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ABSTRACT

DNA amplifications and deletions characterize cancer genome and are often related to dis-
ease evolution. Microarray-based techniques for measuring these DNA copy-number changes
use fluorescence ratios at arrayed DNA elements (BACs, cDNA, or oligonucleotides) to pro-
vide signals at high resolution, in terms of genomic locations. These data are then further
analyzed to map aberrations and boundaries and identify biologically significant structures.
We develop a statistical framework that enables the casting of several DNA copy number
data analysis questions as optimization problems over real-valued vectors of signals. The
simplest form of the optimization problem seeks to maximize ϕ(I) = ∑

vi/
√|I | over all

subintervals I in the input vector. We present and prove a linear time approximation scheme
for this problem, namely, a process with time complexity O

(
nε−2

)
that outputs an interval

for which ϕ(I) is at least Opt/α(ε), where Opt is the actual optimum and α(ε) → 1 as
ε → 0. We further develop practical implementations that improve the performance of the
naive quadratic approach by orders of magnitude. We discuss properties of optimal inter-
vals and how they apply to the algorithm performance. We benchmark our algorithms on
synthetic as well as publicly available DNA copy number data. We demonstrate the use of
these methods for identifying aberrations in single samples as well as common alterations
in fixed sets and subsets of breast cancer samples.

Key words: CGH, cancer, microarray analysis, optimization, approximation.

1. INTRODUCTION

Alterations in DNA copy number are characteristic of many cancer types and are thought to drive
some cancer pathogenesis processes. These alterations include large chromosomal gains and losses

as well as smaller scale amplifications and deletions. Because of their role in cancer development, regions
of chromosomal instability are useful for elucidating other components of the process. For example, since
genomic instability can trigger the overexpression or activation of oncogenes and the silencing of tumor
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216 LIPSON ET AL.

suppressors, mapping regions of common genomic aberrations has been used to discover cancer-related
genes. Understanding genome aberrations is important for both the basic understanding of cancer and for
diagnosis and clinical practice.

Alterations in DNA copy number have been initially measured using local fluorescence in situ hybridiza-
tion-based techniques. These evolved to a genomewide technique called comparative genomic hybridization
(CGH, see Kallioniemi et al. [1993]), now commonly used for the identification of chromosomal alter-
ations in cancer (Mertens et al., 1997; Balsara and Testa, 2002). In this genomewide cytogenetic method,
differentially labeled tumor and normal DNA are co-hybridized to normal metaphases. Ratios between the
two labels allow the detection of chromosomal amplifications and deletions of regions that may harbor
oncogenes and tumor suppressor genes. Classical CGH has, however, a limited resolution (10–20 Mbp).
With such low resolution, it is impossible to predict the borders of the chromosomal changes or to identify
changes in copy numbers of single genes and small genomic regions. In a more advanced method, termed
array CGH (aCGH), tumor, and normal DNA are co-hybridized to a microarray of thousands of genomic
clones of BAC, cDNA, or oligonucleotide probes (Pollack et al., 1999; Hyman et al., 2002; Pinkel et al.,
1998; Hedenfalk et al., 2003; Sebat et al., 2004; Brennan et al., 2004; Bignell et al., 2004). The use of
aCGH allows the determination of changes in DNA copy number of relatively small chromosomal regions.
Using oligonucleotides arrays, the resolution can, in theory, be finer than single genes.

To fully realize the advantages associated with the emerging high resolution technologies, practitioners
need appropriate efficient data analysis methods. A common first step in analyzing DNA copy number
(DCN) data consists of identifying aberrant (amplified or deleted) regions in each individual sample. Indeed,
current literature on analyzing DCN data describes several approaches to this task, based on a variety of
optimization techniques. Hupe et al. (2004) develop a methodology for automatic detection of breakpoints
and aberrant regions, based on adaptive weight smoothing (Polzehl and Spokoiny, 2000), a segmentation
technique that fits a piecewise constant function to an input function. The fit is based on maximizing the
likelihood of the (observed) function given the piecewise constant model, penalized for the number of
transitions. The penalty weight is a parameter of the process. Sebat et al. (2004), in a pioneering paper,
study DCN variations that naturally occur in normal populations. Using an HMM-based approach, they
compare signals for two individuals and seek intervals of four or more probes in which DCNs are likely to
be different. A common shortcoming of many other current approaches is lack of principled optimization
criteria that drive the method. Even when a figure of merit forms the mathematical basis of the process
such as in Sebat et al. (2004), convergence of the optimization process is not guaranteed.

