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Abstract There are many large-scale graphs in real world

such as Web graphs and social graphs. The interest in

large-scale graph analysis is growing in recent years.

Breadth-First Search (BFS) is one of the most fundamental

graph algorithms used as a component of many graph

algorithms. Our new method for distributed parallel BFS

can compute BFS for one trillion vertices graph within half

a second, using large supercomputers such as the

K-Computer. By the use of our proposed algorithm, the

K-Computer was ranked 1st in Graph500 using all the

82,944 nodes available on June and November 2015 and

June 2016 38,621.4 GTEPS. Based on the hybrid BFS

algorithm by Beamer (Proceedings of the 2013 IEEE 27th

International Symposium on Parallel and Distributed Pro-

cessing Workshops and PhD Forum, IPDPSW ’13, IEEE

Computer Society, Washington, 2013), we devise sets of

optimizations for scaling to extreme number of nodes,

including a new efficient graph data structure and several

optimization techniques such as vertex reordering and load

balancing. Our performance evaluation on K-Computer

shows that our new BFS is 3.19 times faster on 30,720

nodes than the base version using the previously known

best techniques.

Keywords Distributed-memory � Breadth-First Search �
Graph500

1 Introduction

Graphs have quickly become one of the most important

data structures in modern IT, such as in social media where

the massive number of users is modeled as vertices and

their social connections as edges, and collectively analyzed

to implement various advanced services. Another example

is to model biophysical structures and phenomena, such as

brain’s synaptic connections, or interaction network

between proteins and enzymes, thereby being able to

diagnose diseases in the future. The common properties

among such modern applications of graphs are their mas-

sive size and complexity, reaching up to billions of edges

and trillions of vertices, resulting in not only tremendous

storage requirements but also compute power to conduct

their analysis.

With such high interest in analytics of large graphs, a

new benchmark called the Graph500 [8, 11] was proposed

in 2010. Since the predominant use of supercomputers had

been for numerical computing, most of the HPC bench-

marks such as the Top500 Linpack had been compute

centric. The Graph500 benchmark instead measures the

data analytics performance of supercomputers, in particular

those for graphs, with the metric called traversed edges per

second or TEPS. More specifically, the benchmark mea-

sures the performance of Breadth-First Search (BFS),

which is utilized as a kernel for important and more

complex algorithms such as connected components analy-

sis and centrality analysis. Also, the target graph used in

the benchmark is a scale-free, small-diameter graph called

the Kronecker graph, which is known to model realistic
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graphs arising out of practical applications, such as Web

and social networks, as well as those that arise from life

science applications. As such, attaining high performance

on the Graph500 represents the important abilities of a

machine to process real-life, large-scale graphs arising

from big-data applications.

We have conducted a series of work [11–13] to accel-

erate BFS in a distributed-memory environment. Our new

work extends the data structures and algorithm called

hybrid BFS [2] that is known to be effective small-diameter

graphs, so that it scales to top-tier supercomputers with tens

of thousands of nodes with million-scale CPU cores with

multi-gigabyte/s interconnect. In particular, we apply our

algorithm to the Riken’s K-Computer [15] with 82,944

compute nodes and 663,552 CPU cores, once the fastest

supercomputer in the world on the Top500 in 2011 with

over 10 Petaflops. The result obtained is currently No. 1 on

the Graph500 for two consecutive editions in 2016, with

significant TEPS performance advantage compared to the

result obtained on the Sequoia supercomputer hosted by

Lawrence Livermore National Laboratory in the USA,

which is a machine with twice the size and performance

compared to the K-Computer, with over 20 Petaflops and

embodying approximately 1.6 million cores. This demon-

strates that top supercomputers compete for the top ranks

on the Graph500, but the Top500 ranking does not neces-

sarily directly translate in this regard; rather architectural

properties other than the amount of FPUs, as well as

algorithmic advances, play a major role in attaining top

performance, indicating the importance of codesign of

future top-level machines including those for exascale,

with graph-centric applications in mind .

In fact, the top ranks of the Graph500 has been histor-

ically dominated by large-scale supercomputers to date,

with other competing infrastructures such as Clouds being

notably missing; performance measurements of the various

work including ours reveal that this is fundamental, in that

interconnect performance plays a significant role in the

overall performance of large-scale BFS, and this is one of

the biggest differentiators between supercomputers and

Clouds.

2 Background: Hybrid BFS

2.1 The Base Hybrid BFS Algorithm

We first describe the background BFS algorithms, includ-

ing hybrid algorithm as proposed in [2]. Figure 1 shows

the standard sequential textbook BFS algorithm. Starting

from the source vertex, the algorithm conducts the search

by effectively expanding the ‘‘frontier’’ set of vertices in a

breadth-first manner from the root. We refer to this search

direction as ‘‘top-down.’’

A contrasting approach is ‘‘bottom-up’’ BFS as shown in

Fig. 2. This approach is to start from the vertices that have

not been visited and iterate with each step investigating

whether a frontier node is included in its direct neighbor. If

it is, then the node is added to the frontier of visited nodes

for the next iteration. In general, this ‘‘bottom-up’’

approach is more advantageous over top-down when the

frontier is large, as it will quickly identify and mark many

nodes as visited. On the other hand, top-down is advanta-

geous when the frontier is small, as bottom-up will result in

wasteful scanning of many unvisited vertices and their

edges without much benefit.

For a large but small-diameter graphs such as the Kro-

necker graph used in the Graph500, the hybrid BFS algo-

rithm [2] (Fig. 3) that heuristically minimizes the number

of edges to be scanned by switching between top-down and

bottom-up, has been identified as very effective in signif-

icantly increasing the performance of BFS.

