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Abstract. - Very efficient procedures for computing elementary parame- 
ters (turn leakage inductances and capacitances) in a transformer are 
presented. The turns are used as a calculation base to permit modeling at 
very high frequencies. Turn-to-turn (or loop) leakage inductances are 
obtained by an image method. The charge simulation method is used for 
finding the capacitances between tums and from turns to ground. The 
new methods are very efficient compared with the use of the technique of 
finite elements and atp. also remarkably accurate. Thus, the short circuit 
(or test) leakage inductance can be obtained from turn-to-turn informa- 
tion. Examples of calculated parameters are given for illustration. For 
validation, the results are compared with the Parameters obtained using 
finite elements and tests. The elementary parameters can be used to 
create reduced order computational models for the calculation of tran- 
sient phenomena. 

Keywords: Electromagnetic transients, Transformer modeling, Leakage 
inductance of transformers, Capacitance of transformers. 

INTRODUCTION 
For the study of electromagnetic transients in power systems, com- 

ponent models which are valid for a wide fresuency range are needed. 
Synchronous machines and transmission lines have adequate models 
that are almost universally accepted. However, no power transformer 
model, appropriate for a wide range of frequencies. is yet available. One 
unsolved related problem is the accurate and efficient calculation of the 
model parameters (iductances and capacitances, resistances and conduc- 
tances). The present paper intends to contribute in this direction. 

The purpose of this paper is the calculation of the parameters that 
are necessary for the construction of a transient model for transformers. 
It presents methodologies for computing the leakage inductances and 
capacitances of transformers. The approach is based on the representa- 
tion of the winding by its individual turns, in contrast to existing 
methods, used by transformer designers, which take a global geometrical 
approach for windings or sections. The new method is simple and gen- 
eral, and particularly appropriate for the resolution needed for the calcu- 
lation of transients. The complete model, which includes the windings as 
well as the iron core magnetization, will be presented in a subsequent 
paper. 

We compute the parameters on a turn-to-turn basis. The resulting 
model is thus adequate for high frequency transients, but it can be 
reduced to lower order for studies of slower transients. We assume 
axisymmetricsll geometry and infinite iron core permeability. In this 
way, we separate the physical phenomena occurring inside the core from 
the phenomena in the window of the transformer (air, insulation and con- 
ductors). 

A widely used procedure for estimating parameters is the technique 
of finite elements. For a high frequency model, this would require 
lengthy computations, mainly due to postprocessing, and tedious manual 
work to enter the geometric data. We propose alternative methods for 
the computation of the parameters. 
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It has been recognized for a long time that the use of self and 
mutual inductances for the calculation of low frequency transients may 
lead to computational difficulties. The main reason is: 
For computing transients using an approach based on self and mutual 
inductances we will have to solve a very ill-conditioned set of equations. 
The equations are ill-conditioned because the coils (or turns) are very 
tightly coupled due to the presence of the (unsaturated or lightly 
saturated) iron-core and, as a consequence, the elements in the induc- 
tance matrix L are almost identical. 
To surmount this difficulty, we deal with the leakage inductances 
between tums. 

One could, theoretically, compute the leakage inductances between 
turns by subtracting mutual inductances from self inductances, but taking 
the difference of two nearly equal numbers leads to results of low accu- 
racy. Recently [1],[2], there have been significant advances in the 
analytical calculation of self and mutual impedances in transformers. 
Although the analytical expressions obtained require numerical evalua- 
tion, the self and mutual impedances are calculated with accuracy. How- 
ever, quantities related to leakage impedances (differences between self 
and mutual impedances) are not calculated with the same degree of accu- 
racy, in accordance with the remark made above. To get accurate leak- 
age related quantities, the authors of [ 11 and [2] rely on tests to compute 
some adjustment parameters. There is, thus, a need to calculate leakage 
inductances accurately and efficiently using a direct approach. To this 
end, and with the aim of avoiding the use of finite elements for comput- 
ing leakage inductances, a very efficient and sufficiently accurate image 
method is proposed in this paper. 

For the first time in the case of transformers. to our knowledge, the 
charge simulation approach for computing the capacitances is used. The 
purpose of using this method is to give a less time-consuming alternative 
to the use of finite elements. This technique has been employed before 
for air-cored reactors [31 and other electrode configurations [41,[51. The 
method is very efficient compared with the method of finite elements 
when we compute elementary capacitances, and its accuracy is impres- 
sive. 