Further steps in analyzing DCN data include the automatic elucidation of more complex structures. A
central task involves the discovery of common aberrations, either in a fixed set of studied samples or in an
unsupervised mode, where we search for intervals that are aberrant in some significant subset of the sam-
ples. There are no formal treatments of this problem in the literature, but most studies do report common
aberrations and their locations. The relationship of DCN variation and expression levels of genes that reside
in the aberrant region is of considerable interest. By measuring DNA copy numbers and mRNA expression
levels on the same set of samples, we gain access to the relationship of copy number alterations to how they
are manifested in altering expression profiles. In Platzer et al. (2002) the authors used (metaphase slides)
CGH to identify large-scale amplifications in 23 metastatic colon cancer samples. For each identified large
amplified region, they compared the median expression levels of genes that reside there (2,146 genes total),
in the samples where amplification was detected, to the median expression levels of these genes in 9 normal
control colon samples. A two-fold overexpression was found in 81 of these genes. No quantitative statisti-
cal assessment of the results is given. In Pollack et al. (2002) a more decisive observation is reported. For
breast cancer samples, the authors establish a strong global correlation between copy number changes and
expression level variation. Hyman et al. (2002) report similar findings. The statistics used by both latter
studies is based on simulations and takes into account single gene correlations but not local regional effects.
In Section 2.3, we show how our general framework enables us to efficiently compute correlations between
gene expression vectors and DCN vectors of genomic intervals, greatly extending the scope of the analysis.

In summary, current literature on CGH data analysis does not address several important aspects of DCN
data analysis and addresses others in an informal mathematical setup. In particular, the methods described in
current literature do not directly address the tasks of identifying aberrations that are common to a significant
subset of a study sample set. In Section 2, we present methods that optimize a clear, statistically motivated,
score function for genomic intervals. The analysis then reports all high-scoring intervals as candidate
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EFFICIENT CALCULATION OF INTERVAL SCORES 217

aberrant regions. Our algorithmic approach yields performance guarantees as described in Sections 3 and 4.
The methods can be used to automatically map aberration boundaries as well as to identify aberrations in
subsets and correlations with gene expression, all within the same mathematical framework. Actual results
from analyzing DCN data are described in Section 5.

Our approach is based on finding intervals of consistent high or low signals within an ordered set of
signals, coming from measuring a set of genomic locations and considered in their genomic order. This
principle motivates us to assign scores to intervals I of signals. The scores are designed to reflect the
statistical significance of the observed consistency of high or low signals. These interval scores are useful
in many levels of the analysis of DCN data. By using adequately defined statistical scores, we transform
the task of suggesting significant common aberrations as well as other tasks to optimizing segment scores
in real-valued vectors. Segment scores are also useful in interpreting other types of genomic data, such as
LOD scores in genetic analysis (Morley et al., 2004).

The computational problem of optimizing interval scores for vectors of real numbers is related to
segmentation problems, widely used in time series analysis as well as in image processing (Himberg et al.,
2001; Fu and Mui, 1981).

2. INTERVAL SCORES FOR CGH

In this section, we formally define interval scores for identifying aberrant chromosomal intervals using
DCN data. In Section 2.1, we define a basic score that is used to identify aberrations in a single sample.
In Sections 2.2 and 2.3, we extend the score to accommodate data from multiple samples as well as joint
DCN and gene-expression data.

2.1. Aberrant intervals in single samples

Detection of chromosomal aberrations in a single sample is performed for each chromosome separately.
Let V = (v1, . . . , vn) denote a vector of DCN data for one chromosome (or chromosome arm) of a single
sample, where vi denotes the (normalized) data for the i-th probe along the chromosome. The underlying
model of chromosomal instabilities suggests that amplification and deletion events typically span several
probes along the chromosome. Therefore, if the target chromosome contains amplification or deletion
events, then we expect to see many consecutive positive entries in V (amplification), or many consecutive
negative entries (deletion). On the other hand, if the target chromosome is normal (no aberration), we
expect no localized effects. Intuitively, we look for intervals (sets of consecutive probes) where signal
sums are significantly larger or significantly smaller than expected at random. To formalize this intuition,
we assume (null model) that there is no aberration present in the target DNA and therefore the variation
in V represents only the noise of the measurement.

Assuming that the measurement noise along the chromosome is independent for distinct probes and
normally distributed,1 let µ and σ denote the mean and standard deviation of the normal genomic data
(typically, after normalization µ = 0). Given an interval I spanning |I | probes, let

ϕsig(I ) =
∑
i∈I

(vi − µ)

σ
√|I | . (1)

Under the null model, ϕsig(I ) has a Normal(0, 1) distribution, for any I . Thus, We can use ϕsig(I ) (which
does not depend on probe density) to assess the statistical significance of values in I using, for example,
the following large deviation bound (Feller, 1970):

Prob(|ϕsig(I )| > z) ≈ 1√
2π
· 1
z
e−

1
2 z2

. (2)

Given a vector of measured DCN data V , we therefore seek all intervals I with ϕsig(I ) exceeding a certain
threshold. Setting the threshold to avoid false positives, we report all these intervals as putative aberrations.

