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Abstract

Despite the fact that face detection has been studied

intensively over the past several decades, the problem is

still not completely solved. Challenging conditions, such

as extreme pose, lighting, and occlusion, have historically

hampered traditional, model-based methods. In contrast,

exemplar-based face detection has been shown to be ef-

fective, even under these challenging conditions, primarily

because a large exemplar database is leveraged to cover

all possible visual variations. However, relying heavily on

a large exemplar database to deal with the face appear-

ance variations makes the detector impractical due to the

high space and time complexity. We construct an efficient

boosted exemplar-based face detector which overcomes the

defect of the previous work by being faster, more memory

efficient, and more accurate. In our method, exemplars as

weak detectors are discriminatively trained and selectively

assembled in the boosting framework which largely reduces

the number of required exemplars. Notably, we propose to

include non-face images as negative exemplars to actively

suppress false detections to further improve the detection

accuracy. We verify our approach over two public face

detection benchmarks and one personal photo album, and

achieve significant improvement over the state-of-the-art al-

gorithms in terms of both accuracy and efficiency.

1. Introduction

Researchers in the area of face detection have made

great progress over the past decades. However, under

uncontrolled environment, large variations in pose, illu-

mination, expression and other appearance factors tend to

severely degrade the accuracy of the state-of-the-art detec-

tors, such as faces in the images in Figure 1 1.

An ensemble of feature-based weak classifiers trained

1The results are from the Zhu et al. [25] detector (left)

http://www.ics.uci.edu/˜xzhu/face/ and Shen et al. [19]

detector (right) http://users.eecs.northwestern.edu/

˜xsh835/CVPR13Sup.zip.

Figure 1. Hard cases under uncontrolled environment: extreme

poses could lead to missed detections while cluttered background

could lead to false detections.

using the Adaboost framework has become the de facto

standard paradigm for face detection [21]. Combined with

the attentional cascade, the feature-based method supports

very fast face detection. Notwithstanding its great success,

the limited descriptive power of the feature-based weak

classifiers hinders it to handle all the challenging visual

variations in unconstrained face detection.

Recent work [25, 4] proposed to use part based models to

address this problem, which benefits from the fact that the

part of an object often presents less visual variations, and

the global appearance variation of the object may be con-

veniently modeled by the flexible configuration of different

parts. However, the modeling of each part is still based on

the low level descriptors, which faces the same issue as the

previous feature-based holistic face detectors [21].

Recently an exemplar-based method combining fast im-

age retrieval techniques demonstrated great potential to

overcome these challenges in face detection [19]. In con-

trast to the low-level feature-based approach, exemplars

themselves, serve as high-level “features” that are more dis-

criminative for face detection.

Unlike the standard Viola-Jones Adaboost [21]

paradigm, in which either a feature or a model works

as a scanning-window classifier, the exemplar-based

approach works with a generalized Hough voting based

method [9, 18] to produce a voting map to locate faces.

Hence the exemplar-based method bypasses the scanning

window paradigm and avoids the training of the attentional

cascade which is a non-trivial process [24].
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The exemplar-based method [19] supports a more conve-

nient training procedure and results in state-of-the-art face

detection performance. Nevertheless, we argue that it is

still impractical in terms of memory efficiency and detection

speed. The main challenges of applying the exemplar-based

method in real-world face detection applications are 1) it re-

quires a large face database for detection, the size of which

is the bottleneck in terms of space and time; 2) having

more face images in the exemplar database introduces re-

dundancy and potentially tends to produce false alarms in

the presence of highly cluttered backgrounds.

To overcome these hurdles we propose an efficient

boosted exemplar-based face detection approach which uses

the RealAdaboost framework [16] to select the most dis-

criminative exemplars. Hence the size of the exemplar

database can be largely reduced by eliminating unneces-

sary redundancy while the detection accuracy is further im-

proved. Additionally, we generalize the concept of exem-

plar to include non-face images as negative exemplars. The

discriminatively selected negative exemplars assign nega-

tive confidence scores to the cluttered backgrounds which

effectively suppress many of the false alarms.

In summary, our contributions in this paper are threefold:

1) we present an efficient boosted exemplar-based face de-

tector by combining the flexibility of exemplar-based face

detection and the discriminative power of the RealAdaboost

algorithm with two additional efficiency enhancements; 2)

we propose to build negative exemplars to actively suppress

potential false detections; 3) we achieve new state-of-the-

art detection performances on three datasets, including two

challenging public face detection benchmarks and a per-

sonal photo album.