PARAMETER CALCULATION 
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In an actual transformer, the iron permeability is not infinity nor is the 
magnetizing current zero, but the turns are so tightly coupled that the 
matrix L is ill-conditioned (since its elements are almost equal). There- 
fore, one is compelled to work with leakage inductances in order to have 
a well behaved model. To derive a model based on leakage inductances, 
a procedure similar to using a slack node in power system studies is fol- 
lowed. In this case, we take a turn as a reference (turn N) and use it to 
assure that condition (2) is met. Then 

N-1 
-iN-1 (24  iN = - C i k = - i l - i z -  

k=l 

Using equation (2a) to incorporate the last term into the matrix, we 
obtain 

The elements of the above loop inductance matrix L', as functions of the 
elements of the matrix L, are: 

(4) 

We note that the elements of L' can be obtained from leakage inductance 
tests. This is what permits us to use an alternative method of images to 
calculate the elements of the loop inductance matrix L'. Indeed, if i = j, 
then equation (4) becomes (since Li, = 4) 

which is the definition of the leakage inductance between turns i and N. 

L'ij = Lq - LW - L N ~  + LNN 

L'ii = Lii + LNN - 2 LW 

Thus 

L'ii = L,& j&l 

For i # j, adding f 'hLii and f ".,j to (4), we get 

Thus, in terms of leakage inductances, we have 

L" 1.1 ' = 'h [( L" + Lm - 2  LiN ) + (Ljj + L m - 2  LjN ) 

L'ij = %( LIcak W + Llcak fl  - LIcak ij ) 

The voltage difference vi - VN between the two 

- ( L , + L j j - 2 L i j ) l  

i # j  (6)  
turn voltages will be 

called loop voltage. L' is called the loop inductance matrix because it is 
related to the loops formed by two turns connected in opposition. In this 
connection, the magnetic flux due to the current flowing through one of 
the turns and the flux produced by the current in the other turn are in 
opposite direction. For example, loop i is the path formed by turns i and 
N when they are connected in opposition (see Figure 1). The elements of 
L' can be obtained in two ways: 
a) Following standard tests (this is an indirect approach): we perform 

N(N-1)/2 short circuit tests for all possible pairs of turns (i.e. 
loops) and in this way obtain the leakage fluxes (inductances). 
Then we use equations (5) and (6) to get the elements of the matrix. 
This is the approach that we will follow, since we can obtain the 
loop leakage inductances efficiently and accurately (see next sub- 
section). 
Using non-standard tests (this a direct method): based on equation 
(3) we perform N-1 short circuit tests, using turn N as a reference 
and measuring one leakage flux (inductance) for the self terms and 
N-2 linkage fluxes (inductances) for the mutual terms. 

b) 

I 

"N 

I 
- 

Figure 1. Loop i formed by turns i and N in opposition. 

Image Conductors 
Inspired by the successful use of complex depths (images) in the 

calculation of parameters for transmission l i e s  [6] (which permits to 
avoid the relatively cumbersome procedure based on Carson's formulae) 
we have substituted the finite elements method in the calculation of leak- 
age inductances for transformers, by a method based on images (see 
Figure 2). As the magnetic permeability of the iron is very high (infinity 
in our case) compared with the permeability of the air, the magnetic field 
is everywhere perpendicular to the iron. Thus the surface of the core is 
an equipotential for the magnetic scalar potential. In this way, the iron- 
core surface could be considered as a cylindrical mirror for the magnetic 
field. 

To compute the N(N-1)/2 leakage inductances that we need to 
evaluate the elements of the loop inductance matrix L' (equations (5) and 
(6)).  we will need to know the magnetic vector potential that has only a 
tangential component, Al. The calculation of A$ requires the evaluation 
of elliptic integrals. These functions are readily available in many 
mathematical libraries (e.g. IMSL) or they can be programmed with a 
fraction of the effort needed for preparing a data file for finite elements. 

