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1  Introduction

Understanding the economic mechanisms behind the term structure and its embedded term premium has 

long been an active area of research. It is of profound interest to explain variation in the yield curve, and how 

it relates to consumption growth, inflation, and the economy in general.

These and other questions have been widely studied in equilibrium-based term structure models where 

consumption and inflation follow exogenously given processes, e.g., in the endowment models by Backus, 

Gregory, and Zin (1989), Wachter (2006), and Piazzesi and Schneider (2007). To solve for bond prices within 

these models, researchers are typically restricted in their choice of preferences and the driving processes for 

consumption and inflation.1

Analyzing bond prices in production-based equilibrium models, i.e., in dynamic stochastic general equi-

librium (DSGE) models, is even more difficult and often constrained by the fact that closed-form solutions, 

in general, are unavailable. This leaves researchers with a challenging numerical problem that standard 

approximation methods struggle to deal with. For example, the well-known log-linear approximation is inad-

equate as it restricts term premia to zero contrary to existing evidence [see Campbell and Shiller (1991) and 

Cochrane and Piazzesi (2005)].2

Higher order perturbations methods have been shown to be an attractive approximation approach for 

DSGE models (Arouba, Fernández-Villaverde, and Rubio-Ramírez 2005; Caldara et al. 2012, among others), 

and the method may also be useful in relation to endowment economies. However, the standard perturbation 

method is computationally demanding for term structure models because it solves for all bond prices simul-

taneously. The present paper addresses this problem by proposing a more efficient perturbation method to 

1 See for instance Tsionas (2003), Martin (2008), Anh, Dai, and Singleton (2010), among others.

2 Other solution methods include value function iteration, finite elements, and Chebyshev polynomials, but these are typically 

considered infeasible for medium-scale DSGE models.
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approximate bond prices to arbitrary order within the broad class of DSGE models considered in Schmitt-

Grohé and Uribe (2004), including both endowment and production-based economies. We focus on the 

standard case where bond prices with maturities beyond one period do not affect the rest of the economy. 

This assumption is always fulfilled in endowment models and is typically also satisfied in production-based 

economies.3 The solution we advocate splits the approximation problem into two steps. In the first step, 

standard perturbation packages can be used to solve a reduced version of the model without bond prices 

having maturities of more than one period. The second step defines a perturbation problem exclusively for 

bond prices. Relying on information from the first step, we then recursively solve for the remaining bond 

prices and as a result significantly increase the speed of the approximation process. We emphasize that our 

method gives exactly the same numerical values for bond prices as when all bonds are solved for simultane-

ously in the standard “one-step” perturbation routine.

A simulation study shows that our method implies substantial computational gains. With five countries 

in the real business cycle (RBC) model presented in Juillard and Villemot (2011), our method is between 10 

and 38 times faster than the one-step perturbation routine with a 10-year and 20-year yield curve, respec-

tively. In general, the efficiency gains of our method depend positively on the maturity of the approximated 

yield curve and positively on the number of state variables in the model. Due to the memory efficient nature 

of our method, it is also shown that it enables us to solve larger yield curve models than possible using the 

one-step perturbation routine.

We also assess the accuracy of our method using closed-form solutions for bond prices in a consumption 

endowment model with habits (Zabczyk 2014). In line with Arouba, Fernández-Villaverde, and Rubio-Ramírez 

(2005) and Caldara et al. (2012), we find that a third-order approximation delivers a high level of accuracy 

and clearly outperforms alternative methods like the log-normal approach (Jermann 1998; Doh 2011) and the 

consol method proposed in Rudebusch and Swanson (2008).

To illustrate the efficiency gains and flexibility of our approach, we finally apply it to an extended version 

of the long-run risk model by Piazzesi and Schneider (2007) estimated on US data by Simulated Method of 

Moments. We first relax the constraint that the intertemporal elasticity of substitution (IES) is equal to one, 

and it is shown that this model is able to match the level of the yield curve and generate sufficient variability 

and persistence in all yields. Allowing for stochastic volatility in consumption growth and inflation substan-

tially improves the model’s performance. In addition to the aforementioned moments, the model is now able 

to match all contemporaneous cross-correlations between the yield curve and the two macro variables and 

most cross auto-correlations (i.e., moments of the form E[x
t
, y

t–1
]). Extending the model with external habit 

formation further enhances its performance so it almost perfectly matches the auto-correlation in consump-

tion growth and the ability of inflation to forecast future consumption growth. We therefore conclude that it 

may be beneficial to include habit formation in a long-run risk model.

The remainder of this paper is organized as follows. Section 2 presents our approximation method and 

provides simple expressions for bond prices up to third order. Section 3 documents the gains in speed at third 

order implied by our method, while Section 4 assesses its accuracy. Section 5 contains our empirical applica-

tion and Section 6 concludes.

2  Approximating bond prices

We discuss the principle behind our method in Section 2.1. The perturbation problem for bond prices is 

formally defined in Section 2.2 and we introduce our notation in Section 2.3. The following sections derive 

recursive formulas for bond price derivatives up to third order at the steady state. We finally discuss 

various extensions of our method in Section 2.7. To facilitate the use of our work, Matlab codes are pro-

3 A non-exhaustive list includes the work by Wu (2006), Uhlig (2007), De Paoli, Scott, and Weeken (2010), Hordahl, Tristani, 

and Vestin (2008), Amisano and Tristani (2009), Bekaert, Cho, and Moreno (2010), Binsbergen, et al. (2012), and Rudebusch and 

Swanson (2012).
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vided which implement the suggested procedure to third order. A brief introduction to these codes is 

available in Appendix B.

2.1  An overview of the proposed method

To describe the principle behind our method, recall that equilibrium conditions for most models can be 

written as

 1 1
[ ( , , , )] .all all

t t t t t
E

+ +
=f y y x x 0ɶ

 
(1)

Here, all

t
y  contains the full set of non-predetermined variables, including all bond prices, and x

t
 denotes an 

n
x
 × 1 vector of predetermined state variables. Moreover, let Pt,k denote the price in period t of a zero-coupon 

bond maturing in k periods with a face value of 1. The price of this bond satisfies the fundamental pricing 

equation [see Cochrane (2001)]

 

, 1, 1
[ ]

t k t k

t
P E P

+ −

= ×M
 

(2)

for k = 1,2, …, K where M is the stochastic discount factor. Given the recursive structure in (2) and the assump-

tion that bond prices beyond maturity 1 do not affect the economy, we then re-express (1) as

 1 1
[ ( , , , )]

t t t t t
E

+ +
=f y y x x 0

 
(3)

 

1, 1 ,[ ( , , )] 0 for 1,2, ,
t k t k

t
E f P P k K

+ −

= = …M
 

(4)

Here, y
t
 denotes an n

y
 × 1 vector of all non-predetermined variables except bond prices with maturities exceed-

ing one period. The idea behind our approximation method is to solve the problem in (3) independently of (4) 

and to recursively solve for bond prices using (4). That is, we first solve the problem in (3) by standard pertur-

bation. Given this solution, we then solve the second perturbation problem for all bond prices. On account of 

this structure, we refer to our method as “perturbation-on-perturbation” (POP).4

Our method is related to the one applied in Hordahl, Tristani, and Vestin (2008) which uses an “approxi-

mation order-matching” argument to derive a second-order accurate solution to bond prices. We consider a 

slightly more general setup than in Hordahl, Tristani, and Vestin (2008), as we allow for general transforma-

tions of variables (nesting their log-specification) and introduce no restrictions on the functional form of 

the stochastic discount factor. In addition, we provide a third-order approximation to bond prices which is 

of great economic interest as it allows for time-varying term premia as emphasized in Andreasen (2012b), 

 Binsbergen et al. (2012), and Rudebusch and Swanson (2012).

2.2  The perturbation problem

The exact solution to the part of the model without bond prices with maturities exceeding one period in (3) is 

given by (Schmitt-Grohé and Uribe 2004)

 
( , )

t t
σ=y g x

 
(5)

 1 1
( , )

t t t
σ σ

+ +
= +x h x �η

 
(6)

4 Binsbergen et al. (2012) independently apply a related method to compute interest rates in a version of the neoclassical growth 

model. The method and formulas we provide are not model specific and our approach nests their procedure.
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Here, e
t+1

 is a vector of n
e
 innovations with the properties e

t+1
~IID(0, I) and σ is an auxiliary perturbation 

parameter scaling the square root of the covariance matrix η. The assumption that innovations only enter 

linearly in (6) is without loss of generality as shown in Andreasen (2012b). We illustrate this point in our 

empirical application in Section 5 by considering state variables featuring stochastic volatility.

In the first step of the POP method, the solution to (5)–(6) is approximated to N-th order using standard 

perturbation packages. In endowment economies, this means solving for the first bond price, whereas the 

law of motion for the state variables are known. In production-based economies, we additionally solve for the 

law of motion for all endogenous state variables and variables such as consumption and inflation, which are 

functions of the structural shocks to the economy.

