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Abstract— We consider the problem of broadcasting in an ad- information to all other nodes. Such all-to-all communizat
hoc wireless network, where all nodes of the network are sources js traditionally used during discovery phases, for example
that want to transmit information to all other nodes. Our figure by routing protocols; more recently, it has been described

of merit is energy efficiency, a critical design parameter for K hani f licati | communication in
wireless networks since it directly affects battery life and thus as a key mechanism lor application fayer

network lifetime. We prove that applying ideas from network intermittently connected ad-hoc networks [4]. Moreoveisi
coding allows to realize significant benefits in terms of energy directly related to the problem of content distribution.eTh
efficiency for the problem of broadcasting, and propose very problem of broadcasting is interesting not only because it
simple algorithms that allow to realize these benefits in practice. abstracts diverse practical applications, but also becthis

In particular, our theoretical analysis shows that network coding . . . . . U i
improves performance by a constant factor in fixed networks. We is a situation where information lelng_ is clearly beneﬂlgla
calculate this factor exactly for some canonical configurations. and where we thus expect network coding to offer benefits.
We then show that in networks where the topology dynamically =~ Energy efficiency directly affects battery life and thus is a
changes, for example due to mobility, and where operations critical design parameter for wireless ad-hoc networksti-Op
are restricted to simple distributed algorithms, network coding mizing broadcasting for energy efficiency has been extehsiv

can offer improvements of a factor of logn, where n is the . . . ;
number of nodes in the network. We use the insights gained from studied during the last decade. Applying network coding for

the theoretical analysis to propose low-complexity distributed Wireless applications in general has also been proposed and
algorithms for realistic wireless ad-hoc scenarios, discuss a investigated in the more recent literature. We review boésé
number of practical considerations, and evaluate our algorithms veins of related work in Section II.
through packet level simulation. Our interest is on the specific problem of broadcasting, that
is, all-to-all communication. As figure of merit we use energ
efficiency, calculated as the number of transmissions redui
for an information unit to reach all nodes in the network. For
Network coding is an area that has emerged in 2000 [his specific problem, we derive exact theoretical charicte
[2], and has since then attracted an increasing interest, asions of the expected benefits, as well as develop algorithms
promises to have a significant impact on both the theory atitht allow to realize these benefits in a distributed mar@®aer.
practice of networks. We can broadly define network codingpvel contributions can be summarized as follows.
as allowing intermediate nodes in a network to not only for- We start by examining fixed networks, that is, networks
ward but also combine the incoming independent informatiavhere the topology and link capacities do not change over
flows. Combining independent data streams allows to betténe. In this case we show that network coding can at most
tailor the information flow to the network environment andffer a constant factor of benefits in terms of energy efficjen
accommodate the demands of specific traffic patterns. We exactly calculate these benefits for a number of canonical
The first paradigm that illustrated the usefulness of ndtwoconfigurations, such as the circular network and the squide g
coding established throughput benefits when multicastieg o network. The same analysis directly extends to all lattices
error-free links. Since then, we have realized that we canOur ultimate goal is not only to investigate possible ben-
get benefits not only in terms of throughput, but also iefits network coding can offer, but in particular, to deploy
terms of complexity, scalability, and security. These ligse network coding ideas in a practical setting and proposelsimp
are possible not only in the case of multicasting, but alsdgorithms that allow to realize the theoretically expédcte
for other network traffic configurations, such as multipl@erformance. Towards this goal we then focus our attention
unicast sessions. Moreover, they are not restricted to-ge to decentralized operation, and examine benefits in terms of
communication networks, but can also be applied to sensmergy efficiency that use of network coding can bring to this
networks, peer-to-peer systems, and optical networks. itt i problem without idealized centralized scheduling. We ps#p
fact advocated that the first applications where networkngpd distributed algorithms that can be deployed in real network
will have an impact will be peer-to-peer and ad-hoc wirelessd examine different aspects of the proposed system iil,deta
networks, as these are environments that offer more freeddmat are related to and motivated by practical consideratio
in terms of protocol design choices and where informatidfor example, we investigate the effect of transmission @ang
inherently propagates in a distributed manner. For exampiee choice of a forwarding factor, possible trade-offs from
ongoing projects investigate the application of networlicg restricted complexity and memory capabilities, and liwhite
ideas to content distribution [3]. generation sizes. We evaluate the performance of the pedpos
In this paper we show that use of ideas from networklgorithms through simulation over random networks.
coding allows to realize energy savings when broadcastingWe then examine networks where the configuration dynam-
in wireless ad-hoc networks. By broadcasting we refer to theally changes, due to nodes moving, turning on and off,
problem where each node is a source that wants to transmiaming out of range, etc. We focus our attention to very
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simple decentralized distributed algorithms, where nadies O(n) rounds, and more recently, a characterization of network
not know the identity of their neighbors. Our motivation isoding benefits over arbitrary graphs was provided in [10].
that, in a dynamically changing environment, such updates
are costly. Such a configuration is provideq for examplg té/ Broadcasting in Radio Communication Networks
very sparse mobile networks where intermittent connegtivi ] . ] }
is common. Delay-tolerant networking (DTN) architectujgls !N this body of work the wireless environment is modeled
are designed to cope with the adverse conditions found in si@$ & graph, where, when a node transmits a message, it is
environments, and existing algorithms in this area are lysua'®ceived by all its neighbors, and where a node successfully
based on some form of flooding. receives information if and only if exactly one of its neiging

For a number of examples of dynamically changing topolds transmitting. Again transmissions are divided into msin
gies, we reduce the problem of energy efficiency to simp¥ghere in each round a subset of the nodes transmits, in a way
variations of the coupon collector problem (see for exampReheduled to minimize conflicts and maximize information
[6]). This problem was examined in conjunction with networfPreading. The goal is to disseminate the information in the
coding in [7], and it was shown network coding can offepmallest number of rounds. Both centralized and decerd«li
benefits that increase dsgn where n is the number of @lgorithms are presented. Indicative results include that
nodes in the network. We thus establish thatn benefits are Problem is NP-hard, there exist static networks where the
also possible in our setting. Simulation results over seigli Number of required rounds i®(log” n), while there exist
networks and mobility models demonstrate that our proposBbile networks where the number of required rounds in
algorithms allow to realize these benefits in practice. Q(n) [11], [12], [13]. Using a similar model, the problem of

Thus, we conclude that significant benefits of networINIMIzing energy consumption over a static wireless nekwo
coding in a wireless environment might manifest in situagio Was recently studied in [14],
where the network operational complexity is restricted.

The paper is organized as follows. Section Il provides. Algorithms for Flooding
a review of related work. Section Il presents our problem

; : i . : .~ Since flooding in wireless networks results in a prohiblgive
formulation and briefly reviews basic ideas in network cadin . -

: e ) large overhead [15], a substantial number of more efficient
In Section IV, we calculate energy efficiency benefits u

.Sﬁgorithms for broadcasting have been proposed. Usually,

of network coding can offer over fixed networks, while "%pese are either based on probabilistic algorithms (see for

Section V, we propose algorithms to realize these benefits
in practical networks. We evaluate the proposed algorithrrt?)s(ampIe [15], [16], [17]) where packets are only forwarded

through simulation in Section VI. Section VII examine With a certain probability, or some form of topology control

dynamically changing networks, establishes possiblegynef;\?v'ér[dlii]’ Llosgés[ZO]) to form connected dominating sefs o
efficiency benefits and demonstrates that they can be rdalize g '
in practice. Section VIII concludes the paper.

