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Abstract

This paper presents an overlay based Byzantine tolerant broadcast protocol for wireless ad-hoc net-
works. The use of an overlay results in a significant reduction in the number of messages. The protocol
overcomes Byzantine failures by combining digital signatures, gossiping of message signatures, and fail-
ure detectors. These ensure that messages dropped or modified by Byzantine nodes will be detected and
retransmitted and that the overlay will eventually consistof enough correct processes to enable message
dissemination. An appealing property of the protocol is that it only requires the existence of one cor-
rect node in each one-hop neighborhood. The paper also includes a detailed performance evaluation by
simulation.
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1 Introduction

Context of this Study: Wireless ad-hoc networks are formed when an ad-hoc collection of devices equipped
with wireless communication capabilities happen to be in proximity to each other [46]. Clearly, each pair of
such devices whose distance is less than their transmission range can communicate directly with each other.
Moreover, if some devices occasionally volunteer to act as forwarders, it is possible to form a multiple hop
ad-hoc network. An important distinguishing element of these networks from “standard” networks is that
they do not rely on any pre-existing infrastructure or management authority. Also, due to their ad-hoc nature
and device mobility, there is no sub-netting to assist routing and data dissemination decisions. Moreover,
due to mobility, the physical structure of the network is constantly evolving.

Semi-reliable broadcast is a basic service for many collaborative applications as it provides nearly re-
liable dissemination of the same information to many recipients. It ensures that most messages will be
received by most of their intended recipients. Yet, implementing semi-reliable broadcast in an efficient
manner, and in particular over a wireless ad-hoc network, is far from trivial. It involves ensuring that a
message is forwarded to all nodes as well as overcoming possible messagelosses.

Unlike infrastructure based networks in which routers are usually considered to be trusted entities, in
ad-hoc networks routing is performed by the devices themselves. Thus, there is a high risk that some
of the nodes of an ad-hoc network will act in aByzantinemanner, or in other words, would not respect the
networking protocols. This can be due to maliciousness, or simply selfishness (trying to save battery power).
Thus, the possibility of having Byzantine nodes in the system motivates the development of Byzantine
tolerant broadcast protocols for ad-hoc networks.

The simplest way to obtain broadcast in a multiple hop network is by employing flooding [45]. That is,
the sender sends the message to everyone in its transmission range. Each device that receives a message for
the first time delivers it to the application and also forwards it to all other devices in its range. While this
form of dissemination is very robust, it is also very wasteful and may causea large number of collisions.

Hence, many multicast/broadcast protocols maintain anoverlay, which can be thought of as a logical
topology superimposed over the physical one, e.g., [25, 40, 47, 48]. The overlay typically covers all nodes,
yet each node has a limited number of neighbors. Given an overlay, broadcast messages are flooded only
along the arcs of the overlay, thereby reducing the number of messages sent as well as the number of
collisions. The overlay composition and structure may be determined by either deterministic or probabilistic
methods, and they can change dynamically over time.

On the other hand, having an efficient overlay reduces the robustnessof the broadcast protocol against
failures, and in particular against Byzantine behavior of overlay nodes. One way around this is to maintain
f + 1 node independent overlays, wheref is the assumed maximal number of Byzantine devices, and flood
each message along each of these overlays, guaranteeing that each message will eventually arrive despite
possible Byzantine nodes [15, 34, 36].

Of course, the price paid by this approach is that every message has to besentf + 1 times even if in
practice none of the devices suffered from a Byzantine fault. In this paper we propose an approach that
reduces this overhead to a single overlay when there are no Byzantine failures.

Contribution of this Work: This paper presents an efficient Byzantine tolerant broadcast protocol for
wireless ad-hoc networks. The protocol is based on the following principles: The protocol employs an
overlay on which messages are disseminated. In parallel, signatures about these messages are being gossiped
by all nodes in the system in an unstructured manner. This allows all nodes tolearn about the existence of
a message even if some of the overlay nodes fail to forward them, e.g., if theyare Byzantine or due to
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collisions. When a node learns about a message it is missing, it requests the missing message from another
node that has it. The benefit of this approach comes from the fact that message signatures are typically much
smaller than the messages themselves. Moreover, as gossips are sent periodically, multiple gossip messages
are aggregated into one packet, thereby greatly reducing the number of messages generated by the protocol.

Additionally, the protocol employs several failure detectors in order to eliminate from the overlay nodes
that act a noticeable Byzantine manner. Specifically, we rely on amutefailure detector, averbosefailure
detector, and atrust failure detector. The mute failure detector detects when a process has failed to send a
message with an expected header [17, 18]. The verbose failure detector detects when a node sends messages
too often. Finally, the trust failure detector reports suspicions of a faulty behavior of nodes based on the
other two failure detectors and the history of nodes.1

An interesting property of the failure detectors we use is that they only detect benign failures, such
as a failure to send a message with an expected header, sending too many messages, or trying to forge a
signed message. They do not detect, for example, sending messages with inconsistent data, or sending mes-
sages with different data to different processes. Thus, their properties can be detected locally and they can
be implemented in an eventually synchronous environment, such as the timed-asynchronous model [16],
regardless of the ratio between the number of Byzantine processes and the entire set of processes. Interest-
ingly, combining this with signatures on messages is enough to overcome Byzantine failures.

An important aspect of our failure detector based approach is its modularity, as they encapsulate timing
requirements behind a timeless functional specification. The use of failure detectors greatly simplifies the
protocol’s structure and enables us to present it with an asynchronousdesign. This is often considered more
elegant and robust than synchronous alternatives, in which timing assumptions are explicit.

The result is a protocol that sends a small number of messages when all nodes behave correctly most of
the time. The paper also includes a detailed performance evaluation carried by simulation.

Paper’s road-map: The model and basic definitions and assumptions are described in Section 2.Section 3
describes the protocol and its proof of correctness, while Section 4 elaborate on the overlay construction.
The results of the performance evaluation are given in Section 5. Section 6compares our work with related
work. We conclude with a discussion in Section 7.

