
information between S and U , and m1 is blinded to S.

Signature Verification. Given public-key (g1, g2, w2, u2, v2, h2), common in-
formation m0, message m1, and signature (σ, α, β), check that m0 ∈ Z∗

p, m1 ∈ Z∗
p,

β ∈ Zp, σ �= 1, σ ∈ G1, α ∈ G2, and

e(σ,w2α) = e(g1, h
m0
2 gm1

2 u2v
β
2 ).

6.2 Security

Theorem 3. The proposed blind signature scheme (m0 = 0 or h2 = 1) is per-
fectly blind.

Proof. Even if dishonest signer S∗ outputs any public-key, (g2, w2, u2, v2) ∈
(G2)4 and g1 = ψ(g2), the view of S∗, (X,W, η, b1, b2, b3) as well as S’s random-
ness, in the signature generation protocol is perfectly (information theoretically)
independent from the value of (m, s, f), since X = (gm

1 u1v
s
1)

t is perfectly inde-
pendent from (m, s), the protocol is witness indistinguishable with respect to
(m, s) against any dishonest S∗, and f is not used in the protocol with S∗.

Hence, the value of (m, δ, β) is perfectly independent from the view of S∗,
where δ = (x+r)f −x mod p and β ← s+�/t mod p. Here, σ = (gm

1 u1v
β
1 )1/(x+δ),

α = gδ
2, and (σ, α, β) is the (blind) signature of m. Therefore, the signature along

with m, (m,σ, α, β), is also perfectly independent from the view of S∗, since σ
and α are perfectly dependent on (m, δ, β). �
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Definition 7. Let suppose a protocol between two parities, Alice and Bob. In a
round of the protocol, Alice and Bob exchange messages, a, b, c, . . . , d, where the
first move is Alice (i.e., Alice sends a and Bob returns b etc.). We now con-
sider q rounds of the protocol execution. Here (ai, bi, ci, . . . , di) is the exchanged
messages in the i-th round (i = 1, . . . , q). We say that a protocol between Alice
and Bob is executed in a synchronized run of q rounds of the protocol, if the q
rounds of the protocol consists of L sequential intervals and each interval, or the
j-th interval (j = 1, . . . , L), consists of the parallel run of qj (qj ∈ {1, . . . , q}
rounds of the protocol. q = q1 + · · · + qL. Therefore, the first interval consists
of: the first move from Alice is (a1, a2, . . . , aq1), the second move from Bob is
(b1, a2, . . . , bq1), and so on. After completing the first interval, the second inter-
val starts and consists of: the first move from Alice is (aq1+1, aq1+2, . . . , aq1+q2),
the second move from Bob is (bq1+1, bq1+2, . . . , bq1+q2), and so on.

Clearly the synchronized run is a generalization of the parallel and sequential
runs.

Theorem 4. If the (qS , t′, ε′)-2SDHS assumption holds in (G1, G2), the pro-
posed blind signature scheme (m0 = 0 or h2 = 1) is (t, qS , ε)-unforgeable against
an L-interval synchronized run of adversaries, provided that

ε′ ≤ 1 − 1/(L + 1)
16

· ε, and t′ ≥ 24L log (L + 1)
ε

· (t + Θ(T )) + Θ(qST ),

where T is the maximum time for a single exponentiation in G1 and G2.

Proof. (Sketch)
Assume A is an adversary that (t, qS , ε)-forges the blind signature scheme.

We will then construct an algorithm B that (t′′, qS , ε′′)-forges the proposed sig-
nature scheme (basic signature scheme) presented in Section 5. This leads to an
algorithm that breaks the 2SDHS assumption with (qS , t′′ + O(qST ), ε′′/2) by
Theorem 2.

B, given (g1, g2, w2, u2, v2) as a public key of the basic signature scheme, pro-
vides them to A as a public key for blind signatures.

B is allowed to access the signing oracle of the basic signature scheme qS

times. By using this signing oracle, B plays the role of an honest signer against
A (dishonest user).

First, A requests B to sign X along with the witness indistinguishable (WI)
protocol on witness (mt mod p, t, st mod p) against B’s random challenge η ∈ Z∗

p.
After completing the WI protocol, B resets A to the initial state of the WI
protocol and runs the same procedure with the same commitment value of W
and another random challenge η′ ∈ Z∗

p (η �= η′). If B succeeds in completing the
WI protocol twice with different challenges η and η′ such that

gb1
1 ub2

1 vb3
1 = WXη, g

b′
1

1 u
b′
2

1 v
b′
3

1 = WXη′
, (1)
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B can compute

m′ ← (b1 − b′1)/(η − η′) mod p,

t ← (b2 − b′2)/(η − η′) mod p, (2)
s′ ← (b3 − b′3)/(η − η′) mod p,

such that
X = gm′

1 ut
1v

s′

1 .