In the second step of the POP method all remaining bond prices are computed. Since continuously com-

pounded interest rates are linear functions of the logarithm of bond prices, we focus on the popular log-

transformation and re-write the fundamental equation in (2) as

 

, 1, 1
exp( ) [ exp( )]

t k t k

t
p E p

+ −

= ×M
 

(7)

where pt,k≡ln(Pt,k).5 We emphasize that this expression for bond prices is identical to the one in (2) but often 

convenient when computing numerical approximations. Appendix A considers the case of a general transfor-

mation, which includes the identity mapping and corresponds to using (2) for the approximation.6

In deriving the perturbation approximation to pt,k we exploit two facts. Firstly, the functional form of the 

stochastic discount factor 
1 1

( , , , )
t t t t+ +

y y x xM  is known.7 Secondly, since any bond price is non-predeter-

mined, it is a function of x
t
 and σ. That is, pt, k: = pk(x

t
, σ) where k denotes the maturity of the bond. Using these 

insights and substituting (5)–(6) into (7), we define the function

 

,

1 1

1, 1

1

( , ): [ exp( ( , )) ( ( ( , ) , ), ( , ), ( , ) , )

exp( ( ( , ) , )) ]

t kk

t t

t k

t

F E p

p

σ σ σ σ σ σ σ σ

σ σ σ

+ +

+ −

+

= − + +

× +

x x g h x g x h x x

h x

M η η

η

� �

�

 

for k = 1, 2, …, K where the time index for the state vector is suppressed. Hence, Fk(x, σ)≡0 for all values of x 

and σ, implying that all derivatives of Fk(x, σ) must also equal zero. That is,

 
( , ) 0     , , ,k

ji
F i j

σ

σ σ= ∀
x

x x

 
(8)

where ( , )k

ji
F

σ

σ
x

x  denotes the derivative of Fk with respect to x taken i times and with respect to σ taken j 

times.

2.3  Notation

A few remarks in relation to our notation are appropriate before deriving the bond price recursions. We adopt 

the convention that indices α and γ relate to elements of x, while β and φ correspond to elements of y and 

e, respectively. Subscripts on these indices will capture the sequence in which derivatives are taken. For 

example, α
1
 corresponds to the first time a function is differentiated with respect to x, while α

2
 is used when 

differentiating with respect to x the second time.

5 If the one-period interest rate r
t
 is included in the solution to the first perturbation step, then we immediately have p1 = –r with a 

log-transformation and we do not explicitly need to report p1 when solving (5)–(6).

6 For the accuracy study in Section 4, unreported results show that the log-transformation is more accurate than using a “level” 

approximation based on (2).

7 We assume that the variables in the first block of the model, i.e., x and y, have also been transformed. Accordingly, M 

and all its derivatives are known functions of the transformed variables. For example, for CRRA utility we would have 

1 1
( , )= exp( ) /exp( ).

t t t t
c c c cβ γ γ

+ +
− −M
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In most of the subsequent derivations we use the tensor notation. For instance, 
1

[ ]kp
γx

 denotes 

the γ
1
-th element of the 1 × n

x
 vector of derivatives of pk with respect to x. Similarly, the derivative of h 

with respect to x is an n
x
 × n

x
 matrix and 

1

1

γ

α

  x
h  is the element of this matrix located at the intersec-

tion of the γ
1
-th row and the α

1
-th column. Also, 

1
1

1 111 1

1 1

1
( / )( / )x

nk kp p
γ

γ

γ αγγ α

− −

=
    = ∂ ∂ ∂ ∂    ∑x x

h x h x  while 
2 1

2 1

1 2 2 11 21 2 2 1

1 2 1

1 1
( / )( / )( / )x x

n nk kp p
γ γ

γ γ

γ γ α αγ γγ γ α α

− −

= =
      = ∂ ∂ ∂ ∂ ∂ ∂ ∂      ∑ ∑xx x x

h h x x h x h x  where, for instance, 1
γ

h  

denotes the γ
1
-th function of mapping h and 

1
α

x  is the α
1
-th element of vector x.

For simplicity, we also use superscripts t and t+1 on functions pk, h, g, and their derivatives to indicate the 

arguments at which they are evaluated. When these superscripts are omitted, functions are evaluated at the 

steady state, i.e., at (x, σ) = (x
ss

, 0). For example, for f∈{pk, g, h}

 1

1

1

1

( , ) ( , ) ( ,0)

: ( , ) : ( , ) : ( ,0)

: ( / ) | : ( / ) | : ( / ) | .
t t ss

t t

t t ss

t t

f f f f f f

f f f f f f
σ σ

σ σ

+

+

+

+

= = =

= ∂ ∂ = ∂ ∂ = ∂ ∂
x x x x x x

x x x

x x x

 

2.4  First order terms

To find the first-order derivatives of pk(x, σ) with respect to x, we start by differentiating Fk(x, σ) with respect 

to x. Exploiting (8) we rewrite 
1

[ ( , )] 0k

t
F

α
σ =

x
x  as

 
( ) ( ) ( ) 1

1 1 1 1

, 1, 1 1, 1 1, 1
exp exp exp 0

t k t k t k t kk tp p p p p
γ

α α γ α

+ − + − + −      − − =       x x x x
hM M

 
(9)

for α
1
, γ

1
  =  1, 2, …, n

x
. Evaluating (9) in the deterministic steady state gives a set of equations which determine 

1

[ ]kp
αx

 for α
1
 = 1, 2, …, n

x
 and k = 2, …, K. To see this, consider a bond with one period to maturity. The price of a 

maturing bond is 1 for all values of (x, σ), and all of its derivatives are therefore equal to zero, i.e., 
1,0

0.
t

p
+

=
x

 

Accordingly, evaluating (9) at the steady state and for k = 1, this equation simplifies to

 1 1

1 1exp( )[ ] [ ] ,p p
α α

=
x x

M
 

(10)

as exp(p0) = P0 = 1. We know the value of M = exp(p1), and 
1

1[ ]p
αx

 is given by the first perturbation step. Using 

the expression for 
1

[ ]
αx

M  in (10), simple algebra implies

 
1 1

,
k k−

= +
x x x x

p p p h
 

(11)

where k

x
p  denotes a 1 × n

x
 vector of derivatives of pk with respect to x. Given that 1

x
p  and h

x
 are known from 

the first perturbation step, all remaining first-order derivatives of pk(x, σ) with respect to x are then easily 

computed by iterating the linear and recursive system in (11) where { }
2

K
k

k=x
p  are found by simple summation. 

In contrast, for the one-step perturbation method, Schmitt-Grohé and Uribe (2004) show that { }
1

K
k

k=x
p  are 

determined from a quadratic and simultaneous system of equations which is substantially more complicated 

to solve [see for instance Klein (2000)].

The first-order derivatives of bond prices with respect to σ are found in a similar way.8 That is, we exploit 

the fact that the derivative of Fk(x, σ) with respect to σ evaluated at the steady state equals zero, i.e.,

 
1

1

1 1 1 1

1
( ,0) [ exp( )[ ] [ ] exp( ) exp( )([ ] ([ ] ) [ ]) ] 0.k k k k k k k

ss t t
F E p p p p p p

γ

σ σ σ γ σ σ

− − − −

+
= − − + + =

x
x hM M η�

For the one-period bond, this reduces to

 
1 1[exp( )[ ]] [ ]

t t
E p p E

σ σ
= M

 
(12)

8 We know from Schmitt-Grohé and Uribe (2004) that these derivatives are zero. Nevertheless, we solve for these terms to make 

subsequent derivations of higher-order derivatives more transparent.
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as exp(p0) = 1, E
t
[e

t+1
] = 0, and all the derivatives of p0 are zero. The fact that E

t
[M

σ
] = 0 implies 1[ ] 0.p

σ
=  More-

over, h
σ
 = 0 and this suffices to show that 0

kp
σ
=  for k = 2, 3, …, K.

2.5  Second order terms

All second-order terms are derived in a similar manner. Starting with second-order derivatives with respect 

to the state vector, we obtain

 

( ) ( ) ( )

( ) ( )
( )

( )

2 1 1 21 2

2

1 2 1 2 2

1

2 1 1

2

2 2 1

,

1 1 1

1 1

1 1 1

,0 exp exp

exp exp

exp

exp

k k k k k k

ss

k k k

k k

k k k

F p p p p p

p p p

p p

p p p

α α α αα α

γ

α α α γ α

γ

α γ α

γ

γ α γ

− − −

− −

− − −

       = +      

      − −       

    −      

      −        

xx x x xx

xx x x x

x x x

x x x x

x

h

h

h h

M M

M

M

( )( )
( )

1

1

2 1

1 2 2 1

1

1 1 2

1 1

1 1

exp

exp 0

k k

k k

p p

p p

γ

α

γ γ

γ γ α α

γ

γ α α

− −

− −

   −    

   − =   

xx x x

x xx

h h

h

M

M
 

(13)

for α
1
, α

2
, γ

1
, γ

2
 = 1, 2, …, n

x
. To evaluate the right hand side of (13) we only need an expression for M

xx
 as all 

other terms are known by now. Considering (13) when k = 1, we have

 1 2 1 2 2 1

1 1 1 1 1

,
[ ] exp( )[ ] exp( )[ ] [ ] ,p p p p p

α α α α α α
= +

xx xx x x
M

 
(14)

as all derivatives of p0(x, σ) are zero. Simple algebra then implies

 1

1 1 1

1 11
( ) ( ,:,:),x

nk k kp
γ

γ γ
− −

=
= + +′ ∑xx xx x xx x x xx

p p h p h h
 

(15)

where we use the notation that A(γ
1
, γ

2
, …, γ

N
) denotes an element on the intersection of dimensions γ

1
, 

γ
2
, and γ

N
 in matrix A and colons refer to entire dimensions. For example, h

xx
(γ

1
, :, :) is an n

x
 × n

x
 matrix of 

second-order derivatives of the γ
1
-th mapping of h evaluated at the steady state, and k

xx
p  is the n

x
 × n

x
 matrix 

of second-order derivatives of pk with respect to x. Given that { }
1
,

K
k

k=x
p  h

x
, 1

,
xx

p  and h
xx

 are known by now, 

all remaining second-order derivatives of pk(x, σ) with respect to x are then easily computed by iterating the 

linear and recursive system in (15) using simple summation. On the other hand, for the one-step perturba-

tion method considered in Schmitt-Grohé and Uribe (2004), { }
1
,

K
k

k=xx
p  are determined from a linear system of 

simultaneous equations and therefore much more time consuming to compute than the solution we suggest 

in (15).