2 System Model and Definitions

In this work we focus on wireless mobile systems. Specifically, we assume a collection of nodesplaced in
a given finite size area. A node in the system is a device owning an omni-directional antenna that enables
wireless communication. A transmission of a nodep can be received by all nodes within a disk centered
onp whose radius depends on the transmission power, referred to in the following as thetransmission disk;
the radius of the transmission disk is called thetransmission range. The combination of the nodes and the
transitive closure of their transmission disks forms a wireless ad-hoc network.2

We denote the transmission range of devicep by rp. This means that a nodeq can only receive messages
sent byp if the distance betweenp andq is smaller thanrp. A nodeq is adirect neighborof another nodep

1Notice that standard definitions of failure detectors require some properties to hold forever. However, this can be bounded
along the lines of [23].

2In practice, the transmission range does not behave exactly as a disk due to various physical phenomena. However, for the
description of the protocol it does not matter, and on the other hand, a disk assumption greatly simplifies the formal model. At
any event, our simulation results are carried on a simulator that simulates a real transmission range behavior including distortions,
background noise, etc.
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if q is located within the transmission disk ofp. In the following,N(1, p) refers to the set of direct neighbors
of a nodep andN(k, p) refers to the transitive closure with lengthk of N(1, p). By consideringN(1, p) as
a relation (defining the setN(1, p)), we say that a nodep has a path to a nodeq if q appears in the transitive
closure of theN(1, p) relation.

As nodes can physically move, there is no guarantee that a neighborq of p at timet will remain in the
transmission disk ofp at a later timet′ > t. Additionally, messages can be lost. For example, if two nodes
p andq transmit a message at the same time, then if there exists a noder that is a direct neighbor of both,
thenr will not receive either message, in which case we say that there was acollision. Yet, we assume that
a message is delivered with positive probability.

Each devicep holds a private keykp, known only to itself, with whichp can digitally sign every message
it sends [44]. It is also assumed that each device can obtain the public keyof every other device, and can
thus authenticate the sender of any signed message.

Finally, we assume an abstract entity called anoverlay, which is simply a collection of nodes. Nodes
that belong to the overlay are calledoverlay nodes. Nodes that do not belong to the overlay are called
non-overlay nodes. In the followingOV ERLAY refers to the set of nodes that belong to the overlay and
OL(1, p) ≡ N(1, p)

⋂
OV ERLAY (the neighbors ofp that belong to the overlay). Later in this paper we

give examples of a couple of known overlay maintenance protocols that weadapted to our environment.

2.1 Byzantine Failures

Up tof out of the total ofn nodes in the system may beByzantine, meaning that they can arbitrarily deviate
from their protocol. In particular, Byzantine processes may fail to send messages, send too many messages,
send messages with false information, or send messages with different datato different nodes. We also
assume that correct and Byzantine processes are spread such that the transitive closure of the transmission
disks of correct nodes form a connected graph (clearly, without this assumption, it is impossible to ensure
dissemination of messages to all correct nodes).

Yet, a node cannot impersonate to another node, which is achieved using digital signatures [44].3 Nodes
that follow their protocol are calledcorrect. If a node is correct, then it is presumed to be correct throughout
the execution of the protocol. A nodep that sends a messagem is called theoriginator of m. We denote
sig(m) to be the cryptographic signature of a messagem.

2.2 Failure Detectors and Nodes’ Architecture

As already mentioned in the Introduction, we assume that each node is equipped with three types of failure
detectors, MUTE, VERBOSE, and TRUST (see also illustration in Figure 1). In this work we assume that
each message has aheaderpart and adata part. The header part can be anticipated based on local infor-
mation only while the data part cannot. For example, the type of message (application data, gossip, request
for retransmission, etc.), the id of the originator, and a sequence number of the message are part of the
header. On the other hand, the information that the application level intendedto send, or the actual gossiped
information, is part of the data.

Based on this, we define amute failureas failure to send a message with an expected header. Similarly, a
verbose failureis sending messages too often. Note that both types of failures can be detected accurately in
a synchronous system based on local knowledge only. This is becausein synchronous systems each message

3In the implementation of our protocol we use the DSA protocol [44]. Due tospace limitations, we do not repeat a discussion
about the infrastructure required for this, as this is can be found in manypapers and text-books on the use of cryptography.
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Figure 1: Node Architecture

has a known bounded deadline, so it is possible to tell that a message is missing. Similarly, it is possible to
accurately measure the rate of messages received and verify that it is below an agreed upon threshold.

Obtaining synchronous communication in ad-hoc networks with standard hardware and operating sys-
tems is extremely difficult. On the other hand, observations of communication networks indicate that they
tend to behave in a timely manner for large fractions of the time. This is captured by the notion of the class
♦Pmute of failure detectors [5, 17, 18, 24]. Such failure detectors are assumed to eventually (i.e., during
periods of timely network behavior) detect mute failures accurately. In this eventuality, all nodes that suffer
a mute failure are suspected (known ascompleteness) and only such nodes are suspected (known asaccu-
racy). This approach has the benefit that all synchrony assumptions are encapsulated behind the functional
specification of the failure detector (i.e., its ability to eventually detect mute failures in an accurate manner).
This also frees protocols that are based on such failure detectors fromthe implementation details related to
timers and timeouts, thus making them both more general and more robust.

In a similar manner to♦Pmute, we can defined♦P verbose as a class of failure detectors that eventually
reliably detect verbose failure. We assume that the failure detector MUTE is in the class♦Pmute while
VERBOSEis in the class♦P verbose.

The failure detector TRUST collects the reports of MUTE and VERBOSE, as well as detections of mes-
sages with bad signatures and other locally observable deviations from theprotocol. In return, TRUST

maintains a trust level for each neighboring node. This information is being fed into the overlay, as illus-
trated in Figure 1. As we describe later in the paper, the information obtained from TRUST is used to ensure
that there are enough correct nodes in the overlay so that the correctnodes of the overlay form a connected
graph and that each correct node is within the transmission disk of an overlay node that does not exhibit
detectable Byzantine behavior.