1: function breadth-first-search(vertices, source)
2: frontier ← {source}
3: next ← {}
4: parents ← [−1, −1, · · · , −1]
5: while frontier = {} do

6: top-down-step (vertices, frontier, next, parents)
7: frontier ← next
8: next ← {}
9: end while

10: return parents
11: end function

12: function top-down-step(vertices, frontier, next, parents)
13: for v ∈ frontier do

14: for n ∈ neighbors[v] do

15: if parents[n] = -1 then

16: parents[n] ← v
17: next ← next ∪ {n}
18: end if

19: end for

20: end for

21: end function

Fig. 1 Top-down BFS

1: function bottom-up-step(vertices, frontier, next, parents)
2: for v ∈ vertices do

3: if parents[v] = -1 then

4: for n ∈ neighbors[v] do

5: if n ∈ frontier then

6: parents[v] ← n
7: next ← next ∪ {v}
8: break
9: end if

10: end for

11: end if

12: end for

13: end function

Fig. 2 A step in bottom-up BFS
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2.2 Parallel and Distributed BFS Algorithm

In order to parallelize the BFS algorithm over distributed-

memory machines, it is necessary to spatially partition the

graphs. A proposal by Beamer et. al. [3] conducts 2-D

partitioning of the adjacency matrix of the graph in two

dimensions, as shown in Fig. 4, where adjacency matrix A

is partitioned into R� C submatrices.

Each of the submatrices is assigned to a compute node;

the compute nodes themselves are virtually arranged into a

R� C mesh, being assigned a 2-D index P(i, j). Figures 5

and 6 illustrate the top-down and bottom-up parallel-dis-

tributed algorithms with such a partitioning scheme. In the

figures, P( : , j) means all the processors in j-th column of

2-D processor mesh, and P(i, : ) means all the processors

in i-th row of 2-D processor mesh. Line 8 of Fig. 5 per-

forms the allgatherv communication operation among all

the processors in j-th column, and line 15 performs the

alltoallv communication operation among all the proces-

sors in i-th row.

In Figs. 5 and 6, f, n, and p correspond to frontier, next,

and parent in the base sequential algorithms, respectively.

Allgatherv() and alltoallv() are standard MPI collectives.

Beamer [3]’s proposal encodes f, c, n, w as 1 bit per vertex

for optimization. Parallel-distributed hybrid BFS is similar

to the sequential algorithm in Fig. 4, heuristically switch-

ing between top-down and bottom-up per each iteration

step, being essentially a hybrid of algorithms in Figs. 5 and

6.

In parallel 2-D bottom-up BFS algorithm in Fig. 6, each

search step is broken down into C substeps assuming that

an adjacency matrix is partitioned into R� C submatrices

in a two-dimensional, and during each substep, a given

vertex’s edges will be examined by only one processor.

During each substep, a processor processes 1/C of the

assigned vertices in the processor row. After each substep,

it passes on the responsibility for those vertices to the

processor to its right and accepts new vertices from the

processor to its left. This pairwise communication sends

which vertices have been completed (called found parents),

so that the next processor will have the knowledge to skip

examining over them. This has the effect of the processor

responsible for processing a vertex rotating right along the

row for each substep. When a vertex finds a valid parent to

become visited, its index along with its discovered parent is

queued up and sent to the processor responsible for the

corresponding segment of the parent array to update it.

Each step of the algorithm in Fig. 6 has four major oper-

ations [3];

Frontier Gather (per step) (lines 8–9)

Each processor is given the segment of the frontier

corresponding to their assigned submatrix.

Local discovery (per substep) (lines 11–20)

Search for parents with the information available locally.

Parent Updates (per substep) (lines 21–25)

Send updates of children that found parents and process

updates for own segment of parents.

1: function hybrid-bfs(vertices, source)
2: frontier ← {source}
3: next ← {}
4: parents ← [-1,-1,· · ·,-1]
5: while frontier = {} do

6: if next-direction() = top-down then

7: top-down-step (vertices, frontier, next, parents)
8: else

9: bottom-up-step (vertices, frontier, next, parents)
10: end if

11: frontier ← next
12: next ← {}
13: end while

14: return parents
15: end function

Fig. 3 Hybrid BFS

Fig. 4 R� C partitioning of adjacency matrix A

1: function parallel-2D-top-down(A, source)
2: f ← {source}
3: n ← {}
4: π ← [−1, −1, · · · , −1]
5: for all compute nodes P (i, j) in parallel do

6: while f = {} do

7: transpose-vector(fi,j)
8: fi = allgatherv(fi,j ,P (:, j))
9: ti,j ← {}

10: for u ∈ fi do

11: for v ∈ Ai,j(:, u) do

12: ti,j ← ti,j ∪ {(u, v)}
13: end for

14: end for

15: wi,j ← alltoallv(ti,j , P (i, :))
16: for (u, v) ∈ wi,j do

17: if πi,j(v) = −1 then

18: πi,j(v) ← u
19: ni,j ← ni,j ∪ v
20: end if

21: end for

22: f ← n
23: n ← {}
24: end while

25: end for

26: return π
27: end function

Fig. 5 Parallel-distributed 2-D top-down algorithm
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Rotate Completed (per substep) (line 26)

Send completed to the right neighbor and receive

completed for the next substep from the left neighbor.

