Efficient C-Space and Cost Function Updates in 3D for Unmanned
Aerial Vehicles

Sebastian Scherer, Dave Ferguson, Sanjiv Singh

Abstract— When operating in partially-known environments,
autonomous vehicles must constantly update their maps and
plans based on new sensor information. Much focus has been
placed on developing efficient incremental planning algorithms
that are able to efficiently replan when the map and associated
cost function changes. However, much less attention has been
placed on efficiently updating the cost function used by these
planners, which can represent a significant portion of the
time spent replanning. In this paper, we present the Limited
Incremental Distance Transform algorithm, which can be used
to efficiently update the cost function used for planning when
changes in the environment are observed. Using this algorithm
it is possible to plan paths in a completely incremental way
starting from a list of changed obstacle classifications. We
present results comparing the algorithm to the Euclidean
distance transform and a mask-based incremental distance
transform algorithm. Computation time is reduced by an order
of magnitude for a UAV application. We also provide example
results from an autonomous micro aerial vehicle with on-board
sensing and computing.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have many civilian and
military applications. However currently such vehicles can
only operate at a high altitude because they are not able
detect and avoid collisions with obstacles. Our research
focuses on UAVs that operate close to obstacles such as
buildings, vegetation and power lines. It is necessary to fly
low because one can get a better viewpoint, and can avoid
manned air traffic.

We assume that the robot (Fig. 1) is given a sequence
of sparse waypoints that have to be reached to make ob-
servations and that the robot has to find its way around
obstacles that might be in its path. Flying close to and among
obstacles is difficult because of the challenges in sensing
small obstacles, and in repeatedly planning a safe path that
avoids obstacles in three dimensions.

Some aspects of collision avoidance are easier for air
vehicles than ground vehicles. Any object close to the
intended path of an air vehicle must be avoided as opposed
to ground vehicles where the ground is always close and
deviations from the nominal ground plane indicate obstacles.
The use of rotorcraft, rather than fixed wing aircraft also
simplifies the problem because in the worst case it is possible
for rotorcraft to come to a hover in front of an obstacle.
Still, the availability of appropriate sensors, logistical issues
of mounting a vehicle with sufficient sensing, computing and
communication gear, and the risk involved in such experi-

Sebastian Scherer and Sanjiv Singh are with the Robotics Institute,
Carnegie Mellon University. Dave Ferguson is with Intel Research Pitts-
burgh.

email: [basti,

dif, ssingh]@cmu.edu

Fig. 1. The autonomous quad-rotor aerial vehicle used for testing. Here,
the vehicle is close to a typical pole and wire obstacle in the environment.
The system is equipped with a computer, a GPS, an inertial measurement
unit, and a ladar scanner to sense the environment. The size of the vehicle
with rotors is less than one meter.

Limited
Incremental Incremental
Planning

Map Distance R,

New Updated .

sensor | Update | obstacle |Transform| Changed | Algorithm | New
Data Cells || COS'S || Path

Fig. 2. Data flow in a completely incremental planning paradigm. Sensor
data causes an update to the environment map which propagates to changes
in the cost function used by the planner. Finally an incremental path planner
calculates a new path to the goal with the changed cost values.

mentation has kept researchers from significant progress in
this area.

The main contribution of this paper is a completely incre-
mental framework that enables frequent replanning of paths
in 3D for aerial vehicles (Fig. 2) at an order of magnitude
lower computation time than current approaches to obstacle
expansion. Incremental planning has been well studied [1],
[2], however in prior work it has mostly been assumed that
planning is performed on a C-space expanded cost map and
that calculating this cost map is not difficult. In 2D the
number of cells affected to update the cost function based on
a new obstacle is a function of the square of the maximum
expansion. For example for an expansion of 20 cells about
400 cells are affected. However, in 3D it is not trivial to
update the cost function after new sensor data has been
received because the number of cells that potentially need to
be recomputed changes cubicly. So for the same expansion
we have to potentially look at roughly 8000 cells.