2. Related Work

Face detection has been an active research area for

decades. We refer readers to a more comprehensive review

of previous work in [24], and focus on the methods techni-

cally relevant and conceptually similar to ours.

Ever since Viola-Jones’s seminal work [21], Adaboost

is widely adopted in the area of face detection following

a standard cascade paradigm. While most previous work

along this line of research combined Adaboost with varia-

tions of Haar-like features [21] or more advanced features

[22, 6], we rarely see literature applying Adaboost with

exemplar-based method for face detection.

In related research areas, the work presented in [17, 23,

13] are conceptually related to our approach as they com-

bined the boosting framework with discriminatively trained

exemplar classifiers. In [17, 23, 13], the discriminative ex-

emplar classifier is trained using holistic descriptors and the

classifier responses on the detection windows are used as

features in the boosting framework. With the sliding win-

dow paradigm where the responses need to be exhaustively

computed between every detection window and every ex-

emplar, this design can be computationally expensive espe-

cially when training with a large candidate exemplar pool

or combining with a higher dimensional descriptor.

Comparing to this scheme, the main uniqueness of our

work is the different nature of exemplars. In contrast to the

holistic descriptors based exemplar, we use bag of localized

visual words as the exemplar which works with a general-

ized Hough voting based method. Besides the fact that the

voting based way avoids the sliding window paradigm, it

further enables us to make use of fast retrieval techniques to

jointly compute the similarities between one detection win-

dow and all the exemplars with the inverted file. Hence our

approach is more efficient and scalable.

Technically, the most relevant work to ours is Shen et

al.[19] which proposed the exemplar-based method with

an efficient image retrieval technique for face detection.

Their detector achieved state-of-the-art accuracy. However,

the highly accurate detection performance required a large

database of over 18,000 exemplars, the size of which hin-

ders it to be a practical face detector in a lot of real-world

applications. Furthermore, exemplars in their work are not

discriminatively selected to optimize the detection accuracy

and the similarity scores generated by different exemplars

are actually in different ranges. As a result, the aggregated

similarity scores over the exemplar database are suboptimal

to differentiate faces from the background.

We follow the exemplar-based face detection paradigm.

Nevertheless, in our framework, exemplars are trained dis-

criminatively and assembled into a strong face detector

through the RealAdaboost framework. Only the most effec-

tive exemplars are kept for detection. Hence, the detection

performance is largely improved over the previous work

while keeping a much more compact exemplar database. In

our experiments, we show that on the Face Detection Data

Set and Benchmark (FDDB) our detector with only 500 ex-

emplars outperformed the state-of-the-art by a large margin.

In contrast, the number of exemplars used in the previous

exemplar-based face detector [19] is 18,486. More impor-

tantly, since our framework is more flexible, exemplars in

our framework are no longer limited to be face images. In-

cluding non-face images as negative exemplars can further

help differentiate faces from the cluttered background. As

far as we know, no previous work proposed to incorporate

negative exemplars in face detection.

3. Boosted Exemplar-based Face Detection

In this section, we will firstly discuss how a single exem-

plar works in our framework. We then describe how to train

the boosted exemplar-based face detector through the Real-

Adaboost algorithm. Finally, we discuss the motivation of

negative exemplars and two enhancements to help improve

the detection efficiency.



3.1. Single Exemplar as Weak Detector

The exemplar in our framework refers to an image rep-

resented as a bag of localized visual words and a domain-

partitioned weak classifier. The bag of visual words with

the spatial locations produce a voting map over the target

image while the domain-partitioned weak classifier gives

real-value confidence ratings over every pixel location on

the voting map. This procedure is shown in Figure 2.

In the training stage, given an image as a candidate

exemplar, we resize the image into a fixed size and pro-

cess them into the bag-of-visual-words representations by

densely extracting feature descriptors and quantizing the de-

scriptors over a pre-trained vocabulary. In the meantime, the

spatial locations of the quantized descriptors are also kept to

conduct the generalized Hough voting. Once the image is

selected into the database, the bag-of-visual-words and as-

sociated spatial locations will be built into the inverted file

index for efficient retrieval in the testing stage. We refer the

readers to [9, 18, 19] for more details.