2.3 The Broadcast Problem

Intuitively, the broadcast problem states that a message sent by a correct node should usually be delivered
to all correct nodes. We capture this by theeventual disseminationand thevalidity properties. The eventual
dissemination property specifies the ability of a protocol to disseminate the message to all the nodes in the
system. The validity property specifies that when a correct node acceptsa message, then this message was
indeed generated by the claimed originator.

Formally, we assume a primitivebroadcast(p, m) that can be invoked by a nodep in order to dis-
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seminate a messagem to all other nodes in the system, and a primitiveaccept(p,q,m) in which a message
claimed to be originated byq is accepted at a nodep.

Eventual dissemination: If a correct nodep invokesbroadcast(p,−) infinitely often, then eventually
every correct nodeq invokesaccept(q,p,−) infinitely often.4

Validity: If a correct nodeq invokesaccept(q,p,m) andp is correct, then indeedp invokedbroadcast(p,m)
beforehand. Moreover, for the same messagem, a correct nodeq can only invokeaccept(q,p,m)
once.

3 The Dissemination Protocol

As indicated in the Introduction, our protocol includes three concurrenttasks. First, messages are dissem-
inated over the overlay by the overlay nodes. Second, signatures about sent messages are gossiped among
all nodes in the system. This allows all nodes to learn about the existence of messages they did not receive
either due to collisions or due to a Byzantine behavior by an overlay node. When a nodep discovers that it
misses a message following a gossip it heard fromq, thenp requests the missing message fromq as well as
from its overlay neighbors. The third and final task is the maintenance of theoverlay, whose goal is to ensure
that the evolving overlay indeed disseminates messages to all correct nodes. Note that the dissemination and
recovery tasks are independent of the overlay maintenance. Thus, thissection deals with the first two tasks,
while the overlay maintenance is described in Section 4. At any event, for performance reasons, overlay
maintenance messages can be piggybacked on gossip messages.

As the protocol and overlay rely on failure detectors, we first describethe interface to these failure
detectors in Figure 2 and in Section 3.1. The pseudo-code of the main protocol appears in Figures 3 and 4
and is described in detail in Section 3.2. These figures use two primitives. The primitive broadcast
denotes a broadcast of a message with a given TTL value, i.e., it reachesby flooding all nodes in the
corresponding hop distance from the sender. The primitivelazycast initiates periodic broadcasting of
the given message only to the immediate neighbors of the sender.

3.1 Interfacing with the Failure Detectors

Recall that the goal of the MUTE failure detector is to detect when a process fails to send a message with
a header it is supposed to. To notify this failure detector about such messages, its interface includes one
method calledexpect (see Figures 1 and 2). This method accepts as parameters a message header to
look for, a set of nodes that are supposed to send this message, and anindication if all of these nodes must
send the message or only one of them is enough. Note that the header passed to this method can include
wild cards as well as exact values for each of the header’s fields. In this paper we do not focus on how
such a failure detector is implemented. Intuitively, a simple implementation consists ofsetting a timeout
for each message reported to the failure detector with theexpect method. When the timer times out, the
corresponding nodes that failed to send anticipated messages are suspected for a certain period of time (see
discussion in [17, 18]).

The goal of the VERBOSEfailure detector is to detect verbose nodes. Such nodes try to overload the
system by sending too many messages that may cause other nodes to react with messages of their own,
thereby degrading the performance of the system. Detecting such nodes istherefore useful in order to allow

4Clearly, with this property it is possible to implement a reliable delivery mechanism. In order to bound the buffers used by
such a mechanism, it is common to use flow control mechanisms.
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MUTE

expect(messageheader,setof nodes,oneor all)
This method notifies the MUTE failure detector about an expected message.
It accepts as parameters the expectedmessageheader,

thesetof nodesthat are supposed to send the message,
and aoneor all indication.

The latter parameters indicates if ALL nodes are assumed to send the message
or only ONE of them.

VERBOSE

indict(nodeid)
This method indicts a node withnodeid for being too verbose
It causes the VERBOSEfailure detector to increment the suspicion level ofnodeid.

implicate(messageheader,setof nodes,oneor all,nodeid)
This method notifies the VERBOSEfailure detector that
if a message withmessageheaderis received from ONE or ALL
nodes insetof nodes, as specified inoneor all
then nodenodeid would be implicated by incrementing its suspicion level.

TRUST

suspect(nodeid,suspicionreason)
This method notifies the TRUST failure detectors that the
level of trust of nodenodeid should be reduced based on the providedsuspicionreason.

Figure 2: Failure Detectors’ Interface

nodes to stop reacting to messages from these nodes. Similarly to MUTE, the VERBOSEfailure detector also
gets hints from the broadcast protocol about what would constitute a verbose fault. For this, the interface of
VERBOSEexports the methodsindict andimplicate. The first method simply indicts a process that
has sent too many messages of a certain type. The second method,implicate, is used when a verbose
failure can only be noticed based on what other messages have been sent by other nodes. Thus, it tells the
VERBOSEfailure detector to suspect a given node only if some other nodes have sent messages with a given
message; the existence of such messages “prove” that the node in question has generated an unnecessary
message.

Practically, we assume that VERBOSEmaintains a counter for each node that was listed in any invocation
of one of its methods. The counter is incremented on each such event, and after a given threshold, the node
is considered to be a suspect. VERBOSEalso includes a method that allows to specify general requirements
about the minimal spacing between consecutive arrivals of messages of the same type. Such a method is
typically invoked at initialization time. As it it is not directly accessed by our protocol’s code, we do not
discuss it any further.