In this paper, we present the Limited Incremental Distance
Transform algorithm (LIDT) to efficiently perform this cost
function update. In our approach, changes to the environment
grid map [3] are propagated via the described limited incre-
mental distance transform. The list of changed costs is then
used by an incremental planning algorithm [2] to update the
current plan.

In previous work we have addressed the problem of
navigating among obstacles with a layered architecture of
a reactive avoidance algorithm that learns parameters by
observing operator behavior and a global planning algorithm
that operates on an evidence grid [4], [5]. A path planner for a

fixed-wing UAV using a grid lattice that operates on C-Space
expanded obstacles is proposed by Hwangbo et al. [6]. Grif-
fiths et al. use an RRT based planner with a grid height map
to plan a path through the environment for an autonomous
fixed wing UAV in an urban environment [7]. Whalley et al.
explore an environment with an autonomous helicopter. Paths
among obstacles are planned to use a Voronoi diagram [8].
Andert & Goormann build an occupancy grid for planning
with a stereo rig on a UAV [9].

All of the related work described above uses a grid based
approach to represent obstacles. Since a C-space expansion
and cost function have to be computed for planning our
approach could be used to update the costs in the map.

We begin by describing in Section II how navigation
cost functions are typically computed and their relationship
to distance transforms. In Section III we discuss several
potential approaches on computing such cost functions.
Section IV describes our novel algorithm and Section V
presents experiments and results, including examples from
our autonomous aerial vehicle.

II. C-SPACE EXPANSION AND COST FUNCTIONS

Incremental replanning using D* or its variants [1], [2] is
a general and efficient approach to adapt to a partially-known
or dynamic environment. However it is not always easy to
determine how the map for planning changed on a 3D grid
since it is necessary to plan in the changed free configuration
space [10] with changed costs.

Even though it is theoretically possible to plan with an
arbitrary C-space expansion and cost function, the dominant
factor is the distance to the closest obstacle. Therefore we
assume that we can calculate the cost for planning around
obstacles from distance.

In this paper we assume a spherical robot, a reasonable
assumption for a rotor-craft. A spherical expansion is easy
to compute if we know the distance to the closest obstacle.
If the distance is closer than the radius r, of the UAV one
is in contact with an obstacle. We set the cost for such an
edge to be infinite cost.

We can express the general cost function between two
vertices as follows:

c(k, 1) :{ > if dhg <r)
’ v - obst(l) + dist(k,l) otherwise

where c(k, 1) is the cost between position & and [, and the
closest obstacle is d(l)2. The cost consists of a scale factor
~ that scales between the cost of obstacles obst(l) and the
cost of the distance dist(k,l). Since we can express the C-
space expansion in the cost function as an infinite cost, we
will from here on refer to the cost function as the cost of an
edge that also includes the C-space expansion.

The dist function can be any valid distance metric but one
common metric is the squared Euclidean distance:

dist(k,1) = (ky — 1) + (ky — 1,)? + (k. — 1.)> ()

where the x,y,z components are the displacement in the
respective axis. If &« = 1 going left/right or to climb/sink is
equal cost. If o > 1 the robot will prefer to move laterally
and if o < 1 it will prefer to move vertically.

Several interesting cost functions for UAVs depend on the
distance to the closest obstacle. For example, the shortest
path with a clearance to obstacles:

obst(l) = max(0, d>

Y 'max

—d(D);) (3)
A maximum distance d?,, determines a cutoff beyond
which the closest obstacle does not influence the path any-
more. In the extreme case if d?,,, and v is large the path
found will correspond to the solution of the Generalized
Voronoi Graph (GVG) [10] since the path will first lead away
from the obstacle to get onto the Voronoi graph and then the
lowest cost path will be on the graph and finally will go
away from the graph to the goal point. In a natural outdoor
environment the separation of obstacles is in many cases
unbounded so that planning on that boundary would lead to
too long paths.