B computes
m ← m′/t mod p, s ← s′/t mod p. (3)

B then resumes the protocol just after the WI protocol, and sends m to
the signing oracle. The signing oracle returns to B (σ, α, β) such that (σ ←
gm
1 u1v

β
1 )1/(x+r) and α = gr

2. B computes

Y ← σt, � ← t(β − s) mod p, (4)

and returns A (Y, �).
B repeats the above procedures (at the request of A) qS times. If all qS

rounds of the above procedures are completed, A finally outputs at least qS + 1
valid signatures with distinct messages. From the pigeon-hole principle, among
at least qS + 1 distinct messages with valid signatures that A outputs, at least
one message with valid signature is different from the qS messages with valid
signatures given by the signing oracle. This contradicts the qS-unforgeability of
the basic signature scheme.

The remaining problem in this strategy is how to execute all qS rounds of
the WI protocol twice with distinct challenges η and η′ in a synchronized run
with A.

Claim. B can execute all qS rounds of the WI protocol twice with distinct
challenges η and η′ in a synchronized run with A with probability at least
(1 − 1/(L + 1))ε/8 under the condition that B rewinds A with random chal-
lenges at most 24L log (L + 1)/ε times in total (or in L intervals).

Combining this result with Theorem 2 we obtain this theorem. �

Theorem 5. The proposed partially blind signature scheme is perfectly blind.

The proof is almost the same as that in Theorem 3.

Theorem 6. If the (qS , t′, ε′)-2SDHS assumption holds in (G1, G2), the proposed
partially blind signature scheme is (t, qS , ε)-unforgeable against an L-interval syn-
chronized run of adversaries, provided that

ε′ ≤ 1 − 1/(L + 1)
32

· ε, and t′ ≥ 48L log (L + 1)
ε

· (t + Θ(T )) + Θ(qST ),

where T is the maximum time for a single exponentiation in G1 and G2.
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Remark. (Constant-depth concurrency) We can define a specific type of concur-
rent runs, constant-depth concurrent runs, in which, informally speaking, only
a constant depth of purely inner rounds is allowed in all paths. Synchronized
runs are a specific type of depth-1 concurrent runs. We can show that our blind
signature scheme is still secure against a constant-depth concurrent run of ad-
versaries under the same assumption and model. The result is presented in the
full paper version.

6.3 Generalization

(m0,m1) with an additional key h2 is generalized to (m0, . . . , ml) with additional
key (h2,1, . . . , h2,l). Arbitrary subset in {m0, . . . , ml} can be blinded messages
and the remaining be common messages.

7 Conversion to Fully Concurrent Security in the CRS
Model

As mentioned above, the proposed (partially) blind signature scheme is secure
against a synchronized run of adversaries (or more generally, a constant-depth
concurrent run of adversaries). In this section, we show how to convert the pro-
posed scheme to a scheme secure against a fully-concurrent run of adversaries. Our
proposed blind signature scheme is secure in the plain model (without any setup
assumptions), while the converted scheme is secure in the common reference string
(CRS) model. The key idea is similar to [23], and uses the Paillier encryption for
a simulator to extract blind messages with the help of the CRS model, and also
uses a trapdoor commitment [16] to realize a concurrent zero-knowledge proto-
col. For simplicity of description, we will show a blind signature scheme, but it is
straightforward to extend it to our partially blind signature scheme.

Key Generation. Randomly select generators g2, u2, v2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), and v1 ← ψ(v2). Randomly select x ∈ Z∗

p, and compute
w2 ← gx

2 ∈ G2. In addition, randomly select secret and public keys of the
Paillier encryption, two prime integers P and Q, and (N = PQ,G), where
|N | = (6 + 3c0)|p| (c0 is a constant and 0 < c0 < 1). The public and secret keys,
(pk, sk), of a trapdoor commitment, commit, [16] are also generated.

The public and secret keys and CRS are:

Public key: g1, g2, w2, u2, v2
Secret key: x
CRS: N,G, pk
Trapdoor of CRS: P,Q, sk

Blind Signature Generation.

