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Abstract— Functional fault diagnosis is widely used in board
manufacturing to ensure product quality and improve prod-
uct yield. Advanced machine-learning techniques have recently
been advocated for reasoning-based diagnosis; these techniques
are based on the historical record of successfully repaired
boards. However, traditional diagnosis systems fail to provide
appropriate repair suggestions when the diagnostic logs are
fragmented and some error outcomes, or syndromes, are not
available during diagnosis. We describe the design of a di-
agnosis system that can handle missing syndromes and can
be applied to four widely used machine-learning techniques.
Several imputation methods are discussed and compared in terms
of their effectiveness for addressing missing syndromes. More-
over, a syndrome-selection technique based on the minimum-
redundancy-maximum-relevance (mRMR) criteria is also in-
corporated to further improve the efficiency of the proposed
methods. Two large-scale synthetic data sets generated from
the log information of complex industrial boards in volume
production are used to validate the proposed diagnosis system in
terms of diagnosis accuracy and training time.

I. INTRODUCTION

The prevalence of high-density, complex, and high-

frequency designs in today’s printed-circuit boards is resulting

in defects that are subtle and difficult to diagnosis using

traditional techniques [?], [1], [2]. When faulty boards are

returned to the service center for repair, debug technicians

attempt to detect and diagnose failures early in the test process

(e.g., through component and structural tests). A defect’s most

probable cause, logic location, and even physical location can

sometimes be determined based on scan test [3]. However, tra-

ditional structural test techniques are not sufficient to guarantee

product quality. Some defects are not detected until functional

tests are carried out on the board [4].

Functional test is useful for targeting defects that cannot be

easily detected by structural test. A challenging and common

scenario in board-level testing is that all chips on a board pass

automated test equipment (ATE) tests, but the board fails dur-

ing functional test or when an application is booted up [5], [6].

The reason for such “No Trouble Found” (NTF) occurrences is

that the board-level test environment is considerably different

from that at the chip level. At the chip vendor location, chips

are tested in a standalone mode in a controlled environment,

but additional issues, such as signal integrity, power-supply

noise and crosstalk, must be considered during board-level test

[5]. Board-level functional testing is also challenging because

of limits on controllability and observability in functional

mode [7].
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Unlike chip-level fault diagnosis, which can be automated

via ATE and advanced debug/diagnosis tools [8], traditional

board-level functional diagnosis still requires a considerable

amount of manual expertise. As a result, a number of ad-

vanced board-level functional-fault diagnosis methods have

recently been presented in the literature, among which rule-

based, model-based, and reasoning-based learning techniques

have been especially popular over the past decade. Rule-

based diagnosis methods take the form “If (syndromes), then

(fault)” to locate root causes [9], but there exist bottlenecks

in acquiring sufficient knowledge to build an adequate set

of rules for realistic designs. Model-based methods rely on

an approximate representation of a real system [10], but the

diagnosis models become prohibitively complex and hard to

develop for large systems.

Reasoning-based methods are promising because a detailed

system model is not needed to construct the diagnosis system

[9], [11]. The diagnosis engine is incrementally built based

on a database of successfully repaired faulty boards [11]–

[14]. Machine-learning techniques facilitate reasoning-based

diagnosis, providing the benefits of ease of implementation,

high diagnosis accuracy, and continuous learning. The re-

pair/replacement of faulty components is suggested through

a ranked list of suspect components, e.g., based on artificial

neural networks (ANNs), support-vector machines (SVMs),

and decision trees (DTs) [15], [16]. However, the diagnosis

accuracy of these methods may be significantly reduced when

the repair logs are fragmented and some errors, or syndromes,

are not available during diagnosis. Since root-cause isolation

for a failing board relies on reasoning based on syndromes,

any information loss (e.g., missing syndromes) during the

extraction of a functional diagnosis log may lead to ambiguous

repair suggestions.

In this paper, we propose a board-level functional diagnosis

system that applies different methods to handle missing syn-

dromes in various machine learning models. The syndromes

from a faulty-board’s functional diagnosis log are analyzed and

preprocessed before root-cause isolation. A feature selection

process is also incorporated into our preprocessing engine to

reduce redundant, irrelevant, or even misleading syndromes

introduced by traditional missing-syndrome-handling methods.

We compare these methods in terms of their effectiveness in

handling missing syndromes.

The remainder of this paper is organized as follows. Section

II discusses the missing-syndrome problem in more detail.

Section III discusses the effects of missing syndromes on a

functional diagnosis system. A number of methods are used

to empower functional diagnosis system to handle missing
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syndromes. These techniques have been implemented using

the WEKA framework [17]. In Section IV, experimental

results on two synthetic boards and two industrial boards in

volume production, are used to demonstrate the effectiveness

of the proposed missing-syndrome-tolerant functional diagno-

sis system in terms of diagnosis accuracy and training time.

Finally, Section V concludes the paper.

II. PROBLEM STATEMENT AND PAPER CONTRIBUTIONS

A functional diagnostic system based on machine learning

does not need to understand the complex functionality of

boards, and it is able to automatically derive and exploit

knowledge from the repair logs of previously documented

cases. A flowchart of such a diagnosis system is shown in Fig.

1. The extraction of fault syndromes, i.e., test outcomes, is crit-

ical for model training in a reasoning-based diagnosis system.