In the testing stage, the target image is processed through

the same feature extraction and descriptor quantization

pipeline and the exemplar is used to conduct generalized

Hough voting over the testing image. The result will be

a voting map in which each point represents the similarity

score between the exemplar and the image subregion cen-

tered at that pixel location. Since the voting map locates the

occurrences of this particular exemplar instead of the ac-

tual faces, it is not completely aligned with the goal of face

detection if directly using the voting map to locate faces.

Hence, the domain-partitioned weak classifier is further ap-

plied to the voting map to generate the confidence map.

The domain-partitioned classifiers are trained discrimina-

tively to differentiate faces from non-faces. As a result, the

confidence map implies potential face centers and is more

suitable for face detection.

Formally, given a testing image, for the i-th exemplar ei,

at point p on the voting map, the similarity score is

S(p, ei) =
∑

k

∑

f∈R(p),g∈ei
ω(f)=ω(g)=k

||T(L(f))−L(g)||<ǫ

idf2(k)

tfR(p)(k)tfei
(k)

, (1)

where R(p) is the image subregion centered at p, f and g

are local features quantized into the k-th visual word in a

pre-trained vocabulary. idf(k) is the inverse document fre-

quency of k and tfR(p)(k), tfei(k) is the term frequencies

of k in R(p) and ei, respectively. A spatial constraint is en-

forced over the spatial locations L(f) and L(g) of f and g

respectively through a transformation T. In this paper, T

represents only translation and scale change (please refer to

[19] for details).

The voting map is then processed by the associated

domain-partitioned classifier hi(R(p)). At point p we have

Testing image

Exemplar

Voting map Confidence map

LowHigh hi(x)
Votes/Confidences

Figure 2. A single exemplar as a weak face detector; voting map

and confidence map are shown as heat-maps.

confidence score

hi(R(p)) = ci,m if S(p, ei) ∈ Xm, (2)

where {ci,m}Mm=1 ∈ R are the confidence ratings,

{Xm}Mm=1 are disjoint partitions of the range of the similar-

ity scores, i.e., X1 ∪ X2 ∪ · · · ∪ XM = R. In this paper, we

adopted a fixed partition for training convenience through

empirical evaluation. The confidence rating for each parti-

tion is decided statistically in the training stage as described

in the following section.

3.2. Ensemble Exemplars

Our goal is to select and assemble

H(x) =

T
∑

t=1

ĥt(x), (3)

where ĥt(x) is the t-th selected exemplar and H(x) gives

the confidence of image subregion x being a face.

To minimize the error of H(x) over the training data,

we take an iterative process to build H(x) following the

RealAdaboost framework[16],

Given a set of training data {(xn, yn), n = 1, . . . , N},
where {xn} denotes subregions of training images, label

yn ∈ {+1,−1} denotes whether xn is a face (positive) or

non-face (negative) respectively. N+ and N− are the num-

ber of positive and negative training samples respectively.

We have K exemplars e1, e2, . . . , eK for selection and each

ei is associated with a domain-partitioned weak classifier

hi(x) of Mi partitions, where i = 1, . . . ,K.

Initially, the training samples are assigned weights as

ω(1)
n = (1 + e

ynlog(
N+

N−
))−1. (4)

Then T iterations are conducted to train a T stages boosted

exemplar-based face detector.

At the iteration t, the training error for each exemplar ei
given the current training sample weights is calculated as

Zi = 2
∑

m

√

W+
i,mW−

i,m, where W+
i,m and W−

i,m are the

sum of weights of samples falling into the m-th partition of

hi(x), i.e. let Ω+
i,m = {n|S(xn, ei) ∈ Xi,m ∧ yn = +1} ,
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Final confidence map
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Figure 3. Detection work-flow of the boosted exemplar-based face detector: each exemplar processes the testing image into a voting map to

obtain the confidence map; exemplar-level confidence maps are summed up to build the final confidence map; faces could then be located

referring to the peaks on the final confidence map. Detection confidence scores are shown in integers below each detection bounding box.

The blue and red squares are detection bounding boxes before and after calibration, respectively.

Figure 4. Top face exemplars selected by the RealAdaboost: dif-

ferent appearance variations are nicely covered, such as pose, ex-

pression and illumination.

Ω−
i,m = {n|S(xn, ei) ∈ Xi,m ∧ yn = −1}

W+
i,m =

∑

n∈Ω+

i,m

ω(t)
n , W−

i,m =
∑

n∈Ω−

i,m

ω(t)
n , (5)

where
⋃Mi

m=1 Xi,m = R, Xi,m ∩ Xi,m′ = ∅, ∀m 6= m′,

S(xn, ei) is the similarity score from the center of the vot-

ing map built by applying the exemplar ei over the sample

xn as in Equation 1 (see Figure 2).