Finally, the TRUST failure detector maintains a trust level for any node known to it. Each time its
suspect method is called, the trust level of the corresponding node is decreased by some number that de-
pends on the suspicion reason. Once it goes below a threshold, the corresponding node is suspected. More-
over, to recover from mistakes, the trust level slowly grows, e.g., everyfew time units withoutsuspect
being invoked again (such an aging mechanism also exists in the MUTE and VERBOSEfailure detectors).
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Upon send(msg) by applicationdo
message:= msg id||node id||msg||sig(msg id||node id||msg);
gossipmessage:= msg id||node id||sig(msg id||node id);
broadcast(message,DATA,ttl=1);
lazycast(gossipmessage,GOSSIP,ttl=1);

Upon receive(message,DATA,ttl) sent bypj do
if
�
have not received thismessagebefore

�
then

if
�
authenticate-signature(message) = TRUE

�
then

Accept(pi,pj ,message) /*forward it to the application*/;
if
�
current node ∈ OV ERLAY

�
then

broadcast(message,DATA,1);
else/* the message is correct and I am not in the overlay*/;

if (ttl > 1) then
broadcast(message,DATA,ttl-1);

endif;
endif;
if
�
already received agossipmessageaboutmessagebefore

�
then

lazycast(gossipmessage,GOSSIP,ttl=1);
endif;

else/* the message is not correct*/;
TRUST.suspect(pj ,“bad signaturereason”); /*notify the trust failure detector*/

endif;
endif;

Upon receive(gossipmessage,GOSSIP,ttl) sent bypj : do
if (authenticate-signature(gossip message) = TRUE) then

if (there is no message that fits the gossipmessage)then
/* The node asks from the node that sent the gossip message or from overlay nodes to*/
/* send the real message*/ ;
broadcast(gossipmessage,REQUESTMSG,ttl=1,pj);
if
�
#messages with same signature (from different nodes)≥ sig proofs threshold

�
and

�
the overlay neighbors have not sent the message

�
then

broadcast(gossipmessage,REQUESTMSG,2,NULL);
MUTE.expect(gossipmessage.header,OL(2,current node),ANY);

endif;
else/* the message that fits the gossipmessage was received*/ ;

if (gossipmessage have not been sent yet)then
lazycast(gossipmessage,GOSSIP,ttl=1);

endif;
endif;

else/* the message is not correct*/;
TRUST.suspect(pj ,“bad signaturereason”);

endif;

Figure 3: Byzantine Dissemination Algorithm
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Upon receive(missingmessage,REQUESTMSG,ttl,pk) sent bypj do
if
�
authenticate-signature(missingmessage) = TRUE

�
then

if (ttl > 1) then
broadcast(gossipmessage,REQUESTMSG,ttl-1,pk);

endif;
if
�
current node ∈ OV ERLAY

�
then

if
�
amessagethat matchesmissingmessagewas received

�
then

VERBOSE.indict(pj);
broadcast(message,DATA,ttl=1,pj);

else/* the message that fits the gossipmessage was not received*/;
if
�
#REQUESTMSG messages for the samemissingmessagefrom different nodes≥

missingmsg threshold
�

then
message:= msg id||node id||REQUEST MSG’s||sig(msg id||node id||

REQUEST MSG’s from other nodes);
broadcast(message,FINDFAULTYMSG,2);

endif;
endif;

/* otherwise, currentnode is not an overlay node*/
elseif

�
(amessagethat matchesmissingmessagewas received)and (current node= pk)

�
then

VERBOSE.indict(pj);
broadcast(message,DATA,ttl=1,pj);

endif;
else/* the message is not correct*/;

TRUST.suspect(pj ,“bad signaturereason”);
endif;

Upon receive(faulty message,FINDFAULTYMSG,ttl) sent bypj do
if
�
authenticate-signature(missingmessage) = TRUE

�
then

if
�
ttl > 1

�
then

broadcast(faulty message,FINDFAULTYMSG,ttl-1);
endif;
if
�
current node ∈ OV ERLAY

�
then

if
�
amessagethat matchesfaulty messagewas received

�
then

/* The overlay node that has a message will send it to all the 2 hop neighborsof pj , */;
/* in order to prevent overlay neighbors to suspect each other*/
if
�
pj ∈ OL(1, current node)

�
then

broadcast(message,DATA,1);
VERBOSE.indict(pj);

else
broadcast(message,DATA,2);
VERBOSE.implicate(faulty message.header,OL(1,current node),ALL,pj);
MUTE.expect(faulty message.header,OL(1,current node),ALL);

endif;
else/* if we never heard of the message locally, continue to search it recursively */

broadcast(message,FINDFAULTYMSG,2);
endif;

endif;
else/* the message is not correct*/;

TRUST.suspect(pj ,“bad signaturereason”);
endif;

Figure 4: Byzantine Dissemination Algorithm – continued
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3.2 The Main Protocol

3.2.1 The Dissemination Task in Detail

Dissemination consists of the following steps (described from the point of view of a nodep): (1) The
originatorp of a messagem sendsm||sig(m) to all nodes inN(1, p). The header part ofm includes a
sequence number and the identifier of the originator. (2) The originatorp of m then gossipssig(m) to
all nodes inN(1, p). (3) When a nodep receives a messagem for the first time, thenp first verifies that
sig(m) matchesm. If it does, thenp acceptsm. Moreover, ifp is also an overlay node, thenp forwards
m to all nodes inN(1, p). However, ifm does not fitsig(m), thenm is ignored and the process that sent
it is suspected by the TRUST failure detector. (4) If a nodep receives a messagem it has already received
beforehand, thenm is ignored.

3.2.2 Gossiping and Message Recovery in Detail

Intuitively, the idea here is that nodes gossip about messages they received (or sent) to all their neighbors.
This way, if a node hears a gossip about a message that it has never received, it can explicitly ask the message
both from its overlay neighbor and from the node from which it receivedthe gossip. If any of the contacted
nodes has the message, it forwards it to the requesting node. Messagescan be purged either after a timeout,
or by using a stability detection mechanism. In this work, we have chosen to usea timeout based purging
due to its simplicity.

Additionally, there are several mechanisms in place to overcome Byzantine failures (in addition to sig-
natures that detect impersonations). In order to prevent a Byzantine overlay node from blocking the dissem-
ination of a message, searching a missing message can be initiated by limited flooding with TTL 2, which
ensures that the recovery request will reach beyond a single Byzantine overlay node. This, in addition to
requesting the message from the process that gossiped about its existence. Also, when a node feels that
it received a request for a missing message too often, or that such a request is unjustified, it notifies the
VERBOSEfailure detector about it.