1The normality assumption of the noise can be somewhat relaxed as the distribution of average noise for large
intervals will, in any event, be close to normal (central limit theorem).
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218 LIPSON ET AL.

2.2. Aberrant intervals in multiple samples

When DCN data from multiple samples is available, it may, of course, be processed one sample at a
time. However, it is possible to take advantage of the additional data to increase the significance of the
located aberrations by searching for common aberrations. More important than the statistical advantage,
common aberrations are indicative of genomic alterations selected for in the tumor development process
and may therefore be of higher biological relevance.

Given a set of samples S and a matrix V = {vs,i} of CGH values where vs,i denotes the (normalized)
data for the i-th probe in sample s ∈ S, identification of common aberrations may be done in one of
two modes. In the fixed set mode, we search for genomic intervals that are significantly aberrant (either
amplified or deleted) in all samples in S. In the class discovery mode, we search for genomic intervals
I for which there exists a subset of the samples C ⊆ S such that I is significantly aberrant only in the
samples within C.

Fixed set of samples. A simple variant of the single-sample score (1) allows accommodation of multiple
samples. Given an interval I , let

ϕsig
S (I ) =

∑
s∈S

∑
i∈I

(vs,i − µ)

σ
√|I | · |S| . (3)

Although this score will indeed indicate whether I contains a significant aberration within the samples
in S, it does not have the ability to discern between an uncommon aberration that is highly manifested in
only one sample and a common aberration that has a more moderate effect on all samples. In order to focus
on common aberrations, we employ a robust variant of the score: Given some threshold τ+, we create a
binary dataset: B = {bs,i} where bs,i = 1 if vs,i > τ+ and bs,i = 0 otherwise. Assuming (null model)
that the appearance of 1s in B is independent for distinct probes and samples, we expect the number of
positive values in the submatrix defined by I × S to be Binom(n, p) distributed with n = |I | · |S| and
p = Prob(vs,i > τ+) =∑

s∈S
∑n

i=1
bs,i

|B| . The significance of k 1s in I ×S can be assessed by the binomial
tail probability:

n∑
i=k

(
n

i

)
pi(1− p)(n−i). (4)

For algorithmic convenience, we utilize the Normal approximation of the above (DeGroot, 1989). Namely,
for each probe i we define the score of an interval I as in (3):

ϕrob
S (I ) =

∑
s∈S

∑
i∈I

(bs,i − ν)

ρ
√|I | · |S| , (5)

where ν = p and ρ = √p(1− p) are the mean and standard deviation of the variables bs,i . A high score
ϕrob

S (I ) is indicative of a common amplification in I . A similar score indicates deletions using a negative
threshold τ−.

Class discovery. In the mode of class discovery, we search a genomic interval I and a subset C ⊆ S

such that I is significantly aberrant on the samples within C. Formally, we search for a pair (I, C) that
maximizes the score

ϕsig(I, C) =
∑
s∈C

∑
i∈I

(vs,i − µ)

σ
√|I | · |C| . (6)

A robust form of this score is

ϕrob(I, C) =
∑
s∈C

∑
i∈I

(bs,i − ν)

ρ
√|I | · |C| . (7)

2.3. Regional correlation to gene expression

In previous work (Lipson et al., 2004), we introduced the regional correlation score as a measure of
correlation between the expression levels pattern of a gene and an aberration in or close to its genomic
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EFFICIENT CALCULATION OF INTERVAL SCORES 219

locus. For any given gene g with a known genomic location, the goal is to find whether there is an aberration
in its chromosome that potentially effects the transcription levels of g. Formally, we are given a vector e of
expression level measurements of g over a set of samples S and a set of vectors V = (v1, . . . , vn) of the
same length corresponding to genomically ordered probes on the same chromosome, where each vector
contains DCN values over the same set of samples S. For a genomic interval I ⊂ [1, . . . , n], we define a
regional correlation score:

ϕcor(I, e) =

∑
i∈I

r(e, vi)

√|I | , (8)

where r(e, vi) is some correlation score (e.g., Pearson correlation) between the vectors e and vi . We
are interested in determining whether there is some interval I for which ϕcor(I, e) is significantly high.
Note that for this decision problem it is sufficient to use an approximation process, such as described in
Section 3.