3 Problems of Hybrid BFS in Extreme-Scale

Supercomputers

Although the algorithm in Sect. 2 would work efficiently

on a small-scale machine, for extremely large, up to and

beyond million-core scale supercomputers toward exas-

cale, various problems would manifest themselves which

severely limit the performance and scalability of BFS. We

describe the problems in Sect. 3 and present our solutions

in Sect. 4.

3.1 Problems with the Data Structure

of the Adjacency Matrix

The data structure describing the adjacency matrix is of

significant importance as it directly affects the computa-

tional complexity of graph traversal. For small machines,

the typical strategy is to employ the Compressed Sparse

Row (CSR) format, commonly employed in numerical

computing to express sparse matrices. However, we first

show that direct use of CSR is impractical due to its

memory requirements on a large machine; we then show

that the existing proposed solutions, DCSR [4] and Coarse

index ? Skip list [6] that intend to reduce the footprint at

the cost of increased computational complexity, are still

insufficient for large graphs with significant computational

requirement.

3.1.1 Compressed Sparse Row (CSR)

CSR utilizes two arrays, dst that holds the destination

vertex ID of the edges in the graph and row-starts that

describes the offset index of the edges of each vertex in the

dst array. Given a graph with V vertices and E edges, the

size of dst ¼ E and row-starts ¼ V , respectively, so the

required memory would be as follows in a sequential

implementation:

V þ E ð1Þ

For parallel-distributed implementation with R� C

partitioning, if we assume that the edges and vertices are

distributed evenly, since the number of rows in the dis-

tributed submatrices is V / R, the required memory per

node is:

1: function parallel-2D-bottom-up(A, source)
2: f ← {source} bitmap for frontier
3: c ← {source} bitmap for completed
4: n ← {}
5: π ← [−1, −1, · · · , −1]
6: for all compute nodes P (i, j) in parallel do

7: while f = {} do

8: transpose-vector(fi,j)
9: fi =allgatherv(fi,j , P (:, j))

10: for s in 0 . . . C − 1 do C sub-steps
11: ti,j ← {}
12: for u ∈ ci,j do

13: for v ∈ Ai,j(u, :) do

14: if v ∈ fi then

15: ti,j ← ti,j ∪ {(v, u)}
16: ci,j ← ci,j\u
17: break
18: end if

19: end for

20: end for

21: wi,j ← sendrecv(ti,j , P (i, j + s), P (i, j − s))
22: for (v, u) ∈ wi,j do

23: πi,j(v) ← u
24: ni,j ← ni,j ∪ v
25: end for

26: ci,j ← sendrecv(ci,j , P (i, j + 1), P (i, j − 1))
27: end for

28: f ← n
29: b ← {}
30: end while

31: end for

32: return π
33: end function

Fig. 6 Parallel-distributed 2-D

bottom-up algorithm
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V

R
þ

E

RC
ð2Þ

By denoting the average vertices per node as V 0 and the

average degree of the graph as d̂, the following equation

holds:

V 0 ¼
V

RC
;E ¼ Vd̂ ð3Þ

(2) can then be expressed as follows:

V 0C þ V 0d̂ ð4Þ

This indicates that, for large machines, as C gets larger,

the memory requirement per node increases, as the memory

requirement of row-starts is V 0C. In fact, for very large

graphs on machines with thousands of nodes, row-starts

can become significantly larger than dst, making its

straightforward implementation impractical.

There is a set of work that proposes to compress row-

starts, such as DCSR [4] and Coarse index ? Skip list [6],

but they involve non-negligible performance overhead as

we describe below:

3.1.2 DCSR

DCSR [4] was proposed to improve the efficiency of

matrix-matrix multiplication in a distributed-memory

environment. The key idea is to eliminate the row-starts

value for rows that has no nonzero values, thereby com-

pressing row-starts. Instead, two supplemental data struc-

tures called the JC and AUX arrays are employed to

calculate the appropriate offset in the dst array. The

drawback is that one needs to iterate in order to navigate

over the JC array from the AUX array, resulting in sig-

nificant overhead for repeated access of sparse structures,

which is a common operation for BFS.

3.1.3 Coarse Index ? Skip List

Another proposal [6] was made in order to efficiently

implement Breadth-First Search for 1-D partioning in a

distributed-memory environment. Sixty-four rows of non-

zero elements are batched into a skip list, and by having the

row-starts hold the pointer to the skip list, this method

compresses the overall size of the row-starts to be 1/64th

the original size. Since each skip list embodies 64 rows of

data, we can traverse all 64 rows contiguously, making

algorithms with batched row access efficient in addition to

data compression. However, for sparse accesses, on aver-

age one would have to traverse and skip over 31 elements

to access the designated matrix element, potentially intro-

ducing significant overhead.

3.1.4 Other Sparse Matrix Formats

There are other known sparse matrix formats that do not

utilize row-starts [9], significantly saving memory; how-

ever, although such formats would be useful for algorithms

that systematically iterate over all elements of a matrix,

they perform badly for BFS where individual accesses to

the edges of a given vertex need to be efficient.

3.2 Problems with Communication Overhead

Hybrid BFS with 2-D partitioning scales for small number

of nodes, but its scalability is known to quickly saturate

when the number of nodes scales beyond thousands [3].

In particular, for distributed hybrid BFS over small-di-

ameter large graph such as the Graph500 Kronecker graph,

it has been reported that bottom-up search involves sig-

nificant longer execution time compared to top-down

[3, 14]. Table 1 shows the communication cost of bottom-

up search when f, c, n, w are implemented as bitmaps as

proposed in [3]. Each operation corresponds to the program

in the following fashion: Transpose is line 8 of Fig. 6,

Frontier Gather is line 9, Parent Update is line 21, and

Rotate Completed is line 26, respectively.