The magnetic vector potential for a circular filament with unit 
current is [7] 

where 

k=,/-  2 i (a+r)' (8 )  

E (k) = elliptic integral of second kind and argument k 
K (k) = elliptic integral of first kind and argument k 

r = radius of observation filament 
a = radius of excited filament 
z = vertical separation between the two filaments 

Figure 2. Image method for the loops formed 
by turns j and k around a core of radius R. 
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We compute the linkage flux (self and mutual) for the system 
formed by the turns (in air) and their images (without core) by calculat- 
ing the vector potential and then integrating around the circular contour 
(Neumann's formula); see Figure 2. Then, the self-inductance is 

where 
LpZe =Lint + 21t (~i-b; ) [A&~i-bi.O) +APEC(ai-bi,O) ] (9) 

L h  = internal inductance = k / 8 x  
ai = radius of turn i 
bi = conductor radius of turn i 

A 9(ai-bi,0) = vector potential due to the current in the actual turn 
APge(ai-bi,O) = vector potential due to the current in the image 

conductor 

The mutual inductance is 

L? = ( 2 m i )  [ A ~ ( u ~ , z ) + A P ~ ~ ( u , , z ) I  (loa) 

( 1 Ob) = ( 2 ~ j )  [ A + ( u ~ , z ) + A P ~ ~ ( u ~ , z )  ] 
where 

z = z . - z z .  1 1  

To obtain the leakage inductances we use 
L, , ,~  i j  = ~ p g e  + ~ k w e  - 2 ~Lw8' (1 1) 

Note that, in this case, it is possible to obtain the leakage inductances by 
subtracting the mutual inductances from the self-inductances, since the 
former are at least one order of magnitude smaller than the latter. This is 
not the case when we have the mutual and self-inductances with the iron 
core and actual geometry. The self- and mutual inductances from the 
image method given in equations (9) and (10) are not related U) the ones 
in the transformer (equation (1)). However, their differences (in the leak- 
age inductance sense: Lii + Ljj - 2 Li,) are very close, as demonstrated 
later. 

We have two parameters for adjusting the leakage inductance 
value: 
a) the radius of the image conductor, and 
b) the current flowing through it. 

By analogy between the iron leg surface and a curved mirror, the 
radius of the image conductor can be obtained using the location of an 
optical image (see Figure 2) 

1 
2 1  
R r  

ri = - 
--- 

To adjust the current flowing in the image conductor, we have 
computed the leakage inductance of various conductor configurations. 
As a conclusion, when we are interested in the terminal behavior of the 
transformer, the best value for this current is estimated to be 2.5 times 
the current flowing in the actual conductor. The current in the image 
conductors should flow in the same direction as the current in the turns. 
A current of 1.0 gives good results when the conductors are not close to 
the leg or to the yokes, or when the conductors are close to each other. 
For extreme cases, the best current in the image conductors is 4.0. How- 
ever, using a current of 2.5 for all the image conductors, we get max- 
imum errors o f f  17.7% for a standard design. Moreover, when we com- 
pute the test (or total) leakage inductance, the errors compensate and the 
resulting leakage inductance is very accurate. Two geometrical m n g e -  
ments were used for comparison (see Figure 3): 
A) leg only (no yoke: open geometry), and 
B) window (closed geometry). 

All comparisons were made against a 2-D finite element program 
(axisymmetric). We did not have a 3-D field calculation package for 
comparison with the real geometry. However, the two extreme cases 
(leg only and window) gave close limits, thus confirming the accuracy of 
the method. An example of the calculation can be found in the results 
section. 

Turn-to-Turn Capacitances 
As a more efficient alternative to the method of finite elements, the 

capacitances were calculated by a charge simulation approach. The basic 

principle behind it is to assume that a potential difference (v = 1, for con- 
venience) is applied between one turn and all the others connected to 
each other and to the core. Since all metallic surfaces are equipotentials. 
we can evaluate a number of simulated charges that will produce the 
boundary conditions to be met. The charges are on circular filaments and 
are assumed to be placed inside the metal (see Figure 4). We have to use 
a number of rings equal to the total number of charges, n, to serve as 
reference points with specified potential. We can apply a potential 
difference v (=1) between the core and a conductor, but the potential YO 
of the core (potential with respect to infinity) is not yet known; see Fig- 
ure 4. Thus, for the boundary points on the core and on the conductors 
with no excitation, we have vi = V O ;  for the boundary points on the 
excited conductor, we have vi = YO + 1. In this way, for each boundary 
point i we can write an equation as follows: 

n 0 for non-excited conductors 
(13) 

J'1 

Since the total charge has to be zero, we have 
n 

C q j = O  
]=1 

Arranging the equation in matrix form for all boundaries, we have a sys- 
tem of n+l equations -:I [e,] = I] 