2.4. A tight upper bound for the number of optimal intervals

In general, we are interested in finding the interval with the maximal score. A natural question is thus
what is the maximal possible number of intervals with this score. The following theorem, proof of which
appears in Appendix A, provides a tight bound on this number.

Theorem 1. For any of the above scores, there can be n and at most n maximal intervals.

3. APPROXIMATION SCHEME

In the previous section, we described interval scores arising from several different motivations related
to the analysis DCN data. Despite the varying settings, the form of the interval scores in the different
cases is similar. We are interested in finding the interval with maximal score. Clearly, this can be done
by exhaustive search, checking all possible intervals. However, even for the single sample case this would
take �(n2) steps, which rapidly becomes time consuming, as the number of measured genomic loci grows
to tens of thousands. Moreover, even for n ≈ 104, �(n2) does not allow for interactive data analysis,
which is called for by practitioners (over one minute for 10 K probes on 40 samples; see Section 5.1). For
the class discovery case, a näive solution would require an exponential �(n22|S|) number of steps. Thus,
we seek more efficient algorithms. In this section, we present a linear time approximation scheme. Then,
based on this approximation scheme, we show how to efficiently find the actual optimal interval.

3.1. Fixed sample set

Note that the single sample case is a specific case of the fixed multiple-sample case (|S| = 1), on
which we concentrate. For this case, there are two interval scores defined in Section 2.2. The optimization
problem for both these scores, as well as the score for regional correlations of Section 2.3, can all be cast
as a general optimization problem. Let W = (w1, . . . , wn) be a sequence of numbers. For an interval I ,
define

ϕ(I) =

∑
i∈I

wi

√|I | . (9)

Setting wi =
∑

s∈S(vs,i−µ)

σ
√|S| gives ϕ(I) = ϕsig

S (I ); setting wi =
∑

s∈S(bs,i−ν)

ρ
√|S| gives ϕ(I) = ϕrob

S (I ); and

setting wi = r(e, vi) gives ϕ(I) = ϕcor(I, e). Thus, we focus on the problem of optimizing ϕ(I) for a
general sequence W .

A geometric family of intervals. For an interval I = [x, y], define sum(I) = ∑y
i=x wi . Fix ε > 0.

We define a family I of intervals of increasing lengths, the geometric family, as follows. For integral j ,
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220 LIPSON ET AL.

let kj = (1+ ε)j and 	j = εkj . For j = 0, . . . , log(1+ε) n, let

I(j) =
{
[i	j , i	j + kj − 1] : 0 ≤ i ≤ n− kj

	j

}
. (10)

In words, I(j) consists of intervals of size kj evenly spaced 	j apart. Set I = ∪log(1+ε) n

j=0 I(j). The
following lemma shows that any interval I ⊆ [1 . . . n] contains an interval of I that has “almost” the
same size.

Lemma 1. Let I be an interval, and J the left-most longest interval of I fully contained in I . Then
|I |−|J |
|I | ≤ 2ε + ε2.

Proof. Let j be such that |J | = kj . In I, there is an interval of size kj+1 every 	j+1 steps. Thus,
since there are no intervals of size kj+1 contained in I , it must be that |I | < kj+1 +	j+1. Therefore

|I | − |J | < kj+1 +	j+1 − kj = (1+ ε)kj + ε(1+ ε)kj − kj = (2ε + ε2)kj ≤ (2ε + ε2)|I |.
The approximation algorithm for a fixed set. The approximation algorithm simply computes scores

for all J ∈ I and outputs the highest scoring one:

Algorithm 1. Approximation Algorithm—Fixed Sample Case
Input: Sequence W = {wi }.
Output: Interval J with score approximating the optimal score.

sum([1, 0]) = 0
for j = 1 to n sum([1, j ]) = sum([1, j − 1])+ wj

Foreach J = [x, y] ∈ I ϕ(J ) = sum([1, y])−sum([1, x − 1])
|I |1/2

output Jmax = argmaxJ∈I {ϕ(J )}

The approximation guarantee of the algorithm is based on the following lemma:

Lemma 2. For ε ≤ 1/5, the following holds. Let I ∗ be an interval with the optimal score, and let J be
the left-most longest interval of I contained in I . Then ϕ(J ) ≥ ϕ(I ∗)/α, with α = (1−√2ε(2+ ε))−1.