D. Network Coding for Wireless

[l. WORK RELATED TO THE PROBLEM OF WIRELESS If we allow intermediate nodes to perform network coding
BROADCASTING operations, the problem of minimizing the energy per bitwhe

There exist two main bodies of theoretical work in wireles@ulticasting in an ad-hoc wireless network can be formdlate
broadcasting, that do not employ the network coding approa@s a linear program and accepts a polynomial-time solution
In both cases, the emphasis is in m|n|m|z|ng grmed of [21] A distributed algorithm to select the minimum-energy
information disseminatianwhich is expressed in terms ofmulticast tree is proposed in [22]. Minimum cost multicagti
rounds of transmissions, with multiple nodes communigatir¥sing network coding was also examined in [23] for mobile
in parallel during each round. We present the results agedelanetworks and in [24] for fixed networks.
to our specific problem. We then briefly review proposed
algorithms for flooding in practical networks. Finally, weg This paper
review related results in the network coding literatured an

discuss how our work is positioned in this framework. With respect to the previous work, our work is positioned

as follows. We are interested in wireless networks, where
) ] ) ) a broadcast message is received by all neighbors within a
A. Epidemic Algorithms for Rumor Spreading certain radius (as opposed to epidemic algorithms, where
This work focuses on networks represented as graphs, amtnmunication takes place with a randomly chosen neigh-
distributed algorithms, where nodes do not have informmatidor). While most work in the broadcasting literature looks at
about the nodes they are communicating with. At each rounttle speed of dissemination, which is measured in terms of
each node randomly chooses a communication partner amaimg required rounds, our measure of performance is energy
the nodes that are connected to it through an edge, and eitbificiency, which translates in number of transmissionsrko
“pushes” or “pulls” information from it (see for example [8] in [14] also considers optimization for energy efficiencyt b
[9]). Results in the literature establish th@tr logn) rounds over wireless networks modeled as arbitrary graphs. Aghou
are required to disseminate the messages. Work in [7] showhis approach has its merit and is interesting, it is notrclea
that using network coding over a complete graph requirbsw well it applies in practical wireless networks, where th



existence of “edges” connecting nodes reflects the posgition For practical systems, we are interested in designing algo-
of the nodes on the plane and is not arbitrary. rithms that are distributed, and are not given an priori khow
Moreover, our interest is not in worst case bounds, as @dge of their neighborhood. In a fixed network nodes may be
[13], but average performance. In this sense, our work iserlo able to infer some information about their neighborhood by
to rumor-spreading using network coding [7]. In fact, whenbserving the number and pattern of transmissions, white in
we look at dynamically changing topologies, where nodes dast changing network topology, nodes are not able to dollec
not have information about the network topology, we shoguch information, and thus do not utilize such knowledge.
that our problem reduces to simple variations of the coupon
co_IIectors pr_oblem, gnd_thus s_imilar results apply. We make \etwork Coding Operation
this connection precise in Section VII. ) )
Broadcasting is a special case of multicasting, thus thel®t 1:---, 2, denote the source packets associated with
routing algorithms in [21], [22] also apply in our case. Fof'® 7 nodes. These packétare of equal length and contain
our special case we derive the exact benefits in terms fTPOIS from a finite fieldf,. Linear network coding allows
energy efficiency we expect to realize, and propose velRtermediate nodes _to com.bme incoming packets (symbols).
simple distributed routing algorithms that allow to realthese E@ch packet contains a linear combination of the source

benefits in practice. Although we derive algorithms with thB2ckets, as described by a vector of coefficients with respec
wireless broadcasting application in mind, simple vaoiai the source symbols called coding vector, that is sent aguend

of our algorithms may also be used for content delivery ov? the packet [25].
peer-to-peer networks. The coding vector can be used by network nodes to decode

the data, or further encode it. Encoding can be performed
recursively, namely, with already encoded packets. Censid

lll. SysTEM MODEL node that has received and stored a8&tX"), ..., (a™, X™),
We here present our problem formulation and briefly reviehere X* denotes the information symbols and the ap-
the basic ideas for network coding. pended coding vector to packétThis node may generate a

new encoded packédt’, X') by picking a set of coefficients
h = (hq, ..., h,n,) and computing the linear combination’ =
A. Problem Formulation >, h; X7. The corresponding coding vectafris not simply
Consider a wireless ad hoc network witHdentical nodes, €qual toh, since the coefficients are with respect to the original
where each node is a source that wants to transmit the saPA€ketsz1, ..., ,; in contrast, straightforward algebra shows
amount of information to all other nodes. We assume that tirffet it is given bya; = 377", h;a]. This operation may be
is slotted and that during each time-slot a neden broadcast repeated at several nodes in the network.
one unit of information to all its neighboﬁ(v) within a given In the fOIIOWing it is convenient to think in terms of vector
transmission range through physical layer broadcast. & afpaces, and say that a node has received a vector space
assume that each broadcast transmission is either suaiesspanned byn coding vectors, when the node has received the
received by allN (v) neighbors, or else completely fails. All™m corresponding linear combinations of the source symbols.
nodes have the same transmission range. Each nodev collects the coding vectors for the packets it
Our performance metric is the total number of successfiiceives (or generates) in a decoding matix A received
transmissions required to transmit one unit of informatioR@cket is said to be innovative if its coding vector increase
from all sources to all receivers, denotedBs for the case the rank of the matrix of7,. To transmit, the node generates
of network coding andl,, otherwise. We assume that the? linear combination whose coding vector lies in the vector
energy expenditure is proportional to the number of suégksssPpace of its decoding matrix. Once a node receivéisearly
transmissions (we do not explicitly take into account eperdndependent combinations, or equivalently, a basis of the
required for computation and reception). Hence, we are-int@-dimensional space, it is able to decode and retrieve the
ested in calculating the “optimal” energy efficiency defirsed information of then sources. Decoding amounts to solying a
the minimum number of such transmissions required under 8Yistem of linear equations with complexity bounde@ds?).
possib|e Strategies and ignoring “time” constraints. For all practical purposes, the size of the matrices with
Since we do not try to maximize the number of sudvhich network coding operates has to be limited. This is
cessful transmissions that occur simultaneously in time, (i Straightforward to achieve for deterministic network cade
throughput), we do not investigate involved schedules tha¢t more difficult with random network coding. For the latter
ensure transmissions do not collide or interfere. Howetner, Packets are usually grouped into so-called generatiors, an
transmission protocols we use for our theoretical analyais ©nly packets of the same generation can be combined [25].
naturally be implemented in a parallel fashion, i.e., reésgl Possible alternatives for this grouping are to allocate to a
in high throughput as well. In fact, we propose and simula@i€neration packets of a given source, packets generated in
algorithms that operate in practical networks where nodédthin a specific area of the network, packets generated in
attempt to transmit simultaneously, and packet loss isrtak@ certain period of time, packets containing a certain type o
into account through a probabilistic model. As discussed in, . .
Section V-B, these simulation results as well follow thette ¢ pre o think ofs, ... 2n, Simply as symbols, or as packets of symbols
’ of the same size, and apply to each packet the operations symd®lIn the
predicted by the theoretical analysis. following we will talk about symbols and packets interchaayg.



information, combinations thereof, etc. Each source paiske Algorithm 1 Network Code for Circular Network

only part of a single generation. Stepk:

e Phasel: If kK =1, eacha; € A broadcasts its information
symbol z;. If £ > 1, eachqa; € A transmits the sum of the
two information symbols it received in pha8estepk — 1.