Let i∗ = argmin
i
Zi, the most discriminative exemplar at

the t-th iteration is then selected to be êt = ei∗ associated

with the domain-partitioned classifier ĥt(x) = hi∗(x) and

the confidence ratings

ci∗,m =
1

2
log(

W+
i∗,m + ǫ

W−
i∗,m + ǫ

), (6)

where ǫ is a small positive value for smoothness. The train-

ing sample weights are then updated to emphasis the hard

training samples,

ω(t+1)
n ← (1 + (ω(t)−1

n − 1)eynĥt(xn))−1. (7)

After T iterations, we have the T stages boosted

exemplar-based face detector H(x) as in Equation 3. In

Figure 4, we show exemplars selected in the early stages in

training the RealAdaboost framework.

In the testing stage, given a target image, each ĥt(x) gen-

erates a confidence map for the image which is then aggre-

gated to build the final confidence map to locate faces. Note

Figure 5. Some non-face negative exemplars selected by the Real-

Adaboost: this coincides with the intuition that negative exemplars

should be discriminative to face and non-face classification, such

as highly repeated patterns (scenes) and frequent false detections

(round shape and human body).

that without the necessity of early stage rejection, the pro-

cess of generating the T exemplar-level confidence maps

could be parallelized freely, which could be another techni-

cal advantage of our algorithm.

The testing work-flow is shown in Figure 3. The right-

most image shows the detection result of the top 500 exem-

plars over the leftmost testing image.

We apply non-maximum suppression to locate faces

from the final confidence map. This method produces

decent results as the blue rectangles shown in Figure 3.

Howover, due to the fact that the annotated face centers of

face exemplars are not always aligned well with the cen-

ter of the detected faces, there could be small differences in

face center locations and face sizes between the detection

bounding boxes and target faces. For example, a frontal

face exemplar could vote to a shifted center for a profile

testing face. The correct geometric normalization of face

annotations is unknown as discussed in [20], we apply a

calibration step to improve the quality of bounding boxes.

In the calibration, we make the image subregion within

the detection bounding box φ work as an exemplar while the

face exemplars in the database act as testing images. There-

fore φ predicts a detection rectangle on each face exemplar.

We calculate the offset and scale difference between the

detection rectangle and the annotation for each exemplar,

and average the offsets and scale differences over all face
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Figure 6. Comparison between the standard image pyramid and the simplified image pyramid we adopted: across the levels of the simplified

image pyramid, base face size varies but feature descriptors are shared to save computational resource.

exemplars as the final calibration offset and scale change

which is applied to adjust the detection bounding box φ.

Since the voting maps and visual words of φ are already

obtained in the detection stage, the overhead of this step is

very small.

This calibration work-flow is different from the valida-

tion step of [19]. While they recalculated the detection con-

fidence score in their validation step, we only use the cali-

bration step to improve the bounding box quality as an op-

tional step. In the experiments, we observed the calibration

step brings improvement (see Figure 11).

3.3. Negative Exemplars

In terms of the similarity scores, positive and negative

samples are highly mixed in the low score range. As a

result, among the trained exemplars, face exemplars will

assign high positive confidence ratings to face regions and

generally have nearly zero confidence ratings over non-face

regions following Equation 6. Adding face exemplars could

expand the appearance spanning of the face detector, but it

also increases the potential of accumulating confidence over

face-like non-face regions unexpectedly. Motivated by the

fact that throughout the training stage, we are not relying

on the assumption that the exemplars are face images, we

add non-face images as candidate negative exemplars into

the training exemplar pool for discriminative selection.

In this paper, the negative exemplar has a domain-

partitioned weak classifier which assigns negative confi-

dence to its highly similar image subregions. In the Fig-

ure 5, we show some selected negative exemplars. They

could actively suppress the confidence ratings of potential

false detections from cluttered backgrounds.

Randomly sampling from non-face images could be a

straightforward way to collect large number of negative ex-

emplar candidates. Empirically, hard negative samples can

be potentially better choices based on the loose assump-

tion that they are correlated to the appearance distribution

of faces so they are correlated to each other. More imple-

mentation details are included in Section 4.1.1.