The fault syndromes should provide a complete description of

the failure, and the extracted syndromes for different actions

should have sufficient diversity such that we can eliminate

ambiguity in the eventual repair recommendations. All the

test-outcome information is stored in a log file. For example,

a segment of the log file for a failed traffic test is shown

in Fig. 2(a). The fault syndromes extracted from this log are

R3d3metro (mis-matched interface), LA1 Engine 0x0000 0fff

(error counter), and 0x11 (error code). Each of these elements

is considered to be one syndrome. These fault syndromes

record any abnormal value obtained from functional tests,

including transfer value mismatches, register dumps, or loop

failures. Moreover, the outcomes from analog indicators, such

as power and temperature monitors, are also abstracted and

logged as syndromes. The repair action is often directly

recorded in the database, e.g., “replacement of component

U11”. All the extracted syndromes and actions are used for

training of the proposed diagnosis system.

In prior work, e.g., in [15], functional-test logs were parsed

in a coarse manner where a syndrome is 1 (fail) if a functional

test leads to an error at the corresponding observation point.

All other functional tests and observation-point pairs, which

are mapped to syndromes, are deemed as 0 (pass); see Fig.

2(b) [15], [16], [18]. However, a syndrome should not be

denoted as either fail or pass when the observation of the

test is not available in practice. We propose to define a third

syndrome, namely missing syndrome, when the syndrome for

a (test, observation point) pair is not observed (see Fig. 2(c)).

There are two scenarios that lead to the absence of observation

Automated Optical/ 
X‐Ray Inspection

(AOI/AXI)

In‐Circuit Test 
(ICT)

Functional Test Burn‐in test

Repair CenterAutomated 
Diagnosis System

Repaired BoardsFailed Boards

Fig. 1: Illustration of automated board diagnosis.
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Fig. 2: Illustration of parsing a log with and without missing

syndromes.

of a syndrome:

1) Systematic missing syndromes: In current test-program

design methods, the tasks of designing functional tests are di-

vided into multiple packages and dispatched to multiple design

teams [4]. Functional test packages are executed sequentially

on a board-under-test. There is a likelihood that the execution

of functional tests in later packages is affected by tests in early

packages. For example, a functional test, mainboost, is used to

check the functionality of a global controller, which is required

to enable the functional tests that follow [4]. If the controller

fails or the attached DRAMs fail, the diagnosis procedure

is terminated and subsequent tests cannot be executed. The

syndromes corresponding to these tests are, therefore, not

available to the diagnosis system.

2) Random missing syndromes: Another scenario in cur-

rent diagnosis systems is that a few functional tests may

occasionally fail to record syndromes. The reason for these

occasional syndrome escapes may not be due to board failure,

but because of program bugs in functional test design [4], [11].

Such bugs may either lead to incorrectly recorded syndromes

or missing observations in the log. In these scenarios, the

diagnosis system should be designed to be able to reason in

the presence of these missing syndromes.

Both of the above scenarios lead to a decrease in the total

number of syndromes available for diagnosis, thus resulting in

low diagnosis accuracy. In addition, although several machine-

learning techniques such as ANNs are considered to be noise-

tolerant, noisy input is different from input containing missing

values. Noisy input still contains useful information that can

be used by machine learning models while cases containing

missing values are typically deleted from the data set. Most

machine learning-based diagnosis systems proposed in the

literature are not equipped to deal with these missing values

[18]–[20]. We therefore address this important practical prob-

lem of handling missing syndromes in a machine-learning-

based functional diagnosis system in the next section.
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Fig. 3: The reasoning-based diagnosis flow with the capability of handling missing syndromes.

III. METHODS TO HANDLE MISSING SYNDROMES

Missing data frequently occur in applied data analysis [21],

[22]. As described in Section II, several scenarios may lead

to missing syndromes, e.g., resulting in systematic missing

syndromes and random missing syndromes. The effectiveness

of a specific method for handling missing syndromes depends

not only on its inherent properties, but also on the machine-

learning models it is used with. In this section, we describe

five kinds of missing handling methods as well as a general

diagnosis flow to address the problem of missing syndromes

in board-level fault diagnosis.

A. Missing-syndrome-tolerant fault diagnosis flow

A reasoning-based diagnosis flow in [15] can be improved

by integrating the component of preprocessing missing values,

as shown in Fig. 3. A revised diagnosis flow that is capable

of handling missing syndromes can be described as follows.

Once training data are extracted from diagnosis logs, the

diagnosis system determines whether the data set contains

missing syndromes, i.e., by comparing the number of obtained

syndromes and total number of designed syndromes. If no

missing syndrome is detected, the diagnosis system continues

with the standard diagnosis-system training. Otherwise, the

training data set is handled by the missing-value-preprocessing

component. The processed data set is then sent for training

of the diagnosis system. The same procedure also applies to

the new failing boards under diagnosis. The preprocessed new

cases are sent to the diagnosis system for root-cause isolation.

The missing-value-preprocessing component contains five

parallel subcomponents for handling missing syndromes:

complete-case analysis, fractional instances, numerical impu-

tation, label imputation and feature selection. These subcom-

ponents could either be chosen automatically based on the

type of machine learning algorithms used in current diagnosis

system, or be set manually by users themselves. Moreover,

these subcomponents could even be deliberately combined to

better match the characteristics of the current system, leading

to higher diagnosis accuracy.

B. Missing-syndrome-preprocessing methods

1) Complete-Case Analysis: The basic idea of complete-

case analysis is to ignore all the missing values and base

the analysis only on complete-case data. Since this method

is widely used in the Naive Bayes (NB) classifier, we use a

simple NB-based fault diagnosis example to show how this

method address missing syndromes.