In this section we consider networks where the topology Phase2: Each 3; € B transmits the sum of the two

does not change, and evaluate energy efficiency benefit®rmation symbols it received in phase stepk.
that use of network coding may offer. We consider random

networks, where nodes are randomly placed on the network

surface, as well as canonical configurations. In both cages w . . .
Theorem 2:Consider a circular network, and the optimal

will assume that the common transmission range of the nodes . : : o
is such that the number of neighbak&v) of each nodes is routing and network coding strategies that minimize the num

upper bounded by a constant, i.87(v) < Nyna.. ber of transmissions for the problem of broadcasting. Then

Theorem 1:Consider a fixed ad-hoc wireless network T 1
nc

where each node’s transmission is received by a constant lim T =35
n—oo

number of neighbors. For the application of broadcastinﬁ1e theorem follows from Lgmmas 1. 2 and Section VI-C.
network coding offers constant energy efficiency benefits. ) . '
Lemma 1:For the circular network it holds that

Proof: The proof follows from two observations: %iwithout network codingl, > n — 2

IV. FIXED NETWORKS

.) There exi routin heme (not n ril im . ; ;
(z)“ e e2e sts a.oqt g sche .e( ot necessa yopt at) t with network coding},. > 2=L,
utilizes n* transmissions. This is because, there exist exac 2

n messages to be disseminated, and each of thedes will Proof: Since a node can successfully broadcast to its two
need to broadcast a message to its neighbors at most oncBearest neighbors, each broadcast transmission canerast

(i7) Any network coding scheme will utilize at least /N, .. most qne unit of information to two receivers. We _hgve
1 receivers to cover and thus the best energy efficiency we

transmissions. This is because each of thenodes needs N ; A ! ;
per information unit. When forwarding

d
to receiven innovative transmissions and each transmissidﬂ"l"y hope for is*3 5 o roadeast
brings innovative information to at mos¥,,,, nodes. ~m W-'g- We may consider a single source broadcasting ol

In fact, for canonical configurations such as networks whel&CEIVers. The f|r_st _transmlssmn_reaches tWO_ rec_elve_rsh Ea
nodes are placed on a lattice, we can exactly calculate ﬁ)]%dmonal transmission can contribute one unit of infatiora
benefits in terms of energy efficiency that network coding cdf one receiver. ) o -
offer. We illustrate this through two examples, the circula FOr the case of forwarding, it is easy to see that a simple

network and the rectangular grid network. flooding algorithm achieves the bound in Lemma 1. For
network coding consider the following scheme. Assume that
T2 + T4 n is an even number. Partition the nodes in two sets

4( ............ ‘ :‘.ﬁ‘.::..'...........)é u - {al,a%} andB: {/81’/6%} of Size%eaCh,

: - 2 such that every node id has as nearest neighbors two nodes
. . 1 .l . . . . . ..
: X oo IR : in B, as depicted in Fig. 1. It is sufficient to show that we
: *N‘( oy )‘%’ : can broadcast one information unit from each node inAet
- B1 B4 f to all nodes in setsA and B using 7,,. > 2 transmissions.
i t Lo T4 $1 We can then repeat this procedure symmetrically to broadcas
E: L5 the information from the nodes iB.
: oo Lo : Let {z1,...,z=} denote the information units associated
2 N N - RN with the nodes inA. Algorithm 1 operates irf; steps, where
ol 3 e : in each step first nodes iA transmit and nodes i receive
: v * : and then nodes i transmit and nodes id receive.
Vet A Y Lemma 2:There exist schemes that achieve the lower
T2 + Ty bounds in Lemma 1. Thusm,, o 22 = 1.
Fig. 1. Circular network withn = 8 nodes. Nodes in the set (B) are Proof: We show that Algorithruﬁ 1 achieves the bound

depicted as circles (squares). Also depicted is the netemding scheme that . . . .
allows to disseminate the information from nodesAnto all nodes of the N Lemma 1. At stepi, Phasel, each node i3 is going to

network. receive two new information symbols from the two sources
that are2k — 1 nodes away along the ciréleln Phase2 each
node inA is going to receive two information units from the
sources that argk nodes away. Since algorithm 1 concludes in
at mostZ steps, and ensures that each broadcast transmission

. . . 4
Considern nodes placed at equal distances on a circle gfings new information to two receivers, the result follovis

depicted in Fig. 1. Assume that each node can successfully
broadcast information to its two neighbors. For example
2

.nOde?l can reach node@l.andag. The results d.o not Changenote that forn — 1 odd we cannot achievB=L transmissions bug, however
if we increase the transmission range, as Section VI-C showss does not affect the order of the restit.

A. Circular Network

"2For simplicity of notation, we assume that all indices at@od Z. Also
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new information units, to learn the information of sourcés a

distanced = 2k.
Fig. 2. Arectangular grid configuration_wifm nodes enveloping the surface | contrast, in a square lattice, the number of neighbors
of a torus. For example, the closest neighbors of the regeare the nodes .
B39, Bs1, B30 and Bos. N, at distanced can be calculated a®v; = Ny_; + 4,
Ny = 4, d > 2 (called the coordination sequence of the
square lattice). In the case of a grid witk? points placed on
B. Rectangular Grid the surface of a torus, the number of new neighbors increases
to a point, and then, because of overlap when wrapping

In this casen = m? nodes are placed on the vertices ofP . .
m b und, starts decreasing. We assume hereaftenthsieven,

a rectangular grid, and each node can successfully braad o .
gutar gri sticeessiuly ut very similar arguments hold fot: odd. Our algorithm

information to its four nearest neighbors. for th id | h st h d lect th
Theorem 3:Consider the optimal routing and network cod,0F the square grid, in each step, has every node coliect the

ing strategies that minimize the number of transmissioms fﬁformatlon from all sources that are at a certain (incregsi

the problem of broadcasting over a square grid network wi stance from it. However, _smce in this case, unlike theuiar
n nodes. Then network, the number of neighbors depends on the distanee, th

. T, 3 number of transmissions at each step is also not constant.
,};H;o T, 4 Algorithm 2 uses this approach. Fér= 1,...,%, each
The theorem follows from Lemmas 3, 4 and Section VI-C. node collects the information from a constantly increasing
Lemma 3:For the rectangular grid network it holds that: area. The number of sources collected at stefand corre-
1) without network codingl}, > %2 and ;ponding distances) for nodes i 'c_lnd in B are pr(_)vidgd
2) with network codingl’,. > %_ in Table I. It remains to prove is that there exist linear
Proof: o . . . . Algorithm 2 Network Code for the Square Grid Network
Each transmission can bring one unit of information to at —
most four receivers. When forwarding we have an overlap gfepk, 1 <k < 5
at least one receiver, i.e., each transmission can bringioite  * Phasel: If £ = 1, each noden; € A transmits its

of information to at most three receivers. n information symbol to their four nearest neighbors. Each
Lemma 4:There exist schemes that achieve the lower i € A transmits once. Eacly; € B receives four
bounds in Lemma 3 and thuin,, o, Z= = 3. messages. It > 1, eacha; € A transmits[==]
Proof: For the case of forwarding simply use flooding  linear combinations from th&,; _ information units it
along one horizontal line and along perpendicular lines. received in phas@, stepk — 1. Eachf; € B receives the

For the case of network coding, we extend the proof idea in information units from all sources at distanze — 1.
Lemma 2. We partition the square lattice into sub-lattiges * Phase2: Eachp; € B transmits[ =3+ from the Ny,
and B, such that the four closest neighbors for an element in information units it received in phasestepk. Each node
A belong toB (and vice-versa). Let node$ be sources. We a; € A receives the information units from all sources at
describe a scheme that transmits one information unit fibm a  distance2k.
sources inA to all nodes inA and B. Again consider steps (Vi calculated as in Table I)
divided in two phases, where in the first phase the nodes in
transmit, while in the second phase, the node®&itransmit. combinations such that each receiver is able to decode. With
To avoid edge effects, assume that the square grid envelopezentralized scheme, this amounts to selecting valueséor t
the surface of a torus, as depicted in Fig. 2. coding vectors such that a product of determinants is nonzer