To find ,
kp
σσ

 we differentiate Fk(x, σ) twice with respect to σ and evaluate the expression in the steady 

state, giving

 

( ) ( )
( )
( )

( )

2 2

22

1 1

11

2 2 1

2 12 1

1

1 1

1

1 1

1

1 1 1

1 1

( ,0) exp exp

exp

exp

exp

k k k

ss t

k k

t

k k

t

k k k

t t

F E p p p

p p

p p

p p p

σσ σσ σσ

γ φ

σ φγ

γ φ

σ φγ

γ φ γ

φ φγ γ

−

− −
+

− −
+

− − −
+ +

     = − +     
      +      

      +      

         +        

x

x

x x

x M

M

M

M

η

η

η η

�

�

� �

( )

( ) ( )

1

2 2 1
1

121 2

1

1

1 1

1 1

1 1 1 1

exp [ ]

exp exp 0

k k

t t

k k k k

p p

p p p p

φ

γ φ φγ

φφγ γ

γ

σσ σσγ

− −
+ +

− − − −

 

       +       

    + + =     

xx

x
h

M

M M

η η� �

 

(16)

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



M.M. Andreasen and P. Zabczyk: Efficient bond price approximations      7

where γ
1
, γ

2
 = 1, 2, …, n

x
 and φ

1
, φ

2
 = 1, 2, …, n

e
. To simplify (16) we have relied on the fact that the terms , ,

kp
σ

h
σ

 

and kp
xσ

 are known to be zero (Schmitt-Grohé and Uribe 2004). Again, the important thing to observe is that 

(16) allows us to solve for kp
σσ

 for k = 2, 3, …, K. To show this, we first differentiate M with respect to σ to obtain
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(17)

Evaluating (16) at k = 1 and exploiting the fact that all derivatives of p0(x, σ) are zero gives
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(18)

Combining the results in (17) and (18) to evaluate (16) we obtain
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As discussed previously, the derivatives of the stochastic discount factor 
+1t

y
M  and 

+1t
x

M  are straightforward 

to compute from the known functional form of M. In the standard case of M: = βλ
t+1

/(λ
t
π

t+1
) where β is the 

discount factor, λ
t
 denotes marginal utility of consumption, and π

t
 is inflation, simple manipulations imply
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(20)

Here, λ
x
 and π

x
 denote 1 × n

x
 matrices of first-order derivatives for λ

t
 and π

t
 with respect to x evaluated in 

the steady state, respectively. Hence, also { }
=2

K
k

k
p

σσ
 are obtained by iterating a linear and recursive system, 

whereas these bond price derivatives in the one-step perturbation method are determined from a linear 

system of simultaneous equations.

We finally emphasize that our perturbation method only uses the restrictions implied by 
1 2
,

[ ( ,0)] 0k

ss
F

α α
=

xx
x   

and [ ( ,0)] 0
ss

F
σσ

=x  to solve for { }
=2

K
k

kxx
p  and { }

2
,

K
k

kσσ =
p  respectively. Hence, we do not rely on an “approxi-

mation order-matching” argument as in Hordahl, Tristani, and Vestin (2008) or the pruning scheme by Kim 

et al. (2008). Similar to the one-step perturbation routine, such additional assumptions are unnecessary for 

the POP method because the steady state (x
ss

, σ = 0) is a fixed-point in (6), ensuring that terms beyond the 

considered approximation order are not present when bond prices are computed recursively.

2.6  Third order terms

The expressions for the third-order terms , ,
k k

σσxxx x
p p  and k

σσσ
p  are somewhat more involved and we therefore 

defer their derivation to Appendix A.9 Here we show that
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(21)

9 As shown in Andreasen (2012b) k

σ
=

xx
p 0.
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for k = 2, 3, …, K and α
1
, α

2
, α

3
 = 1, 2, …, n

x
. When M: = βλ

t+1
/(λ

t
π

t+1
), the general formulas for k

σσx
p  and k

σσσ
p  

reported in Appendix A simplify to

 

1

1 1 1 1

1 1

1 1

1 11

1 1 1

2( ) ( ) 2 ( )

2 ( )

2( ) ( , :) ( , :, :)x

k k k

k k

n
k k

k k k

σσ σσ

λ π

γ

σσ σσ σσ

η γ γ

− −

− −

− −

=

− − −

= − − + −′ ′ ′ ′ ′

+ − − + + − +′ ′ ′ ′ ′

+ − +′ ′

+ + +′

∑

x x x x x x x x x x x

x x x x x x x x x xx xx xx x

x x xx x xxx x

xx x x x x x

p p p p p

p g g p h

p h p h

h p h p h p h

λ π ηη ηη λ π λ λ

ηη λ λ λ π π λ π π

λ π ηη η

 

(22)

and
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for k = 2, 3, …, K. Here, m3(e
t+1

(φ
1
)) denotes the third moment of e

t+1
(φ

1
) for φ

1
 = 1, 2, …, n

e
. Moreover, λ

xx
 and 

π
xx

 represent n
x
 × n

x
 matrices of second-order derivatives for λ

t
 and π

t
 with respect to x in the steady state, 

respectively.

2.7  Higher order terms and extensions

It is easy to see that our method can be applied to derive any Taylor series approximation to the considered 

class of models. Our method is only constrained by the property that the model can be split into two distinct 

parts: one containing all equations without bond prices beyond one period maturities and another consist-

ing entirely of Euler-equations for the remaining bond prices. This assumption is always satisfied in endow-

ment models but may not necessarily hold in production-based models, although this restriction is imposed 

in nearly all current DSGE models with a yield curve. However, the POP method may still be useful even if 

the condition does not hold. To see how, consider the case in which one is interested in the dynamics of the 

10-year yield curve but it is only possible to separate out bond price Euler-equations of maturity  > 5 years. To 

apply our method, the model including bond prices of maturity up to 20 quarters (5 years) needs to be solved 

in the first step of the POP method. This gives all derivatives of bond prices for k  ≤  20. The remaining deriva-

tives for bond prices with maturities between 5 and 10 years, i.e., k  =  21, 22, …, 40, can then be computed in 

the second step by starting the recursions derived in this paper at k = 20. Hence, the POP method may also 

reduce the approximation time in this case, although its computational gain will be smaller than in the stand-

ard case.

Andreasen (2012a) presents another extension of the POP method in which the expected value of future 

non-predetermined variables are computed in the second perturbation step, making it possible to efficiently 

solve for expected future short interest rates, inflation rates, etc. This enables us to use the POP method to 

efficiently compute bond term premia when defined as the difference between the long interest rate and the 

average of expected future short rates.
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3  Evaluating the computational gain

This section assesses the speed of the POP method and compares it to the standard one-step perturbation 

routine. To illustrate the numerical problem, consider a quarterly model with n state variables. Suppose we 

are interested in computing the 10-year interest rate from the price of a zero-coupon bond with the same 

maturity. This bond price is a function of n state variables and to approximate it to third order – i.e., by a 

third-order Taylor series expansion – would require computing

 
th st nd rd

1 1 2
1

2 2 3

0 Order Terms 1 Order Terms 2 Order Terms 3 Order Terms

n n n
n n n

+ + +
+ + ⋅ + ⋅ ⋅

 

distinct coefficients. Typically, the 10-year bond price is computed recursively along with all 40 intermediate 

bond prices, implying that we need to compute 
( 1) ( 1)( 2 )

40 1
2 6

n n n n n
n

 + + +
+ + +  

 bond price derivatives.10 

For n equal to 5, 10, or 15, the 10-year interest rate then introduces respectively 2240, 11,440, or 32,640 addi-

tional coefficients to be computed. This may significantly increase the time required to derive the approxima-

tion and in some cases even make the problem too large to solve using standard solution packages because 

of memory constraints.11

Hence, the efficiency gains from the POP method depend mainly on the maximum maturity of bonds in 

the yield curve and the number of state variables in the model. To illustrate the effect of the maximum bond 

maturity, we report results corresponding to yield curves of maturities ranging from 5 to 20 years.12 The rel-

evance of the number of state variables is examined by studying the multi-country RBC model in Juillard and 

Villemot (2011) with an increasing number of countries.13 All versions of this model are approximated to third 

order, and we use Dynare++ as the standard perturbation package.

The efficiency gain from the POP method is measured by

 

Computing time using the one-step perturbationmethod
= .

Computing time using the POPmethod
Ψ

 

Table 1 reports estimates of execution time and computational improvement of the POP method based on 21 

replications. For one country in the RBC model with five state variables, i.e., n
x
 = 5, we find modest speed gains 

with Ψ = 1.42 and Ψ = 2.52 for a 10-year and 20-year yield curve, respectively. The computational gain is larger 

with two countries and eight state variables, where the POP method is more than eight times faster than the 

one-step perturbation method for a 20-year yield curve. In the case of five countries and 17 state variables, 

we find substantial efficiency gains as the POP method is 10 and 38 times faster than the one-step perturba-

tion method with a 10-year and 20-year yield curve, respectively. Although nearly all versions of the model 

considered so far solve within a minute, the reported efficiency gains from the POP method are nevertheless 

essential when repeated approximations are required for estimation or extensive sensitivity analysis. For 

instance, in the five country model with a 20-year yield curve using the one-step perturbation method it takes 

roughly 38 h to compute 2000 function evaluations, whereas it only takes 1 h using the POP method.

10 Alternative non-recursive methods involve creating many auxiliary variables which similarly complicate the approximation 

problem.

11 These packages include Dynare, Dynare++, and Perturbation AIM [see Kamenik (2005) and Swanson, Anderson, and Levin 

(2005), respectively] and the set of routines accompanying Schmitt-Grohé and Uribe (2004).

12 The case of the 20-year yield curve is seldom considered in the literature, with the 10-year yield curve being the benchmark. 

However, from a computational perspective, approximating the 20-year yield curve is equivalent to: i) computing jointly the 10-

year nominal and real yield curves, or ii) computing the 10-year yield curve and the corresponding term premia.