First, suppose we have a set of faulty boards with two can-

didate root causes A1 and A2, and we encode them as y = −1
and y = 1, respectively. Here, we merge the syndromes and the

known root causes into a matrix M = [B|C], where the left (B)

side refers to syndromes, while the right side (C) refers to the

corresponding fault classes. This matrix represents the training

information for a diagnosis system that does not contain any

missing syndromes,

M =















1 1 0 1 1
0 1 1 0 −1
0 0 1 1 1
0 1 1 1 −1
1 0 0 0 −1
1 1 1 0 1















, (1)

A Naive Bayes (NB) classifier is a Bayes’ theorem-based

probabilistic model, which makes inferences from historical

data and a prior distribution [23]. The final diagnosis step

of a NB classifier is to pick the root-cause candidate with

maximal posterior occurrence probability.

Assuming that a new faulty board with syndrome set

T = {1, 1, 1, 1} is fed into our NB-based diagnosis system,

the posterior occurrence probability of this new case can be

calculated as shown below:

p(A1|T )=
p(T |A1)× p(A1)

p(T )
= 0.800

p(A2|T )=
p(T |A2)× p(A2)

p(T )
= 0.200

Thus, A1 has higher posterior occurrence probability and

would be chosen as the root cause for the new faulty board.

Next, consider the training matrix M containing missing

syndromes, and let ? denotes the missing values:
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M =















1 1 0 ? 1
? 1 1 0 −1
0 ? 1 1 1
0 1 1 1 −1
1 0 ? 0 −1
1 1 1 0 1















(2)

The way that the complete-case analysis addresses these

missing syndromes is to remove them from training data

during the calculation of posterior occurrence probability.

Using the same test case T = {1, 1, 1, 1}, the posterior

occurrence probability of this case is calculated as below:

p(A1|T)=
p(T|A1)× p(A1)

p(T)
= 0.667

p(A2|T)=
p(T|A2)× p(A2)

p(T)
= 0.333

The above result shows that A1 is still the most likely root

cause for the test case. Thus, in the above example, when

the training data contains several missing syndromes, after

applying complete-case analysis, our NB classifier can still

give accurate fault diagnosis.

Complete-case analysis can also be used with other machine

learning models such as SVM and ANN. However, complete-

case analysis in these models will discard the entire instances

containing missing values instead of just ignoring the missing

values themselves, resulting in much lower diagnosis accuracy

than the NB classifier when the amount of missing information

is relatively high.

2) Fractional Instances: The goal of the fractional-

instances method is to distribute missing syndromes over other

complete instances. An instance containing missing values

will be split into multiple weighted instances. Each weighted

instance represents one possible value combination of those

missing syndromes. The weight value associated with each

split instance is the fraction of complete cases that have the

same syndrome values as this split instance.

Let us assume that we apply this fractional-instance method

to the training matrix with missing syndromes shown in (2).
A new matrix is obtained as shown below:

M =































0.4 0.4 0 0.4 1
0.6 0.6 0 0 1
0.6 0.6 0.6 0 −1
0 0.4 0.4 0 −1
0 0.8 0.8 0.8 1
0 0 0.2 0.2 1
0 1 1 1 −1
0.8 0 0.8 0 −1
0.2 0 0 0 −1
1 1 1 0 1































The advantage of the fractional-instances method is that it

greatly enriches the incomplete training data by artificially

adding instances to represent every possible value combina-

tions of missing syndromes.

However, the number of additional instances will increase

exponentially with the number of missing values, making this

method infeasible for machine-learning algorithms that require

training data using the entire syndrome set, e.g., traditional

ANNs and SVMs. In contrast, the decision tree (DT), which

is a tree-like predictive model for mapping observations of an

item to its targeted value [24], is suitable for this method since

a DT typically only needs a subset of syndromes for training.

3) Numerical Imputation: Numerical imputation is widely

used to infer missing values. A missing value is predicted

on a numerical scale based on analysis of the failing boards.

Several imputation methods, e.g., mean and mode, can be used

[21], [25] and they are described in detail later. Suppose that

we have the same training matrix with missing syndromes as

shown in (2). After applying numerical imputation, the new

matrix is given by (3)

M =















1 1 0 b41 1
b12 1 1 0 −1
0 b23 1 1 1
0 1 1 1 −1
1 0 b35 0 −1
1 1 1 0 1















(3)

where bij is the missing value of syndrome ti collected from

the failing board j. Different imputation methods can be used

to assign values for bij ; these are discussed below.

I) Zero Imputation: In the prior log parsing strategy in

Fig. 2(b), all missing syndromes are deemed to be pass,

which is denoted as 0. Zero imputation follows the same

imputation method, where any missing syndrome bij is

imputed with 0. As an illustration, (3) can be revised

with zero-imputation values, as shown below:

M =















1 1 0 0 1
0 1 1 0 −1
0 0 1 1 1
0 1 1 1 −1
1 0 0 0 −1
1 1 1 0 1















, (4)

where italics indicate the imputed values and are used to

denote imputed values throughout this paper.

This type of a missing-syndrome-handling method is

widely used in the Artificial Neural Network (ANN)

model, which is a supervised machine-learning method

that has also been widely used for pattern classification

and related problems [26], [27].

II) Mode-Value Imputation: Assume that Ai is the full set of

entries for syndrome xi, A
′

i is the subset of Ai that con-

tains all the non-missing entries, where aij 6= missing ,

and aij ∈ Ai. In the mode-value imputation method, we

use the following equation to impute missing values.

bij = mode(A′

i) =

{

1, ∀ P (aij = 1, aij ∈ A′

i) > 0.5

0, ∀ P (aij = 1, aij ∈ A′

i) ≤ 0.5,

where the imputation value bij is the same for each

syndrome. As an illustration, the corresponding synthetic
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data in (3) is revised as:

M =















1 1 0 0 1
1 1 1 0 −1
0 1 1 1 1
0 1 1 1 −1
1 0 1 0 −1
1 1 1 0 1















(5)

Mode imputation may be ineffective when the probability

of the fault syndrome being ‘0’ or ‘1’ are similar.