We now discuss the connection with the circular networl26]. The sparse-zeros Lemma 6 [26], [27] shows that such
proof. By “distance” between two nodes we refer to thealues exist. In practice, we can use a randomized approach
number of hops that separate them. For any neds 5 in [28], [29] to find these values (as we do in the next section).
the circular network, the number of neighbors at distashii® ]
two, independent ofl (with a possible exception faf = 7,
where when wrapping around the circle we may have only one V. DISTRIBUTED ALGORITHMS
new neighbor). Thus, at every steépn the proof of Lemma 2,  Our goal being to develop distributed algorithms that are
it is sufficient for example for nodes; € A to receive two well suited for random topologies, we start in this section




by developing a distributed algorithm for the square grid Lemma 5:Any setA of nodes in the grid, with+|A| < n,

network. Given that random topologies with a large number bfs at least four distinct neighbors.

nodes tend to perform like such a network, we then tune the proof: The proof uses the fact that the vertex min-cut

algorithm to perform well in a random topology, and verifypetween any two nodes in a square grid is four. Bebe the

thrOUgh simulation that we obtain the expected benefits. set of nodes in the gnd that are notih From assumptio[B
contains at least four nodes. If all the nodedimmre neighbors

A. Distributed Algorithms for the Square Grid Network of nodes inA we are done. Assume that there exist a node
0 in B that is not a neighbor of any node iA. Let o be

The scheduling Algorithm 1 tends to be involved, and thl,!é;ny node inA. Connectn and 3 through four vertex disjoint

might be challenging to implement in a practical systemy s on each such path there exists a distinct neighbor of
Algorithm 3 employs a much simpler scheduling and still =

allows us to achieve the optimal benefits in terms of energy

efficiency. The algorithm operates in iterations. The second result we need is a reformulation of the sparse

zeros lemma proved in [26], [27]. Here we present it in a form

Algorithm 3 Distributed Network Code for the Square Gridthat 1S convenlent_for the proof _Of our theorem. )
« lteration1: Each node broadcasts the information symbo] Lemma 6:Consider a family of b x h _matnces
it produces to its four closest neighbors. A1, Ag, ... Ay whose elements are finite degree
« Iterationk: Each node transmits a linear combination Q?olynom|als in the coefficientsa,, az, e G for some
the source symbols that belongs in the span of the codi eger’ € N. Assume that for each matrid; there exist
vectors the node has received in all previous iterations’® 4€S &1 = P1, ..., & = p¢ OVer a fieldF,, such that the
determinant ofA; over Fy, is non zero, i.e.det(A;) # 0.

Then, there exists a finite fielll,, and there exist values in

Let m;, denote the number of innovative packets that nodefq for {a;} such thatdet(A;) det(As)...det(An) # 0.
has received at the end of iteratiénand IetV,j be the vector For example, if
space spanned by the corresponding coding vectors. That is,
my, = dim V}! is the dimension of the vector spatg. Let 2 p(1—p) 1 p
A be a set of nodes, we denote by' = U;c4V} the vector A1 = { _ 2 ] , and Ay = { ] ;

) . p(l—p) p 11

space spanned by the union of the vector spaces that nodes in
A span.

To show that Algorithm 3 allows to achieve the optithen forp =1, det(A,) # 0 overFy, for p = 0, det(Az) # 0
mal performance when broadcasting, we need to show ti¥€"F2, and forp =2, det(A,) det(Az) # 0 overFs. In fact,
there exists a coding scheme (linear combinations thatsnod@ndomly choosing the parameter values over a figlgives
can transmit) such that each broadcast transmission britt§s@ valid assignment with probability that goes to one as the
innovative information to four receivers. This implies thaSize of the fieldg increases [29].
Algorithm 3 operates ik = 1...[2] iterations as follows. Proof of Theorem 4We use induction.

4 . .
At iteration k, each node We use induction.

. Fork = 0, mg = 1, since every node has one source symbol.
1) Transmits a vector from the vector space spanned by { T .
. . ) ) e Fork =1, m; = 5. Indeed, at the end of the first iteration
coding vectors the node received at iterations. k£ —1. . . . ;
; . , each node has received the information symbols from its four
2) Receives four vectors from its four closest neighbors . . . .
nearest neighbors. Anyl nodes have their own information

and increases the dimension of its vector space by four: . . .
and moreover the information from their one-step closest

Before the iterations begin each node has its own Sourg&ighbors, which, from Lemma 5, amounts to a vector space
symbol, and thusn, = 1. We want to show that for each ¢ gize at leasin; + |A] — 1 = |A| + 4.

node: at the end of iteratiork e Assume that the condition holds fér= ¢—1. It is sufficient
1) to show that it holds fok = /.

Consider a setd. We want to show thatdim(V;*) >
To prove that there exists a coding scheme such that (1) holds, | + 4 + |A| =1 = my, + |A| — 1. From induction we

my = mp_1+4 =4k + 1.

it is sufficient to prove the following theorem. know thatdim(V,A,) > my_1 + |A] — 1. If dim(V;2,) >
Theorem 4:There exists a coding scheme to be used with, | + 4 + |A| — 1 we are done. The only interesting cases
Algorithm 3 on the square grid such that at iteratign are whendim(V;A ) = my_1 +i+|A| —1,i=0...3. We
. . will prove here the case whertBm (VA ) = my_1 +|A| —1.
dim(Vi?) 2 min{my + |4 - 1,n} 2) For ?he other three cases the aréukrﬁelz%ts arg \;ety| si|milar.
for any set A of nodes, wheren; = 4k + 1, mo = 1. Let B be the set that includegt and all the nearest
Indeed, from (2) forA = {i} we get thatdim(V¥) > my = neighbors ofA. From Lemma 5 we know thaB contains at

4k + 1. But node: at iterationk has receivedik broadcast least four nodes that do not belongn say {51, 52, 33, 84}
transmissions, i.edim(V}) < my, = 4k+1. Thus the theorem We want to show that when the nodes {p:, 32, 33, 54}
directly implies thatdim(V}’) = my, = 4k + 1. For the proof transmit during iteratiork, they increase the rank of the sét
of this theorem we use Lemmas 5 and 6. by four. (And in fact, of every other set they are neighbors.)



But this holds by the following argument. From assumption, Intuitively, good values ford depend on the transmission
range and the network topology, such as the neighborhood

. A,j . . .
dim (V47 > iy + | A, for j € {1, Ba. Bs, Ba} node density. For example, if a nodeforms a vertex cutset
dim(Vk{_A{]’l}) > my_1 + |A| + 1, for j,1 € {B1, B2, B3, Bs} fOF the network, i.e., if removing this node disconnects the
. (A2} ‘ network into two components, then this node acts as a bridge
dim(V,2) > mg o 4 [A[ 42, for 5,1,z € {51, B2, B3, Bathat needs to rebroadcast each innovative packet it receive
dim(vk{j‘lﬁlvﬁ%ﬂsm}) > mir_1 + |A| + 3. transfer it between the two components. In contrast, a node

in a dense area of the network, that shares each successful
Thus, nodesp, 52, B3, and 84 have vectorsv; vs, v3, reception of an innovative packet with a large number of
and vy respectively such that; ¢ Vi2,, j = 1...4, and ts neighbors, needs to retransmit more sparingly to avoid
the vector space spanned by them has dimension four, ig®erloading the network with redundant transmissions.
dim(< v1,v2,v3,v4 >) = 4. Then, from Lemma 6, there exist  Algorithm 5 tries to adapt the number of transmissions of
linear combinations that node$; can transmit at iteration a node according to the node’s local neighborhood dengty’ a

k such that the vector space of (and in fact any setd it js perceived by the packets the node receives.
neighboring them) increases in size by four. O