Another useful cost function is to stay close to obstacles
up to a desired distance dg.s but not too close. This can be
important for stealth reasons but also one might want to stay
closer to obstacles to avoid wind or to stay localized. In this

case the cost function can be expressed as follows:
obst(l) =| dj, —min(dy,q,, d(1);) |)

Note that for both obst(l) functions it is necessary to
know d(l)2, the distance to the closest obstacle up-to the
maximum distance d?,,,. Naively computing the distance
d(1)? is expensive for large d? ,, that are typically used
in planning for UAV. The contribution of this paper is an

efficient algorithm for calculating the changes to d(l)2.

III. DISTANCE TRANSFORM ALGORITHMS

The distance d(I)? is the result that is computed by
the distance transform algorithm. There are many possible
distance metrics that can be applied, however the squared
Euclidean distance is most useful for our application since
we want the obstacle expansion and C-space expansion to
be spherical. The property of the distance transform that
we want can be expressed for a mxnxo grid with boolean

obstacles bli, j, k] as follows:
EDT(z,y,2) =
min(bli, j, K] : (x =) + (y = 5)* + (2 = k)*) (5)

This property says that for every coordinate in the distance
transform EDT(x,y, z) we determine the minimum of the
distance to all the obstacles b[¢, j, k]. This would of course
not be a very efficient algorithm in most cases however it
shows what we need to compute. The Manhattan distance
L transform can be written like this:

MDT(x,y,2) =

min(bli, j, k] | x =i+ [y —j+[z—-k]) (6)

An efficient non-incremental linear time algorithm to
calculate the distance transform was proposed by Meijster
et al. [11]. Even though this algorithm is very efficient, we
will show in section V that repeatedly recomputing the result
takes too long to be useful for navigation on a large grid. The

algorithm scans the grid in three phases. In each phase the
grid is scanned along a different axis forward and backward
to determine a minimum. Overall the work performed is
six passes through the grid for three dimensions. In two
dimensions four passes are necessary.

A simple incremental approach to update the cost function
in a grid is to update the grid with a mask of the distances
to the obstacles. We will refer to this algorithm as “mask al-
gorithm” in the algorithm evaluation. Every time an obstacle
is added a convolution of the surrounding area is performed
to check if any of the distances is larger than the distance in
the mask. In the case of obstacle removal all non-obstacle
cells that are in the mask of the obstacle are set to infinity
and a region of two times the size of the mask is scanned
for all obstacles. The region inside the removed obstacle is
checked for any obstacle and the closest distance is restored.
This algorithm serves as an incremental algorithm that one
could implement easily.

While the runtime of the Meijster et al. algorithm depends
on the size of the grid and is therefore non-incremental, the
runtime of the mask algorithm depends on the number of
obstacles added and removed. The algorithm we propose also
depends on the number of obstacles that changed however if
only a small number of distances changes less work has to
be performed by the LIDT algorithm.

Kalra et al. [12] developed an incremental algorithm to
reconstruct the Generalized Voronoi Diagram (GVD) in 2D.
The GVD is based on a quasi-Euclidean distance transform
of the obstacles. The algorithm is the basis of the algorithm
presented in this paper, however we have modified the
incremental GVD algorithm to make it suitable for C-space
and cost function updates. The presented algorithm also
adds another variable to keep track of the changes in the
distance transform while it is being computed that can then
be used in an incremental planning algorithm (Also see Fig.
2) . Furthermore we have generalized the algorithm to be
applicable for different distance metrics (such as the squared
Euclidean distance metric) while the original algorithm only
allowed a quasi-Euclidean expansion. Also one can control
the maximum amount of computation per obstacle in the
LIDT algorithm because one controls the maximum distance
dmay that needs to be expanded into account.

IV. LIMITED INCREMENTAL DISTANCE TRANSFORM
ALGORITHM

A. Intuition

The Limited Incremental Distance Transform algorithm
provides an efficient solution to keep an updated distance
transform for changes to the cost function in the environment.