13 We adopt the calibration in Juillard and Villemot (2011) without labor, using power preferences with an intertemporal elasticity 

of substitution of two and a Cobb-Douglas production function.
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10      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

We next consider ten countries in the RBC having 32 state variables. For 5-year and 10-year yield curves 

we see even larger efficiency improvements from the POP method when compared to previous versions of 

the model, but more importantly the one-step perturbation method is unable to solve for the 15-year and 

20-year yield curves. This finding highlights another benefit of the POP method as it is more memory effi-

cient than the one-step perturbation method, and therefore allows us to solve larger models than possible 

using the one-step perturbation method. We emphasize this point by finally considering 20 countries in 

the RBC model, where only the POP method is able to solve for a model with yield curves of the considered 

maturities.

4  Comparing solution accuracy

Our proposed POP method is faster to execute than traditional one-step perturbation, but there are other 

approximation methods which have become popular, in part due to their speed. This section compares the 

accuracy of the POP method to three alternatives.

The first alternative is the well-known first-order log-normal method proposed by Jermann (1998). The 

next alternative is the second-order log-normal method in Doh (2011), which extends Jermann’s approach 

by combining a second-order perturbation approximation with bond prices derived from the log-normal 

assumption. The final alternative is the “consol” method proposed in Rudebusch and Swanson (2008) where 

consol bonds are used to approximate zero-coupon yields.

To assess the accuracy of the aforementioned methods, we use expressions for zero-coupon bond prices 

in a consumption endowment model with external habits as derived in Zabczyk (2014). We proceed by briefly 

introducing the habit model in Section 4.1, while Section 4.2 compares the approximation accuracy of the 

POP method to the three mentioned alternatives.

Table 1 Gain in computing speed from the POP method.

  5-year  10-year  15-year  20-year

1-country model (n
x
 = 5)

 One-step perturbation method (seconds)   0.18  0.25  0.36  0.53

 POP method (seconds)   0.13  0.16  0.18  0.21

 Speed gain   1.42  1.56  1.93  2.52

2-country model (n
x
 = 8)

 One-step perturbation method (seconds)   0.51  1.01  1.96  3.16

 POP method (seconds)   0.25  0.30  0.33  0.37

 Speed gain   2.05  3.42  6.04  8.50

5-country model (n
x
 = 17)

 One-step perturbation method (seconds)   5.32  14.38  34.53  67.99

 POP method (seconds)   1.22  1.39  1.55  1.80

 Speed gain   4.35  10.33  22.35  37.75

10-country model (n
x
 = 32)

 One-step perturbation method (seconds)   67.07  189.93  NA  NA

 POP method (seconds)   9.85  11.38  12.76  14.43

 Speed gain   6.81  16.68  NA  NA

20-country model (n
x
 = 62)

 One-step perturbation method (seconds)   NA  NA  NA  NA

 POP method (seconds)   151.10  181.24  209.81  238.22

 Speed gain   NA  NA  NA  NA

The reported numbers are averages from 21 Monte Carlo replications for third order approximations. All models are solved in 

Dynare++ and bond prices from the POP method are implemented in Matlab. NA indicates that we are unable to obtain a third 

order approximation in this case. All computations are done on an HP Blade Server with an Intel Xeon X5450 CPU, running 

Windows Server 2003 Standard x64 Edition (SP2) with 4GB of RAM and an HP Logical SCSI Disk Device.
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4.1  The consumption endowment model with habits

We consider a representative agent with the utility function
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( ) 1
,

1
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=
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where C
t
 is consumption and h∈[0, 1] controls the degree of external habit formation. The habit stock Z

t
 

evolves as lnZ
t
 = (1–φ)lnZ

t–1
+φlnC

t–1
, where φ∈[0, 1] determines the habit persistence. Consumption growth is 

defined as x
t
: = ln(C

t
/C

t–1
), and x

t
 is assumed to follow the process x

t
 = (1–ρ)μ+ρx

t–1
+ξ

t
 where 2(0, ).

t ξ
ξ σ∼NID  The 

exact solution to zero-coupon bond prices is provided in Appendix C.

The model is calibrated as follows. We consider the case with strong and highly persistent habits by 

letting h = 0.9 and φ = 0.10. The value for the subjective discount factor is set to β = 0.9985. The coefficients in the 

consumption process are determined from an OLS regression for US quarterly NIPA data on nondurables and 

services in the period 1961 Q2 to 2011 Q2. This implies μ = 0.0073, ρ = 0.5015, and σ
ξ
 = 1.7152 × 10–5. Two values are 

considered for the curvature parameter γ. We initially let γ = 3 and subsequently study γ = 6 to explore effects 

of stronger non-linearities in the model.

4.2  The accuracy of various approximation methods

Figure 1 plots the benchmark 10-year interest rate as a function of consumption growth when γ = 3. The solid 

red line represents the exact solution and the other lines correspond to various approximation methods. The 

approximated solutions from one-step perturbation and the POP method are identical, by construction, and 

are referred to as the “perturbation method” throughout this section. We first note for the range of consump-

tion growth considered that the third-order perturbation method delivers a highly accurate approximation, 

with small deviations from the exact solution only visible for consumption growth x
t
–μ exceeding  ± 0.08. 

The second-order perturbation method is less accurate as it clearly deviates from the exact solution when 

the absolute value of x
t
–μ exceeds 0.06. We also note that the first-order log-normal method captures the 

precautionary saving correction which is absent in the first-order perturbation solution. The consol method 
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1st order perturbation
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2nd order log−normal method

Exact solution

Figure 1 The function for the 10-year interest rate: γ = 3.

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports the value of 

the 10-year interest rate when expressed in quarterly terms.
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12      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

at second and third order generates larger approximation errors than any of the other methods and displays 

substantial deviations from the exact solution.

In Figure 2, we turn to the case of stronger non-linearities with γ = 6. The third-order perturbation approx-

imation is also here close to the exact solution whereas the second-order perturbation method displays 

notable deviations when the absolute values of x
t
–μ exceeds 0.06. We also observe that the second-order log-

normal method lies marginally above the second-order perturbation method but the two methods perform 

otherwise very similarly. Finally, the consol method delivers very large errors which increase when moving 

from a second- to a third-order approximation.

These observations are also confirmed by Table 2 which reports the root mean squared errors (RMSEs) 

implied by the approximations in Figures 1 and 2. For the chosen calibration we see that the third-order 

approximation clearly outperforms all alternative methods. Note in particular the large reduction in RMSEs 

of more than 60% for both values of γ when moving from a second-order to a third-order approximation in 

the perturbation method.

Table 2 also reports the first two moments of the 10-year interest rate. For γ = 3, the third-order perturba-

tion method gives a mean value of 8.63% which is close to the exact mean of 8.61%.14 The log-normal method 

performs surprisingly well at first-order with a mean of 8.66%, but its accuracy deteriorates at second order 

where the mean is overstimated by 29 basis points. The log-normal method includes terms beyond the consid-

ered approximation order, and our finding suggests that these additional terms may not necessarily improve 

the accuracy of the approximated solution. The standard deviation in the 10-year interest rate is reasonably 

matched by the considered approximations, except for the consol method which roughly underestimates this 

moment by 60 basis points.

Turning to the moments in the highly non-linear model with γ = 6, the third-order perturbation method 

has a mean value of 15.09% which is slightly higher than the exact mean of 14.86%. For all other approxima-

tion methods we find larger deviations from the exact mean, in particular for the second-order log-normal 

method (15.52%) and the consol method (16.81%). The standard deviation of the 10-year interest rate is 5.32% 
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Exact solution

x
t
−µ

Figure 2 The function for the 10-year interest rate: γ = 6.

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports the value of the 

10-year interest rate when expressed in quarterly terms.

14 The normality of consumption growth implies that all third moments in the approximations are zero. This explains why the 

mean values of the perturbation method and the consol method at third order are identical to the corresponding mean values at 

second order.
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in the third-order perturbation method and slightly lower at 5.27% in second-order perturbation method. Both 

methods therefore differ somewhat from the exact solution with a standard deviation of 5.59%. However, all 

other methods deliver less accurate approximations for this moment than the third-order perturbation method.

5  Empirical application

To illustrate the usefulness of the POP model we finally apply it to a version of the endowment model by 

Piazzesi and Schneider (2007) with infinite horizon.15 For tractability, Piazzesi and Schneider (2007) use 

Epstein-Zin-Weil preferences with the intertemporal elasticity of substitution restricted to one and they 

assume homoscedastic innovations to consumption growth and inflation. Our approximation method makes 

it straightforward to relax both constraints, and we additionally explore whether this long-run risk model can 

be further improved by introducing external habit formation. The following estimation exercise then studies 

to which degree this extended model is able to explain the dynamics of the US nominal yield curve jointly 

with consumption growth and inflation.

This section proceeds as follows. We describe our extended version of the model by Piazzesi and Sch-

neider (2007) in Section 5.1, while Section 5.2 presents the data and our estimation approach. Section 5.3 

discusses our findings and the features which allow us to match the data.

5.1  The model

Following Epstein and Zin (1989) and Weil (1990), we consider an infinitely lived representative agent with 

recursive preferences over an exogenously given consumption stream 
1

{ } .
t t
c

∞

=

 Allowing for external habit 

formation based on lagged consumption, the agent’s value function V
t
 is given by

 

1
1 1 1

1 1

1 1 1
1 1

1
1 1 1

1 1

1
( ) ( [ ]) 0< <1

1

( ) ( [ ]) 1 ,

1
( ) ( [( ) ]) >1

1

t t t t

t t t t t

t t t t

C hC E V

V C hC E V

C hC E V

ρ α α

β
β α α

ρ α α

β ρ
ρ

ρ

β ρ
ρ

− − −
− +

− − −
− +

− − −
− +


− +

−


= − =

 − − −

−
  

(24)

Table 2 Approximation accuracy for the 10-year interest rate.