Algorithm 5 Forwarding and Receiving Factor
« In addition to updating the send counter as in Algo-
rithm 4, nodes also keep track of received non-innovative
We now extend Algorithm 3 to work over random topologies  packets. For eacl non-innovative packets a node re-
where the number of neighbo¥ (v) of a nodewv is not ceives the send counteris decremented by one.
necessarily constant. Generally, the network is not p#yfec

symmetric and we cannot assume perfect synchronization_l_ . h ffici o ,
among nodes. Moreover, we are interested in very simple pro-1© 'Mprove the energy efficiency, we can usalynamic
warding factor d,, different for every nodev. Such an

tocols where nodes do not have any a priori knowledge abé fwa . .
the network topology, and in particular, their neighborin gorithm can help to adapt to irregularities of the network

nodes. To account for these factors, and given the randdmiz@P°I09y- The value o, that would lead to the smallest total
nature of our networks, we use a protocol in analogy umber of successful transmissions can only be calculated

probabilistic routing algorithms that forwards packetsthwi With perfect knowledge of the network topology. Since we

a certain probability, according to farwarding factor [16], ar?_ interested Ii(n simple algorithms., Wi canl assume thathin
[17]. The forwarding factor! determines the number of coded?. ixed network a node can acquire know e(_jge about the
packets that will be sent upon reception of innovative pEf::ked'reCt neighborhood as well as the two-hop neighborhood by

as described in Algorithm 4. A packet is transmitted by itgbserving for example the flow of transmissions, while farth

own source at least once. We combine this approach Wm{ormation is too costly to gather. We therefore invedeghe

randomized network coding [28], [29]. performance of two heuristics to adjust. Let N(v) be the

Recall that each node stores the coding vectors it receive%gettOf td'rSCt nelghbﬁrs of noge an? Ire]tk be a forvlvardlrjghb
in a decoding matrixz,. In the case of routing the coding actor to be used when a node only has one singie neignoor.

vectors are simply the basis vectofs;} wheree; has one We scaled, as follows.
“1” at position ¢ and “0” at all other positions. The matrix
has a size determined by the generation size. The matrix
a sources; that has not yet received information from any
other node contains only a single raw. A received packet

is said to be innovative if its coding vector increases thkra k

of the matrix. Reception of non-innovative packets is simpl dy = |N(v)]
ignored.

B. Distributed Algorithms for Random Networks

AAgorithm 6 Dynamic Forwarding Factad,
« Algorithm 6A:Setuv’s forwarding factor inversely propor-
tional to the number of 1-hop neighbors

« Algorithm 6B:Set the forwarding factor inversely propor-
tional to the minimum of the number of 1-hop neighbors
of v’s 1-hop neighbors

Algorithm 4 Constant Forwarding Factat
Each node maintains a send coundethat is initially set to
zero. d, =
« For each source symbol that originates at a nodthe
node increases by max(1, |d]), and it further increases
s by one with probabilityp = d — max(1, |d]) if p > 0.
« Similarly, when a node receives an innovative symbol

k
ming ey [N (v)]

Intuitively, if a nodev has multiple neighbors but one of
. , .
it increasess by |d], and it further increases by one the ne|ghborsu_ has (_)nly nod_eu as/a neighbory needs to
with probability p — d — max(1, [d]) if p > 0 forward all available information te’, no matter how many
’ : neighborsv itself has.

» If s> 1,2 node attempts to broadcast a linear combina-_l_he erformance of Algorithm 6 also depends on the value
tion over the span of the received coding vectors. Ea%? k Inpessencelf is a cugmulative forward?n factor shared
transmission reduces the send countéry one. ‘ - : ; 9

between all nodes within a given radio range. It corresponds




F"mba,\t,)g'tﬁ'c,crfg%%?ﬁg(,g;lz) ............ network coding. The slope of the curve depends on the

NNetW‘J'k Coding, g=8 ‘ number of information vectorg. In the network scenarios
Network Coding, g=64 ------- . L
3 we are interested iy is on the order of tens to hundreds of

information vectors. To achieve probability of not beindeab

to decode below 1%, we have to gets 3 for network coding
0.01 ¢ 3 andk > 6 for flooding. (Note that this is the probability that

P is not able to decode only using transmissions from nodes in
N (v). It might still receive packets via some other neighbors,

o
i

P(v' not able to decode)

0.001 ¢ R ‘ resulting in a higher overall PDR.) Interestingly, for> 3,
0 2 4 6 8 10 the probability of not being able to decode tends to O in the
Number of transmissions per innovative packet (k) limit for large g, while it is strictly positive for smallek.

Fig. 3. Probability that a node is not able to decode dfigtransmissions

for different numbers of information vectors (i.e., sizes of the decoding L .

matrices). C. Distributed Generation Management

Up to now we have assumed that each node is a source

area as a response to the reception of an innovative packg}?t has a single symbol to transm_|t, {:md that_ nodes are able
to decode as soon as they receivelinearly independent

independent of the node density. S
To determinek, we need to compute the probability that acomblnatlons. Thus, all sources are decoded together at the

transmitted packet is innovative. In [15], the authors pral end of the transmission.

the probability that the broadcast of a given message isIn practice, the node memory and processing capabilities

innovative for at least one neighbor when this message 1§ k“mf'teﬁ .an I tr_nlght ther_efolre nott.beTglos;lble to .k?ep
already been overheard a certain number of times, for the cigck of all information in a single matrix. This is espetya

of flooding. This probability quickly drops 6 for more than SO since in a random environment there may be benefits in

ca.6—8 overheard broadcasts of the same message. TherefSPé?b'nt;ng syrglpoltshnot otnly icroz_s splz.itce ?Ut a;h:@ﬁ S t!me ¢
% should be set such that the number of broadcasts in an afga>, 00SEMVEd IN € network coding literature. o owing

is close to this value and independent of the network densi&%rm'mlc;gy in [25], Algt(?r|thm; 4_% ('Eﬁnt be e;sfl!y extended
A similar analysis is possible for network coding. As 40 operate over generations. Recall that we define a genera-

rough approximation, let us assume that a nedand all tion as a collection of packets that we allow to be linearly
but one of its neighb,ors have gl information vectors, and combined. Dividing packets into generations decreases the
one neighbor’ has no information. We are interested in thgecodmg complexllty, allows to decode data faster (and th_us
probability that after overhearingg transmissions, a packetempty the respective memory), as well as use smaller chlng
from v will be innovative forv’. In other wordsp’ must have vectors. Furthermore, grouping information into generai

received fewer thag innovative packets from the other node%I I0\f/\(/)sr Zigfns |tg Eggegegﬁdf g:n;ra:;[l)onrzntthe(z)); ?(;;Intsecrgs';ed
and is not yet able to decode. , p yp pe.

We compute this probability as follows. Lé?, be a disk Without central control in the network, nodes have to manage

: o enerations based only on their local information. In this
of radius1 (we can take all transmission ranges equal to . ) : . .
) - . L section we describe simple distributed generation managem
since the probability we are interested in is independetit®f

. ) i - methods.
distance unit chosen). Lgt= kg, and Dy, ..., D; be j disks, .
also of radiusl, with centers inDy, drawn independently and Each node selects the generation for each packet that

uniformly in Dy. Define Q¢ as the probability that a randomoriginates at this node, using a generation size threshold
point M in Dy ié covered be fewer thag of the j disks. Our The node checks which generations it knows having a size

. g . that does not exceed the thresheld-rom these, it randomly
upper bound is the .pmb.ab'“t@kg' For fixedg and larget, picks one generation and allocates the packet to it. If nt suc
we have the approximation . : : .

generation exists, the node creates a new generation with a
9~ 1~72029e_0,321021_qk 3) random generation ID and inserts the packet. The space of
kg Vgk ' genera_ltion IDs ha_s to bg large enough so that the prqbability

A more detailed analysis can be found in [30]. of having generations with the same ID created by different