More accurately, the gossiping and message recovery task is composed of the following subtasks:

1. When a nodep receives a gossipheader(m) for a messagem it has already received before, thenp

gossipsheader(m) with the otherN(1, p) nodes. Otherwise,p ignores such gossips. In particular,p

only gossips about messages it has already received and does not forward gossips about messages it
has not receive yet. This is done in order to make the recovery processmore efficient, and in order to
help detect mute failures more accurately.5

2. Whenp receives a gossipheader(m) for a messagem it has not received,p asks its overlay neighbors
and the sender of the gossip to forwardm to it using a REQUESTMSG message.

3. If p receivesheader(m) messages from more thansig proofs thresholdother nodes, or when some
timeout has passed sincep got the firstheader(m) message, yetp still has not receivedm, thenp

asks the overlay neighbors in 2 hop distance (using flooding with TTL=2) as well as one of the nodes
q from whichp receivedheader(m) to forwardm to it. Essentially, this situation is likely to happen
if the nearest overlay neighbor, or its neighbor, is mute. By approachingthe overlay neighbors at
distance 2, we can bypass such mute overlay nodes. Note that ifp does not receive the requested

5It is possible to piggyback the first gossip of a message by the sender and by overlay nodes on the actual message. This saves
one message and makes the recovery of messages a bit faster, sincegossips about messages advance slightly faster this way. For
clarity of presentation, we separate these two types of messages in the pseudo-code.
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message, then eventually this will trigger the MUTE failure detector atp to suspectp’s 2 hop overlay
neighbors (which in return will eventually lead to electing another node to the overlay).

4. When an overlay nodep receives a REQUESTMSG for the same messagem too many times from
the same nodeq, it causesp’s VERBOSEfailure detector to suspectq.

5. When an overlay nodep receives a REQUESTMSG for the same messagem from different nodes
more than a threshold (missingmsgthreshold) of times, or a timeout has passed since it received the
first such message, yetp has not receivedm, thenp sends a FAULTYMSG message to nodes in
OL(2, p) asking them to find the Byzantine node that is not forwardingm. (The message is sent to
overlay nodes at distance 2 in order to bypass a potential neighboring Byzantine node.)

6. When an overlay nodep receives a FAULTYMSG message for a messagem that it does not have yet,
thenp forwardsm to the nodes inOL(2, p). This is in order to make sure that if its overlay neighbor
is mute, it will be detected and eventually replaced.

7. When an overlay nodep receives a FAULTYMSG message form from a nodeq ∈ N(1, p) and
p hasm, thenp will broadcastm (to q and its other immediate neighbors). There are two reasons
why p forwards the message in a broadcast and not using a point-to-point message: (1) if one ofp’s
neighbors was missing the message, it is likely that many of them miss the message,and (2) as listed
in Item 8 below, if any of the overlay neighborsr of p has forwardedm to p and does not hearp
forwarding it again, thenr will suspect thatp is mute.

8. When an overlay nodep receives a FAULTYMSG message form from a nodeq 6∈ N(1, p) andp

hasm, thenp first broadcastm. Following this,p instructs its MUTE failure detector to expect a
retransmission ofm by all its overlay neighbors. Failure by any of them to do so will eventually lead
the MUTE failure detector ofp to suspect such a node.

3.3 Correctness Proof

Let us remind the reader that in Section 2.1 we assumed that there are enough correct nodes so that non-
Byzantine nodes form a connected graph. With this assumption, we prove the following validity and eventual
dissemination properties.

Theorem 3.1 The protocol satisfies the validity property.

Proof: According to the protocol, the originator of a messagem adds a signaturesig(m) and then dis-
seminates the messagem||sig(m) to other nodes. Note that on receiving ofm||sig(m), every correct node
checks ifsig(m) corresponds tom before the node acceptsm. As a part of the model’s basic assumptions,
a Byzantine node cannot forge signatures. Therefore, no correctnode will accept a message other thanm

as if it wasm. Moreover, according to the protocol, correct nodes filter duplicates of messages they have
already received.

Theorem 3.2 The protocol satisfies the eventual dissemination property.

Proof: We show that a messagem that is sent infinitely often by a correct originatorp is disseminated to
all the correct nodes. Assume, by way of contradiction, that there is messagem that is not received by some
correct process. Letk be the smallest number such that there exists a correct nodeq ∈ N(k, p) that does not
receivem.
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Recall that by assumption, the correct nodes form a connected graph.Therefore there exists a correct
nodel ∈ N(k−1, p) such that the distance betweenq andl is smaller thanrl andl receivedm. According to
the protocol,l will send a gossip aboutm to its neighbors and if requested by its neighbors,l will also send
m. Thus,q will receivem either from its overlay node or froml. This is a contradiction to the assumption
about the minimality ofk.

In the following, we show that eventually, if theMUTE failure detector is indeed∈ ♦Pmute, then
messages are disseminated to all correct nodes by the overlay. The significance of this is that dissemination
along overlay nodes is fast, since it need not wait for the periodic gossipmechanism.

Claim 3.3 Assume that theMUTE failure detector∈ ♦Pmute. Then eventually the non-mute overlay nodes
form a connected graphCOL such that every correct node is either inCOL, or within the transmission
range of a non-mute node inCOL.

Proof: Eventually,♦Pmute of all correct nodes will suspect all the mute nodes. Thus, the goodness number
in the overlay maintenance protocol for mute nodes will be lower than all othernodes. Consequently, the
overlay built by the maintenance protocol will have the desired property.

Claim 3.4 Every Byzantine overlay node is eventually suspected if it does not forward a messagem that is
sent bys infinitely often and if theMUTE failure detector∈ ♦Pmute.

Proof: Let p be the first correct overlay node that does not receivem. Let q be the first Byzantine overlay
node betweens andp that does not forwardm. We assume thatq is not forwardingm and we will show
that q will be eventually suspected. The route betweens andq is eithers− > s1− > ...− > si− > q

wheni ≥ 1 or s− > q. The proof for both cases is similar, so we will examine the more complicate case
(s− > s1− > ...− > si− > q wheni ≥ 1).
Let Q = {the non-overlay nodes∈ N(1, q)} andSi = {the non-overlay nodes∈ N(1, si)}. Sinceq is the
first overlay node that is not forwardingm, there exist at least one correct node inQ that will not getm. The
correct nodes inSi receivem from si and will eventually forwardsig(m) to nodes inQ. After receiving
sig(m), every correct node inQ that has not receivedm from q will activate its MUTE failure detector and
eventuallyq will be suspected.