This method will always impute the value with higher

occurrence probability, which may distort the original

distribution.

III) Mean-Value Imputation: Assume that Ai is the complete

set of entries for syndrome xi, and A′

i is the subset of

Ai that contains all the non-missing entries, where aij 6=
missing and aij ∈ Ai. In this method, a mean value bij
is computed based on A′

i, such that the imputation value

bij can be regarded as the probability that the syndrome

xi is fail. The imputation value bij is calculated as shown

below:

bij = mean(A′

i) =

∑

aij∈A′

i
aij

|A′

i|
, (6)

where the imputation value bij is same for each syn-

drome xi. As an illustration, the corresponding matrix

for the synthetic data is updated as:

M =















1 1 0 0 .4 1
0 .6 1 1 0 −1
0 0 .8 1 1 1
0 1 1 1 −1
1 0 0 .8 0 −1
1 1 1 0 1















(7)

The combination of mean and mode imputation is widely

used in the Support-Vector Machine (SVM) model,

which is a supervised machine-learning technique [28]

and its goal is to define an optimal separating hyperplane

(OSH) to separate two classes. Generalizations also exist

for handling more than two classes. For features having

continuous values, the SVM’s default mechanism inserts

mean values into missing positions while for features

with discrete values, it imputes mode values to replace

missing syndromes.

4) Label Imputation: The numerical format of syndromes

shown in Fig. 2(b) is no longer sufficient to describe the

observations in the log of functional tests when we introduce

a third syndrome. Therefore, we propose to use another label,

referred to as missing, to denote the absence of a syndrome;

M =





















pass pass f ail missing 1

missing pass pass f ail −1

f ail missing pass pass 1

f ail pass pass pass −1

pass f ail missing f ail −1

pass pass pass f ail 1





















(8)

see Fig. 2(c). Equation (3) can now be updated as Equation

(8).

Machine-learning techniques can handle label syndromes

by converting labels to numerical values [21]. For a ternary

syndrome, two values are usually used to represent one syn-

drome. The first value aij still denotes the failure observed in

a syndrome, such that it is 1 if a syndrome is observed as fail,

and 0 otherwise. The second value a′ij denotes the occurrence

of a syndrome, such that a missing syndrome is denoted with a

weighted value d, and 0 otherwise. The reason for using these

weighted values is that the additional feature a′ij may mask

the relationship between the original syndrome-fault pair. Fault

syndromes are usually the dominant features for root-cause

isolation, while missing syndromes are the secondary features.

Therefore, it is necessary to select an appropriate value d in

label imputation. The updated synthetic board is as follows:

M =



























1 (0) 1 (0) 0 (0) 0 (d41) 1

0 (d12) 1 (0) 1 (0) 0 (0) −1

0 (0) 0 (d23) 1 (0) 1 (0) 1

0 (0) 1 (0) 1 (0) 1 (0) −1

1 (0) 0 (0) 0 (d35) 0 (0) −1

1 (0) 1 (0) 1 (0) 0 (0) 1



























(9)

where dij is the weighted value for the jth fault syndrome of

the ith instance. We use the following weighted mean-value

imputation to calculate dij ,

dij =
mean(A′

j)

w
=

∑

aij∈A′

i
aij

w|A′

i|
, (10)

where w is a single weight for tuning the feature of missing

syndromes, and it is the same for imputing all syndromes.

Choosing an appropriate value of w is important for a diag-

nosis system in order to achieve high diagnosis accuracy. We

provide guidelines for selecting w in Section IV.

C. Feature Selection

Feature selection, also referred as subset selection, is used

to select an effective, but reduced, set of syndromes for

use by a diagnosis system. The main idea of methods for

handling missing syndromes is to add statistical information

to the incomplete data set to compensate for losses caused

by missing syndromes. However, the additional information

may also introduce irrelevant, redundant, or even misleading

syndromes, lowering the diagnosis accuracy of the original

system.

Therefore, the goal of feature selection is to identify a set of

most important features from incomplete data for characteriza-

tion. One of the most popular solutions for the subset-selection

problem is based on the metric of minimum-redundancy-

maximum-relevance (mRMR). Suppose we have a set of

successfully repaired faulty boards with root cause set A =
{A1, A2, ..., AN} and syndrome set T = {T1, T2, ..., TM}.

For each target root cause Ai and a given syndrome Tj , their
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mutual information E(Ai, Tj) is calculated as shown in (11):

E(Ai, Tj) = −p(Ai|tj) log p(Ai|tj)− p(Ai|tj) log p(Ai|tj)
(11)

where tj is the event that syndrome Tj manifests itself, and tj
is the complementary event. We then calculate the relevance

value D(A, Tj) between the syndrome Tj and root-cause set

A as follows:

D(A, Tj) =
1

|A|

∑

Ai∈A

E(Ai, Tj) (12)

The MaxRel set T’ = {T ′

1
, T ′

2
, ..., T ′

m} is a selected subset

of the top m syndromes having highest relevance value. The

set T’ is further evaluated by computing its redundancy value

R(T’) as shown below:

R(T’) =
1

|T’|2

∑

T ′

i
∈T’

∑

T ′

j
∈T’

E(T ′

i, T
′

j) (13)

where E(T ′

i , T
′

j), T
′

i 6= T ′

j , is the mutual information be-

tween T ′

i and T ′

j . We then calculate the minimum-redundancy

maximum-relevance (mRMR) value as follows:

mRMR(T’) =
1

|T’|2

∑

T ′

k
∈T’

D(A, T ′

k)−R(T’). (14)

We can next determine the minimum-redundancy-maximum-

relevance (mRMR) syndrome subset T* with the largest

mRMR value, as follows:

T* = max
T’

{mRMR(T’)}. (15)

We can now discuss techniques for handling missing syn-

dromes in the mRMR subset selection process. Two ap-

proaches are discussed below:
1) Complete-Case Analysis: The first method that we use

to address missing syndromes in mRMR subset selection

is the complete-case analysis as described in Section III-B1.