The probability of node’s transmission being innovative isgf]dlgs f; :]eelatlvglrilef;]tgy].s'?[\I!]tztrr;aétlvee:])gslto:’]stﬁgsasgzjl?elg:eof the
depicted in Fig. 3 for the case of probabilistic routigg=£ 1) W9 . P

and network coding ¢ > 1). With probabilistic routing, orl_lg_;]natlntg nIOQe, thICh pre;(entsdsuch gOIIISI?r?S'th shmitl
this probability decreases exponentially with the numbier o tellac.tuaé leiosgener;i(;prtls tepedn son ; _(rje torin
transmissions, while it drops t6 much more rapidly with 'S ot imited by It. Several distant nodes may decide tormnse
packets into the same generation at the same time. Therefore
8In real scenarios, it is extremely unlikely that overhears none of the nee_ds to be adapted based_ on the average size of the matnces a
packets that its neighbors received previously to obtair tnformation. a given node (and can be different for each node). Equivglent
Furthermorep’ may obtain the missing information through a neighbor that ~g5n be adapted based on the available memory at a node. The
is not withinv’s transmission range. Also this case is not part of the aislys, . e . .
higher the probability of nodes inserting many new packets a

Therefore, the analysis below is a worst case estimate thas gin upper -
bound on the probability af’ not being able to decode aftky transmissions. the same time and the lower the node memory, the lawer

the number of packets that are transmittéthin this coverage




needs to be. It is further possible to compose generatiats thriginates at a randomly selected node. Then the simulation
are local in space, while the dissemination of the generatioontinues to run without inserting further packets untinmare
may still be throughout the whole network. For example, waodes are eligible to forward. For network coding, we use one
could limit nodes that are allowed to insert packets into single generation that holds the packets from all senders.

generation to the\-hop neighborhood of the node where the aAq shown in the left graph of Fig. 4, in the static topology

generation was created. network coding achieves 100% delivery ratio for a forwagdin
factor of 0.25. In contrast, probabilistic routing reqsira
VI. SIMULATION RESULTS AND PRACTICAL 3 times larger number of transmissions to achieve the same
CONSIDERATIONS performance. This difference is more pronounced for inéerm
In this section, we present the simulation results for ogate forwarding factors between 0.1 and 0.2, where network

algorithms, and investigate the effect of parameters sathea C0ding reaches almost all nodes while probabilistic rgitias
forwarding factor, the transmission range, and the geiograt@ PDR below 40%. The average delay from the time a packet
size. originates until it is received (or successfully decodetdha
destination is shown in the right graph in Fig. 4. The decgdin
delay of network coding does not continue to increase for
high forwarding factors, as does probabilistic routingagel
Unless explicitly stated otherwise, our simulation enmiro This is due to the fact that with probabilistic routing, nipik:
ment is as described in the following. duplicates of already received packets may be receivedéefo
Nodes have a nominal transmission rangepof= 250m the next novel packet, thus increasing end-to-end delagh Wi
and are placed uniformly at random on the simulation are@etwork coding, all of the packets are innovative until toel@
To avoid edge effects, we let this area envelope the surfacecan decode everything. After this, further received packet
a torus. Transmissions are received by all the nodes witlire non-innovative, but have no impact on delay. Therefore,
transmission range. We use a custom, time-based netwddcoding delay is only marginally above 100, the minimum
simulator. A packet (symbol) transmission takes exactlg omumber of time units each node needs to receive the 100
time unit. We assume that a node can either send or recepetkets. Forl between).1 and0.2, probabilistic routing only
one packet at a time. The MAC layer is an idealized versiggaches nodes that are few hops away, resulting in a small
of IEEE 802.11 with perfect collision avoidance. At eachdimdelay.

unit, a schedule is created by randomly picking a node andIn more demanding topologies, Algorithms 5, 6A and 6B,

scheduling its transmission if all of its neighbors are idlis .. likely to perform better than the simpler Algorithm 4
s repeqtgd qntil no more nodes are eligible_to ransmit. — yoat uses a fixed forwarding factor for all nodes. We use a
For finite field operations we select the fields, so that .01k size of 1500m« 1500m that does not wrap around

each symbol of the field can be stored in a byte. Additiogt the edges and vary the number of nodes between 128 and

and multiplication _operations can be impleme_nted using tWoyo4 The topology has four dense clusters comprising of
lookup table.s of size 255 bytes [31]. The codm_g Vectors aio. ot the nodes, while the remaining 30% are randomly
transported in the packet header as suggested in [25]. We HRftributed in the network area. We further ensure that the

rar;fdom;zed net\évork cod};ﬂng, €., combLne the recelvedwegt network is connected. This results in complex topologieth wi
uniformly at random oveF,s to create the vector to transmﬂ.ms,[Iy varying node degrees.

We compare our network coding algorithms against proba- ) _

bilistic routing, where received packets are re-broadehsith ~ FOr €ach algorithm we use the lowest forwarding factor
a certain probability (similar to our forwarding factor)up that results in a 90% PDR. As can be seen from Fig. 5,
performance metrics are packet delivery ratio (PDR), de|a®lgor'|thm 4 requires up to twice the overheqd of the. other
and overhead. The PDR is measured as the number of packé@9rithms. Algorithms 6A and 6B perform alike for higher
that can bedecodedat the destination. For probabilisticnode densities, but the fact that Algorithm 6B takes the two-
routing, this is equal to the number of received innovative®P neighborhood instead of just the one-hop neighborhood
packets, whereas with network coding, not all innovatiio account helps its performance when node density is low
packets can necessarily be decoded. Similarly, delay istedu (1SS than ca. 15 neighbors per node). Here, it is partigular
as the average time between the transmission of a packetl§ly that clusters of nodes are connected only via few
the original source and successful decoding at a node. VEermediate connections. Algorithm 5 that limits the dwerd

also investigate overhead in terms of number of transmissigVNeén non-innovative transmissions are overheard achiaves
required to achieve a certain PDR. performance that is slightly worse than that of Algorithrn#s 6

and 6B. However, it is much more robust with respect to the
) . . value of the forwarding factor. It adapts to the “compleXity

B. Comparison of the Forwarding Algorithms of the topology more gracefully than the other algorithnes, f

First we compare the performance of Algorithm 4 againsthich a too low forwarding factor results in a reduced PDR,
probabilistic routing. The network contain$)0 nodes, ran- while a forwarding factor that is too high creates unneagssa
domly distributed on a surface of 1250m 1250m. This overhead. The differences between the algorithms areagimil
results in an average number of neighbors of around 1ut slightly more pronounced when we look at overhead
During the first 100 time units, at each time unit one packetquired to achieve a 99% delivery ratio (not shown).

A. Description of the Simulator
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Fig. 4. PDR (left) and end-to-end delay (right) for Algorithd and probabilistic routing. With network Fig. 5.  Comparison of Algorithms 4 - 6 for
coding, the transition to high PDRs occurs for a much lowew#sding factor. It also shows no delay a clustered topology. Adaptive algorithms outper-
increase for high forwarding factors. form Algorithm 4 with a fixed forwarding factor

C. Impact of Transmission Range In the case of forwarding, if each broadcast transmission

In the canonical configurations we have examined up f§achesk neighbors, we need in total power

now we have assumed that each node broadcasts information n—1-— 2k) P,
to its closest neighbors, i.e., to two neighbors in the case k sin” (k6)

?r: the C|rcular'dnetvxiork,kar§ f;:url n@gh&a}ors n thef cass %e conclude that in both cases we lose in terms of transmit
€ square grid hetwork. simiarly, In the case ot randolg, o \yhen increasing the transmission range, but the ratio

networks, we assumed that the transmission range is @iati Pl .

small compared to the size of the network. In this sectioerz)reSmalns eg“_g' t'lc'%h at least fork_dmuch st;naltlsr thirtmé

; ; ; ; uare Grid: The square grid can be thou S

we _|nvest|gate how this assumption affects. our res:ults._ Inmens(iqonal |latticez? (envglopinggthe surface of atogrus) that

particular, we assume that all nodes transmit at an identid k .