As we can see in Table 1, the communication cost of

Frontier Gather and Rotate Completed is proportional to R

and C in the submatrix portioning—being one of the pri-

mary sources overhead when number of nodes are in the

thousands or more. Moreover, lines 21 and 26 involve

synchronous communication with other nodes, and the

number of communication is proportional to C, again

becoming significant overhead. Finally, it is very difficult

to achieve perfect load balancing, as a small number of

vertices tend to involve number of edges that could be

orders of magnitude larger than the average; this could

result in sever load imbalance in simple algorithms that

assume even distribution of vertices and edges.

Such difficulties have been the primary reasons why one

could not obtain near linear speedups, even in weak scal-

ing, as the number of compute nodes the associated graph

sizes increased to thousands or more on a very large

machine. We next introduce our extremely scalable hybrid

BFS that alleviates these problems, to achieve utmost

scalability for Graph500 execution on the K-Computer.

4 Our Extremely Scalable Hybrid BFS

The problems associated with previous algorithms are

largely storage and communication overheads of extremely

large graphs scaling to be analyzed over thousands of

26 K. Ueno et al.
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nodes or more. These are fundamental to the fact that we

are handling irregular, large-scale ‘‘big’’ data structures and

not floating point numerical values. In order to alleviate the

problems, we propose several solutions that are unique to

graph algorithms

4.1 Bitmap-Based Sparse Matrix Representation

First, our proposed bitmap-based sparse matrix represen-

tation allows extremely compact representation of the

adjacency matrix, while still being very efficient in

retrieving the edges between given vertices. We compress

the CSR row-starts data structure by only holding the

starting position of the sequence of edges for vertices that

has one or more edges and then having an additional bit-

map to identify whether a given vertex has more than one

edge or not, one bit per vertex.

In our bitmap-based representation, since the sequence

of edges is held in row-starts in the same manner as CSR,

the main point of the algorithm is to how to identify the

starting index of the edges given a vertex efficiently, as

shown in Fig. 7. Here, B is number of bits in a word

(typically 64), ‘‘�’’ and ‘‘&’’ are the bit-shift and bitwise

operators, and mod is the modulo operator. Given a vertex

v, the index position of v in the row-starts corresponds to

the number of vertices with nonzero edges from the vertex

zero, which is equivalent to the number of bits that are 1

leading up to the v’th position in the bitmap. We further

optimize this calculation by counting the summation of the

number of 1 bits on a word-by-word basis and store it in the

offset array. This effectively allows constant calculation of

the number of nonzero bits for v by looking at the offset

value and the number of bits that are one leading up to the

v’s position in that particular word.

Table 2 shows a comparative example of bitmap-based

sparse matrix representation with 8 vertices and 4 edges.

As we observe, much of the repetitive waste resulting from

relatively small number of edges compared to vertices

arising in CSR is minimized. Table 3 shows the actual

savings we achieve over CSR in a real setting in a

Graph500 benchmark. Here, we partition a graph with 16

billion vertices and 256 billion edges into 64� 32 ¼ 2048

nodes in 2-D. Here, we achieve similar level of compres-

sion as previous work such as DCSR and Coarse index ?

Skip list, achieving nearly 60% reduction in space. As we

see later, this compression is achieved with minimal exe-

cution overhead, in contrast to the previous proposals.

4.2 Reordering of the Vertex IDs

Another associated problem with BFS is the randomness of

memory accesses of graph data, in contrast to traditional

numerical computing using CSR such as the Conjugate

Gradient method, where the access to the row elements of a

matrix can become contiguous. Here, we attempt to exploit

similar locality properties.

The basic idea is as follows: As described in Sect. 2.2,

much of the information regarding hybrid BFS is held in

bitmaps that represent the vertices, each bit corresponding

to a vertex. When we execute BFS over a graph, higher-

Table 1 Communication cost of bottom-up search [3]

Operation Comm type Comm complexity per step Data transfer per each search (64 bit word)

Transpose P2P O(1) sbV=64

Frontier Gather Allgather O(1) sbVR=64

Parent Updates P2P O(C) 2V

Rotate Completed P2P O(C) sbVC=64

1: function make-offset(offset, bitmap)
2: i ← 0
3: offset[0] ← 0
4: for each word w of bitmap do

5: offset[i + 1] ← offset[i] + popcount(w)
6: i ← i + 1
7: end for

8: end function

9: function row-start-end(offset, bitmap, row-starts, v)
10: w ← v/B
11: b ← (1 (v mod B))
12: if (bitmap[w] & b) = 0 then

13: p ← offset[w] + popcount(bitmap[w] & (b − 1))
14: return (row-starts[p], row-starts[p + 1])
15: end if

16: return (0, 0) Vertex v has no edge
17: end function

Fig. 7 Bitmap-based sparse

matrix: algorithms to calculate

the offset and identify the start

and end indices of a row of

edges given a vertex
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degree vertices are typically accessed more often; as such,

by clustering access to such vertices by reordering them

according to their degrees (i.e., # of edges), we can expect

to achieve higher locality. This is similar to switching rows

in a matrix in a sparse numerical algorithm to achieve

higher locality. In [12], they proposed such reordering for

top-down BFS, where they only utilize the reordered ver-

tices where needed, while maintaining the original BFS

tree with original vertex IDs for overall efficiency.

Unfortunately, this method cannot be used for hybrid BFS;

instead, we propose the following algorithm.