Suppose we have a set of successfully repaired faulty boards

with root cause set A = {A1, A2, ..., AN} and syndrome set

T = {T1, T2, ..., TM}. We can compute the desired posterior

occurrence probability of root cause Aj , p(Aj |T ), using Equa-

tion (??). Then, the feature selection approach can calculate

the relevance values, redundancy values, and mRMR values,

using this set of posterior and Equations (11)-(14). The final

mRMR syndrome subset can then be determined by selecting

syndromes with largest mRMR values.
2) Label imputation: The second approach we use here is

to introduce label syndromes such that each missing syndrome

can be treated as a separate value. A simple example can help

better illustrate how this method works. In Equation (16), the

→ indicates that after feature selection, the original matrix

on the left side has been reduced to the matrix on the right

side. We can see that only syndrome T1 is preserved in the

new syndrome set. Now, assume we have several missing

values in the original matrix and we would like to treat them

as separate values during feature selection. The new process

is shown in Equation (17). We can see that label imputation

doubles the size of the syndrome set, providing more infor-

mation for the subsequent subset-selection step. In the final

TABLE I: Information about the synthetic boards and indus-

trial boards used for classification.

Board 1 Board 2 Board 3 Board 4

Number of syndromes 207 420 898 3974

Number of root causes 14 10 222 352

Number of boards 1400 1000 2965 5000

reduced-syndrome set, both T1 and T2 are preserved for future

diagnosis while T3 and other irrelevant label syndromes are

removed after feature selection.

M =







1 0 1 1
0 1 0 −1
1 0 0 1
0 1 0 −1






→







1 1
0 −1
1 1
0 −1






(16)

M =







1 ? 1 1

? 1 ? −1

1 ? ? 1

? 1 0 −1






→







1 0 ? d21 1 0 1

? d12 1 0 ? d32 −1

1 0 ? d23 ? d33 1

? d14 1 0 0 0 −1






→







1 0 1

0 1 −1

1 0 1

0 1 −1







(17)

The comparison between these two methods in terms of

diagnosis accuracy and subset size is described in Section IV.

IV. EXPERIMENTS AND RESULTS

Experiments were performed on two synthetic boards and

two industrial boards. The boards under study include line

process units (LPUs) in a high-end router with 10-Gbit/s

interfaces, which are designed for core and backbone com-

mercial networks. In each board, there are multiple complex

chips, including network processor, algorithmic search engine,

packet forwarding IC, multi-core CPU, etc. Each core chip

is connected to tens of hundred-megabyte external memories,

such as DDR-RAM, QDR-RAM and CAM. Other devices

such as tens of PLLs, voltage regulators, voltage and tem-

perature sensors, and hundreds of other passive components

are soldered on the boards as well.

As shown in Table I, for Board 1, a total of 207 fault

syndromes and 14 faulty components are extracted from failure

logs. For Board 2, 420 syndromes and 10 faulty components

are identified. Board 3 has 898 syndromes and 222 potential

root causes. For Board 4, 3974 fault syndromes and 352

potential root causes are extracted.

The synthetic data sets are generated from two actual board

designs because only a small number of faulty boards are avail-

able in the current early production phase. For each root cause,

we apply regression to every syndrome, thereby generating a

probability based on the occurrence of the syndrome (i.e., the

syndrome with more 1’s in a class will be assigned a higher

probability, while a lower probability indicates that it has more

0’s). Based on these probabilities, we insert the corresponding

variance values to the synthetic data (i.e., the syndrome with

more 1’s in the original data will also have more 1’s in the

synthetic data). We generated 100 new cases for each repair

candidate, thus the synthetic data sets consists of 1400 cases

for Board 1 and 1000 cases for Board 2.

To evaluate the performance of the proposed methods for

handling missing syndromes, we need to generate missing
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syndromes in our training data. The occurrence of missing

syndromes in current diagnosis systems is most likely due

to program bugs in the interface of gathering data from test

equipment instead of board failures or test-design incom-

pleteness. Such bugs may either lead to incorrectly recorded

syndromes or missing observations in the log files. Since

missing syndromes of all types (and anywhere in the system

response) can result due to these data-gathering-interface bugs,

we assume that missing syndromes can occur in any position

in our training data. Let T be the entire set of training set,

S be the total number of syndromes, and C be the total

number of failing boards. Let X be the total number of missing

syndromes in T . The missing ratio (MR) is defined as X
S×C

.

In this work, we use four values for the missing ratio, 10%,

30%, 50%, and 70%, to consider a wide range of scenarios.

Since most machine-learning methods employ heuristics and

the missing syndromes can be randomly distributed, Monte-

Carlo simulation is necessary to ensure that our results are

not favorable as a result of serendipity. We carried out 500

Monte- Carlo simulation runs because there was no significant

change in the results when we increased this number to

over 500. For less than 500 Monte Carlo runs, we observed

significant variation in the results. The average success ratios

are presented to show the diagnosis performance with different

missing-syndrome-handling methods.