3.4. Efficiency Enhancements

In addition to the approaches discussed above, we intro-

duce two techniques to improve the efficiency of the pro-

posed approach: the tile-based detection which improves

640 500

640

167

1000 

667

Figure 7. Large image is divided into overlapped tiles for memory

constrained detection

the memory efficiency and a simplified image pyramid

which helps speed up the detection.

3.4.1 Tile-based detection

Although the voting-based method could bypass the ex-

haustive sliding window process, it needs to maintain the

voting maps and confidence maps in memory. This could

be a defect for real-world application in detecting faces on

a large image, since the required memory is proportional

to the image size. To overcome this drawback, we propose

to use a tile-based detection strategy. Specifically, we di-

vide the image into tiles with overlapped regions and pro-

cess each tile one by one independently. In this straightfor-

ward way, without degrading the performance, we confine

the memory footprint to be a constant independent to the

testing image size. As illustrated in Figure 7, the left image

of size 1000× 667 is divided into 4 tiles of sizes not larger

than 640× 640 which leads to a 40% smaller memory foot-

print.

3.4.2 Simplified Image Pyramid

In the standard face detection pipeline, the base size of face

is fixed throughout the detecting procedure while an image

pyramid is built from the testing image to detect faces at

different scales. A defect of applying this approach in our

work is that we need to extract features repeatedly over each

level of the image pyramid. In fact, when the scaling fac-

tor of image pyramid is relatively small and the feature de-

scriptor is scale invariant, the extracted descriptors could be

reused without affecting the detection performance. Under

this assumption, we set the scaling factor of image pyramid

to be 2. Within two levels of the image pyramid, we keep

using the same feature descriptors to detect face with 4 dif-

ferent base sizes with a scaling factor
4
√
2. As illustrated

in Figure 6, for a 2-level image pyramid we can reduce the



Figure 8. Annotation mismatch between our face exemplar and

FDDB ground-truth: We are using square bounding boxes while

FDDB uses ellipses.

number of extracted features by 55.47% which could make

a significant difference in terms of detection speed.

4. Experiments

We verify the proposed work over two published and

widely recognized datasets, Annotated Faces in-the-Wild

(AFW) [25] and the Face Detection Data Set and Bench-

mark (FDDB) [7] and a personal photo album G-Album [5,

12]. On all the datasets, the proposed method utilizes 3,000

exemplars and significantly outperforms the state-of-the-art

performances, especially on FDDB. The detection perfor-

mance of a faster detector with 500 exemplars is reported as

well to show the proposed approach could have decent per-

formance with a more practical setting. In comparison, pre-

vious exemplar-based face detector [19] requires a database

contains 18,486 exemplars in the detecting stage.

4.1. Setting

We extract dense SIFT features with 3 pixels spacing

in both training and testing stages. Fast approximate k-

means [14] is used for training the vocabulary of 100,000

visual words and FLANN [15] is used for quantizing the

extracted feature descriptors. The base size of our face de-

tector is 80× 80.

In the training stage, we collect 15,832 face images as

candidate face exemplars and 12,732 non-face images. Part

of them are from the AFLW dataset [8], and no testing im-

ages are included in the exemplar pool. For each face im-

age, we expand the bounding box of the annotated face by

a factor of 2, crop out the face from the image and resize it

to 160 × 160 to make it a face exemplar. Feature descrip-

tors extracted from the whole 160 × 160 images are used

for calculating the inverse document frequencies and term

frequencies of the visual words while only the descriptors

extracted from the inner 80 × 80 face regions are used as

the exemplar, i.e. for calculating the voting maps.

In building the domain-partitioned classifiers associated

with the exemplars, we manually set the number of parti-

tions to be 3 for face exemplars and 2 for non-face exem-

plars. For training efficiency, we make the domain-partition

setting to be the same for face and non-face exemplars, re-

spectively. We manually choose the thresholds for the parti-

tions by observing the distribution of similarity scores of the

Figure 9. Qualitative results of our detector over AFW (left),

FDDB (middle) and G-Album (right).

training samples, and checking the detection performance

with the help of a validation dataset.

In the testing stage, images smaller than 1480 × 1480
will be upscaled to have a maximum dimension to be 1480.

In the tile-based detection (presented in Section 3.4.1), the

tile size is set to be 640 × 640 with 140 pixels overlapping

stride. The simplified image pyramid is built to be image

pyramid of scaling factor 2 with 4 different base face sizes

with scaling factor
4
√
2.