 

 

γ = 3  

 

γ = 6

RMSE   Mean   Std RMSE    Mean   Std

1st order perturbation   2.09   9.42   2.63   3.80   18.23   5.25

2nd order perturbation   0.89   8.63   2.64   1.72   15.09   5.27

3rd order perturbation   0.34   8.63   2.66   0.61   15.09   5.32

2nd order consol method   4.03   9.51   2.22   8.29   16.81   4.59

3rd order consol method   4.97   9.51   2.18   16.53   16.81   4.04

1st order log-normal method   2.50   8.66   2.63   4.82   15.20   5.25

2nd order log-normal method  0.89   8.90   2.63   1.79   15.52   5.26

Exact solution   –   8.61   2.80   –   14.86   5.59

The root mean squared errors (RMSE) for the approximations are computed for consumption growth at the following points: 

–0.1, –0.095, …, 0.095, 0.1. The RMSE in the table are in annualized percentage. All moments for the 10-year interest rate 

are expressed in annualized percentage and the moments are computed based on a simulated time series of 1,000,000 

observations.

15 Andreasen (2012a) shows that the POP method also makes it feasible to estimate a medium-scaled DSGE model with a whole 

yield curve approximated to third order.
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14      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

where β < 1 is the subjective discount factor. Without habits h = 0, the case of ρ = 1 corresponds to the specifica-

tion in Piazzesi and Schneider (2007) where the intertemporal elasticity of substitution (IES) 1/ρ equals 1 

and α determines the degree of relative risk aversion. In the two other cases, we follow the specification in 

 Rudebusch and Swanson (2012) where higher values of α corresponds to greater risk aversion for ρ < 1, and 

vice versa for ρ > 1.16 Using the results in Swanson (2012), and the related working paper, the relative risk aver-

sion for ρ≠1 is given by (ρ+α(1–ρ))/(1–h), and the IES is equal to (1–h/μ
c
)/ρ at the steady state.

Given a complete market for state contingent claims, the nominal stochastic discount factor is easily 

shown to be

 

( )

1
1 1

1 1

1 1 1

1
1

1
1 1

1 1

, 1

1 1 1

1

1 1
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1 1
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.

1
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t

ρ
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
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



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
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(25)

The model is closed by specifying the law of motion for consumption growth Δc
t
: = ln(C

t
/C

t–1
) and the infla-

tion rate π
t
. The system we consider is given by

 

1, 1 1, 1,

2, 1 2, 2,

0
,

t t tt c

t t t t

x ec

x e
π

σµ

π µ ω σ

−

−

        ∆
     = + +   
                   

(26)

where

 

1, 1, 1 1, 1,11 12 11 12

2, 21 22 2, 1 21 22 2, 2,

0
t t t t

t t t t

x x ek k

x x k k e

σφ φ

φ φ ω σ

−

−

          
       = +   
                      

(27)

and 
1, 2 ,

( , ).
'

t t
e e ′ ′

 
0 I∼NID  This system is more general than the one assumed in Piazzesi and Schneider 

(2007) as we allow for time-variation in the standard deviations σ
1,t

 and σ
2,t

 to the innovations. To ensure 

strictly positive volatility processes for σ
1,t

 and σ
2,t

 with well-defined properties, we follow Chernov et  al. 

(2003) and let

 

, ,

,

, ,

exp{ } for

exp{ } 1 for >

i t i t i

i t

i i i t i t i

v v v

v v v v v
σ

 ≤
≡

+ +  

(28)

 
, 1 , 1
=( 1 )

i i i
i t i t t
v v v

σ σ σ
ρ ρ

+ +
− + +�

 
(29)

for i = {1, 2} where 
1 2 1 2

2 2

, ,
( , ( , )).

'

t t
diag

σ σ σ σ
σ σ

 ′ ′
 

0∼NID� �  This specification implies that the volatility is log-

normally distributed when v
i,t

 is lower than 
i
v  but not when v

i,t
 exceeds .

i
v 17 The lower part of the function in 

16 The specification for ρ < 1 is equivalent to the slightly more traditional way of introducing recursive preferences 
1

1 1

1 1 1

1
( [ ])

t t t t
U C E U

ψ ψ

ψ γ γβ

− −
− − −

+

 
= + 

  

 if we let 

1

1

t t
U V

ψ−

=  and .
1

γ ψ
α

ψ

−

=

−

 A similar equivalence holds for ρ > 1.

17 See Andreasen (2010) for a detailed discussion of this issue.
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M.M. Andreasen and P. Zabczyk: Efficient bond price approximations      15

(28) is chosen to ensure a smooth splicing at 
i
v  where the level and the first derivative of the upper and lower 

part of the function in (28) are identical. As suggested by Andreasen (2010), we let >
i i
v v  where v

i
 is the steady 

state level of v
i,t

, implying that the mean of the volatility process is σ
i
 = lnv

i
 for i = {1, 2}. It is further assumed 

that 
1 2
, ,

'

t tσ σ

 ′ ′
 
� �  is uncorrelated with 

1, 2 ,

'

t t
e e ′ ′

 
 at all leads and lags. Thus, by restricting 

1 2

0,
σ σ

σ σ= =  we 

recover the system in Piazzesi and Schneider (2007) without stochastic volatility.18

5.2  Data and estimation approach

The model is estimated on quarterly US data from 1961 Q2 to 2011 Q2. The nominal yield curve is represented 

by the 1-year, 5-year, and 10-year interest rates from Gürkaynak, Sack, and Wright (2007).19 As in Piazzesi and 

Schneider (2007), we leave out the yield on a quarterly bond because it is likely to be influenced by liquidity 

effects which are not included in the model. Our measures of consumption and inflation follow Piazzesi and 

Schneider (2007); that is we use NIPA data on nondurables and services to construct a consumption series, 

and its price deflator defines our inflation rate. All time series are expressed in annual growth rates and 

stored in y
t
 with dimension 5 × 1.

Our model has 21 parameters which are jointly denoted by θ. We want to explore whether the considered 

model can match the following four stylized features in the data: i) the average level of the yield curve and 

the two macro variables, ii) the variability in these variables, iii) the contemporaneous correlations among 

yields and the macro variables, and iv) the cross auto-correlations in these variables. This leads us to initially 

consider the following 45 moments
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=1

1

1
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i t i
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 
 
 ′
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∑m=

y y
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(30)

For the versions of the model featuring stochastic volatility, the above moments are extended with fourth 

moments { }
5

4

,
1

.
i t

i

y
=

 This is done partly to ensure that the presence of stochastic volatility is consistent with 

the tail behavior of the data, and partly to provide identification of the parameters describing the volatility 

processes.

Model moments are computed from a simulated time series of 500,000 observations, and θ is then deter-

mined by minimizing the quadratic distance between sample and model moments [see Duffie and Singleton 

(1993)]. We adopt the standard procedure where an initial estimate of θ is obtained with a diagonal weighting 

matrix to find the optimal weighting matrix which we use for the reported estimates of θ.

5.3  Empirical results

As a natural benchmark, we first restrict our model to resemble the one in Piazzesi and Schneider (2007) 

and apply their estimation procedure. That is, we let μ
c
 and μ

π
 equal the sample averages for consumption 

growth and inflation, respectively, and we estimate the system in (26) and (27) without stochastic volatility 

18 Rewriting the model in terms of consumption growth and a de-trended value function, it is straightforward to see that this 

model fits into our framework with the state vector consisting of x
1,t–1

, x
2,t–1

, v
1,t

, v
2,t

, e
1,t

, and e
2,t

.

19 As in Rudebusch and Swanson (2012), observations for the 10-year interest rate from 1961 Q3 to 1971 Q3 are computed by ex-

trapolation of the estimated yield curves in Gürkaynak, Sack, and Wright (2007).
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16      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

by maximum likelihood on demeaned data.20 The IES is restricted to 1 (ρ = 1), while β and α are calibrated to 

match the moments in (30). We find β = 0.9997 and α = 66, which are close to the values of β = 1.005 and α = 59 in 

Piazzesi and Schneider (2007).

To evaluate the empirical fit of the model, Table 3 shows various statistics related to our moment conditions 

in (30). We first note that the model-implied level of the 10-year yield curve exceeds the empirical level and that 

the model only generates an average slope of 14 basis points versus 102 basis points in the data. This is contrary 

to Piazzesi and Schneider (2007) as their calibrated model perfectly matches the level of the 5-year yield curve 

with an average slope of nearly 100 basis points in their sample. Two features explain this difference. Firstly, we 

impose the standard requirement in models with infinite horizon of β < 1, whereas Piazzesi and Schneider (2007) 

in their model with finite horizon let β > 1 to obtain a sufficiently low level for all yields. Secondly, consumption 

growth and inflation are not as negatively correlated in our sample as in the one considered by Piazzesi and 

Schneider (2007), ranging from 1952 Q2 to 2005 Q4.21 This explains why our model generates a lower slope for 

the average yield curve compared to Piazzesi and Schneider (2007).22 Turning to the second moments, we find 

similarly to Piazzesi and Schneider (2007) that the model generates too low variability and persistence in all 

yields. Table 3 also suggests that the model implies too high contemporaneous and lagged correlations between 

the two macro variables and the yield curve, as indicated by the bold figures in Table 3.

We next consider the benefit of relaxing the constraint on IES while simultaneously estimating the system 

for Δc
t
 and π

t
 without stochastic volatility using the moment conditions in (30). The estimates are reported 

in Table 4 in the column marked by IES

1
M  where we find ρ = 7.93. This implies a very low IES of 0.13 which 

appears to be inconsistent with micro-economic evidence [see for instance Beaudry and Wincoop (1996) and 

Vissing-Jorgensen (2002)]. The degree of relative risk aversion is estimated to 873 which is extremely high. 