Proof. Set M∗ = ϕ(I ∗). Assume by contradiction that ϕ(J ) < M∗/α. Denote J = [u, v] and I ∗ =
[x, y]. Define A = [x, u− 1] and B = [v + 1, y] (the segments of I ∗ protruding beyond J to the left and
right). We have

M∗ = ϕ(I ∗) = sum(A)+ sum(J )+ sum(B)√|I ∗|

= sum(A)√|A| ·
√|A|√|I ∗| +

sum(J )√|J | ·
√|J |√|I ∗| +

sum(B)√|B| ·
√|B|√|I ∗|

= ϕ(A) ·
√|A|√|I ∗| + ϕ(J ) ·

√|J |√|I ∗| + ϕ(B) ·
√|B|√|I ∗|

≤ M∗
√|A|√|I ∗| + ϕ(J )

√|J |√|I ∗| +M∗
√|B|√|I ∗| (11)

≤
(√|A| + √|B|√|I ∗|

)
M∗ + ϕ(J ) ≤

√
2 · |A| + |B||I ∗| ·M∗ + ϕ(J ) (12)

≤
√

2(2ε + ε2) ·M∗ + ϕ(J ), (13)

<
√

2(2ε + ε2) ·M∗ +M∗/α = M∗, (14)
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EFFICIENT CALCULATION OF INTERVAL SCORES 221

in contradiction. In the above, (11) follows from the optimality of M∗; (12) from arithmetic-geometric
means inequality; (13) from Lemma 1; and (14) from the contradiction assumption and by the definition
of α.

Thus, since the optimal interval must contain at least one interval of I, we get the following.

Theorem 2. For ε ≤ 1/5, Algorithm 1 provides an α(ε) = (1−√2ε(2+ ε))−1 approximation to the
maximal score.

Note that α(ε)→ 1 as ε → 0. Hence, the above constitutes an approximation scheme.
Complexity. The complexity of the algorithm is determined by the number of intervals in I. For each j ,

the intervals of Ij are 	j apart. Thus, |Ij | ≤ n
	j
= n

ε(1+ε)j
. Hence, the total complexity of the algorithm is

|I| ≤
log(1+ε) n∑

j=0

n

ε
(1+ ε)−j ≤ n

ε

∞∑
j=0

(1+ ε)−j = ε−2n = O(nε−2).

3.2. Class discovery

Consider the problem of optimizing the scores ϕsig(I, C) and ϕrob(I, C). Similar to the fixed sample
case, both problems can be cast as an instance of the general optimization problem. For an interval I and
C ⊆ S, let

ϕ(I, C) =

∑
i∈I,s∈C

ws,i

√|I | · |C| , opt (I ) = max
C⊆S

ϕ(I, C).

Note that maxI,C{ϕ(I, C)} = maxI {opt(I )}.
Computing opt(I). We now show how to efficiently compute opt(I ), without actually checking all

possible subsets C ⊆ S. The key idea is the following. Note that for any C, ϕ(I, C) = ∑
s∈C sums(I )/

(|C||I |)1/2. Thus, for a fixed |C| = k, ϕ(I, C) is maximized by taking k s’s with the largest sums(I ).
Thus, we need only sort the samples by this order, and consider the |S| possible sizes, which is done in
O(|S| log |S|). A description of the algorithm is provided in Appendix B.

The approximation algorithm for class discovery. Recall the geometric family of intervals I, as
defined in Section 3.1. For the approximation algorithm, for each J ∈ I compute opt(J ). Let Jmax be the
interval with the largest opt(J ). Using the Algorithm 4 find C for which opt(J ) is obtained and output
the pair J, C. The approximation ratio obtained for the class discovery case is identical to that of the fixed
case, and the analysis is also similar.

Theorem 3. For any ε ≤ 1/5, the above algorithm provides an α(ε) = (1−√2ε(2+ ε))−1 approxi-
mation to the maximal score.

The proof, which is essentially identical to that of Theorem 2, is omitted. Again, since α(ε) approaches
1 as ε approaches 0, the above constitutes an approximation scheme.

Complexity. Computing ϕ([1, j ], s) for j = 1, . . . , n, takes O(|S|n) steps. For each J ∈ I computing
opt(J ) is O(|S| log |S|). There are O(nε−2) intervals in I. Thus, the total number of steps for the algorithm
is O(n|S| log |S|ε−2).

4. FINDING THE OPTIMAL INTERVAL

In the previous section, we showed how to approximate the optimal score. We now show how to find
the absolute optimal score and interval. We present two algorithms. First, we present the LookAhead
algorithm. Then, we present the GFA (Geometric Family Algorithm), which is based on a combination
of the LookAhead algorithm, and the approximation algorithm described above. We note that for both
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222 LIPSON ET AL.

algorithms we cannot prove that their worst case performance is better than O(n2), but in Section 5 we
show that in practice LookAhead run in O(n1.5) and GFA runs in linear time.