1. U checks whether g2, w2, u2, v2 ∈ G2 and g1 = ψ(g2). If they hold, U
proceeds the following signature generation protocol.
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2. U randomly selects s, t ∈ Z∗
p and A ∈ ZN2 , computes

X ← gmt
1 ut

1v
st
1 , D ← G(mt mod p)+t2K+(st mod p)22K

AN mod N2,

and sends (X,D) to S. Here K = (2+c0)|p|, and m ∈ Z∗
p is the message to be

blindly signed. In addition, U proves to S that U knows (mt mod p, t, st mod
p) for X as follows:
(a) U randomly selects a1, a2, a3 from {0, 1}(2+c1)|p| (c1 is a constant and

0 < c1 < c0 < 1), B ∈ ZN2 and r∗ from the domain, computes

W ← ga1
1 ua2

1 va3
1 , E ← Ga1+a22K+a322K

BN mod N2,

C ← commit(E, r∗, pk),

and sends (W,C) to S.
(b) S randomly selects η ∈ Z∗

p and sends η to U .
(c) U computes

b1 ← a1 + η(mt mod p), b2 ← a2 + ηt, b3 ← a3 + η(st mod p),

F ← BAη mod N2,

and sends (b1, b2, b3, F ) as well as (E, r∗) to S.
(d) S checks whether the following equation holds or not:

|bi| ≤ (2 + c1)|p| (i = 1, 2, 3), C = commit(E, r∗, pk).

gb1
1 ub2

1 vb3
1 = WXη, Gb1+b22K+b322K

FN ≡ EDη (mod N2)

If it holds, S accepts. Otherwise, S rejects and aborts.
3. The remaining procedure is the same as that of the original blind signature

scheme.

Signature Verification. Same as that of the original blind signature scheme.

Security. The signature generation protocol is statistically WI except D, which
is the Paillier encryption of a message. Since the Paillier encryption is seman-
tically secure under the N -th residue assumption, this blind signature scheme
satisfies blindness under this assumption.

If the WI protocol in the signature generation protocol is accepted by signer,
simulator can extract (m, s, t) by decrypting D without rewinding A with high
probability, by using the trapdoor of CRS (i.e., P,Q). That is, this scheme is
unforgeable against any concurrent run of adversaries under the 2SDHS assump-
tion. (The proof is shown in the full paper version.)

8 Other Applications

We have shown the application of the proposed signature scheme to blind and
partially blind signatures. The proposed signature scheme also supports other
applications such as restrictive (partially) blind signatures, group signatures [24],
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verifiably encrypted signatures, anonymous credentials and chameleon hash sig-
natures. (The full paper version presents restrictive (partially) blind signatures
based on our (partially) blind signatures.)

9 (Partially) Blind Signatures from the Waters Scheme

9.1 The Proposed Blind Signature Scheme from the Waters Scheme

Key Generation. Let a symmetric bilinear group, (G1, G1), be used in this
scheme. Randomly select α ∈ Z∗

p. Randomly select generators g, g2, u
′, u1, . . . ,

un ∈ G1 and set g1 ← gα.

Public key: g, g1, g2, u
′, u1, . . . , un

Secret key: gα
2

Blind Signature Generation. Let m be the n-bit message to be signed, mi

the ith bit of m.

1. User U randomly selects t ∈ Z∗
p, computes

X ← (u′
n∏

i=1

umi
i )t,

and sends X to S. In addition, U proves to S that U knows (t,m1, . . . , mn)
with mi ∈ {0, 1} for X = (u′ ∏n

i=1 umi
i )t using the witness indistinguishable

Σ protocols. For example,
(a) U randomly selects δ1, . . . , δn ∈ Z∗

p, computes Mi = umi
i (u′)δi (i =

1, . . . , n), and sends (M1, . . . , Mn) to S.
(b) U proves to S that U knows δi such that Mi = (u′)δi or Mi = ui(u′)δi

(i = 1, . . . , n). Such an OR-proof can be efficiently realized by a Σ pro-
tocol [3].

(c) U proves to S that U knows (t, β, γ1, . . . , γn) such that X = (
∏n

i=1 Mi)t

(u′)β , and X = (u′)t
∏n

i=1 uγi

i , where β ← t − t(
∑n

i=1 δi) mod p and
γi ← tmi.

2. If S accepts the above protocol, S randomly selects r ∈ Z∗
p, computes

Y1 ← gα
2 Xr, Y2 ← gr,

and sends (Y1, Y2) to U .
3. U randomly selects s ∈ Z∗

p, and computes

σ1 ← Y1(u′
n∏

i=1

umi
i )s, σ2 ← Y t

2 gs

4. σ ← (σ1, σ2) is a blind signature.
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Signature Verification. Given public-key (g, g1, g2, u
′, u1, . . . , un), message

m ∈ Z∗
p, and signature σ = (σ1, σ2), check

e(σ1, g)/e(σ2, u
′

n∏
i=1

umi
i ) = e(g1, g2).

If it holds, the verification result is valid; otherwise the result is invalid.

Remark: If adversary A executes in a synchronized (or constant-depth concur-
rent) run with simulator B (as signer), B can effectively extract (m1, . . . , mn)
and t from A. B can then reduce the basic Waters signature scheme attack to
the proposed blind signature scheme attack. It is straightforward to realize a
partially blind signature scheme in a similar manner. The major problem in the
efficiency of the signing process is in proving the knowledge of many (O(n))
variables in the WI Σ protocols.
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