The algorithm is an incremental version of the brushfire
algorithm and, as with the original brushfire algorithm it
propagates a wavefront of distances to update the distance
for each cell to its closest obstacle. For a good explanation of
the brushfire algorithm also see Choset et al. [10]. The open
list O keeps track of the wavefront and contains the cells that
need to be expanded. Initially if only obstacles are added,
the values of cells are lowered from d,,,, to consistent
(or correct) distance values in the same way that brushfire

INITIALIZE() CALCULATEKEY(0)

1 010 1 return min(dist,, dist;")
2 foreach cell s
3 dists — d?,u. UPDATEVERTEX(0)
4 dist™® — d?, .. 1 key <« CALCULATEKEY(0)
5 distd — d?,,, 2 ifo €O
6 obsts 0 3 UPDATE(O, o, key)
4 else
SETOBSTACLE(0) 5 INSERT(O, o, key)

1 if dist?® # 0

2 disty®” — 0 DISTANCE(n,)

3 obst, — o 1 Squared Euclidean:

4 UPDATEVERTEX(0) 2 v« POSy — POSobst,
3 return v-v

REMOVEOBSTACLE(0)

1 dist?® — d2,.. DISTANCE(n, §)

2 obst, — 0 1 Quasi Euclidean:

3 if disty < d2es 2 v+ pos, — PoSs

4 UPDATEVERTEX(0) 3 return v - v + dist]®"

Fig. 3. The Limited Incremental Distance Transform Algorithm (Helper
functions).

would proceed. Since the values are sorted by increasing
distance the cells with the smallest distance get updated first.
Finally, the wavefront that is moving outwards terminates if
the distance has reached a value that is larger than any of the
neighboring cells or if the grid boundary has been reached.

If an obstacle is removed a similar sweep outward prop-
agates the changes to cells whose previous distance values
are based on the removed obstacle and updates the distance
for those cells since they now have a too close distance
value. The cost to each of these cells is then updated based
on the closest valid obstacle. Once the removal wavefront
terminates each cell that does not have a valid obstacle will
be updated with a valid obstacle (up to dy,qz)-

It is important to note that the size of the queue in the
wavefront depends on the radius of expansion. The number
of cells in the queue is dependent on the radius r of the
wavefront and grows linearly with the radius O(r). However
since we are calculating the expansion in 3D the number of
cells on the surface of the sphere grows with the square of
the radius O(r?). Also the maximum radius that has to be
expanded depends on the size of the Voronoi region that is
affected. One worst case example is an empty grid with one
obstacle that is removed. In that example first all the cells
going outward have to be invalidated and then all cells have
to be lowered correctly again. In the worst case one therefore
has to look at the grid twice for every obstacle removed.

For our application we are interested in computing the
distance transform only out to a maximum distance d,q;-
As such the incremental distance transform propagation can
be terminated once this distance is reached. This can save a
significant amount of computation if the Voronoi region that
changes is large.

B. Details

The algorithm pseudocode is split in two parts the helper
functions are shown in Fig. 3 and the main functions are
shown in Fig. 4.

In INITIALIZE all cell distances are set to d?,,, and the
obstacle pointer is emptied. As the environment changes
obstacles are removed and added with SETOBSTACLE and

REMOVEOBSTACLE. If an obstacle is added its distance is

INCREMENTALDISTANCETRANSFORM(O)

LOWER(s) 1O 0

1 foreach n € Adj(s) WAVEOUT(n) 2 while O # 0

> distner d? yiew 1 if n # obst, 3 s« Por(O)

i i 2 distter — a2, 4 i dist?e” < dist,

4 if J d tnew (n7 8) 3 obstﬁld — ObStn 5 dists — dist?ew

5 ! di s?ne'zljsi d 4 foreach a € Adj(n) 6 LOWER(s)

6 obstz < obsts > if V/ALID(ObSt”) 7 if dist, # dist?"