All the algorithms are implemented in an open-source

Machine learning toolkit, namely WEKA [29]. Experiments

were run on a 64-bit Linux system with 12 GB of RAM and

quad-core Intel i7 processors running at 2.67 GHz.

To evaluate the diagnosis performance of different machine-

learning systems, we use a 5-fold cross-validation method

[30], which randomly partitions the training set into 5 groups.

Each group is regarded as a test case while all of the other

cases are fed for training. The success ratio (SR), referred

to as a percentage, is the ratio of the number of correctly

diagnosed cases to the total number of cases in the testing

set. For example, if 10 instances are tested, SR of 70% means

that 7 out of 10 cases are correctly classified. In addition, since

SR is a coarse metric for multi-class classifiers (e.g., a board-

level functional fault diagnosis system) and does not provide

any suggestion for improving diagnosis, we introduce a fine-

grained set of information-theoretic metrics, called precision

and recall, to comprehensively evaluate the diagnosis system.

Positive predictive value (PPV), also known as precision, is

the proportion of the predicted positive cases that are correct,

calculated using 18:

PPV (precision) =
TP

TP + FP
(18)

True positive rate (TPR), also known as recall, is the propor-

tion of positive cases that are correctly identified, calculated

as follows:

TPR(recall) =
TP

TP + FN
(19)

where TP is the number of correctly predicted positive cases;

FP is the number of incorrectly predicted positive cases; FN

is the number of incorrectly predicted negative cases; And TN

is the number of correctly predicted negative cases. In board-

level diagnosis, precision describes the percentage of success

in predicting a root cause, while recall reflects the percentage

of success for a root cause to be predicted. A combination of

these two metrics provides a more complete picture.

First, we evaluate the label imputation method. Different

weight values, 1 ≤ w ≤ 20, in label imputation are compared

in terms of success ratios in diagnosis, as shown in Fig. 4-11.

We observe that although the trends of weight values depend

on type of machine learning models as well as missing ratios,

too small or large a choice of w typically leads to reduced

diagnosis accuracy. For example, for the SVM model in Board

1, if we consider 50% missing syndromes, the SR is only 75%

for w = 1. As we increase w, the SR increases to 91% for

w = 5. However, as we continue to increase w, the SR slightly

decreases. The SR obtained by using w = 20 is 88%. Similar

SR results are obtain for other missing ratios and learning

algorithms for Board 1 in Fig. 4. The reason smaller w leads

to lower SR is that the use of missing syndromes with a

small value of w masks the fail syndromes; the fail syndromes

are, however, more informative for diagnosis. In contrast, the

reason that too large a value of w leads to lower SR is that

the missing syndromes do not contribute to diagnosis in these

cases. If w is infinite, the imputation value d becomes 0 for

all missing syndromes.
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Fig. 4: Comparison of SR for SVM and ANN diagnosis using

label imputation with different weights for Board 1.
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Fig. 5: Comparison of SR for NB and DT diagnosis using

label imputation with different weights for Board 1.
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Fig. 6: Comparison of SR for SVM and ANN diagnosis using

label imputation with different weights for Board 2.
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Fig. 7: Comparison of SR for NB and DT diagnosis using

label imputation with different weights for Board 2.
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Fig. 8: Comparison of SR for SVM and ANN diagnosis using

label imputation with different weights for Board 3.
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Fig. 9: Comparison of SR for NB and DT diagnosis using

label imputation with different weights for Board 3.
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Fig. 10: Comparison of SR for SVM and ANN diagnosis using

label imputation with different weights for Board 4.
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Fig. 11: Comparison of SR for NB and DT diagnosis using

label imputation with different weights for Board 4.
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Fig. 12: Subset size of two feature-selection-based methods

for: (a) Board 1; (b) Board 2.
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Fig. 13: Subset size of two feature-selection-based methods

for: (a) Board 3; (b) Board 4.

Next, we compare the two feature selection methods in

terms of the size of the reduced syndrome set they provide.

In Fig. 12-13, “Subset M1” refers to the use of complete-case

analysis to deal with missing syndromes during feature selec-

tion while “Subset M2” refers to the use of label imputation

to address missing values. First, we can see that for both M1

and M2, with an increase in the missing ratio, the size of the

extracted syndrome set after feature selection increases first,

decreases later, and eventually converges. One possible reason

for this phenomenon is that since feature selection is used to

extract a set of most informative features for a given board,

when the logs contain missing syndromes, then some original

informative features may no longer provide useful information;

thus feature selection may have to include more alternative

features in its extracted subset so that this extracted subset

can still give satisfactory diagnosis accuracy. However, feature

selection cannot find more appropriate alternative syndromes

when the missing ratio is too high. Second, we can see that

M2 preserves more syndromes than M1. This is because M2

applies label imputation to deliberately add extra information

for missing syndromes while M1 only discards missing syn-

dromes.