Claim 3.5 Eventually, when there are no collisions, most messages propagate to allthe nodes via the over-
lay nodes, if theMUTE failure detector∈ ♦Pmute.

Proof: Claim 3.4 shows that eventually every mute overlay node will be suspected. In Claim 3.3, we
showed that eventually, the non-mute nodes of the overlay form a connected graph that covers all non-mute
nodes. Therefore, eventually, all messages are propagated by overlay nodes to all correct nodes, which
proves the claim.

4 Overlay Maintenance

Overlay maintenance is carried by a distributed protocol. There is no globalknowledge and each node must
decide whether it considers itself an overlay node or not. Thus, the collection of overlay nodes is simply the
set of all nodes that consider themselves as such. At the same time, every correct overlay node periodically
publishes this fact to its neighbors, so in particular, each overlay node eventually knows about all its correct
overlay neighbors.
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The goal of the protocol is to ensure that indeed the overlay can serve as a good backbone for dissemi-
nation of messages. This means that eventually between every pair of correct nodesp andq there will be a
path consisting of overlay nodes that do not exhibit externally visible Byzantine behavior. At the same time,
for efficiency reasons, the overlay should consist of as few nodes as possible.

For scalability and resiliency reasons, we are interested in a self-stabilizingdistributed algorithm in
which every node decides whether it participates in the overlay based onlyon the knowledge of its neigh-
bors. Recall that the neighbors ofp are the nodes that appear in the transmission disk ofp. Thus,p can
communicate directly with them and every messagep sends is received by all of them. Additionally, we
would like to influence the overlay construction process such that the overlay nodes will be the best nodes
under a given metric. For example, since in mobile systems nodes are often battery operated, we may wish
to use the energy level as the metric in order to have the nodes with highest energy levels members of
the overlay. Alternatively, we might use bandwidth, transmission range, orlocal storage capacity, or some
combination of several such metrics.

Following the work of [21], we define thegoodness numberas a generic function that associates each
node with a value taken from some ordered domain. The goodness number represents the nodes appropriate-
ness to serve in the overlay. This way, it is possible to compare any two nodes using their goodness number
and to prefer to elect the one whose value is highest to the overlay. For example, it is easy to evaluate and
compare the battery level of nodes. Intuitively, the idea is that a process that believes that it has the high-
est goodness number among its neighbors that are not covered by another overlay node elects itself to the
overlay.

The protocol for deciding if a node should be in the overlay consists of computation steps that are taken
periodically and repeatedly by each node. In each computation step, eachnode makes a local computation
about whether it thinks it should be in the overlay or not, and then exchanges its local information with its
neighbors. For simplicity, we concentrate below on the local computation stepsonly.

Each node has a localstatus, which can be eitheractiveor passive; active means that the node is in
the overlay whereas passive means that it is not. The local state of each node includes a status (active or
passive), its goodness number, and its knowledge of the local states of all its neighbors (based on the last
local state they reported to it). Also, for each neighbor, the list of its activeneighbors. We assume that these
messages are signed as well.

Moreover, to ensure the appropriateness of the overlay, we need to ensure that the overlay includes
alternatives to each detected mute or verbose node. Ideally, we would like toeliminate these nodes from the
overlay, but as they are Byzantine, they may continue to consider themselves as overlay nodes. Thus, the
best we can do is make sure that there is an alternative path in the overlay that does not pass through such
nodes, and that correct nodes do not consider mute and verbose nodes as their overlay neighbors. So we
refine the intuitive notion of a goodness number by ensuring that a node elects itself to the overlay if it has
the highest goodness number among its trusted neighbors. Below we list a couple of overlay maintenance
protocols that realize this intuition.

Specifically, we have implemented two overlay maintenance protocols, namely theConnected Domi-
nating Set(CDS) and theMaximal Independent Set with Bridges(MIS+B) of [21], augmented with trust
levels.6 For lack of space, and since other than adding the trust level, the protocols are the same as in [21],
we do not repeat them here.

6The CDS and MIS+B protocols in [21] are in fact self-stabilizing generalizations of the work of [48].
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Figure 5: Message delivery ratio when all nodes
are static
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Figure 6: Network load in terms of total number of
messages sent when all nodes are static

5 Results

We have measured the performance of our protocol using the SWANS/JIST simulator [1]. In the simula-
tions, we have compared the performance of our protocol with the performance of flooding on one hand and
of simple dissemination along an overlay (without recovery of lost messages). Here, flooding is an example
of a very robust protocol against maliciousness, but also very wasteful. At the other extreme, dissemination
along an overlay without message recovery is very efficient, but very unreliable as well. We have measured
the percentage of messages delivered to all nodes, the latency to delivera message to all and to most of the
nodes, and the load imposed on the network. It is also important to note that our performance measure-
ments included the overhead of the overlay maintenance as well as the gossipmessages (although overlay
maintenance are piggybacked on gossip messages).

In order to reduce the number of collisions, we have employed a staggeringtechnique. That is, each time
a node is supposed to send a message, it delays the sending by a random period of up to several milliseconds.