I LJ. I 
I 32.4 
I 21 

Not to scale - Dimensions in cm 

I 

I 

Figure 3. Example: 12-turn transformer. 

core surface \"ia Nmj 

v + 1  

Boundarypoints 
rn Simulated charges 
x Testingpoints 

Figure 4. Charge simulation method. 
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where 

and, 
PI,, = potential coefficients (see [7]) 

k,,, = argument defined in equation (8) 
r, = radius of observation ring i 

a, = radius of charged ring j 
z,,, = vertical separation between the two rings i, j 
n = total number of charges 

N = number of turns 

K(k,,) = elliptic integral of first kind and argument k 

The elements of the excitation vector v in equation (15) are zero, 
according to equation (13). with the exception of the corresponding 
entries for the excited conductor that are 1. Note that we can use a dif- 
ferent number of charges in each conductor. From the definition of self- 
and mutual capacitances we can see that: 
a) The total charge computed inside each non-excited conductor is the 

capacitance of that conductor with respect to the excited one 
(mutual capacitance). 

The charge inside the excited conductor is the self-capacitance. It is 
the sum of all mutual capacitances and the capacitance from this 
conductor to ground (core). 

In this way, a column of the turn capacitance matrix C'w" is computed 
from each solution of the equation. 

A new set of points (filament rings), different from those used to 
compute the charges, are taken to test the uniformity of the potential at 
the surface of the conductors (see Figure 4). There is no systematic tech- 
nique to find a suitable charge-boundary arrangement. However, even 
with little prior experience, one can get highly accurate results by trial 
and error in a reasonable amount of time. Care should be taken to avoid 
placing a charge in the location of a boundary or test point, since doing 
so would lead to singularity of the elliptic integral K ( k )  as k + 1. Also, 
two charges should not occupy the same point in order to prevent the 
potential coefficients matrix from becoming singular. 

When we have several insulating materials (e.g. paper and oil or 
air), the dielectric constant E in equation (16) must be the equivalent 
dielectric constant for the arrangement. Its proper choice has to be based 
on tests and experience. 

b) 

TEST LEAKAGE INDUCTANCE 
Previously, we have calculated the leakage inductances for simple 

loops formed by two turns. In this section we will show how the total or 
test leakage inductance for a two winding transformer is calculated from 
the simple loops information. This test leakage inductance corresponds 
to the leakage inductance that we would measure in a bucking test (when 
the ampere-turns of the two windings are equal and of opposite direc- 
tion). This test can be easily performed only when the two windings 
being tested have an equal number of turns. It should be mentioned that 
a short circuit test gives almost identical results since the magnetizing 
current in this test is very small. 

Note that the leakage inductance is usually defined for a pair of 
windings (two windings at a time). For a transformer with more than 
two windings, a matrix similar to our loop inductance matrix L' has to be 
constructed as shown inreferences [8], [9], [lo], [ l l ] ,  [12]. 

The voltage-current equation for the simple loops of equation (3) 
is, in matrix form 

d .  
Vloop = L' -$ 'loop 

Recall that the above equation has dimension N-1. 

Np and Ns. Thus, equation (2) becomes 
Each winding consists of a number of turns connected in series, say 

(18) 

( 18a) 

Np ip +Ns is = O  

Np ip = - Ns is 

Equation (18) expresses the bucking test condition 

Based on this relation, we can introduce a distribution vector a, of 

dimension N, showing the relative current magnitudes in the turns during 
the bucking test. The first Np elements of a are normalized to 1 while 
the remaining Ns are equal to: a = - Np I Ns. Thus, we have 

(19) aT = [I, 1, . . . , I  ,a,a, * . . ,a I 
We note that the N-1 loop currents coincide with the first N-1 turn 
currents. Therefore, the corresponding loop-test distribution vector a' is 
of order N-1, and its elements equal to the first N-1 elements of a. 

We obtain the test leakage inductance from equation (17) by apply- 
ing the power-invariant transformation 

i / m p  = a' imt  (20) 

v,,, = alT 

This yields 

where 

L,,, =a' L' a' 

Developing this product we obtain 

(22) 

We note that equation (24) is similar to the equation used for computing 
leakage inductances (Lii +Lj, - 2 Lii). The test voltage, obtained from 
equation (21), is 

Two concrete examples of this calculation are presented in Appendix 1. 
In the next section, the results are compared with those obtained with the 
technique of finite elements and by tests. 