4.1.1 Training

The positive training data are 80 × 80 face subregions and

their horizontally flipped versions. To collect negative train-

ing data, we extract 80 × 80 negative samples from a set

of non-face images uniformly. We collect 31,664 posi-

tive samples and 468,666 negative samples to train the first

boosted exemplar-based face detector. Then we perform

bootstrapping [3] over a larger set of negative images to de-

tect hard negative samples. The hard negative samples are

then added into both the training corpus as negative training

data and the exemplar pool as potential negative exemplars

to train the final stage face detector.

4.2. Face Detection Data Set and Benchmark

FDDB contains 5,171 annotated faces in 2,845 images.

Images in this dataset are extracted from news articles

which present large face appearance variations. As far as we

know, [11, 10, 19] showed the state-of-the-art performances

on FDDB. The evaluation procedure is standardized and re-

searchers are expected to use the same evaluation program

to report the results.

Due to the annotation mismatch (see Figure 8), quite a

few true positive detections are evaluated as false alarms be-

cause their overlapping ratio with the ground truth are just

right below the threshold. To resolve this issue, we expand

our square bounding boxes vertically by 20% to approxi-

mate ellipses with rectangles. Since [19] reported similar

annotation mismatch issue, to make the comparison fair, we

apply the same adjustment for their detection results [19]

and confirmed their observation.

As shown in Figure 10, using 500 exemplars our method

outperformed the state-of-the-art by a significant margin.

With more exemplars, we achieve further improvement. We

also reported the result without vertically expanding the

detection bounding boxes in Figure 11.
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Figure 11. Evaluation on FDDB (Discontinuous score): the above

one shows without vertically expanding the bounding boxes, our

method still outperformed the state-of-the-art; the below one

shows the calibration step helps in the low false positives part.

4.3. Annotated Faces in the Wild

Annotated Faces in the Wild (AFW) is a 205 images

dataset proposed by [25]. This dataset contains cluttered

backgrounds with large appearance variations intentionally.

As shown in Figure 10, our detector further outperformed

the state-of-the-art methods and is closing the gap to the

commercial detectors. The improvement of adding nega-

tive exemplars are more obvious in AFW since the testing

images have more cluttered backgrounds.

4.4. GAlbum

We use 512 photos with 895 labeled faces from G-

Album [12, 5]. Different from the previous two benchmarks,

this family photo album presents a more realistic applica-

tion scenario. It contains a lot of children and baby faces

presenting very rich variations in terms of pose and expres-

sion. As shown in Figure 10, our detector achieved the best

performance on this dataset.

4.5. Qualitative Results

In Figure 9, we present several detection results over the

three datasets with a fixed detection threshold 30. With this

threshold, on AFW we can achieve 99.0% precision and

87.5% recall rate; on FDDB we can achieve 82.9% recall

rate with totally 254 false detections out of 2,845 images;

on the G-Album we achieve 97.6% recall rate with 22 false

detections out of 512 photos.



4.6. Efficiency

In terms of running time and memory usage, our boosted

exemplar-based face detector is more efficient. With a de-

tector of 500 exemplars with minimal face size of 80× 80,

the detection time of our method is 900 ms for an image of

size 1480× 986. This performance is nearly 33 times faster

than the Shen et al. [19] detector which takes 33 seconds.

Zhu et al. [25] detector takes 231 seconds for the same im-

age.

Given the same testing image, for the memory footprint

size, our detector requires around 150MB memory, the Shen

et al. detector acquires 866MB memory while Zhu et al.

detector could allocate up to 2GB memory. Obviously, our

detector is more practical for real-world applications.

5. Conclusion

In this paper, we present an efficient boosted exemplar-

based face detector utilizing exemplar-based weak detec-

tor and the RealAdaboost algorithm to approach the uncon-

strained face detection problem. This approach makes the

exemplar-based face detection practical by largely reducing

the number of required exemplars and training discrimina-

tive exemplar detectors. Furthermore by making the def-

inition of exemplar more general to incorporate both face

and non-face images, the efforts of collecting exemplars are

relieved and negative exemplars can be built purposely to

suppress false alarms. By enhancing the idea with a tile-

based detection paradigm and simplified image pyramid,

the speed and memory efficiency is further improved. The

significant improvement of face detection accuracy compar-

ing with the state-of-the-art methods over two public bench-

marks and one personal photo album demonstrated the ef-

fectiveness of our proposed approach.
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