Next, in Fig. 14-21, we apply various missing-syndrome

handling methods to four different machine learning models:

SVM, ANN, Naive Bayes, and Decision Tree, and then

compare their diagnosis accuracies obtained for Board 1 and

Board 3 under different missing ratios. Note that the “default

missing handling methods” in Fig. 14-21 refers to the default

missing-syndrome handling method in these four learning

models in WEKA as shown in Table. II. In addition, the

“feature selection M1” is the feature selection process that

uses complete-case analysis to deal with missing values while

“feature selection M2” applies label imputation to address

missing syndromes. The dashed line shown in Fig. 14-21 is the

diagnosis accuracy of zero missing ratio, which can be seen

as our baseline. The results can be summarized as follows:

First, there is a significant diagnosis accuracy gap between

synthetic boards and industrial boards. For example, for the

four machine-learning models, i.e., SVM, ANN, Naive Bayes,

and Decision Tree, the success ratios for 0% missing ra-

tio for Board 1 are 99.12%, 98.89%, 98.79% and 82.67%,

respectively. For Board 3, the baseline success ratios are

78.76%, 77.97%, 81.67% and 70.56%. In the case of Board

4, the baseline success ratios are lower: 72.56%, 70.14%,

71.48% and 61.38% for the four different machine-learning

models. This is because industrial boards are more complex

than synthetic boards and their log data clearly needs to be

augmented to achieve higher success rates. In addition, from

Fig. 14-21, we can see that with an increase of missing

ratio, the diagnosis accuracy of synthetic boards and industrial

boards exhibit a similar decreasing trend for different machine-

learning models.

Second, various missing-syndrome-handling methods per-

form significantly differently for different machine-learning

models under different missing ratios. Details are discussed

below:

TABLE II: The default technique for handling missing syn-

dromes in the WEKA machine-learning package.

Default method for

Handling missing syndromes

SVM Mode imputation (discrete features)

Mean imputation (continuous features)

ANN Zero imputation

Naive Bayes Complete-case analysis

Decision Tree Fractional instances

1) SVM: Since syndromes in our diagnosis system are

denoted as nominal values ‘0’ and ‘1’, the default method

for an SVM in our experiments is mode imputation. As

shown in figures, the label imputation method always

leads to higher diagnosis accuracies for Board 1 (Fig.

14(a)), Board 2 (Fig. 16(a)), Board 3 (Fig. 18(a)) and

Board 4 (Fig. 20(a)). The two feature-selection-based

methods also perform well, with diagnosis accuracy com-

parable to mean imputation under different missing ratios.

For example, if we consider a 50% missing ratio, the

average SRs for Board 1 are 93.42%, 90.79%, 88.39%,

88.24%, 86.84%, 83.47%,80.42% for label imputation,

mean imputation, feature selection M1, feature selec-

tion M2, mode imputation (default in WEKA), complete-

case analysis and zero imputation, respectively.

2) ANN: Zero imputation is the default method in ANN’s
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WEKA implementation. From Fig. 14(b), Fig. 16(b),

Fig. 18(b) and Fig. 20(b), we can see that although

label imputation is effective, feature selection M2, which

applies label imputation to its feature selection process,

performs even better. Taking a 50% missing ratio of

Board 1 as an example, feature selection M2 achieves

89.56% diagnosis accuracy, about 14% higher than the

default mechanism and 5% higher than label imputation.

3) Naive Bayes: Complete-case analysis is the default

method that WEKA uses with its Nave Bayes classifier.

Unlike in other learning models, this method yields

impressive results for different missing ratios. Still using

the 50% missing ratio case of Board 1 in Fig. 15(a) as

our example, the difference between the 93.03% SR of

label imputation and the 93.16% SR for complete-case

analysis is negligible.

4) Decision Tree: The decision tree model in WEKA, J48,

incorporates the fractional instances method to address

missing syndromes. As shown in Fig. 15(b), Fig. 17(b),

Fig. 19(b) and Fig. 21(b), the most interesting observa-

tion here is that all imputation methods (including label

imputation) “fail” when the missing ratio is over 50%.

In contrast, the two feature-selection-based methods are

still effective, and provide better results when the missing

ratio is high. For the 50% missing ratio, the diagnosis

accuracy of all imputation methods fall to about 50% SR

while the feature selection M1 and M2 still maintain their

success ratio over 70%.

SR of 0% missing ratio

(a) SVM

SR of 0% missing ratio

(b) ANN

Fig. 14: Comparison of SR of SVM & ANN for Board 1.

SR of 0% missing ratio

(a) Bayes

SR of 0% missing ratio

(b) DT

Fig. 15: Comparison of SR of NB & DT for Board 1.

SR of 0% missing ratio

(a) SVM

SR of 0% missing ratio

(b) ANN

Fig. 16: Comparison of SR of SVM & ANN for Board 2.

11



SR of 0% missing ratio

(a) Bayes

SR of 0% missing ratio

(b) DT

Fig. 17: Comparison of SR of NB & DT for Board 2.

10% missing 30% missing 50% missing 70% missing
0

10
20
30
40
50
60
70
80
90

100
110
120

 default method for handling missing syndromes in WEKA
 complete case analysis   0-imputation 
 mean-imputation  mode-imputation 
 label-imputation
 feature selection_M1  feature selection_M2

SR of 0% missing ratio		

(a) SVM

10% missing 30% missing 50% missing 70% missing
0

10
20
30
40
50
60
70
80
90

100
110
120

 default method for handling missing syndromes in WEKA
 complete case analysis   0-imputation 
 mean-imputation  mode-imputation 
 label-imputation
 feature selection_M1  feature selection_M2

SR of 0% missing ratio

(b) ANN

Fig. 18: Comparison of SR of SVM & ANN for Board 3.
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Fig. 19: Comparison of SR of NB & DT for Board 3.
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Fig. 20: Comparison of SR of SVM & ANN for Board 4.
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Fig. 21: Comparison of SR of NB & DT for Board 4.

In addition to the success ratio, we also utilize the precision

and recall criteria to carry out more fine-grained analysis.

We investigate the effect of missing syndromes on root-cause

isolation. As shown in Fig. 22-25, when the missing ratio is

low, all four machine-learning techniques can identify most

root causes without ambiguity, but when the missing ratio is

higher, root causes cannot clearly be differentiated from each

others.