Reordered IDs of the vertices are computed by sorting

them top-down according to their degrees on a per-node

basis and then reassigning the new IDs according to their

order. We do not conduct any inter-node reordering. A

subadjacency matrix on each node stores reordered IDs of

the vertices. The mapping information between original

vertex ID and its reordered vertex ID is maintained by an

owner node where the vertex is located. When constructing

an adjacency matrix of the graph, the original vertex ID is

converted to the reordered ID by (a) firstly performing all-

to-all communication once over all the nodes in a row of

processor grid in 2-D partitioning to compute the degree

information of each vertex, and then (b) secondly com-

puting the reordered IDs by sorting all the vertices

according to their degrees and then (c) thirdly performing

all-to-all communication again over all the nodes in a

column and a row of processor grid in order to convert the

vertex IDs in the subadjacency matrix on each node to the

reordered IDs.

The drawback with this scheme requires expensive all-

to-all communication multiple times: Since the resulting

BFS tree had the reordered IDs for the vertices, we must

reassign their original IDs. However, if we are to conduct

Table 2 Examples of bitmap-

based sparse matrix

representation

Edges list SRC 0 0 6 7

DST 4 5 3 1

CSR Row-starts 0 2 2 2 2 2 2 3 4

DST 4 5 3 1

Bitmap-based sparse matrix representation Offset 0 1 3

Bitmap 1 0 0 0 0 0 1 1

Row-starts 0 2 3 4

DST 4 5 3 1

DCSR AUX 0 1 1 3

JC 0 6 7

Row-starts 0 2 3 4

DST 4 5 3 1

Table 3 Theoretical order and

the actual per-node measured

memory consumptions of

bitmap-based CSR compared to

previous proposals

Data structure CSR Bitmap-based CSR

Order Actual Order Actual

Offset – – V 0C=64 32 MB

Bitmap – – V 0C=64 32 MB

Row-starts V 0C 2048 MB V 0p 190 MB

DST V 0d̂ 1020 MB V 0d̂ 1020 MB

Total V 0ðC þ d̂Þ 3068 MB V 0ðC=32þ pþ d̂Þ 1274 MB

Data structure DCSR Coarse index ? Skip list

Order Actual Order Actual

AUX V 0p 190 MB – –

JC V 0p 190 MB – –

Row-starts V 0p 190 MB V 0C=64 32 MB

DST or skip list V 0d̂ 1020 MB V 0d̂ þ V 0p 1210 MB

Total V 0ð3pþ d̂Þ 1590 MB V 0ðC=64þ pþ d̂Þ 1242 MB

We partition a Graph500 graph with 16 billion vertices and 256 billion edges into 64� 32 ¼ 2048 Nodes
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such reassignment at the very end, the information must be

exchanged among all the nodes using a very expensive all-

to-all communication for large machines again, since the

only node that has the original ID info of each vertex is the

node that owns it. In fact, we show in Sect. 6 that all-to-all

is a significant impediment in our benchmarks.

The solution to this problem is to add two arrays

SRC(Orig) and DST(Orig) as shown in Table 4. Both

arrays hold the original indices of the reordered vertices.

When the algorithm writes to the resulting BFS tree, the

original ID is referenced from either of the arrays instead of

the reordered ID, avoiding all-to-all communication. Also,

a favorable by-product of vertex reordering is removal of

vertices with no edges, allowing further compaction of the

data structure, since such vertices will never show up in the

resulting BFS tree.

4.3 Optimizing Inter-Node Communications

for Bottom-Up BFS

The original bottom-up BFS algorithm shown in Fig. 6

conducts communication per each substep, C times per

each iteration assuming that we have 2-D partitioning of

R� C for an adjacency matrix). For large systems, such

frequent communication presents significant overhead and

thus subject to the following optimizations:

4.3.1 Optimizing Parent Updates Communication

Firstly, we cluster the Parent Updates communication. The

sendrecv() communication for line 21 in Fig. 6 sends a

request called ‘‘Parent Updates’’ to update the BFS tree

located at the owner node with the vertices that found a

parent in the BFS tree, but such a request can be sent at any

time, even after other processing is finished. As such we

cluster the Parent Updates as Alltoallv() communication as

shown in Fig. 8.

4.3.2 Overlapping Computation and Communication

in Rotate Completed Operation

We also attempt to overlap computation in lines 12–20

(Fig. 8) and communication in line 21 in ‘‘Rotate Com-

pleted’’ operation mentioned in Sect. 2. If the substeps are

set to C steps as the original method, we would not be able

to overlap the computation and communication since the

computational result depends on the result in a previous

substep. Thus, we increase this substep from C to multiple

substeps such as 2C, 4C. For the K-Computer described in

Sect. 5, we increase this to 4C. If the substeps is set to 4C,

the computational result depends on the one in 4 substeps

before, and we can perform parallel execution by over-

lapping computation and communication for 4 substeps. In

this case, when the computation is performed for 2 sub-

steps, the communication for other 2 substeps are simul-

taneously executed. The communication is accelerated by

allocating these 2 substeps to 2 different communication

channels in the 6-D torus network of the K-Computer that

supports multiple channel communication using rDMA.

4.4 Reducing Communication with Better

Partitioning

We further reduce communication via better partitioning of

the graph. The original simple 2-D partitioning by Beamer

[3] requires transpose-vector communication per each step.

Yoo [16] improves on this by employing block-cyclic

distribution, eliminating the need for transpose vector at

the cost of added code complexity. We adapt Yoo’s

method so that it becomes applicable to hybrid BFS

(Fig. 9; Table 5).

