
Efficient Bounding of Displaced 
Bézier Patches

Jacob Munkberg, Jon Hasselgren, 
Robert Toth, Tomas Akenine-Möller

Intel Corporation & Lund University

1

Sunday, June 27, 2010



Motivation

• Tessellation is increasingly important

- Displaced parametric surfaces is a prime use case

- Significant data amplification

• Efficiently compute hierarchical bounds of a patch

- Cull as early as possible - save domain shader work

- Bounds used for binning in rendering frameworks (PRMan)
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Bound surface once

Evaluate domain 
shader thousands

of times
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Previous Work

• Simple bounding approaches do not converge

- For example, constant displacement bounds. c.f. Eye split 
problem in PRMan [Apodaca & Gritz, 2000]

• Optimize for the common case

- General techniques, such as Pre-Tessellation Culling 
[Hasselgren et. al, 2009] not fine-tuned for special use case
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Our algorithm
Constant displacement 

bounds
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Optimize for common case

• Displaced Bézier surface

- Base Bézier patch

- Scalar displacement along the geometric normal vector

- Displacement generally from texture map

- Final surface point transformed to clip space
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Base patch Normal Displacement

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))
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q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))

Algorithm Summary

• Find OBB coordinate frame from Bézier control cage

• Bound all terms of the displaced Bézier patch

- Base patch

- Normalized surface normal

- Displacement height over patch

• Use bounds for culling / binning
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OBB Coordinate Frame
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• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding 
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010



OBB Coordinate Frame

10

• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding 
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010



OBB Coordinate Frame

11

• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding 
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010



Bound Base Patch

• Bézier Patches have convex hull property

- Surface bounded by its control points, ci,j
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Bound Base Patch

• Transform control points to OBB coordinate frame
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Bound Base Patch

• Transform control points to OBB coordinate frame
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∑
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Surface Normal Bounds

• Normal vector patch is cross product of tangent vector 
patches

- Normal vector patch is also a Bézier patch of degree n + m -1 
[Yamaguchi, 1997]
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Bound Normal

• We need bounds of the normalized normal

- Project control points of normal vector patch on unit sphere 

- Bound with a cone [Sederberg & Meyers, 1988]

- Use the OBB coordinate frame to choose cone axis

• Motivation:                    approximate surface normal
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n = t× b
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Bounds of Cone

• Cone axis aligned with OBB 
coordinate frame’s z-axis

• Rotation symmetric

• Bounds in OBB coordinate 
frame given by cone angle:
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Faster Normal Bounds - Tangent Cones

• Deriving normal vector patch is costly

- For bi-cubic patch: 144 cross products and 36 normalization 
operation needed to derive normal patch of bi-degree (5,5)

• Idea: Bound tangent patches by cones

- Conservative “cross product of cones” gives normal bounds

• Coarser than normal vector patch

- If tangent cones overlap, zero vector is included
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Bounds from Tangent Cones

• Use axes t, b (from OBB derivation) for tangent cones

- Find cone angles αt and αb

• Normal cone given by [Sederberg & Meyers, 1988]:

- Axis n = t x b

- By construction, n is aligned with OBB frame

- Cone angle:

• If the tangent cones don’t overlap, N bounds 
all possible cross products of two vectors, 
one from each of T and B
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Bounded Texture Lookups

• Use min/max MIP hierarchies [Moule & McCool, 2002]
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Final bounds

• All bounds expressed in the same OBB frame

- Easy to combine, and give an OBB in object space

- Transform OBB to clip space

- Use resulting OBB for culling / binning 
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OBB + OBB x Interval

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))
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Evaluation - Algorithm Comparison
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• Evaluate and bound a patch:

- Compute bounds per patch - one execution

- Evaluate per domain point - thousands of executions

Cost comparison

23

#instr ATI 5870 Intel Core i7

Domain shader 1 1 1

CBOX 1.5 1.6 1.5

OBBTEX 2.7 2.7 2.4

TPATCH 4.5 3.8 4.5

NPATCH 11 83 11

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))
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Total Screen Space Area
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Killeroo
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CBOX OBBTEX TPATCH NPATCH

Heatmap - Screen space bounds overlap
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Convergence
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CBOX OBBTEX TPATCH

Subdivision:  1x
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Convergence
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CBOX OBBTEX TPATCH

Subdivision:  4x
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Convergence
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CBOX OBBTEX TPATCH

Subdivision: 16x

Sunday, June 27, 2010



• Implemented all algorithms in DX11 hull shader for 
SubD11 SDK example

• Constant displacement in normal direction

- Special case - allows for backface culling

• Improves slowest frame

DX11 implementation
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Summary

• Algorithms for bounding displaced parametric surfaces

• Pros

- Handles difficult cases, e.g. large displacements, well

- Converges quickly when subdividing base patch

- Low bounding cost 

• ~4x compared to a single domain shader execution

• Cons

- Approximate catmull clark + bounding algorithms put strain on 
graphics hardware

- Increased memory footprint (min/max mipmaps)
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Thank you
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