RESULTS 
Several turn configurations were used to test the alternative 

methods described here for the computation of parameters. As an exam- 
ple consider the transformer data given in Figure 3, where we show the 
conductors in the extreme positions (1,2, ..., 12). All other conductors 
have inductances and capacitances in between those of the conductors 
shown in this figure. 

Leakage Inductances 
In the next table 11 leakage inductances (in henry) out of the total 

of 66 are presented and compared against the results from those obtained 
by the method of finite elements. The following table was obtained 
using a current of 2.5 in all image conductors. 

FNTE ELEMENTS LEAKAGE 11 IMAGE I I 
INDUCTANCE 

Y 1.2) 
Y 1.3) 

Y 1.5) 
U 1.6) 
Y 1.7) 
Y 1.8) 

U 1.4) 

Y 1.9) 
U 1.10) 

MFIHOD 

0.83390606 
033448c-05 
030403~05 
03449145 
03161oGo5 
0.18691e-05 
01107345 
03232145 
032-5 

0.74017~46 -12.7 

0308pe-05 
03818Ec-05 
037053~45 14.7 
0.1587&-05 -17.7 
0.18WcXIS -17.0 
0328E9r.M 
0331W-05 0.6 

m ZEna 
0.74052e-06 -126 
0.4113k-05 18.7 
0.40111c-05 241 

0.&787c-05 52.7 
O.16030e-05 -16.6 
0.1823Oe-05 -15.6 

0.428Mcas 23.1 

0.6ns9e-05 49.1 

0.42389c-o~ zia 

1.12) 034545e-05 039059~45 11.6 0.676Sk-05 48.9 

We are presenting one of the worst cases. The other 55 leakage 
inductances have errors in the same range or smaller. We adjusted the 
leakage inductances calculated with the image method to be closer to the 
geometry of case A (leg only) than to the geometry of case B (closed 
window) because the actual geometry of a transformer in the region at 
the top of the windings shows close to 90% air and 10% iron for the 
leakage flux path (see Figure 5),  as the yokes cover only a fraction of the 
top of the windings. Some of the values obtained with the image method 
lie in the region between the two geometries but, in general, the values 
are slightly smaller than those of geometry A. 

a) 

We can adjust the image currents to treat independently: 
the turns near the leg or yoke, which requires large image currents 

= 4.0) 
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LEAKAGE 
[NDUCTANCE 

L( 132) 
L( 133) 
L( 1.4) 
L( 1.5) 
L( 1.6) 
L( 197) 
L( 1.8) 
L( 1.9) 
L( 1,lO) 
L( 1,11) 
L( 1,12) 

LEG YOKE 

W G E  
CURRENT %Error 

1.0 2.5 
2.5 -4.8 
2.5 1.4 
3.0 -0.3 
3.5 -1.7 
0.0 0.4 
0.0 1.4 
2.5 1.7 
2.5 0.6 
3.5 -0.1 
3.5 -0.7 

I =  1.0 

W I ” G S  

Figure 5. Region at the top of the windings. 

b) the turns close to each other, which requires small image cumnts 

c) the turns far from each other and from the iron, which requires no 
image current (i-,, = 0.0) 

The results obtained by adjusting the image cumnts as described above 
are shown in the next table. 

( i k g e  = 1.0) 

In this way we have obtained very accurate turn-to-turn leakage 
inductances. This adjustment requires some extra computational effort, 
mainly for evaluating the distances between conductors and distances 
from conductors to the leg and yokes. This process has to be followed if 
we want accurate local responses (e.g. internal voltage distribution dur- 
ing a transient). If we are interested only in the terminal behavior we 
believe, however, that this sophistication is not necessary. As we will 
show next, the errors i n n o d u d  by using a common rule, of a multiplier 
equal to 2.5, for the current in the image conductors, compensate each 
other when we calculate the test leakage inductance. 

We computed the test leakage inductance using the arrangement 
shown in Figure 6. The step by step process is described in Appendix 1. 
We used for comparison the two configurations with finite elements (A 
and B) and with a familiar approximate equation which assumes that the 
field is axial [13]: 

The results are shown in the following table (with geometry A as refer- 
ence). 

- 1.57 
Image Method 1.436oOE-5 

We performed the bucking test (windings connected in series opposition) 
and the short circuit test on a 2 kVA transformer, 110/110 V, with two 
windings of 11 8 turns in two layers. In Appendix 2 the geometrical data 
are presented. The leakage inductance obtained from tests is 4.5 x IO4 
H. The same result was obtained in both tests (bucking and short circuit). 
Using the method described above (and in A p n d i x  1) to simulate the 
bucking test (equation (24)) we got 4.3 x 10 H. The error is less that 
5%. 

