
Efficient Bounding of Displaced
Bézier Patches

Jacob Munkberg, Jon Hasselgren,
Robert Toth, Tomas Akenine-Möller

Intel Corporation & Lund University

1

Sunday, June 27, 2010

Motivation

• Tessellation is increasingly important

- Displaced parametric surfaces is a prime use case

- Significant data amplification

• Efficiently compute hierarchical bounds of a patch

- Cull as early as possible - save domain shader work

- Bounds used for binning in rendering frameworks (PRMan)

2

Bound surface once

Evaluate domain
shader thousands

of times

Sunday, June 27, 2010

Motivation

• Tessellation is increasingly important

- Displaced parametric surfaces is a prime use case

- Significant data amplification

• Efficiently compute hierarchical bounds of a patch

- Cull as early as possible - save domain shader work

- Bounds used for binning in rendering frameworks (PRMan)

3

Sunday, June 27, 2010

Motivation

• Tessellation is increasingly important

- Displaced parametric surfaces is a prime use case

- Significant data amplification

• Efficiently compute hierarchical bounds of a patch

- Cull as early as possible - save domain shader work

- Bounds used for binning in rendering frameworks (PRMan)

4

Sunday, June 27, 2010

Motivation

• Tessellation is increasingly important

- Displaced parametric surfaces is a prime use case

- Significant data amplification

• Efficiently compute hierarchical bounds of a patch

- Cull as early as possible - save domain shader work

- Bounds used for binning in rendering frameworks (PRMan)

5

Sunday, June 27, 2010

Previous Work

• Simple bounding approaches do not converge

- For example, constant displacement bounds. c.f. Eye split
problem in PRMan [Apodaca & Gritz, 2000]

• Optimize for the common case

- General techniques, such as Pre-Tessellation Culling
[Hasselgren et. al, 2009] not fine-tuned for special use case

6

Our algorithm
Constant displacement

bounds

Sunday, June 27, 2010

Optimize for common case

• Displaced Bézier surface

- Base Bézier patch

- Scalar displacement along the geometric normal vector

- Displacement generally from texture map

- Final surface point transformed to clip space

7

Base patch Normal Displacement

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))

Sunday, June 27, 2010

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))

Algorithm Summary

• Find OBB coordinate frame from Bézier control cage

• Bound all terms of the displaced Bézier patch

- Base patch

- Normalized surface normal

- Displacement height over patch

• Use bounds for culling / binning

8

Sunday, June 27, 2010

OBB Coordinate Frame

9

• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010

OBB Coordinate Frame

10

• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010

OBB Coordinate Frame

11

• Simple heuristic

- Compute approximate patch tangent/binormal

- Approximate patch normal

- Create orthonormal coordinate frame

• Reuse coordinate frame for all steps in bounding
algorithm

n = t× b

t

b

c0,0 cm,0

c0,n cm,n

Sunday, June 27, 2010

Bound Base Patch

• Bézier Patches have convex hull property

- Surface bounded by its control points, ci,j

12

p
m,n(u, v) =

m∑

i=0

n∑

j=0

ci,jB
m
i (u)Bn

j (v),

c0

c1 c2

c3

Sunday, June 27, 2010

Bound Base Patch

• Transform control points to OBB coordinate frame

13

Sunday, June 27, 2010

Bound Base Patch

• Transform control points to OBB coordinate frame

14

Sunday, June 27, 2010

vp,q =

∑

i+k=p

j+l=q

ai,j × bk,l

(

m−1

i

)(

m

k

)(

n

j

)(

n−1

l

)

(

m+n−1

i+k

)(

m+n−1

j+l

) .

Surface Normal Bounds

• Normal vector patch is cross product of tangent vector
patches

- Normal vector patch is also a Bézier patch of degree n + m -1
[Yamaguchi, 1997]

15

n(u, v) =
∂p

∂u
(u, v)×

∂p

∂v
(u, v)

=

m−1!

i=0

n!

j=0

ai,jB
m−1

i (u)Bn
j (v)

×

m!

k=0

n−1!

l=0

bk,lB
m
k (u)Bn−1

l (v)

Sunday, June 27, 2010

Bound Normal

• We need bounds of the normalized normal

- Project control points of normal vector patch on unit sphere

- Bound with a cone [Sederberg & Meyers, 1988]

- Use the OBB coordinate frame to choose cone axis

• Motivation: approximate surface normal

16

n = t× b

Sunday, June 27, 2010

Bounds of Cone

• Cone axis aligned with OBB
coordinate frame’s z-axis

• Rotation symmetric

• Bounds in OBB coordinate
frame given by cone angle:

17

([− sin θ, sin θ], [− sin θ, sin θ], [cos θ, 1])

!
n^

cos !

sin !