In the simulations, mobility was modelled by the Random-Waypoint model [28]. In thismodel, each
node picks a random target location and moves there at a randomly chosenspeed. The node then waits
for a random amount of time and then chooses a new location etc. In our case, the speed of movement
ranged from 0.5-1.5 m/s, which corresponds to walking speed. Also, the maximal waiting time was set
to 20 seconds. Each simulation lasted 5 minutes (of simulation time) and each data point was generated
as an average of 10 runs. The transmission range was set to roughly 80meters7 with a simulation area
of 200x200 meters, the message size was set to 1KB (less than one UDP/IP packet), and the network
bandwidth to 1Mbps. In each simulation, two nodes were generating messages at variable rates. We have run
simulations with varying number of nodes, but discovered that with the exception of very sparse networks,
the results are qualitatively the same. Thus, we only present the results when the number of nodes is
fixed at 200. In the graphs, we denote the flooding protocol by FLOODING, our Byzantine dissemination
protocol by BDP(MIS) and BDP(CDS) depending on the overlay mechanism used (see Section 4), and by
OVERLAY(MIS) and OVERLAY(CDS) the simple overlay dissemination mechanism that has no message

7In fact in SWANS one can choose the transmission power which translatesinto a transmission range based on power degrada-
tion and background noise.
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Figure 7: Latency to deliver a message to X% of
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recovery. We limited the number of times each message is gossiped to two. Additional gossip attempts
slightly improve the delivery ratios, but at the cost of additional messages.Finally, the main Byzantine
behavior checked was of being mute, as this has the most adverse affecton the performance of the system.

The results of the simulations in static networks with no Byzantine nodes are presented in Figures 5, 6,
and 7. As can be seen by the graphs, in this benign case, all protocols obtain very high delivery rate.
Essentially, in all protocols the latency to deliver a message to all nodes remainwell below 20ms. However,
the load on the network of the flooding protocol grows dramatically in the number of neighbors each node
has (or in other words, the density of the network). Thus, from an energy stand point, flooding is much
worse and less scalable than the others. Due to the staggering we used, even the flooding approach resulted
in a relatively small number of collisions that were compensated for by its high redundancy, which explains
its high delivery ratios. However, with higher sending rates, it is expectedto perform much worse.

Since MIS+B and CDS performed almost the same, yet MIS+B is much more computationally efficient,
during the rest of the this work, we only present the results for the MIS+Boverlay. Figures 9, 10, and 8
present the simulation results for a mobile network. Here, flooding continues tobehave well in terms
of delivery ratio and latency (and bad in terms of network load). However, we start seeing a significant
difference between our dissemination protocol (BDP) and a simple dissemination with no gossip and no
recovery of messages (OVERLAY). While BDP maintains delivery rates close to flooding (and close to
100%), without gossip the delivery rate drops to 40%. Generally speaking, all protocols deliver messages
fast. However, OVERLAY only delivers message to about 40% of the nodes. Also, in BDP the latency
slightly grows for the last nodes proportionally to the frequency of a singlegossip exchange.

Figures 11 and 12 explore the delivery ratio of the different protocols with varying number of Byzantine
nodes. As can be seen, when no recovery mechanism is employed, the delivery rate drops dramatically. On
the other hand, both our protocol and the flooding protocol maintain very high delivery rates. Interestingly,
when nodes are mobile, the impact of Byzantine nodes is weakened. This can be explained by the fact that
the overlay adapts itself to the evolving network topology. Thus, a Byzantinenode does not necessarily
remain in the overlay throughout the execution.

Figures 13 and 14 explore the network load imposed by the different protocols as a function of the
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Figure 9: Message delivery ratio when nodes are
mobile
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number of Byzantine nodes. In the static case, the network load imposed by BDP exhibit a linear increase
with the number of Byzantine nodes. On the other hand, the network load imposed by flooding slightly
improves. This can be explained by the fact that if Byzantine nodes avoid sending messages, then fewer
messages are sent. As for the dynamic case, here we also observe the interesting phenomena that mobility
improves the asymptotic behavior of the protocols. Again, this can be explainedby the fact that the overlay
structure evolves with the network topology, making it “harder” for Byzantine nodes to block message
dissemination along the overlay.

Figures 15 and 16 explore the latency to deliver a message to X% of the nodes when some nodes are
Byzantine (out of 200 nodes and a sending rate of 1 message per second). Clearly, the latency grows with
the number of Byzantine nodes. Also, in the static Byzantine case, almost all nodes receive the message in
less than a second and only when there are many Byzantine nodes, it may take several seconds to deliver a
message to the last 20% of the nodes. In the mobile case we see the same qualitative behavior, but the latency
starts growing beyond one second at 60% of the nodes. We would like to point out that by fine tuning the rate
of gossips and the other timers in the system, it is possible to dramatically reduce the quantitative latency
numbers. The numbers here do not include such tuning, yet we started exploring this option. However,
the important thing to note is that with Byzantine nodes, without a best-effort recovery mechanism, it is
almost impossible to ensure reliable delivery just by retransmission. This is because without additional
recovery mechanism, the Byzantine nodes might collude to block all messagesfrom reaching some parts of
the network.

6 Related Work

A good survey of broadcast and multicast protocols for wireless ad hocnetworks can be found in [46]. In
particular, (multicast) routing in MANET can be classified intoproactive, e.g., OLSR [13],reactive, e.g.,
AODV [40] and DSR [28], and mixtures of both, e.g., ZRP [26], as well asgeographic routing [29, 30, 31,
41]. These protocols, however, ignore Byzantine failures.

Spanning tree based overlays have been often used as the main scheme for disseminating messages to

16

T
ec

hn
io

n 
- 

C
om

pu
te

r 
S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
S

-2
00

5-
10

 -
 2

00
5



0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

la
te

nc
y 

(s
ec

)

%nodes

BDP−0
BDP−1
BDP−2
BDP−8
BDP−14

Figure 15: Latency to deliver a message to X% of
the nodes when all nodes are static with varying
number of Byzantine nodes
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Figure 16: Latency to deliver a message to X%
of the nodes when nodes are mobile with varying
number of Byzantine nodes

large groups, e.g., in IP multicast [39, 45] and in the MBone [20, 33]. More sophisticated overlays such as
hypercubes and Harary graphs have been explored, e.g., in [22, 32], as well as distributed hash tables like
SCRIBE [42].

The idea that a process can detect that it is missing a message by exchanging messages with other
processes first appeared, to the best of our knowledge, in the MNAK layer of the Ensemble system in
1996 [27]. Additionally, randomized gossip has been used as a method of ensuring reliable delivery of
broadcast/multicast messages while maintaining high throughput in the PBcast/Bi-modal work [6] as well
as in several followup papers, e.g., [19]. In these works it is assumed that a node can choose with whom
it wishes to gossip, and does so in a random manner. In contrast, in our case gossiping is done with all
neighbors that are physically decided by the movement of nodes and transmission ranges. Also, the works
of [6, 19, 27] ignored Byzantine failures.