Table 3 shows that the model matches the level of the entire yield curve and generates sufficient variability 

and persistence in all yields. We also note that consumption growth and its lagged value are uncorrelated 

with the yield curve as in the data. However, this improved behavior comes at the expense of too low auto-

correlation in inflation (0.50 vs. 0.79) and consumption growth (0.01 vs. 0.50). It is also worth noticing that 

the model overstates the negative co-movement between consumption growth and inflation (–0.60 vs. –0.21), 

and lagged inflation is not negatively correlated with consumption growth, meaning that high inflation does 

not predict low future consumption growth in this version of the model.

To further improve the model, we next introduce stochastic volatility in consumption growth and infla-

tion. As shown in the column named IES&SV

2
M  in Table 4, we find clear evidence of stochastic volatility with 

1

0.196
σ

σ =  and 
2

0.011,
σ

σ =  and both volatility processes display high persistence with ρ
1
 = 0.90 and ρ

2
 = 0.99. 

We now find ρ = 1.08 and hence a fairly realistic IES of 0.93, which is close to the calibrated value of 1 in 

 Piazzesi and Schneider (2007). The degree of relative risk aversion is 157 and still high, but nevertheless sub-

stantially lower than in the previous specification. In addition to these slightly more realistic features, the 

model matches all mean values, standard deviations, and contemporaneous cross-correlations as seen in the 

fourth column in Table 3. Values for kurtosis also appear largely consistent with the data, although the model 

generates too low kurtosis in inflation (3.06 vs. 5.00). We also see that the model is successful in matching 

most cross auto-correlations. Its main shortcomings relate to: insufficient persistence in consumption growth 

(0.31 vs. 0.50), too high auto-correlation for inflation (0.86 vs. 0.79), too high correlation between inflation 

and the lagged 5-year yield (0.59 vs. 0.49), and a too negative correlation between inflation and lagged con-

sumption growth (–0.20 vs. –0.07).

Our final extension introduces external habits into the model in an attempt to further improve its per-

formance. We estimate the degree of habit formation to h = 0.63 which jointly with the other estimates for 

20 We are grateful to Monika Piazzesi and Martin Schneider for making their codes publicly available.

21 A similar observation is made in Benigno (2007), showing that the size of the negative correlation between consumption 

growth and inflation in the US varies over time.

22 To further illustrate this effect, we examine what value of α is required in our infinite horizon model to generate an average 

slope for the 10-year yield curve of 102 basis points when using the calibrated system in Piazzesi & Schneider (2007) and our up-

dated calibration of this system using their procedure. With β = 0.997, we find α = 7 when relying on the calibration in Piazzesi and 

Schneider (2007) and α = 320 when using our updated calibration.
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M.M. Andreasen and P. Zabczyk: Efficient bond price approximations      17

Table 3 Empirical and model moments.

  Data   PSModel

0
M

  IES

1
M

  IES&SV

2
M

  IES&SV&Habit

3
M

Mean (in pct)

 r
4,t

  5.73   6.96   5.76   5.77   5.88

 r
20,t

  6.37   7.02   6.39   6.39   6.51

 r
40,t

  6.75   7.10   6.78   6.76   6.88

 π
t

  3.95   3.95   3.92   3.92   4.01

 Δc
t

  2.97   2.97   2.97   2.99   3.01

Standard deviation (in pct)

 r
4,t

  3.04   1.77   2.93   2.95   2.95

 r
20,t

  2.70   0.85   2.62   2.68   2.65

 r
40,t

  2.47   0.47   2.28   2.46   2.43

 π
t

  2.59   2.60   2.37   2.47   2.47

 Δc
t

  1.92   1.92   1.79   1.90   1.88

Kurtosis

 r
4,t

  3.74   –   –   3.00   3.01

 r
20,t

  3.48   –   –   3.01   3.01

 r
40,t

  3.54   –   –   3.01   3.01

 π
t

  5.00   –   –   3.06   3.08

 Δc
t

  4.60   –   –   5.00   3.39

Contemp. cross correlations

 corr(r
4,t

 , r
20,t

)   0.965   0.998   0.980   0.983   0.968

 corr(r
4,t

 , r
40,t

)   0.921   0.997   0.976   0.928   0.917

 corr(r
4,t

 , π
t
)   0.602   0.815   0.704   0.584   0.559

 corr(r
4,t

 , Δc
t
)   0.054   0.351   0.041   0.043   –0.0155

 corr(r
20,t

 , r
40,t

)   0.987   0.999   0.999   0.981   0.987

 corr(r
20,t

 , π
t
)   0.542   0.847   0.675   0.544   0.530

 corr(r
20,t

 , Δc
t
)   0.057   0.296   0.040   0.050   0.0294

 corr(r
40,t

 , π
t
)   0.519   0.854   0.670   0.488   0.486

 corr(r
40,t

 , Δc
t
)   0.005   0.284   0.040   0.053   0.031

 corr(π
t, 

Δc
t
)   –0.210   –0.208   –0.608   –0.219   –0.238

Cross auto-correlation

 corr(r
4,t

 , r
4,t–1

)   0.941   0.882   0.965   0.939   0.954

 corr(r
4,t

 , r
20,t–1

)   0.913   0.881   0.996   0.921   0.932

 corr(r
4,t

 , r
40,t–1

)   0.874   0.881   0.998   0.868   0.884

 corr(r
4,t

 , π
t–1

)   0.607   0.728   0.659   0.571   0.538

 corr(r
4,t

 , Δc
t–1

)   0.079   0.296   0.040   0.044   0.061

 corr(r
20,t

 , r
4,t–1

)   0.928   0.886   0.958   0.921   0.933

 corr(r
20,t

 , r
20,t–1

)   0.959   0.889   0.988   0.937   0.965

 corr(r
20,t

 , r
40,t–1

)   0.948   0.889   0.989   0.920   0.953

 corr(r
20,t

 , π
t–1

)   0.556   0.759   0.655   0.532   0.517

 corr(r
20,t

 , Δc
t–1

)   0.060   0.252   0.039   0.050   0.045

 corr(r
40,t

 , r
4,corrt–1

)  0.893   0.886   0.955   0.868   0.885

 corr(r
40,t

 , r
20,t–1

)   0.952   0.890   0.984   0.920   0.953

 corr(r
40,t

 , r
40,t–1

)   0.965   0.890   0.985   0.940   0.965

 corr(r
40,t

 , π
t–1

)   0.535   0.765   0.652   0.477   0.475

 corr(r
40,t

 , Δc
t–1

)   0.008   0.242   0.039   0.053   0.040

 corr(π
t
 , r

4,t–1
)   0.562   0.717   0.706   0.634   0.607

 corr(π
t
 , r

20,t–1
)   0.493   0.739   0.692   0.591   0.575

 corr(π
t
 , r

40,t–1
)   0.466   0.743   0.688   0.530   0.526

 corr(π
t
 , π

t–1
)   0.785   0.782   0.498   0.863   0.874

 corr(π
t
 , Δc

t–1
)   –0.066   –0.071   0.028   –0.198   –0.017

 corr(Δc
t
 , r

4,t–1
)   –0.006   0.132   0.108   –0.006   –0.030

 corr(Δc
t
 , r

20,t–1
)   0.030   0.098   0.075   0.000   –0.016

 corr(Δc
t
 , r

40,t–1
)   –0.008   0.091   0.071   0.005   –0.013

 corr(Δc
t
 , π

t–1
)   –0.174   –0.175   0.088   –0.168   –0.205

 corr(Δc
t
 , Δc

t–1
)   0.499   0.508   0.005   0.306   0.519

All model moments are computed based on a simulated time series of 500,000 observations. Figures in bold indicate notable 

deviations between model moments and the corresponding empirical moments.
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18      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

this model IES&SV&Habit

3
M  leads to a low IES of 0.29 and a high degree of relative risk aversion of 603. It is also 

interesting to note that the long-run risk aspect as captured by the Epstein-Zin-Weil coefficient remains highly 

important (α = –807) even when we allow for external habit formation. This indicates that long-run risk is an 

essential component for the model’s ability to match the data. The last column in Table 3 shows that adding 

habits to the model preserves the satisfying properties of the previous model, except for the excess kurtosis 

in consumption growth. The main effect of habits is to address two of the four short-comings of IES&SV

2
.M  That 

is, habits allow the model to match the auto-correlation in consumption growth (0.49 vs. 0.52) and to gener-

ate basically no correlation between inflation and lagged consumption growth as found in the data (–0.02 

vs. –0.07).

To further explore the effects of habits in a long-run risk model, Figure 3 plots additional moments not 

included in the estimation of IES&SV

2
M  and IES&SV&Habit

3
M  along with the 95 percentage confidence intervals 

for sample moments. We see that both models match the persistence in yields up to ten lags, and generate 

slightly higher auto-correlation in inflation than seen in the data. However, the inflation persistence in both 

models are within the 95 percentage confidence intervals for the first six lags and are in this sense consistent 

with the data. The two models differ more in terms of the persistence in consumption growth where habit 

formation allows the model to better capture the overall shape of the empirical auto-correlation than the 

model without habits. Another difference appears in the correlation between inflation and lagged consump-

tion growth where the model without habits generates somewhat lower correlation than found in the data 

and in the model with habits.

All versions of the model rely on a high level of risk aversion, whereas more plausible values of risk 

aversion are typically required to match moments for equities in long-run risk models [see Bansal and Yaron 

(2004)]. There are at least two possible explanations for our finding. Firstly, high risk aversion in Epstein-

Zin-Weil preferences may proxy for model uncertainty as shown by Barillas, Hansen, and Sargent (2009). 