4.1. LookAhead algorithm

Consider the fixed sample case. The algorithm operates by considering all possible interval starting
points, in sequence. For each starting point i, we check the intervals with ending point in increasing
distance from i. The basic idea is to try not to consider all possible ending points, but rather to skip some
that will clearly not provide the optimum. Assume that we are given two parameters t and m, where t is
a lower bound on the optimal score (t ≤ maxI ϕ(I )) and m is an upper bound on the value of any single
element (m ≥ maxi wi). Assume that we have just considered an interval of length k: I = [i, . . . , i+k−1]
with σ = sum(I), and ϕ(I) = σ√

k
. After checking the interval I , an exhaustive algorithm would continue

to the next ending point and check the interval I1 = [i, . . . , i + k]. However, this might not always be
necessary. If σ is sufficiently small and k is sufficiently large then I1 may stand no chance of obtaining
ϕ(I1) > t . For any x, setting Ix = [i, . . . , i + k+ x] (skipping the next (x − 1) intervals), an upper bound
on the score of Ix is given by ϕ(Ix) ≤ σ+mx√

k+x
. Thus, ϕ(Ix) has a chance of surpassing t only if t ≤ σ+mx√

k+x
.

Solving for x, we obtain x ≥ (t2−2mσ +√4k − 4mσ + t2)/2m2. Thus, the next ending point to consider
is i + h− 1, where h = �k + x
.

The improvement in efficiency depends on the number of ending points that are skipped. This number,
in turn, depends on the tightness of the two bounds t and m. Initially, t may be set to t = maxi wi . As we
proceed, t is replaced by the maximal score encountered so far, gradually improving performance.

Parameter m provides an upper bound on the values of single elements in W . In the description above,
we used the global maximum m = maxi wi . However, using this bound may limit the usefulness of the
LookAhead approach, since even a single high value in the data will severely limit the skip size. Thus, we
use a local approach, where we bound the value of the single elements within a window of size κ . The
most efficient definition of local bounds is the slope maximum: For a window size κ , for all 1 ≤ i < n,

precalculate, fi = maxi<j≤i+κ

∑j
�=i+1 w�

j−i
. Although fi is not an upper bound on the value of elements

within the κ-window following i, the value of fix is indeed an upper bound on
∑i+x

j=i+1 wj within the
κ-window, maintaining the correctness of the approach. Note that the skip size must now be limited
by the window size: h = min(�k + x
 , κ). Thus, larger values of κ give better performance although
preprocessing limits the practical window size to O(

√
n).

The psuedocode in Algorithm 2 summarizes this variant of the LookAhead algorithm.

Algorithm 2. LookAhead Algorithm—Fixed Sample Case

Input: Sequence W , window size κ .
Output: The maximum-scoring interval I .

Preprocessing
t = maxi wi , I = [argmaxiwi ]
sum[1, 0] = 0;
for i = 1 to n do

fi = maxi<j≤i+κ

∑j
�=i+1 w�

j−i
sum[1, i] = sum([1, i − 1])+ wi

maxScore = 0
for i = 1 to n do

σ = wi , k = 1
while i + k − 1 < n do

x =
⌈
(t2 − 2mσ +

√
4k − 4mσ + t2)/2m2

⌉
(∗)

k = k +min(κ, x)

σ = sum([1, i + k])− sum([1, i − 1])
score = σ√

k
if score > maxScore then

maxScore = score, I = [i, i + k − 1]

A simple variant of the LookAhead algorithm allows us to limit the search for the maximal scoring
interval to intervals starting within a fixed zone Z1 and ending with another fixed zone Z2. This is obtained
by limiting the two loops in the algorithm to the required ranges. The GFA algorithm, described shortly,
uses this variant of the algorithm.

Class discovery. Application of the LookAhead heuristic to the class discovery mode is more complex,
since the size of the subset C optimizing the score of each interval may vary. The following variation
accommodates this difficulty, albeit at reduced algorithmic efficiency. Given the matrix W over a samples
set S, create a vector d = di as follows. For each 1 ≤ i ≤ n, order the set {ws,i : s ∈ S} in decreasing

order: ws1,i ≥ . . . ≥ ws|S|,i . Set di = maxj :1≤j≤|S|
∑j

�=1 ws�,i√
j

. The vector d is used only in the preprocessing
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EFFICIENT CALCULATION OF INTERVAL SCORES 223

step, to compute the slope values fi . At the main loop of the algorithm, the score of a specific interval
[i, i + k − 1] is computed from the original data matrix W .