There has been a lot of work on securing point-to-point routing schemesagainst malicious nodes. Due
to space limitations, we will only mention a few of them. One example is the protocol presented in [2]. In
this work, the authors describe a mechanism for detecting malicious faults along a path and then discovering
alternative paths. Another secure routing protocol (SRP) has been proposed in [37]. SRP requires a secure
association between each pair of source and destination but assumes thatByzantine nodes do not collude.
Yet another protocol, SMT [38], protects pairwise communication by breaking the message into several
pieces based on a coding scheme that allows reconstructing the message even when some pieces are lost.
Each piece is then sent along a different path. Additional examples of secure point-to-point routing include,
e.g,. [43, 49, 50].

The work of Minsky and Schneider [36] explored disseminating informationusing gossip in wired net-
works, when some nodes can be faulty. This is by only trusting gossips thathave gained the support of
at leastf + 1 nodes, wheref is the number of potential Byzantine nodes. Several other works have also
proposed a Byzantine multicast scheme that sends a message alongf + 1 distinct paths [15, 34]. Similarly,
using multiple paths chosen in a stochastic manner in order to reduce the possibility of interception have
been studied in [7].

Reliable Byzantine tolerant broadcast and multicast in networks where all nodes can communicate di-
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rectly with each other has been formally described in [8], and has been explored, e.g., in [15, 35]. Also, the
works in [4, 9] have proposed a formal framework for defining and implementing reliable multicast proto-
cols in a hybrid failure environment (Byzantine, crash, and omission) based on modern cryptography. In
particular, they have investigated the computational complexity of such protocols.

A framework for fault-tolerance by adaptation was proposed in [11]. Inthis framework, a simple proto-
col is run during normal operation alongside some failure detection mechanism. Once a failure is detected,
the execution switches to a masking protocol. This idea was demonstrated in [11] on the broadcast problem,
which results in a somewhat similar solution to ours. However, in [11] it was not mentioned how the overlay
(a tree in their case) is constructed and maintained. Also, the masking protocol was flooding, whereas we
avoid flooding even when failures are detected. Instead, in our approach, local message recovery is first
attempted. Moreover, in [11] it was not explained when and how to return tothe simple protocol once a
failure is compensated for. Finally, our work encapsulates failure detection behind failure detectors, which
results in a modular implementation.

The notion of a failure detector, which capture the required functional properties of failure detection
without specifying explicit timing assumptions, was initiated by Chandra and Toueg in the context of the
Consensus problem [10]. Mute failure detectors were initially proposed in[17, 18] in order to solve Byzan-
tine Consensus in otherwise asynchronous systems. They were later used also in [5, 24]. Moreover, the
use of a trusted timely control channel, calledTTCB, was explored as another mean of solving Byzantine
Consensus efficiently in [14]. In fact, TTCB can be used to implement mute failure detectors. For example,
when each node has both WiFi and cellular communication, one might be able to implement a TTCB using
cellular communication while sending normal data using WiFi.

7 Discussion and Conclusions

In this work we have described a Byzantine tolerant broadcast protocol for mobile ad-hoc networks. The
protocol disseminates messages along the arcs of a logical overlay. The protocol relies on signatures to
prevent messages from being forged. It also employs gossiping of headers of known messages to prevent a
Byzantine overlay node from stopping the dissemination of messages to the rest of the system. Additionally,
for efficiency reasons, the overlay maintenance mechanism is augmented toensure that enough correct
nodes are elected to the overlay so that Byzantine nodes do not disconnect the overlay beyond the time
required to detect such behavior. Finally, the detection of observable Byzantine behaviors, such as mute
and verbose failures, are encapsulated within corresponding failure detectors modules. The use of failure
detectors simplifies the presentation of the protocol and makes it more genericand robust. This is because
the protocol need not deal explicitly with issues like timers and timeouts.

Our measurements confirm that for non-sparse networks, the protocolbehaves very well. That is, our
protocol obtains very high delivery ratios while sending much fewer messages than flooding. When there is
no Byzantine activity, our protocol is almost as economical as a protocol that has no recovery mechanism
(and in particular, much more efficient than flooding). When some Byzantinefailures occur, our protocol
still remains more efficient than flooding, while maintaining a comparable delivery rate. In contrast, when
there are Byzantine failures or mobility, having no recovery mechanism results in a significant drop in
delivery rates. Additionally, we discovered the interesting anecdote that Byzantine failures have a somewhat
reduced impact when the nodes are mobile. Intuitively, when nodes are mobile, there is a lower chance that
Byzantine nodes will constantly be at critical positions on the message dissemination paths for all messages.

In this work we detect and cope with verbose attacks. However, we do not address denial of service
attacks caused by Byzantine nodes constantly sending messages in orderto jam the network (at the MAC
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level). This problem can only be solved at the hardware level, e.g., using frequency hopping techniques
borrowed from electronic warfare [12]. While this is a very important issue, it is orthogonal to other forms
of Byzantine failures. In particular, a solution to this denial of service problem will not provide remedy for
the other forms of Byzantine behavior.

Finally, one of the main problems in mobile ad-hoc networks is power. As nodesare mobile, they are
typically battery operated. It turns out that the network card consumes roughly the same levels of energy
when it sends a message, receives a message, and listen for messages.The main source of energy saving
is to put the card in sleeping mode. The IEEE 802.11 standard includes the Power Save Mode in order to
deal with this problem in wireless LANs when all messages are point to point. There have also been a few
attempts to extend this to multiple hops networks with point to point messages, such as [3]. An interesting
problem is to develop a Byzantine broadcast protocol for multiple hop ad hoc networks that enables most
nodes to sleep most of the time in order to reduce their energy consumption.

Acknowledgements: We would like to thank Eli Biham and Elad Barkan for advising us on the usageof
cryptography for this work.
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