4.5 Load Balancing the Top-Down Algorithm

We resolve the following load-balancing problem for the

top-down algorithm. As shown in Fig. 5 lines 10–14, we

need to create ti;j from the edges of each vertex in the

frontier; this is implemented so that the each vertex pair of

the edges is placed in a temporary buffer and then copied to

the communication buffer just prior to alltoallv(). Here, as

we see in Fig. 10, thread parallelism is utilized so that each

thread gets assigned equal number of frontier vertices.

However, since the distribution of edges per each vertex is

quite uneven, this will cause significant load imbalance

among the threads.

A solution to this problem is shown in Fig. 11, where we

conduct partitioning and thread assignment per destination

nodes. We first extract the range of edges and copy the

edges directly without copying into a temporary buffer. In

the figure, owner(v) is a function that returns the owner

node of vertex v and edge-range(Ai;jð:; uÞ; k) returns the

range in edge list Ai;jð:; uÞ for a given owner node k using

binary search, as the edge list is sorted in destination ID

order. One caveat, however, is when the vertex has only a

small number of edges; in such a case, the edge-range data

ri;j;k could become larger and thus inefficient. We alleviate

Table 4 Adding the original

IDs for both the source and the

destination

Offset 0 1 3

Bitmap 1 0 0 0 0 0 1 1

SRC(Orig) 2 0 1

Row-starts 0 2 3 4

DST 2 3 0 1

DST(Orig) 4 5 3 1
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this problem by using a hybrid method depending on the

number of edges, where we switch between the simple

copy method and the range method according to the

number of edges.

1: function parallel-2D-bottom-up-opt(A, source)
2: f ← {source} bitmap for frontiers
3: c ← {source} bitmap for completed
4: n ← {}
5: π ← [−1, −1, · · · , −1]
6: for all compute nodes P (i, j) in parallel do

7: while f = {} do

8: transpose-vector(fi,j)
9: fi =allgatherv(fi,j , P (:, j))

10: for s in 0 . . . C − 1 do

11: ti,j ← {}
12: for u ∈ ci,j do

13: for v ∈ Ai,j(u, :) do

14: if v ∈ fi then

15: ti,j ← ti,j ∪ {(v, u)}
16: ci,j ← ci,j\u
17: break
18: end if

19: end for

20: end for

21: ci,j ←sendrecv(ci,j , P (i, j + 1), P (i, j − 1))
22: end for

23: wi,j ←alltoallv(ti,j , P (i, :))
24: for (v, u) ∈ wi,j do

25: πi,j(v) ← u
26: ni,j ← ni,j ∪ v
27: end for

28: f ← n
29: n ← {}
30: end while

31: end for

32: return π
33: end function

Fig. 8 Bottom-up BFS with

optimized inter-node

communication

Fig. 9 Block-cyclic 2-D distribution proposed by Yoo [16]

Table 5 Bitmap-based CSR data communication volume (difference from Table 1 is in italics)

Operation Comm type Comm complexity per step Data transfer per each search (64 bit word)

Frontier Gather Allgather O(1) sbVR=64

Parent Updates Alltoall Oð1Þ 2V

Rotate Completed P2P O(C) sbVC=64

1: function top-down-sender-naive(Ai,j , fi)
2: for u ∈ fi in parallel do

3: for v ∈ Ai,j(:, u) do

4: k ← owner(v)
5: ti,j,k ← ti,j,k ∪ {(u, v)}
6: end for

7: end for

8: end function

Fig. 10 Simple thread parallelism for top-down BFS
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5 Machine Architecture-Specific Communication

Optimizations for the K-Computer

The optimizations we have proposed so far are applicable

to any large supercomputer that supports MPI?OpenMP

hybrid parallelism. We now present further optimizations

specific to the K-Computer, exploiting its unique archi-

tectural capabilities. In particular, the node-to-node inter-

connect employed in the K-Computer is a proprietary

‘‘Tofu’’ network that implements a six-dimensional torus

topology, with high injection bandwidth and multi-direc-

tional DMA to achieve extremely high performance in

communication-intensive HPC applications. We exploit the

features of the Tofu network to achieve high performance

on BFS as well.

5.1 Mapping to the Six-Dimensional Torus ‘‘Tofu’’

Network

Since our bitmap-based hybrid BFS employs two-dimen-

sional R� C partitioning, there is a choice of how to map

this onto the six-dimensional Tofu network, whose

dimensions are named ‘‘x, y, z, a, b, c.’’ One obvious

choice is to assign three dimensions to each R and C (say

R ¼ x; y; z and C ¼ a; b; c), allowing physically proximal

communications for adjacent nodes in the R� C parti-

tioning. Another interesting option is to assign R ¼ y; z and

C ¼ x; a; b; c, where we achieve square 288� 288

partitioning when we use the entire K-Computer. We test

both cases in the benchmark for comparison.

5.2 Bidirectional Simultaneous Communication

for Bottom-Up BFS

Each node on the K-Computer has six 5 Gigabyte/s bidi-

rectional links to comprise a six-dimensional torus and

allows simultaneous DMA to four of the six links. Blue-

Gene/Q has a similar mechanism. By exploiting such

simultaneous communication capabilities over multiple

links, we can significantly speed up the communication for

bottom-up BFS. In particular, we have optimized Rotate

Completed communication by communicating simultane-

ously to both directions, as shown in Fig. 12. Here, ci,j is

the data to be communicated, and s is the number of steps

up to 2C or 4C steps. We case-analyze s to even/odd to

communicate to different directions simultaneously .

One thing to note is that, despite these K-Computer-

specific optimizations, we still solely use the vendor MPI

for communication and do not employ any machine-

specific low-level communication primitives that are non-

portable.