7 UPDATEVERTEX(n) g :i c?fili?;i?:(n’ a) 595 ilfsz’lg(:céifgts

8 disti®" «— d’ 10 else

RIAISfEI(‘iz)lch n € Adj(s) 9 obstn Oll)dSt“ 11 dists — dp,az

2 WAVEOUT(n) 10 if obst,, # obst;, 12 RAISE(S)

3 WAVEOUT(s) 11 UPDATEVERTEX (1) 13 if dists # disty®”
14 updateVertex(s)
15 return C

Fig. 4. The Limited Incremental Distance Transform Algorithm (Main functions).

set to zero and the obstacle points to itself. Then the obstacle
is added to the queue to be expanded. Similarly a removed
obstacles distance is set to d?,,, and it is added to the queue
with the priority of the old distance it used to have.

Since the update to the grid should always be with
increasing priority the key is calculated from the smaller of
the two distance values in CALCULATEKEY and the heap is
updated in UPDATEVERTEX with the new priority unless the
element has an infinite priority.

Using our algorithm one can calculate a squared Euclidean
distance in DISTANCE or a quasi-Euclidean distance that is
the shortest distance on a 26-connected grid. It is possible to
calculate the squared Euclidean distance because we always
keep track of the location of the closest obstacle in obst,.
The obsts pointer tells us if a grid cell needs to be updated
because it points to an obstacle. If that obstacle changes all
cells pointing to that obstacle need to be updated.

The main work of updating the distance transform and
keeping track of changed cells happens in INCREMEN-
TALDISTANCETRANSFORM which returns a list of updated
distances C. If we added or removed obstacles the open
list O will not be empty and so we take the first element
of the list and LOWER the node if it is over-consistent and
RAISE it otherwise. Since all nodes have to be made LOWER
eventually we can keep track of the changed distances in
lines 7-9.

LOWER updates the distance of each adjacent node and
adds it to the queue if the distance changed. Also we update
the associated obstacle if it changed.

RAISE on the other hand propagates out a removed ob-
stacle in WAVEOUT and so we first set the distance to be
infinity and try to get a new distance for an adjacent node.
If the associated obstacle changed we put the item back on
the queue.

The algorithm terminates when the open list is empty. At
this point all the cells in the grid have consistent distance
values and have a valid obstacle pointer if their distance is
less than d,,,,. A list of changed cells is in C.

We assume that the open list O has three operations:
INSERT inserts an element in the open list with a given
priority key, UPDATE updates the key of an element already
in the queue, and POP returns and removes the top element
from the priority queue.

Even though one can implement the open list O as a

Fig. 5. The virtual campus environment of Carnegie Mellon University,
Pittsburgh, PA that is used in the simulation experiments. Buildings that
were added to the digital elevation model are shown in white. A hemispher-
ical 200m range 3D range sensor is simulated to update the environment
map held by the robot.

binary heap there is a fast data structure that can be used
in our application because the maximum distance is limited
to dy,q, and we are operating on a grid with integer values
of the keys. Since there is only a small range of key values
we create a hash table with the distances as key values. On
every update we keep track of the lowest distance element.
If we pop an element we update the lowest distance if it
changes. To insert we just add the element to the list at the
appropriate key value. This data structure allows O(1) for
INSERT, UPDATE, and POP.

V. EXPERIMENTS

There are certain tradeoffs between using an incremental
and non-incremental algorithm that need to be considered. In
this section we examine some parameters that influence the
performance of the LIDT algorithm and compare it to the
fastest non-incremental algorithm and a simple incremental
algorithm we denote the “mask” approach (described in
Section III). A recent survey [13] showed that the algorithm
developed by Meijster [11] is fastest in almost all test
cases over a variety of problems. We therefore also compare
the incremental algorithms to a 3D implementation of this
algorithm.