Secondly, Malloy, Moskowitz, and Vissing-Jørgensen (2009) document that variability in consumption for US 

stockholders is higher than the variation in aggregate consumption, and risk aversion is therefore estimated 

Table 4 Model estimates.

 
IES

1
M  

IES&SV

2
M  

IES&SV&Habit

3
M

β   0.9977 (0.0201)   0.9965 (0.0021)   0.9958 (0.0022)

α   –124.85 (62.37)   –2047.82 (105.12)   –807.77 (244.14)

ρ   7.9320 (1.2068)   1.0762 (0.0259)   1.2714 (0.0705)

μ
c
 × 10–2   0.7415 (0.0194)   0.7468 (0.0198)   0.7516 (0.0228)

μ
π
 × 10–2   0.9806 (0.0367)   0.9802 (0.0384)   1.0025 (0.0352)

k
11

  0.9210 (0.1896)   0.1436 (0.0483)   0.3017 (0.0492)

k
12

  0.9820 (0.2030)   0.1254 (0.0971)   –0.4276 (0.1202)

k
21

  0.2748 (0.1828)   –0.1023 (0.0742)   –0.1677 (0.0613)

k
22

  0.3167 (0.1995)   –0.7799 (0.1619)   –0.7327 (0.1420)

φ
11

  –0.1839 (0.0414)   0.9561 (0.0348)   0.6874 (0.0253)

φ
12

  0.1241 (0.0225)   –0.0028(0.0062)   –0.0518 (0.0056)

φ
21

  1.5134 (0.3873)   0.0333 (0.0395)   0.0607 (0.0259)

φ
22

  1.1416 (0.0280)   0.9827 (0.0072)   0.9911 (.0048)

σ
1
 × 10–2   0.4404 (0.0119)   0.3538 (0.0384)   0.3770 (0.0154)

σ
2
 × 10–2   0.0750 (0.0098)   0.1561 (0.0147)   0.1120 (0.0150)

ω × 10–2   –0.4138 (0.0115)   –0.0316 (0.0182)   –0.1286 (0.0143)

ρ
1

  –   0.8972 (0.0130)   0.9579 (0.0107)

ρ
2

  –   0.9923 (0.0022)   0.963 (0.0031)

σ
σ

1

  –   0.1960 (0.0663)   0.0586 (0.0152)

2
σ

σ   –   0.0108 (0.0021)   0.0535 (0.0078)

h   –   –   0.6344 (0.0260)

All estimates are computed based on a simulated time series of 500,000 observations. Standard errors are for the optimal 

weighting matrix, estimated by the Newey-West estimator using 10 lags.
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to be significantly lower for stockholders when compared to a representative agent using aggregate con-

sumption. In other words, the high risk aversion we find is likely to compensate for insufficient consumption 

variation within our model, partly because we ignore model uncertainty and partly because consumption 

variability for stockholders is higher than implied by aggregate consumption.

To summarize, we find that the long-run risk model by Piazzesi and Schneider (2007) benefits from an 

unconstrained IES in the case of homoscedastic innovations, and that this model matches the level of the 

yield curve and generates sufficient variability and persistence in all yields. The inclusion of stochastic vola-

tility takes the IES close to unity and substantially improves the model’s ability to match the considered 

moments. Extending the model with habit formation enhances its performance further, showing that it may 

be beneficial to introduce habits into a long-run risk model.

6  Conclusion

This paper proposes an efficient method to compute higher-order bond price approximations for a wide class 

of non-linear equilibrium-based term structure models. While the numerical values for bond prices using our 

formulas exactly match those derived using the standard one-step perturbation routine, a simulation study 

documents that execution times can be lowered substantially. In general, the improvement in speed depends 

positively on the maturity of the approximated yield curve and positively on the number of state variables in 

the model. Due to the memory efficient nature of our method, it is also shown that it enables us to solve larger 

models with a yield curve than possible using the one-step perturbation routine.
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Figure 3 Studying the effects of habit formation via additional moments.

The confidence intervals are calculated by the circular block bootstrap with 10,000 blocks and a window of 50 observations.
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We also assess the accuracy of our perturbation method in a consumption endowment model with 

habits. Our results show that the third-order approximation to the 10-year interest rate is more accurate than 

a second-order solution and those of popular alternatives. It is also shown that interest rates approximated 

from prices of consol bonds can be less precise, even at third order, than those computed using the first-order 

log-normal approach.

The suggested method is finally applied to estimate the long-run risk model by Piazzesi and Schneider 

(2007) extended with an unconstrained IES, stochastic volatility, and external habit formation. We show that 

each of these extensions brings the model closer to the data, with the full model able to match nearly all of the 

considered moments. The application therefore illustrates some of the benefits associated with our method 

which allows for great flexibility in setting up equilibrium-based term structure models.
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Appendix A

A general transformation of bond prices

This appendix considers the general case of an invertible transformation function R(‧)∈CN, implying that 

R(pt, k)≡Pt,k. Here

,

1 1

1, 1

1

( , ) [ ( ( , )) ( ( ( , ) , ), ( , ), ( , ) , )

( ( ( , ) , )) ] .

t kk

t t t
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σ σ σ
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+
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1

[ ( , )] =0k
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For k = 1 we have 
1 1

1 1( )[ ] [ ]
p

R p p
α α

=
x x

M  and M = R(p1). Hence

( ) ( ) ( ) ( ) ( ) 1
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p p p
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=x  implies

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



M.M. Andreasen and P. Zabczyk: Efficient bond price approximations      21

 
( ) ( ) ( ) ( )1

1

1 1 1 1

1
0

k k k k k k

t p p t
E R p p R p R p p p

γ

σ σ σ σ
γ

− − − −
+

          − − + + =            x
hM M �η

 

For k = 1 we have 1 1[ ( )[ ] ] [ ].
t p t

E R p p E
σ σ

= M  Similar arguments as in the text then implies 0
kp
σ
=  for all 

values of k.

Second order terms

Derivative of pk with respect to (x, x)

We have that 
1 2
,

[ ( ,0)] 0k

ss
F

α α
=

xx
x  implies

( ) ( )
( ) ( )

( )
( )

( )

2 1 1 2

2

1 2 1 22

1

11

2 1

2 12 1

1

1 1 1

1 1

2

1 1 1

1 1

k k k k k

pp p

k k k

p

k k

p

k k k

pp

k k

p

R p p p R p p

R p R p p

R p p

R p p p

R p p

α α α α

γ

α α α αγ

γ

α αγ

γ γ

α αγ γ

γ

− − −

− −

− − −

− −

     +     

      − −      

    −    

      −       

 −  

x x xx

xx x x x

x x x

x x x x

xx

h

h

h h

M M

M

M

M

( )

2 1

2 12

1

1 21

1 1

0

k k

p
R p p

γ γ

α αγ

γ

α αγ

− −

      

   −   

=

x x

x xx

h h

hM

The value of M equals R(p1) and M
x
 is computed above. Moreover, for k = 1 we have

 
( ) ( )

1 2 1 2 2 1

1 1 1 1 1

,
=

p pp
R p p R p p p

α α α α α α

       +       xx xx x x
M

 

Thus

 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 2 1

1 2 2 1

2

21 2

1

12 1

2

,
2

1 1 1 1 1 1

,

1 1 1 1

1 1 1 1

1 1 1

k k k k k

p pp

k

p pp

k k

p p

k k

p p

k k

pp

R p p R p p p

R p p R p p p R p

p R p R p p

p R p R p p

R p R p p

α α α α

α α α α

γ

αα γ

γ

αα γ

γ

−

− −

− −

− −

     =−     

      + +       

     +     

     +     

 +  

xx x x

xx x x

x x x

x x x

x

h

h

h

( ) ( )
( ) ( )

2 1

2 11

2 1

2 11 2

1

1 21

1

1 1 1

1 1 1

k

k k

p

k k

p

p

R p R p p

R p R p p

γ γ

α αγ

γ γ

α αγ γ

γ

α αγ

−

− −

− −

        

     +     

   +   

x x x

xx x x

x xx

h

h h

h

 

Derivative of pk with respect to (σ, σ)

Next, [ ( ,0)] 0
ss

F
σσ

=x  implies

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



22      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

( ) ( )
( )
( )

( )
( )

2 2

22

1 1

11

2 2 1 1

2 12 1

1

1 1

1

1 1

1

1 1 1

1 1

1 1

k k k

t p

k k

p t

k k

p t

k k k

pp t t

k k

p

E R p p R p

R p p

R p p

R p p p

R p p

σσ σσ

γ φ

σ φγ

γ φ

σ φγ

γ φ γ φ

φ φγ γ

−

− −
+

− −
+

− − −
+ +

− −

    − +  
      +      

      +      

          +           

+

x

x

x x

xx

M

M

M

M

M

�

�

� �

η

η

η η

( ) ( )

2 2 1

2 11 2

1

1

1

1 1

1 1 1 1

0

t t

k k k k

p p
R p p R p p

γ φ γ φ

φ φγ γ

γ

σσ σσγ

+ +

− − − −

                

    + +    
=

x
hM M

� �η η

For k = 1 we have 1 1[ ] [ ] ( ).
t p

E p R p
σσ σσ

=M  Using this and previous results, we then obtain

( ) ( ) ( )
( )

( )
( ) ( )

1 1 2 2

1
1 1 2 121

1 2 2

1
1 2 121

2

22 1

1 1 1

1 1

1 1

1 1 1 1

=

2

2

t

t

k k k

p p

k k

p

k k

p

k k k

pp

R p p p R p R p

R p p

R p p

R p R p p p

σσ σσ

β γ γ φ

γ φ φ φγβ

γ γ φ

φ φ φγγ

γ

φγ γ

+

+

−

− −

− −

− − −

   
   
          +          

        +        

      +      

y x x

x x

x x

g I

I

M

M

η η

η η

η η

( ) ( )
( ) ( )

( ) ( )