@ i-; turn 10 cucuit 

turn 11 

turn 12 

e, 
Figure 6. Test leakage inductance 

for the 12-turn transformer. 

As we can see the errors obtained in the calculation of leakage 
inductances for turns compensate each other when we lump the turns to 
form a winding. Note also that there is not much difference between the 
geometries (A) and (B) using finite elements to calculate the parameters. 
This means that the effect of the yokes in the leakage inductance is very 
small. Therefore, we do not introduce large errors when we neglect the 
yokes in the image method. The assumption that the magnetic field is 
axial (equation (26)) leads to a larger error. 

Capacitances 
For the 12-turn transformer (Figure 3) no more than 30 simulated 

charges in the core and 4 charges per conductor are needed to obtain very 
good potential profiles along the surfaces. The maximum e m r  found 
was around 1% of the specified potential in the testing points. The first 
column of the capacitance matrix for this example is presented in the 
next table. The assumed geometry is leg only, no yoke (case A). The 
values with closed window (case B) are 20% to 25% greater than those 
shown in the table. But, as mentioned before, the real geometry is closer 
to case A than to case B (see Figure 5).  

TURN TO TURN CAPACITANCES [F] 
CHARGE TURNS I 

SIMULATION 
0.1251667e-09 
-0.196562 le- 10 
-0.9477953e-11 
-0.1966649e-I0 

-0.196562le-I0 
-0.9477953e-11 
-0.5964382e-11 
-0.6836441e-11 
-0.5550385e-11 

-0.5964382e-11 

-0.92645501~-11 

-0.681533Oe-11 

These values were calculated with E = 1. For a transformer with dif- 
ferent insulating materials we should multiply the values of the capaci- 
tance by the equivalent dielectric constant of the insulation. 

Another test for the capacitances was to use a transformer with a 
very tall leg and the conductors were placed (radially) close to the sur- 
face and axially far apart from each other. In this way, the geometry 
resembles a multi-conductor transmission line over a flat (perfect con- 
dsctor) plane. Then we compared the capacitances obtained for this 
transformer with the capacitances calculated with equations for a 
transmission line. As the height over the ground in the transmission line 
formulae, we used the radius of the turn minus the radius of the core of 
the transformer (hi = ai - R ) ,  and as the length of the conductor, we used 
the length of the turn (li = 2 x ai). The errors were found to be less than 
1%. 
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-v1 - V I Z -  -L'l,l r 1 . 2  . . . L'1.11 - 'il - 
v2-v12 L'2,1 L'2,2 " '  L'2,11 d i 2  

- (A-1) . - .  . . - .  
: di : 

v11 - - V I Z  L'IIJ L'l1.2 ... L'll,ll i l l  

. .  . .  

Frequency Response 
The short circuit frequency response for the transformer shown in 

Appendix 2 was obtained with a model derived from the parameters cal- 
culated in this paper. In Figure 7 the simulated frequency response is 
compared with field tests. We present the input admittance in the pri- 
mary when the secondary is short circuited. It can be Seen that the 
results are in good agreement up to a frequency of 700 IcHz. The differ- 
ences beyond this frequency. especially at the resonance point, may be 
attributed to the losses (in the conductor and core), neglected in the 
simulation. The insulation of the transformer consists of paper (E, = 3 , 
for impregnated paper) and air, we used an equivalent dielectric constant 
&,=2.5. Details conceming the construction of the model will be 
presented in a future paper. 

CONCLUSIONS 

Very efficient methods have been described for the computation of 
the turn-to-turn parameters of transformers. The leakage inductances are 
obtained in a simple way and with reasonable accuracy by an approach 
based on images, analogous to the methods used in the calculation of 
transmission line parameters. The validity of the method has been 
confirmed by comparison with short circuit inductances computed with 
the method of finite elements and a classical design formula. The capaci- 
tances are obtained very accurately by a charge simulation approach. 