A. Simulation experiments

To determine the effectiveness of the limited incremental
distance transform algorithm for aerial vehicle planning we
evaluated it for missions in a simulated environment and
compared it with two other distance transform algorithms:
the non-incremental distance transform algorithm by Meijster
et. al and the simple incremental ‘mask’ algorithm. See
Section III for more details on the two competing algorithms.

T
—— +
+
10 I 1
@ |
(0]
2 —
£~ 57 4
R —
+
or ‘ ‘ % i
Meijster Mask Incremental
Fig. 6. A comparison of running three distance transform algorithms

in the environment shown in Fig. 5. The algorithms are run with the
same sensor inputs on a grid that was initialized with an elevation model.
Meijster is the non-incremental distance transform algorithm by Meijster
et al. Mask is a simple incremental algorithm that updates based on a
distance mask for each obstacle. Incremental is the limited incremental
distance transform algorithm. The environment map changes as the robot
discovers new obstacles and removes invalid obstacles from its initial map.
dmaz = 20. The mean of the number of obstacles added was 370 &+ 32.3.
The mean of the number of obstacles removed was 14 £ 6.5. The grid
size considered is 512x512x80. Box and whisker plot legend: The red line
is the median, the blue box extends from the lower quartile to the upper
quartile, and the whiskers extend to 1.5 of the interquartile range. Red
crosses represent single run outliers.

60 T T T :
* *
*
— 40+ * * 4
% * x * *
_g ool Lo |
*
0 ¥ % 4 ¥ . . .
0 50 100 150 200 250
d [cells]
max

Fig. 7. [Initial calculation times for an empty 512x512x80 grid initialized
with obstacles from a digital elevation model for different expansions. As
the expansion increases so does the initialization time because a lot of cells
need to be updated for a large expansion in the limited incremental distance
transform.

time [s]

+

+ +J$r #i.ir*TTT,
++i%iiéééggggg

5 10 30 50 70 90 110130150170190210230250
dm [cells]

Fig. 8. A box and whisker plot for the limited incremental distance
transform of the computation time in seconds for an increasing value of
the maximum distance expanded diqz - The computation time spreads out
more as dmaq increases since a changed obstacle cell can affect a larger
Voronoi region however the region affected can also be small if the obstacle
added is close to existing obstacles. The grid size considered is 512x512x80.
For the legend of the box and whisker plot see Fig. 6.

Algorithm | Incremental Mean calc. time Std. Deyv.
Meijster No 13.05s 0.16s
Mask Yes 6.61s 2.21s
LIDT Yes 0.27s 0.12s
TABLE I

CALCULATION TIMES OF ONE UPDATE FOR THE ALGORITHM BY
MEISTER ET AL., THE MASK ALGORITHM AND THE LIMITED
INCREMENTAL DISTANCE TRANSFORM ALGORITHM (LIDT). dynge = 20

We want to simulate an algorithm load that is similar
to a real extended mission of our micro aerial vehicle in
a simulated environment of the campus at Carnegie Mellon
University, Pittsburgh, PA, USA. See Fig. 5 for a screen shot
from our simulation.

The simulation consists of a second order dynamic model
of our quad-rotor helicopter shown in Fig. 1, a hemispherical
3D range sensor with a range of 200m, and a geometric
model of campus.

A path tracking algorithm controls the helicopter and
regulates speed based on the distance to the closest obstacle.
As soon as a sensor measurement is received the evidence
grid is updated and changes are given to one of the three
distance transform algorithms. The changes to the grid and
the cost function are then propagated to a D* Lite [2]
planning algorithm. All algorithms run on a 2.5GHz Intel
Core 2 Duo processor.

We ran an experiment in this environment with the robot
avoiding obstacles that it saw within its range sensor and the
three algorithms calculating the changes to the cost function
for D* Lite. The maximum expansion for the grid was set
to dinaz = 20 and the environment map was initialized with
the prior digital elevation model. During its traverse, a mean
of 370 (standard deviation 32.3) obstacles were added and
14 (standard deviation 6.5) obstacles were removed.