6 Performance Evaluation

We now present the results of the Graph500 benchmark

using our hybrid BFS on the entire K-Computer. The

Graph500 benchmark measures the performance of each

machine by the (traversed edges per second (TEPS) value

of the BFS algorithm on a synthetically generated Kro-

necker graphs, with parameters A=0.57, B=0.19, C=0.19,

D=0.05. The size of the graph is expressed by the scale

parameter where the #vertices ¼ 2Scale, and the

# edges ¼ # vertices � 16:

The K-Computer is located at the Riken AICS facility in

Japan, with each node embodying a 8-core Fujitsu

SPARC64 VIIIfx processor and 16 GB of memory. The

Tofu network composes a six-dimensional torus as men-

tioned, with each link being bidirectional 5GB/s. The total

number of nodes is 82,944, or embodying 663,552 CPU

cores and approximately 1.3 Petabytes of memory.

6.1 Effectiveness of the Proposed Methods

We measure the effectiveness of the proposed methods

using up to 15,360 nodes of the K-Computer. We increased

the number of nodes in the increments of 60, with mini-

mum being Scale 29 (approximately 537 million vertices

and 8.59 billion edges), up to Scale 37. We picked a ran-

dom vertex as the root of BFS and executed each

1: function top-down-sender-load-balanced(Ai,j , fi)
2: for u ∈ fi in parallel do

3: for k ∈ P (i, :) do

4: (v0, v1) ← edge-range(Ai,j(:, u), k)
5: ri,j,k ← ri,j,k ∪ {(u, v0, v1)}
6: end for

7: end for

8: for k ∈ P (i, :) in parallel do

9: for (u, v0, v1) ∈ ri,j,k do

10: for v ∈ Ai,j(v0 : v1, u) do

11: ti,j,k ← ti,j,k ∪ {(u, v)}
12: end for

13: end for

14: end for

15: end function

Fig. 11 Load-balanced thread parallelism for top-down BFS

1: function sendrecv-completed(ci,j , s)
2: route ← s mod 2
3: if route = 0 then

4: ci,j ← sendrecv(ci,j , P (i, j + 1), P (i, j − 1))
5: else

6: ci,j ← sendrecv(ci,j , P (i, j − 1), P (i, j + 1))
7: end if

8: end function

Fig. 12 Bidirectional communication in bottom-up BFS
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benchmark 300 times. The reported value is the median of

the 300 runs.

We first compared our bitmap-based sparse matrix rep-

resentation to previous approaches, namely DCSR [4] and

Coarse index ? Skip list [6]. Figure 13 shows the weak

scaling result of the execution performance in GTEPS, and

Figs. 14, 15, and 16 shows various execution metrics—

#instructions, time, and memory consumed. The processing

of ‘‘Reading Graph’’ in Figs. 14 and 15 corresponds to

lines 10–14 of Fig. 5 and lines 12–20 of Fig. 6. ‘‘Syn-

chronization’’ is the inter-thread barrier synchronization

over all computation. Since the barrier is implemented with

‘‘spin wait,’’ the number of executed instructions for this

barrier is large compared with others.

Our proposed method excels in all aspects in compar-

ison with others in performance, while being modest in

memory consumption. In particular, for graph reading and

manipulation, our proposed method is 5.5 times faster than

DCSR and 3.0 times faster than Coarse index ? Skip list,

while the memory consumption is largely equivalent.

Figure 17 shows the effectiveness of reordering of ver-

tex ID. We compare the four methodological variations,

namely (1) our proposed method, (2) reorder but reassign

the original ID at the very end using alltoall(), (3) no vertex

reordering, and (4) no vertex reordering but pre-eliminate

the vertices with no edges. The last method (4) was

introduced to assess the effectiveness of our approach more

purely with respect to locality improvement, as (1)

embodies the effect of both locality improvement and zero-

edge vertex elimination. Figure 17 shows that method (2)

involves significant overhead in alltoall() communication

for large systems, even trailing the non-reordered case.

Method (4) shows good speedup over (3), and this is due to

the fact that the Graph500 graphs generated at large scale

contain many vertices with zero edges—for example, for

15,360 nodes at Scale 37, more than half the vertices have

zero edges. Finally, our method (1) improves upon (4),

indicating that vertex reordering has notable merit in

improving the locality.

Fig. 13 Evaluation of bitmap-based sparse matrix representation

compared to previously proposed methods (K-Computer, weak

scaling)

Fig. 14 Performance breakdown—# of instructions per step (Scale 33

graph on 1008 nodes)

Fig. 15 Performance breakdown—execution time per step (Scale 33

graph on 1008 nodes)

Fig. 16 Memory consumption per node on BFS execution

Fig. 17 Reordering of vertex IDs and comparisons to other proposed

methods
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Next, we investigate the effects of load balancing in top-

down BFS. Figure 18 shows the results, where ‘‘edge-

range’’ is using the algorithm in Fig. 13, whereas ‘‘all-

temporary-buffer’’ is using the algorithm in Fig. 10, and

‘‘Our proposal’’ is the hybrid of the both. In the hybrid

algorithm, the longer edge list is processed with the algo-

rithm Fig. 13 and the shorter edge list is processed with the

algorithm Fig. 10. We set the threshold for the length of the

edge list to 1000. At some node sizes, the performance of

‘‘Edge-range’’ is almost identical to our proposed hybrid

method. But this hybrid method performs best of those

three methods.

Figure 19 shows the cumulative effect of all the opti-

mization. The naive version uses DCSR without vertex

reordering, and load-balanced using the algorithm in

Fig. 10. By applying all the optimizations we have

presented, we achieve 3.19 times speedup over the original

version.