1 1

1 2

2 1 1

2 1 21 2

1

1

1 1 1

1 1 1

1 1 1

k k

p

k k

p

k k

p

R p R p p

R p R p p

R p R p p

γ φ

φ φ

γ γ φ

φ φ φγ γ

γ

σσγ

σσ

− −

− −

− −

   

       +       

   +   

 +  

xx

x

I

I

h

η η

Third order terms

Derivative of pk with respect to (x, x, x)

Applying the chain rule to the definition of Fk one can show that 
1 2 3

[ ( ,0)] 0
ss

F
α α α

=
xxx

x  equals

( ) ( )
( )
( )
( )

( )
( ) ( )

1 2 3 3 2 1

2 3 1

3 1 2

3 1 2

1 2 3

1 2 2 1

1

1 1 1 1 1

,

=k k k k k k

p ppp

k k k

pp

k k k

pp

k k k

pp

k

p pp

R p p R p p p p

R p p p

R p p p

R p p p

R p

R p p R p p p

α α α α α α

α α α

α α α

α α α

α α α

α α α α

−

       −       
   −    
   −    
   −    

 +  
      + +     

xxx x x x

xx x

x xx

x xx

xxx

xx x x

M

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

3

33

2

21 3 3 1 2

3 2

3 21 3 2

1

1 1

1 1 1 1 1 1 1

1 1 0 1 1 1

1 1 0 1 1

/

/

k k

p

k k

p pp p

k k k

p pp

k k

p p

R p p

R p p R p p p R p p

p R p R p R p p p

p R p R p R p p

γ

αγ

γ

αα α α α γ

γ γ

α αα γ γ

α

− −

− −

− − −

− −

     
          + +           

        +         

  +  

x x

xx x x x x

x x x x x

x xx

h

h

h h

( ) ( ) ( )

3 2

3 22 3

2

2 31 2

1 1 0 1 1/ k k

p p
p R p R p R p p

γ γ

α αγ γ

γ

α αα γ

− −

        

     +     

x x

x x xx

h h

h

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



M.M. Andreasen and P. Zabczyk: Efficient bond price approximations      23

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

12 3 3 2 1

3 1

3 12 3 1

3 1

3 12 1 3

1 1 1 1 1 1 1

,

1 1 0 1 1 1

1 1 0 1 1

/

/

k k

p pp p

k k k

p pp

k k

p p

R p p R p p p R p p

p R p R p R p p p

p R p R p R p p

γ

αα α α α γ

γ γ

α αα γ γ

γ γ

α αα γ γ

− −

− − −

− −

          + +           

        +         

       +       

xx x x x x

x x x x x

x xx x x

h

h h

h h

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

1

1 32 1

2 1

2 13 2 1

3 2 1

3 2 13 2 1

1 1 0 1 1

1 1 0 1 1 1

1 1 1 1 1

1

/

/

k k

p p

k k k

p pp

k k k k

ppp

k

pp

p R p R p R p p

p R p R p R p p p

R p R p p p p

R p R p

γ

α αα γ

γ γ

α αα γ γ

γ γ γ

α α αγ γ γ

− −

− − −

− − − −

−

     +     

        +         

          +           

+

x x xx

x x x x x

x x x x x x

h

h h

h h h

( )
( ) ( )
( ) ( )
( ) ( )

3 2 1

3 2 12 3 1

2 1

2 3 12 1

2 3 1

2 3 12 1 3

2

1 1 1

1 1 1 1

1 1 1 1

1 1 1

k k

k k k

pp

k k k

pp

k k

pp

p p

R p R p p p

R p R p p p

R p R p p

γ γ γ

α α αγ γ γ

γ γ

α α αγ γ

γ γ γ

α α αγ γ γ

γ

− −

− − −

− − −

− −

                

      +       

        +         

 +  

xx x x x x

x xx x x

x x xx x x

x

h h h

h h

h h h

( ) ( ) ( )
( ) ( )
( ) ( )

2 1

2 1 31

2 1

2 13 1 2

3 2 1

3 2 13 1 2

3

31 2 3

1

1 1 0 1 1

1 1 1 1

1 1 1

/

k

k k

p p

k k k

pp

k k

p

p

p R p R p R p p

R p R p p p

R p R p p

γ γ

α α αγ

γ γ

α αα γ γ

γ γ γ

α α αγ γ γ

γ

αγ γ γ

−

− −

− − −

− −

        

       +       

        +         

     +    

x x xx

x xx x x

x x xx x x

xxx x x

h h

h h

h h h

h h

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 1

2 1

2 1

2 3 11 2

2 1

2 1 31 2

1

1 23 1

3

33 1

1 1 1

1 1 1

1 1 0 1 1

1 1 1 1

/

k k

p

k k

p

k k

p p

k k k

pp

R p R p p

R p R p p

p R p R p R p p

R p R p p p

γ γ

α α

γ γ

α α αγ γ

γ γ

α α αγ γ

γ

α αα γ

γ

αγ γ

− −

− −

− −

− − −

   

     +     

     +     

     +     

    +     

x

xx xx x

xx x xx

x x xx

x x x

h

h h

h h

h

h

( ) ( )
( ) ( )

1

1 2

3 1

3 1 21 3

1

1 2 31

1 1 1

1 1 1

k k

p

k k

p

R p R p p

R p R p p

γ

α α

γ γ

α α αγ γ

γ

α α αγ

− −

− −

  

     +     

   +   

xx

xx x xx

x xxx

h

h h

h

 

Note that we can also eliminate 
1 2 3

[ ]
α α αxxx

M  from this expression. Again, the trick is to observe that for 
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because R(p0) = 1.

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



24      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

Thus we get for k > 1
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With a log-transformation R(pt,k) = Mk, R
p
(pt,k) = Mk, R

pp
(pt,k) = Mk, and R

ppp
(pt,k) = Mk in the deterministic steady 

state. Using the expressions for first and second order derivatives of bond prices derived above, we get, after 

simplifying, the expression stated in the body of the text.
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We finally note that 
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([ ] )
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E
σσ αx

M  can be solved for and then substituted out by exploiting the fact that 

for k = 1 we have P0 = 1 for all values of (x
t
, σ) and so all derivatives have to equal zero. Thus
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(pt,k) = Mk. Using the expres-

sions for first and second order derivatives of bond prices derived above, we get, after simplifying,
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Derivative of pk with respect to (σ, σ, σ)

It is possible to show that F
σσσ

(x
ss

, 0) = 0 implies

 

( ) ( ){
( )

( )
( )

( )

2 2

22

3 3 2 2

3 23 2

32 3

1

1 1

1

1 1 1

1 1

1 1

,0 =

3

3

3

k k

ss t p

k

k k

p t

k k k

pp t t

k k

p

F E R p p

R p

R p p

R p p p

R p p

σσσ σσσ

σσσ

γ φ

σσ φγ

γ φ γ φ

σ φ φγ γ

γ

σ φγ γ

−

− −
+

− − −
+ +

− −

   −   
 + 

      +       

            +             

    +     

x

x x

xx

x

M

M

M

M

η

η η

η

�

� �

( ) ( )
( ) ( )

3 3 2 2

2

3 3 2 2 1 1

3 2 13 2 1

2 2 3

2 32 1 3

1 1

1 1 1 1 1

1 1 1

1 1 1 1

1
3

t t

k k k k

ppp t t t

k k k

pp t t

R p R p p p p

R p R p p p

φ γ φ

φ

γ φ γ φ γ φ

φ φ φγ γ γ

γ φ γ

φ φγ γ γ

+ +

− − − −
+ + +

− − −
+ +

          

                +                 

        +         

x x x

x xx

η

η η η

η η

� �

� � �

� �
3 1 1

1
1 1t

φ γ φ

φ +
          η �

 

Brought to you by | Aarhus University Library / Statsbiblioteket

Authenticated

Download Date | 1/17/17 12:41 PM



30      M.M. Andreasen and P. Zabczyk: Efficient bond price approximations

( ) ( )
( ) ( )
( ) ( ) }

3 3 2 2 1 1

3 2 11 2 3

1

1

1 1 1

1 1 1

1 1 1

1 1 1
0

k k

p t t t

k k

p

k k

p

R p R p p

R p R p p

R p R p p

γ φ γ φ γ φ

φ φ φγ γ γ

γ

σσσγ

σσσ

− −
+ + +

− −

− −

             +             

   +   

 + = 

xxx

x
h

η η η� � �

We next use the expression for [M
σ
] found previously. We also have from differentiation of M  that
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For [M
 σσσ

], we exploit the fact P0 = 1 for all values of (x
t
, σ) and so all derivatives have to equal zero. Thus 
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where m3(e
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) denotes the third moment of e
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Following some simplifications we finally get
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Appendix B

Matlab implementation of the POP method

The approximation method presented in the body of the text is implemented in Matlab. For the first per-

turbation step, we apply the codes accompanying Schmitt-Grohé and Uribe (2004) to compute first and 

second order derivatives, while the routines underlying Andreasen (2012b) are used for all third-order 

terms. For the second perturbation step, the user only needs to specify the stochastic discount factor in 

Anal_ PricingKernel_derivatives.m and the position of the one-period bond price in y
t
. Ana-

lytical derivatives of the pricing kernel are then computed based on symbolic differentiation, and these 

derivatives are evaluated in the steady state by num_eval_PricingKernel.m. Bond prices are then 

computed in Get_Bond_Prices_3rd.m up to third order, either for the level of bond prices or for a 

log-transformation.
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Appendix C

Closed-form solution to the endowment model with habits

For the considered habit model, we have
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A closed-form solution for zero-coupon bond prices is given by (see Zabczyk 2014)
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Here, L
ξ
 is the Laplace transform of ξ, and 
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 denotes a generalized binomial coefficient, i.e.,
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where α∈; and n∈N. The condition for convergence of this solution is 
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