Overall the limited incremental distance algorithm per-
formed over an order of magnitude better than the competing
approaches (Fig. 6 and Table I), because the expansion
distance is large and a number of obstacles have to be
removed each iteration. As the number of obstacles removed
decreases the ‘mask’ algorithm performs better because
obstacle removal is an expensive operation for this algorithm.
The non-incremental Meijster et al. algorithm has to traverse
the grid several times and therefore cannot perform as well
as the incremental algorithms which only have to update a
small local region.

As the expansion distance decreases there is a point at
which the mask algorithm becomes more efficient because it
can use the processor cache better since it performs lots of
sequential accesses. However if d,,,,, increases significantly
the runtime of the mask algorithm will increase beyond
the non-incremental algorithm by Meijster because it must
perform double work.

The runtime of the limited incremental distance transform
depends on the size of the Voronoi region affected and in
many cases if obstacles are close to each other then the
affected regions are relatively small. In the case of the
simulation and in realistic scenarios the changes to the map
will be local and in a neighborhood of existing obstacles.
In this case since only a small number of cells need to
be updated the limited incremental distance transform has
a significant advantage.

The standard deviation in Table I indicates that the com-
putation time for the LIDT algorithm varies less than for the
Mask algorithm.

In a second experiment we evaluated the performance of
the maximum distance d,,,, on computation time for our
campus environment.

Goal
A\w

Planned \'k
Avoidance Pat \

s

) Tree
N ¥ YiDetectpd by Ladar)

| \ﬂission Path | .-
Vehicle |

I FIowT PaEN

Fig. 9. This sequence of images shows our autonomous quadrotor micro
aerial vehicle (Fig. 1) avoiding a tree that is in the straight line mission
path to its goal. As soon as the robot detects the obstacle it plans a path
in 3D with a wide berth around the obstacle. The cost function is set up
in such a way that the robot will prefer to move laterally and therefore we
only show a top view. Since dp a2 = 11 the obstacle is avoided by a large
margin. The mission path is shown in black and the planned avoidance path
is shown in red. The black line shows the path of the vehicle as recorded
by GPS. The tree obstacle is shown in green.

We ran a total of 37461 updates with varying maxi-
mum expansion values for the limited incremental distance
transform. During testing we reset the environment map
periodically and then recalculated the incremental distance
transform with obstacles based on the digital elevation model
which exemplifies the overhead cost of the incremental
distance transform for starting from scratch.

The initial overhead of the incremental distance transform
algorithm is significant if a large number of obstacles already
exist in the environment map since the expansion has to
perform more work per cell than the distance transform
algorithm. A scatter plot of the overhead is shown in Fig. 7.

After the initial overhead, however, subsequent updates
are relatively inexpensive. With an increase in the distance
dmay the median computation time increases as well as the
overall spread in computation. Since the potential number
of cells affected by a change in the environment increases
with d,,., We also see a larger variation in computation
times. Even with a large expansion of 250 cells, however,
the limited incremental distance transform algorithm can still
outperform the algorithm by Meijster. At such an expansion
distance the ‘mask’ algorithm would not be feasible because
on every update it essentially needs to check every cell in a
512x512x80 grid.

B. Quad-rotor experiment

Our autonomous quad-rotor robot (Fig. 1) wants to avoid
obstacles with a wide berth if possible because it increases
the safety of the path and gives a better perspective for
sensing. The robot is equipped with a GPS, INS, and a
ladar scanner to sense the environment. All computation is
performed on-board and a planning cycle is performed at
about 3Hz. It can fly missions of up to 20 minutes and can be
given a series of waypoints it should reach. Since typically
almost all of the waypoints are low the straight line path
to the goal is typically obstructed by obstacles. The ladar
scanner returns distances to obstacles and the information
is processed into a global map as a 3D array in memory
and a path is planned using a distance transform expansion.
The position of the robot has some uncertainty (2m) that
is incorporated as part of the C-space expansion. The robot
can avoid obstacles in three dimensions since the planning
algorithm also operates in three dimensions.