range p (using omni-directional antennas) but thatmight cogtalns all tthe pmntsdof thethform :t re ;the% vtvr?erex I

allow to reach more than the closest neighbors. En y are integers ane, aref e VOTC ors ot Ie or 20n<.:)rhma
In a wireless environment, the transmitted powerdecays a;féeé a:rcgtr?}j, ter?e: E)inlb]; ilt V"\‘/ﬁ cz)e:lv:aﬁ] C;rlf eolirr?tzs (W't)

with distance as’* due to path loss, where typical values aré'S p P Y

~ > 2. Thus, if a receiver at a distangecan successfully Satsfying ) 2 2

receive a signal that has power above a threstiglahen the (@ —v1)" + (y —v2)” <K%

transmitted powet”r must increase proportionally t6yp”. Thus, if we broadcast at a constant radjus= k € Zthe

Increasing the range of transmission increasgs On the npumber of neighbors we can reach equals

other hand, increasing the transmission range allows tthrea =k

more receivers during each transmission. In the following, X )

quantify this tradeoff. Ne= > @LVE -pl+1) -1 )
1) Circular Network: In a circular network, to reach the o )

two closest neighbors, a node needs to transmit at a radii&/e compare the number of transmissions that we need with

of 2sin(2T) = 2sin(f). Generally to reach thek nearest and without network coding, we get that

P =(1+

y=—k

i <k<2 [ i =k i
nelgh.bor;,% <k <5 a node needs to transmit at a radiu » S Y2Imin{\/k® — %, VK2 — (y — k)%}| + 1
of 2sin(<7%) = 2sin(k#). In the case of network coding, if T = 1- =" —
each broadcast transmission reaches w 2y CLVE =y + 1) -1
« the two closest neighbarsve need total power Values of this ratio are included in Table II.
n—1 Py TABLE Il
27 7 sin?(6)’ CONVERGENCE OF RAT|07;—71?.
« the 2k closest neighbqgrsve need total power k 1 2 10 50
Tee [ 0.7500 | 0.6667 | 0.6013 | 0.6089
n—1 PO w
Py, = 2k sin”(k6)’ ing. i i
In the case of network coding, if each broadcast transmis-
Thus, sion reaches
« the four closest neighborsve need total power
Py _posin(®) ok - ghba 1 P
Py, sin(k0) ml—%—i— (kg,)4 — ) P = n; P.
and for largen (small ) we get that « the k closest neighborsve need total power
P — 1R
A (4) p="_220

Py Np, kv
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Fig. 6. Forwarding overhead in terms of energy consumptian, (nhumber of transmissions required transmit power) and decoding delay for different
transmit ranges

Thus, be simultaneously packed (i.e., transmissions during dinees
P, Ny, . .
1k (6) timeslot) is reduced.
Py 4k~

If v > 2 and using (5) we can see thgt < 1. D. Reducing Decoding Complexity

We conclude that fory = 2 increasing the transmission As discussed in Section Il, to decode a generation of size
range does not affect the energy efficiency. For- 2 the g, i.e., g linearly independent equations, we need complexity
optimal strategy in terms of power efficiency is to transmi(g*), as we need to perform Gaussian elimination over the
to the closest neighbor. Moreover, as the transmissionerangx g matrix of the received coding vectors.

p increases, the benefits network coding offers also increaséf at each intermediate node we perform uniform at random
and converge to approx.609. This humber corresponds tocombinations overF,, then the resulting matrix will be a

the area of the intersection of two circles with the sameusadirandom matrix, with a large fraction of nonzero elements.
and centers at distance equal to the radius. In [32] it was observed that instead of choosing coding

3) Random Networks¥or the following simulations we vectors uniformly ovetf',, in many cases we get comparable
also investigate total network energy consumption, which performance by performing sparse linear combinations.Thi
measured as the sum of transmit powetransmission time work was motivated by the observation [33] that a sparse
over the duration of the simulation. random matrix of sizey x g(1 + €) with lim,_...< =0, has

In Fig. 6 we show simulation results for a random networWwith high probability full rank. In particular, this is trug
with 144 nodes and a fixed area of 1500m 1500m. For we choose each element of the matrix independently to be
each transmission range, we choose the smallest cumulatiemzero with probabilityp = %, and zero otherwise.
forwarding factork for Algorithm 2B that results in an overall Moreover, such a matrix requiregg(g2log(g)) operations to
PDR of more than 99%. As can be seen from the left graphe decoded. If each node in the graph performs “sparse”
with network coding higher transmission ranges even alloimear combinations, we can express the resulting matax th
to decreasethe total energy expenditure (assuming a path receiver needs to decode as a product of sparse matrices
loss exponent ofy = 2). Recall that Algorithm 2B is only a which we can solve sequentially. Here we examine the effect
heuristic and requires to be somewhat larger than the optimabf reducing the alphabet size and of forming “sparse” linear
value. The intuition behind this result is that, the largee t combinations through simulation results.
transmit range, the more “regular” the network becomes inReducing the Alphabet SizeDur simulation results in-
terms of number of neighbors, and the closeran be set to dicated that a relatively small alphabet size is sufficiemt t
the optimal value. Note that nodes can trade off the numberaxhieve good network coding performance. The field of size
transmissions for transmit power, which in turn might allowo, which is much smaller than the average number of
for simpler MAC layer schedules. neighbors, did not lead to a good performance. However, the

In contrast, for flooding the overall energy consumptiofield of size 22 performed very similarly to the field of size
increases with the transmit range, since flooding does St (which is what we used in all the previous simulations).
allow to reduce the number of transmissions as aggressivElyrther increasing the alphabet alphabet size did provide
as network coding for an increased number of neighbors. additional performance gains.

The transmission range might also have an effect on delayReducing the Matrix DensityWe use the following al-

In the right graph of Fig. 6 we see that there is a sliglgorithm to generate vectors with a limited number of non-
decrease in average (decoding) delay for flooding as we#ro entries. As long as the number of non-zero coefficients
as for network coding, when the transmit range increasés.lower than a thresholg, a row is randomly picked from
This is the result of two factors: increasing the transroissi the decoding matrix, multiplied by a random coefficient, and
range implies that more nodes can be reached by a singtided to the vector to be sent out. We use a simulation
transmission. On the other hand, scheduling becomes meetting similar to that of the previous paragraph. Setiirg 1
challenging, as the number of non-overlapping circles¢hat corresponds to sending out the information of a single row of



the decoding matrix which is non-innovative for neighbgrinneighbors, or what information they already have. Thushén t
nodes with a high probability (in fact, performance degedease of forwarding, without loss of generality we can assume
to that of probabilistic routing). As soon @sx log(g), there that during each iteration and at each (possibly new) mousiti
is little difference in performance compared to an unrettd nodew; always broadcasts;. In the case of network coding,
generation of vectorsy(= 100), as can be seen from Fig. 7. each node transmits a random linear combination over some
finite field F, of the symbols it has previously received.
Theorem 5:Broadcasting to all receivers can be achieved
L using on the average

0.8 :' —without network coding:% iterations,
06k + —with network coding:(?fz;2 iterations,
x ' P where at each iteration occur on the avergge- p)n trans-
VR 2 e ] missions. Thus on the average
P Tnc ].
0.2 =0
Ty logn
Proof: Consider first the case of forwarding, and a given node
0 ‘ ‘ ] ) o
1 125 15 2 3 j that would like to transmit its message to all othern —1

Cumulative Forwarding Factor nodes.