For example, in Fig. 22, when only 10% of the values

are missing, most root causes have precision and recall over

0.8. In contrast, when the missing ratio increases to 70%,

the precision and recall of most root causes are distributed

between 0.4 and 0.7, dropping significantly from the 10%

missing ratio.

For Board 3, one of the industrial board, Fig. 24 present

its precision and recall under different missing ratios. Similar

to the two synthetic boards, the number of root causes that

have high precision and recall decreases significantly with the

increasing of missing ratios. For example, Fig. 24(d) shows

that for the DT model, when the missing ratio is 70%, 115

out of 222 root causes have both precision and recall lower

than 0.3, which means over half of root causes have become

undistinguished. Similar phenomenon can be seen from the

other industrial board (Board 4), as shown in Fig. 25. For the

DT model, only 32 out of 352 root causes have both precision

and recall higher than 0.7 when the missing ratio is 70%.

1 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6
0

2

4

6

8

10

 Precision_10%
 Recall_10%
 Precision_30%
 Recall_30%
 Precision_50%
 Recall_50%
 Precision_70%
 Recall_70%

Precision (MR=10%)

Precision (MR=30%)

Precision (MR=50%)

Precision (MR=70%)

Recall (MR=10%)

Recall (MR=30%)

Recall (MR=50%)

Recall (MR=70%)

(a) SVM

1 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6
0

2

4

6

8

10
 Precision_10%
 Recall_10%
 Precision_30%
 Recall_30%
 Precision_50%
 Recall_50%
 Precision_70%
 Recall_70%

Recall (MR=10%)

Recall (MR=30%)

Recall (MR=50%)

Recall (MR=70%)

Precision (MR=10%)

Precision (MR=30%)

Precision (MR=50%)

Precision (MR=70%)

(b) ANN

1 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6
0

2

4

6

8

 Precision_10%
 Recall_10%
 Precision_30%
 Recall_30%
 Precision_50%
 Recall_50%
 Precision_70%
 Recall_70%

Precision (MR=10%)

Precision (MR=30%)

Precision (MR=50%)

Precision (MR=70%)

Recall (MR=10%)

Recall (MR=30%)

Recall (MR=50%)

Recall (MR=70%)

(c) Bayes

0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.1-0.2
0

1

2

3

4

5

6

7
 Precision_10%
 Recall_10%
 Precision_30%
 Recall_30%
 Precision_50%
 Recall_50%
 Precision_70%
 Recall_70%

Recall (MR=10%)

Recall (MR=30%)

Recall (MR=50%)

Recall (MR=70%)

Precision (MR=10%)

Precision (MR=30%)

Precision (MR=50%)

Precision (MR=70%)

(d) DT

Fig. 22: The precision and recall under various missing ratios

for Board 1.
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Fig. 23: The precision and recall under various missing ratios

for Board 2.
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Fig. 24: The precision and recall under various missing ratios

for Board 3.
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Fig. 25: The precision and recall under various missing ratios

for Board 4.

Finally, in Fig. 26-33, we compare the computational com-

plexity of label imputation and the two feature-selection-

based methods in terms of diagnosis system training time.

The training time for label imputation is much higher than

that for the other imputation methods. For synthetic Board

1, the training time of SVM and DT model is an average

of 40 minutes, and the ANN model requires over 2 hours.

In contrast, the two proposed feature-selection-based methods

need only a few minutes for SVM, Bayes, and the DT models,

and 50 minutes for the ANN model. The training time of

the industrial Board 3 is much higher than that of synthetic

Board 1. However, the two proposed feature-selection-based

methods still need less training time than other methods.

Therefore, the two feature-selection-based methods not only

provide comparable diagnosis accuracy as label imputation,

but are also computationally more efficient.

In summary, in our experiments with two synthetic boards

and two industrial boards, the method “feature-selection-

M2” performs better in handling missing syndromes in terms

of diagnosis accuracy and training time for most machine

learning models. However, since different boards may have

significantly different characteristics, we should not conclude

that “feature-selection-M2” will always yield the best results.

A more realistic conclusion is that the choice of methods to

handle missing syndromes depends on two factors:
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Fig. 26: Comparison of training time of SVM and ANN

models for Board 1.
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Fig. 27: Comparison of training time of NB and DT models

for Board 1.
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Fig. 28: Comparison of training time of SVM and ANN

models for Board 2.
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Fig. 29: Comparison of training time of NB and DT models

for Board 2.
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Fig. 30: Comparison of training time of SVM and ANN

models for Board 3.
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Fig. 31: Comparison of training time of NB and DT models

for Board 3.
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Fig. 32: Comparison of training time of SVM and ANN

models for Board 4.
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Fig. 33: Comparison of training time of NB and DT models

for Board 4.

1) Which machine learning method is used as diagnosis

approach: different machine-learning models may prefer dif-

ferent missing-syndrome-handling methods. For example, al-

though label imputation performs best in the ANN model, it

“fails” in the DT model.

2) Which objectives are considered: different fault diagno-

sis system may have different objectives. For example, the

goal may be to not only have high diagnosis accuracy, but

also to reduce irrelevant and redundant syndromes. In this

case, the two methods “feature-selection-M1” and “feature-

selection-M2” are more preferable because they have already

incorporated the feature selection process when dealing with

missing syndromes.

V. CONCLUSIONS

We have described the design of a smart board-level di-

agnosis system that can handle missing syndromes using

different methods, among which the label-imputation method

and two feature-selection-based methods appear to be the most

promising. Two synthetic boards generated from actual board

designs currently in the early stage of high-volume production

have been used to validate the effectiveness of the proposed

method.
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