The turn-to-turn parameters are intended to be used in a reduced 
order winding model, in conjunction with the iron core magnetization 
model, for the complete modeling of transformers for calculation of tran- 
sients. The details of the development of such a model will be reported in 
a sequel to this paper. 
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We obtain the test voltage from equation (21) as: 
r v l  -v121  

/"_'" 1 VIUt = [1,1,1,1.1.1,-1,-1,-1,-1,-1 1 

1.11 - v n J  

(A-5) 

6 12 

i=l i=7 
vtut = E vi - I: Vi (A-6) 

As a second example, we consider the same 12-turn transformer with N p  = 8 
and Ns = 4. The loop-test distribution vector is now 

anT = [1,1,1,1,1,1,1,1,-2,-2,-2 I (A-7) 
The bucking test leakage inductance is: 
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Appendix 2. Transformer Data 
Single phase, 2 LVA, 2 windings, 110 V / 110 V, 2 layers per winding, 59 

turns per layer, square conductor (a=3.5mm insulated). The physical dimensions 
are shown in Figure 8. 
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C. M. Arturi, (Politecnico di Milano, Italy): I wish to congratulate 
Professor Semlyen and Dr. De Leon for their very interesting and well 
written paper on the subject of transformer modelling for an efficient 
simulation of current and voltage transients. They have given an apprecia- 
ble contribution on a problem which is still partially unsolved. 

I refer to the inductive parameters of the transformer models. In the 
paper, it has very clearly been shown how one can transit from eq. ( l) ,  
which expresses the behaviour of a transformer, seen as a mutual inductor 
with N mutually coupled inductors, to eq. (3) ,  which expresses the 
behaviour of the same system with the constraint that the permeance of the 
common magnetic circuit of any couple of inductors of the set must be 
infinite. In terms of current or M.M.F. this is stated by eq. (2). 

In this way, instead of the self and mutual inductances of the matrix L, 
which are infinite, the system is identified by the reduced matrix induc- 
tances L' of the eq. (3). The diagonal terms of matrix L' coincide with 
some of the binary short-circuit (or leakage) inductances (eq.(5)) whereas 
the inductances out of the diagonal are obtained by linear combination of 
three of the binary short-circuit inductances (eq. (6)). 

The physical meaning of the matrixes L and L' is profoundly different. 
The self and mutual inductances matrix L represents the total magnetic 
energy of the system, which includes, in an indistinguishable way, both 
the energy related to the common flux, mainly located in the ferromagnetic 
core, and that related to the leakage fluxes, located in the window and in 
the space occupied by the windings and insulating materials. With the 
hypothesis that the permeance of the common magnetic circuit is infinite, 
namely, that the energy related to the common flux is zero, one obtains the 
reduced matrix L ,  which represents only the energy related with air- 
leakage fluxes. 

The leakage inductances of the matrix L' can also be expressed as a 
linear combination of some self and mutual inductances of the system. 
Prof. Semlyen and Dr. De Leon propose to compute the self and mutual 
inductances, necessary to obtain the leakage inductances, by means of the 
image method, replacing the actual closed configuration of the ferromag- 
netic core with an opened configuration, made of a cylindrical and 
rectilinear core with infinite length and permeability (eq. ( 1  1)). 

I wonder if the computation method of the inductive parameters pro- 
posed by the authors, which gives finite values for self and mutual 
inductances between turns or windings, still takes into account the hypoth- 
esis on which the eq. (3) is based, namely, infinite permeance of the 
common magnetic circuit of any couple of turns or windings. 

Could the authors please comment this point? 

Turn 1 

Turn 2 

Shorted 
turn - 

F. de Leon and A. Semlyen (University of Toronto): We appreciate the 
interest of professor Arturi in our paper and offer the following remarks 
regarding his question on the use of the image method in the computa- 
tion of the leakage inductances. 

383 

The elements of the L' matrix are obtained directly rather than 
using the elements of L. Equations ( 5 )  and (6) show which leakage 
inductances are necessary to compute the elements of L'. These leakage 
inductances are calculated with equation (1 1) using the image method for 
obtaining the right hand side (self and mutual) inductances. The latter 
correspond to the geometry of Figure 2 and have no relation with the 
actual self and mutual inductances of the turns in the transformer as 
given in matrix L. Since a pair of turns is considered at a time, con- 
nected in opposition as shown in Figure 1, equation (2) is satisfied. 

In Figure A we sldw the physical interpretation of matrix L'. We 
can see from equation (3) that the elements of L' represent voltages 
between loops or between turns in the presence of a short circuited turn. 

1 
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Figure A. Interpretation of of the elements of matrix L' 