The correctness of the variant follows from the observation that if the subset C1 maximizes the score of
interval I1 and subset C2 maximizes the score of an extended interval I2 (i.e. I1 ⊂ I2), setting x = |I2|−|I1|,
then

opt(I2) =

∑
s∈C2

∑
i∈I2

ws,i

√|I2| · |C2| ≤

∑
s∈C2

∑
i∈I1

ws,i + fix
√|C2|

√|I2| · |C2| (15)

≤

∑
s∈C1

∑
i∈I1

ws,i

√|I1| · |C1| +
fix
√|C2|√|I2| · |C2| = opt(I1)+ fix√|I2| = opt(I1)+ fix√|I1| + x

which can then be solved for x in the step marked by (∗) in Algorithm 2.

4.2. Geometric family algorithm (GFA)

GFA is based on a combination of the approximation algorithm of Section 3, which is used to zero-in on
“candidate zones,” and the LookAhead algorithm, which is then used to search within these candidate zones.

Specifically, let M be the maximum score of the intervals in I, and let M∗ be the maximal score of all in-
tervals. Consider an interval J ∈ I with ϕ(J ) < M/α ≤ M∗/α. By Lemma 2, if I ∗ is the optimal interval,
then J cannot be the left-most largest interval of I contained in I ∗. Thus, when searching for the optimal
interval, we need not consider any interval for which J is the left-most largest interval. For each interval J ,
we define the cover zone of J to be those intervals I for which J is the left-most largest interval. Specifi-
cally, for J = [x, y] such that |J | = kj , let l-cov(J ) = x−	j+1 and r-cov(J ) = x+kj+1−2. The cover
zone of J is cover(J ) = {I = [u, v] : u ∈ [l-cov(J ), x], v ∈ [y, r-cov(J )]}. In GFA, we concentrate
only on intervals J with ϕ(J ) ≥ M/α and search cover(J ) for the optimal interval using the LookA-
head algorithm. If several intervals overlap, then we combine their cover zones, as described in Algorithm 3

Algorithm 3. Finding the Optimal Interval—Fixed Sample Case
Input: W = {wi }ni=1.
Output: The maximum-scoring interval Imax.

forall J ∈ I compute ϕ(J )

M = maxJ∈I {ϕ(J )}, U = {J ∈ I : ϕ(J ) > M/α}
while U �= ∅ do

J ′ = argmaxJ∈U {ϕ(J )}, U ′ = {J ∈ U : J ∩ J ′ �= ∅}
l-cov(U ′) = min{l-cov(J ) : J ∈ U ′} and r-cov(U ′) = max{r-cov(J ) : J ∈ U ′}
J∩ = ∩J∈U ′J . Denote J∩ = [l-J∩, r-J∩]
Run LookAhead to find the max score interval among the intervals starting in [l-cov(U ′), l-J∩] and ending in [r-J∩, r-cov(U ′)].
Denote the optimal by Iopt (U

′).
U = U − U ′

Imax = argmax
Iopt (U

′){ϕ(Iopt (U
′))}

return Imax

Class discovery. The algorithm for the class discovery case is identical to that of the fixed sample case
except that instead of using ϕ(J ) we use opt(J ), and using Algorithm 4.

4.3. Finding multiple aberrations

In the previous section, we showed how to find the aberration with the highest score. In many cases,
we want to find the k most significant aberrations for some fixed k, or to find all aberrations with score
beyond some threshold t .

Fixed sample. For the fixed sample case, finding multiple aberrations is obtained by first finding the
top-scoring aberration and then recursing on the remaining left and right intervals. We may also find nested
aberrations by recursing within the interval of aberration. We note that when using the GFA algorithm,
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224 LIPSON ET AL.

in the recursion we need not recompute the scores of intervals in the geometric family I. Rather, we
compute these scores only once. Then, in each recursive step, we find the max score within each region
and rerun the internal search (using LookAhead) within the candidate cover zones.

Class discovery. For the class discovery case, we must first clearly define the desirable output, specif-
ically, how to handle overlaps between the high scoring rectangles (I × C). If no overlaps are permitted,
then a simple greedy procedure may be used to output all nonoverlapping rectangles, ordered by decreasing
score. If overlaps are permitted, then it is necessary to define how much overlap is permitted and of what
type. We defer this issue to further research.

5. PERFORMANCE BENCHMARKING AND EXAMPLES

In this section, we present results of applying the scores and methods described in the previous sections
to several datasets. In Section 5.1, we benchmark the performance of both the LookAhead and GFA
algorithms on synthetic datasets and on data from breast cancer cell-lines (Hyman et al., 2002) and breast
tumor data (Pollack et al., 2002). In Section 5.2, we demonstrate results of applying the multiple-sample
methods to DCN data from breast cancer samples, using both the fixed sample mode and the class discovery
mode.