Sunday, June 27, 2010

Faster Normal Bounds - Tangent Cones

• Deriving normal vector patch is costly

- For bi-cubic patch: 144 cross products and 36 normalization
operation needed to derive normal patch of bi-degree (5,5)

• Idea: Bound tangent patches by cones

- Conservative “cross product of cones” gives normal bounds

• Coarser than normal vector patch

- If tangent cones overlap, zero vector is included

18

T

B

N

!
"t

"b

Sunday, June 27, 2010

Bounds from Tangent Cones

• Use axes t, b (from OBB derivation) for tangent cones

- Find cone angles αt and αb

• Normal cone given by [Sederberg & Meyers, 1988]:

- Axis n = t x b

- By construction, n is aligned with OBB frame

- Cone angle:

• If the tangent cones don’t overlap, N bounds
all possible cross products of two vectors,
one from each of T and B

19

T

B

N

!
"t

"b

sin θ =

√

sin
2 αt + 2 sinαt sinαb cos β + sin

2 αb

sin β

Sunday, June 27, 2010

Bounded Texture Lookups

• Use min/max MIP hierarchies [Moule & McCool, 2002]

20

[tmin, tmax]

min

max

Sunday, June 27, 2010

Final bounds

• All bounds expressed in the same OBB frame

- Easy to combine, and give an OBB in object space

- Transform OBB to clip space

- Use resulting OBB for culling / binning

21

OBB + OBB x Interval

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))

Sunday, June 27, 2010

Evaluation - Algorithm Comparison

22

CBOX

Prev. Work

OBBTEX TPATCH NPATCH

Coordinate
frame

AABB OBB OBB OBB

Base patch Bound CP Bound CP Bound CP Bound CP

Normal
vector

Unit sphere Unit sphere Tangent cones Normal patch

Displace User constant min/max tex min/max tex min/max tex

Sunday, June 27, 2010

• Evaluate and bound a patch:

- Compute bounds per patch - one execution

- Evaluate per domain point - thousands of executions

Cost comparison

23

#instr ATI 5870 Intel Core i7

Domain shader 1 1 1

CBOX 1.5 1.6 1.5

OBBTEX 2.7 2.7 2.4

TPATCH 4.5 3.8 4.5

NPATCH 11 83 11

q(u, v) = M(p(u, v) + n̂(u, v)t(u, v))

Sunday, June 27, 2010

Total Screen Space Area

24

0x

4x

8x

12x

16x

SubD11 Killeroo Monsterfrog Spikelog

CBOX
OBBTEX
TPATCH
NPATCH

Sunday, June 27, 2010

Killeroo

25

CBOX OBBTEX TPATCH NPATCH

Heatmap - Screen space bounds overlap

Sunday, June 27, 2010

Convergence

26

CBOX OBBTEX TPATCH

Subdivision: 1x

Sunday, June 27, 2010

Convergence

27

CBOX OBBTEX TPATCH

Subdivision: 4x

Sunday, June 27, 2010

Convergence

28

CBOX OBBTEX TPATCH

Subdivision: 16x

Sunday, June 27, 2010

• Implemented all algorithms in DX11 hull shader for
SubD11 SDK example

• Constant displacement in normal direction

- Special case - allows for backface culling

• Improves slowest frame

DX11 implementation

29

6

8

10

12

14

16

16 x 16 Tessellation - Regular Patches

F
ra

m
e

T
im

e
(m

s)

NOCULL

CBOX

OBBTEX

TPATCH

Animation time

Sunday, June 27, 2010

Summary

• Algorithms for bounding displaced parametric surfaces

• Pros

- Handles difficult cases, e.g. large displacements, well

- Converges quickly when subdividing base patch

- Low bounding cost

• ~4x compared to a single domain shader execution

• Cons

- Approximate catmull clark + bounding algorithms put strain on
graphics hardware

- Increased memory footprint (min/max mipmaps)

30

Sunday, June 27, 2010

Acknowledgements

• Thanks

- Royal Swedish Academy of Sciences - Knut & Allice
Wallenberg Foundation

- Swedish Foundation for strategic research

- Intel Advanced Rendering Technology team

- Anonymous reviewers

• Models

- SubD11 - Microsoft DirectX11 sample

- Killeroo - Headus 3d tools

- Monsterfrog - Bay Raitt, Valve Software

31

Sunday, June 27, 2010

32

Thank you

Sunday, June 27, 2010