Figure 20 shows the per-node performance of weak

scaling our proposed algorithm, where it slowly degrades

as we scale the problem. Figure 21 shows the breakdown

of time spent per each BFS for 60 and 15,360 nodes,

exhibiting that the slowdown is largely due to increase in

communication, despite various communication optimiza-

tions. This demonstrates that, even with an interconnect as

fast as the K-Computer, network is still the bottleneck for

large graphs, and as such, further hardware and algorithmic

improvements are desirable for future extreme graph

processing.

6.2 Using the Entire K-Computer

By using the entire K-Computer, we were able to obtain

38,621.4 GTEPS using 82,944 nodes and 663,552 cores

with a Scale 40 problem in June 2015. This bested the

previous record of 23,751 GTEPS recorded by LLNL’s

Sequoia BlueGene/Q supercomputer, with 98,304 nodes

and 1,572,864 cores with a Scale 41 problem.

In the Tofu network of the K-Computer, a position in a

six-dimensional mesh/torus network is given by six-di-

mensional coordinates, x, y, z, a, b, c. The x- and y-axes

are coordinate axes that connect racks, and the length of the

Fig. 18 Effects of hybrid load balancing on top-down BFS

Fig. 19 Cumulative effect of all the proposed optimizations

Fig. 20 Per-node execution performance in weak scaling

Fig. 21 Breakdown of performance numbers, 60 nodes versus 15,360

Fig. 22 Coordinates of K-Computer

Efficient Breadth-First Search on Massively Parallel and Distributed-Memory Machines 33

123



x- and y-axes corresponds to the scale of the system. The z-

and b-axes connect system boards, and the a- and c-axes

are coordinate axes with a length of 2 that connect pro-

cessors on each system board [1, 15]. For 2-D partitioning

of a graph, yz� xabc is used instead of xyz� abc and then

we can obtain 288� 288 for balanced 2-D mesh. The value

for each coordinate is shown in Fig. 22 to fully leverage the

full nodes of the K-Computer and balance the value of

R and C in 2-D partitioning.

By all means, it is not clear whether we have hit the

ultimate limit of the machine, i.e., whether or not we can

tune the efficiency any further just by algorithmic changes.

We know that BFS algorithm used for Sequoia is quite

different from our proposed one, and it would be interest-

ing to compare the algorithms vs. machines effect by cross-

execution of the two (our algorithm on Sequoia and

LLNL’s algorithm on the K-Computer) and conducting a

detailed analysis of both to investigate further optimization

opportunities.

7 Related Work

As we mentioned, Yoo [16] proposed an effective method

for 2-D graph partitioning for BFS in a large-scale dis-

tributed-memory computing environment; the base algo-

rithm itself was a simple top-down BFS and was evaluated

on a large-scale environment 32,768 node BlueGene/L.

Buluc et al. [5] conducted extensive performance studies

of partitioning schemes for BFS on large-scale machines at

LNBL, Hopper (6,392 nodes) and Franklin (9,660 nodes),

comparing 1-D and 2-D partitioning strategies. Satish et al.

[10] proposed an efficient BFS algorithm on commodity

supercomputing clusters consisting of Intel CPU and the

Infiniband Network. Checconi et al. [7] proposed an effi-

cient parallel-distributed BFS on BlueGene using a com-

munication method called ‘‘wave’’ that proceeds

independently along the rows of the virtual processor grids.

All the efforts here, however, use a top-down approach

only as the underlying algorithm and are fundamentally at a

disadvantage for graphs such as the Graph500 Kronecker

graph whose diameter is relatively small compared to its

size, as many real-world graphs are.

Hybrid BFS by Beamer [2] is the seminal work that

solves this problem, on which our work is based. Efficient

parallelization in a distributed-memory environment on a

supercomputer is much more difficult and includes the

early work by Beamer [3] and the work by Checconi [6]

which uses a 1-D partitioning approach. The latter is very

different to ours, not only in the difference in partitioning

being 1-D compared to our 2-D, but also in taking

advantage of the simplicity in ingeniously replicating the

vertices with large number of edges among all the nodes,

achieving very good overall load balancing. Performance

evaluation on BlueGene/Q 65536 nodes has achieved

16,599 GTEPS, and it would be interesting to consider

utilizing some of the strategies in our work.

8 Conclusion

For many graphs we see in the real world, with relatively

small diameter compared to its size, hybrid BFS is known

to be very efficient. The problem has been that, although

various algorithms have been proposed to parallelize the

algorithm in a distributed-memory environment, such as

the work by Beamer [3] using 2-D partitioning, the algo-

rithms failed to scale or be efficient for modern machines

with tens of thousands of nodes and million-scale cores,

due to the increase in memory and communication

requirements overwhelming even the best machines. Our

proposed hybrid BFS algorithm overcomes such problems

by combination of various new techniques, such as bitmap-

based sparse matrix representation, reordering of vertex ID,

as well as new methods for communication optimization

and load balancing. Detailed performance on the K-Com-

puter revealed the effectiveness of each of our approach,

with the combined effect of all achieving over 3� speedup

over previous approaches, and scaling to the entire 82,944

nodes of the machine effectively. The resulting perfor-

mance of 38,621.4 GTEPS allowed the K-Computer to be

ranked No. 1 on the Graph500 in June 2015 by a significant

margin, and it has retained this rank to this date as of June

2016. We hope to further advance the optimizations to

other graph algorithms, such as SSSP, on large-scale

machines.
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