Construct a bipartite graph as follows. The left part cdssis
of the n — 1 nodes. The right part consists 8f nodesuv;,
where nodev; corresponds to iteratiofy and is connected to
VII. DYNAMICALLY CHANGING TOPOLOGY the neighbors of nodg¢ during this iteration. Thus the degree

In this section we consider networks where the netwoflf Nodev; is a random variable with averaggl — p). We
configuration constantly changes, for example due to ntgbiliare asking, how many right hand side nodes do we need, i.e.,
We focus our attention to very simple decentralized digtéli What number of iterations, so that nofl@ansmits its message
algorithms, where nodes do not know the identity of thelP all other nodes. This simple analysis has been performed
neighbors. Our motivation is that, in a dynamically chagginin the context of LT and Raptor codes (see for example [34]-
environment, such updates are costly. We show that useFgPPOsition 1) where it was shown that should scale as
network coding techniques can offer significant benefits f(210gn). Since nodej is active with prObab'|'tYE110g5)’

2 »)2

Fig. 7. Impact of reducing the matrix density on PDR

terms of energy efficiency, through theoretical analysisrovth® average number of iterations we need eq

a simplified mobility model, and through simulation resultdhis problem can also be viewed as a variation of the coupon
over more realistic network scenarios. collector’s problem. The coupon collector’s problem in its

standard form is described as buying boxes of some product,
and in each box there exists one coupon, chosen uniformly at
random from a collection of. coupons. We are asking what
For the theoretical analysis we assumengorm at random s the average number of boxes we need to buy to collect all
mobility model. In particular, we divide time into iteratis o, coupons (see for example [6]). It is well known that in this
and assume that at the beginning of each iteration nodes @4ge the answer ©(nlogn) coupons. Our case is a simple
placed uniformly at random on a unit-area disc of radiugriation, where now each box contains on the avekdge p)
1/y/m. This corresponds to having a uniform at randorgifferent coupons.
mobility pattern, where the iterations are far enough inetim |n [7] it was shown that use of network coding with the
to allow a node to move anywhere on the disc with equatandard coupon collector problem reduces the number of
probability since the previous iteration. We use this gensr required iterations ta. In our case as well, nodgis active on
mobility model to simplify the analysis, but examine morghe averagél — p)m out of m iterations. While it is active, it
realistic models through simulation results in Section-Bll receives on the averadél — p) transmissions from its active
Moreover, we assume that each node turns off for the duratiﬁ@ighbors_ Using standard arguments in the network coding
of each iteration independently at random with probability |iterature, and provided that the fielg} is large enough, each
During each iteration each active node transmits within raceived transmission brings new information to the ngde

A. Energy Efficiency Benefits

radius ofr with 1 Thus, nodej is E’:lt))le to decode alb information units on the
O(n) .
r=0 (\/ﬁ) average after;— 5 iterations. O

Note that the performance of network coding is not affected
fixed for all nodes, where is the total number of nodes. Thusby node mobility. In contrast, mobility has a significant
at each iteration each nodehas on the average a constang¢ffect on forwarding. Initially, as nodes randomly move,
number of N(v) = N#r? neighbors, of whichV(v)(1 — p) the information is disseminated faster than in the case of
are active. a static network. However, because of the assumption that
We compare the energy efficiency in the case where we usmdes do not know what information their neighbors have
forwarding and where we use network coding. We underliress approximately half the nodes collect the informationreno
our assumption that nodes do not know which are theind more often transmissions do not bring new information to



the receiving nodes. This point has been observed in rumor 14 Uniformly random mobiity ———
spreading algorithms over networks represented as grapts, 12} R mobility )fl(gig mgg ““““ -
is known as “the last coupon problem”.

It should be noted that these results do not hold, if we
assume that nodes have some information about other nodes
in their transmission range. For example, if we assume that
a node knowshow manyactive nodes are in its transmission
range, it can wait (a possibly infinite time) undill nodes are

10

Overhead ratio

simultaneously in its transmission range and are activd, an 2

then broadcast its message using just one transmission. o L ‘ ‘ ‘ ‘ ‘
Although we performed this analysis in the context of ad- 8 16 32 64 128 256

hoc wireless networks, similar benefits are also possible in Number of nodes

environments where we need to broadcast information to a 5igt 8. Ratio of flooding overhead to network coding overhéeacrandom
of receivers in a distributed manner and without knowledg¥Point mobility.

of the network topology. Many of these problems reduce . » .
to simple variations of the coupons collectors problem. TH@"dom mobility corresponds to the mobility model used & th

following example illustrates one such case. theoretical analysis in Section VII-A. The correspondingve

Example 1 (Broadcasting in Cellular Networksjve con- in Fig. 8 confirms thdogn factor in the ratio of overhead of
sider a cellular network model with: base-stations and. flooding and network coding from the theoretical analysis. A
mobile phone receivers. The base-stations Heiaformation similar overhead ratio can be observed in simulations with a
units that they want to transmit to all mobiles. We assume tHQOFﬁ dengfe orlmore ;parse ns}yvork (';Otl s_hon.n heLe). h
the transmission range is the same for all base-statioeh, ea The uni ormfyhran o'mhbmoh ! 'té’ ”}0 € |[jnp 1es that It el
transmission conveys one unit of information, and that gfgomposition of t € nheighbornood of a node |s_comp__etey
coverage areas of the base-stations do not overlap uncorrelated from iteration to iteration. In practice,sttis

In this model base-stations are always active, while nodtde oqu .When the node speed is very high or.t_he_packet
are mobile and may turn on and off. A node is active antﬁansmssmn rgte is very low. A less generous mobility iegl
successfully receives information approximately(1 — p) t .qt less data 1S transported through thg ne twork by node mo-
out of M iterations. Thus, if base-stations broadcast using H'ty_ and has instead tq be fo_rwarded via intermediate B‘?"'?
erasure correcting code of rate— p), then each transmission' " Fig. 8 we present simulation reSL."tS fo_r a more realistic
brings useful information at each node. For a node to recei%Oblllty model. We use the same S|mulat|on pgramgters as
K messages we need ) iterations before, but also show the overhead ratio for mobility acicard

_p .

In the case of forwarding, assume that base-stations ré?]-the random-waypoint mobility model with no pause time

. and movement speeds uniformly distributed betweéem/s
domly select and transmit one of tl#¢ messages. Thus each : .
y I g " d10 m/s as well asl0 m/s and20 m/s, respectively. With

node at each iteration observes one of the messages unjfor . e :
at random. We can think of this problem as a balls-in-birfg € random-waypoint mobility model, nodes pick a random
estination whose location is uniformly distributed in the

experiment, where the bins are tlié messages the node”. lati I t d with which th
wants to collect, and the balls correspond to the iteratiord o ation area as wetl as a movement speed with which they

Using standard results [6] we again need on the av : travel until the destl_nathn is reached. . .
iterations. Thus, network coding offerslag n. benefit We can see that in this case, although network coding still
' ' ' offers significant benefits, the performance gap with rautin

is smaller. This agrees with our intuition that when mopilit
B. Simulation Results is more restricted, network coding performance detersat

We use the random topology simulation environment glecause how We_zll the datq is “mixed” plays a crucial role for
scribed in Section VI-A. The network size is scaled with thE'® network coding analysis.
number of nodes such that each node has on average four
neighbors. For simplicity, we use Algorithm 4 for the net- VIII. CONCLUSIONS
work coding, since the more sophisticated algorithms rgainl We have investigated benefits in terms of energy efficiency
help with inhomogeneous topologies, while in highly mobil¢hat use of network coding can offer for the problem of broad-
scenarios we tend to observe more canonical topologies. Tdasting over ad-hoc wireless networks. We proved that m&two
forwarding factor is set to the lowest value that achievescading can offer a constant factor of benefits over a fixed
100% PDR. network, and dogn factor over a network where the topol-
We first discuss simulation results of the case where agy dynamically changes. We developed simple distributed
each iteration each node is placed uniformly at random &gorithms that allow to approach the optimal performance i
the rectangular simulation area. We measure the total numpeactice as we demonstrated through simulation results. Ou
of packet transmissions required such that all nodes recework indicates that there is a potential for significant Hise
all packets for different network sizes. Fig. 8 shows thehen deploying network coding over a practical wireless ad-
ratio of the required number of transmissions of floodingoc network environment, especially when we are restricted
and network coding for different mobility models. Unifoynl to use low complexity decentralized algorithms.
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