Fig. 9 shows the quadrotor avoiding a tree in its straight
line path to the goal. The cost function used for the planning
algorithm in this case is the same as as in Eq. 3 with d;;,4; =
11. Since that expansion is large and we are planning in
3D it is beneficial to use an incremental distance transform
algorithm to update the changes to the cost function. The C-
space expansion is set to 2 meters but since it is expensive
to go close to obstacles the path gives the obstacle a wide
berth. In this experiment the obstacle is avoided with a speed
of 2m/s.

VI. CONCLUSION AND FUTURE WORK

We have presented a completely incremental framework
for planning paths in 3D that enables recomputation of
costs an order of magnitude faster than current approaches.
This speed up is made possible by using a novel limited
incremental distance transform algorithm. This algorithm
exploits the local nature of cost function updates when
obstacles are added or removed from the map and enables
autonomous aerial vehicles to respond to newly observed
obstacles (or obstacles that no longer exist) in real-time.
We have provided results from simulation demonstrating the
benefits of the approach and illustrative examples from a
physical implementation on a quad-rotor micro aerial vehicle
autonomously navigating in Pittsburgh, PA.

ACKNOWLEDGMENTS

The authors would like to thank Lyle Chamberlain, Wen-
fan Shi, and Maggie Scholtz for developing and testing the
aerial robot.

REFERENCES

[1] A. Stentz, “The d* algorithm for real-time planning of optimal
traverses, Tech. Rep. CMU-RI-TR-94-37, Oct 1994.

[2] S. Koenig and M. Likhachev, “D* lite,” Eighteenth national conference
on Artificial intelligence, Jul 2002, twocol.

[3] M. C. Martin and H. Moravec, “Robot evidence grids, Tech. Rep.
CMU-RI-TR-96-06, Mar 1996.

[4] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying
fast and low among obstacles: Methodology and experiments,” Int.
J. Robotics Research, vol. 27, no. 5, pp. 549-574, May 2008.

[5] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast
and low among obstacles,” Robotics and Automation, 2007 IEEE
International Conference on, pp. 2023 — 2029, Mar 2007.

[6] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3d
motion planning for small fixed-wing uavs,” Robotics and Automation,
2007 IEEE International Conference on, pp. 1035 — 1041, Mar 2007.

[7] S. Griffiths, J. Saunders, A. Curtis, and T. McLain, “Obstacle and
terrain avoidance for miniature aerial vehicles,” IEEE Robotics and
Automation Magazine, Jan 2006.

[8] M. Whalley, M. Freed, R. Harris, and M. Takahashi, “Design,
integration, and flight test results for an autonomous surveillance
helicopter,” Proceedings of the AHS International Specialists’ Meeting
on Unmanned Rotorcraft, Jan 2005.

[9]1 F. Andert and L. Goormann, “Combined grid and feature-based occu-
pancy map building in large outdoor environments,” Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pp. 2065 — 2070, Jan 2007.

[10] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algo-
rithms, and Implementation, Apr 2005.

[11] A. Meijster, J. Roerdink, and W. Hesselink, “A general algorithm
for computing distance transforms in linear time,” Mathematical
Morphology and its Applications to Image and Signal Processing, pp.
331-340, Jan 2000.

[12] N. Kalra, D. Ferguson, and A. Stentz, “Incremental reconstruction
of generalized voronoi diagrams on grids,” Proc. of the International
Conference on Intelligent Autonomous Systems, Mar 2006.

[13] R. Fabbri, L. Costa, J. Torelli, and O. Bruno, “2d euclidean distance
transform algorithms: A comparative survey,” ACM Computing Sur-
veys (CSUR, vol. 40, no. 1, Feb 2008.