5.1. Single samples

We benchmark the performance of the exhaustive, LookAhead, and GFA approaches on synthetic data,
generated as follows. A vector V = {vi} is created by independently drawing n values from the Normal(0,1)
distribution. A synthetic amplification is “planted” in a randomly placed interval I . The length of I is drawn
randomly from the distribution Geom(0.01)+10, and the amplitude of the amplification is drawn uniformly
in the range [0.5, 10]. Synthetic data was created for four different values of n: 1,000, 5,000, 10,000,
and 50,000. In addition, we applied the algorithms to six different biological DCN vectors from Pollack
et al. (2002) and Hyman et al. (2002). Benchmarking results of finding the maximum scoring interval
are summarized in Table 1. Note that the data from different chromosomes were concatenated for each
biological sample to produce significantly long benchmark instances.

Table 1. Benchmarking Results of the Exhaustive, LookAhead, and GFA Algorithms on Synthetic
Vectors of Varying Lengths (Rand1-Rand4), and on Six Different Biological DCN Vectors from

Pollack et al. (2002) (Pol) and Hyman et al. (2002) (Hym)a

Rand1 Rand2 Rand3 Rand4 Pol Hym

n 1,000 5,000 10,000 50,000 6,095 11,994
# of instances 1,000 200 100 100 3 3
Exhaustive 0.0190 0.467 1.877 57.924 0.688 2.687
LookAhead 0.0045 0.044 0.120 1.450 0.053 0.143
GFA 0.0098 0.047 0.093 0.495 0.079 0.125

aRunning times are reported in seconds; simulations performed on a 0.8 GHz Pentium III PC. For Hym and Pol, data from all
chromosomes was concatenated to produce significant sized benchmarks. LookAhead was run with κ = √n, and GFA with ε = 0.1.
Linear regression to log–log plots suggest that running times of the Exhaustive, LookAhead, and GFA algorithms are O(n2), O(n1.5)

and O(n), respectively.
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EFFICIENT CALCULATION OF INTERVAL SCORES 225

FIG. 1. Significant alterations in breast cancer cell line sample MDA-MB-453, chromosome 17 (7,723 probes). The
thin line indicates the raw data, smoothed with a 1Mb moving average window. Overlaid thick lined step function
denotes the identified aberrations, where intervals above the x-axis denote amplifications with score ϕsig

S
(I ) > 4 and

intervals below the x-axis denote deletions with score ϕsig
S

(I ) < −4. The relative y-position of each interval indicates
the average signal in the altered interval.

Figure 1 depicts high-scoring intervals identified in chromosome 17, based on aCGH data from a breast
cancer cell line sample (MDA-MB-453, 7,723 probes). Here, all intervals with scores > 4 were identified,
including nested intervals. Running time of the full search dropped from 1.1 sec per sample with the
exhaustive search, to 0.22 sec using the recursive LookAhead heuristic. The running times of the exhaustive,
LookAhead, and GFA algorithms exhibit growth rates of O(n2), O(n1.5), and O(n), respectively.

5.2. Multiple samples

Fixed sample set. We searched for common alterations in the two different breast cancer datasets. We
used ϕrob to detect common aberrations in a set of 14 breast cancer cell line samples (data from Hyman
et al. [2002]). Figure 2 depicts the chromosomal map of common aberrations that were identified with a
score of |ϕrob

S (I )| > 4.5. No intervals with scores of this magnitude were located when the analysis was
repeated on random data.

Class discovery. We used scorerob to detect classes of common alterations in 41 breast tumor samples
(data from Pollack et al. [2002]). A large number of significant common alterations were identified in

FIG. 2. (a) Common alterations detected in 14 breast cancer cell line samples (data from Hyman et al. [2002]), in
fixed set mode. All alterations with score |ϕrob

S
(I )| > 4.5 are depicted, amplifications by red marks and deletions by

green marks. Dark blue marks denote all probe positions. (b) Common deletion in 8p (ϕrob(I, C) = 23.6) and common
amplification in 11q (ϕrob(I, C) = 22.8) identified in two subsets of 41 breast cancer samples in class discovery mode,
τ = 0 (data from Pollack et al. [2002]). X-axis denotes chromosomal position. Samples are arbitrarily ordered in y-axis
to preserve a different class structure for each alteration. Red positions denote positive values and green denote negative
values.
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226 LIPSON ET AL.

this dataset, with significantly high intervals scores, ϕrob(I, C) > 12. Again, no intervals with scores
of this magnitude were located when the analysis was repeated on randomly permuted data. Some large
aberrations were identified, including alterations affecting entire chromosomal arms as described in the
literature (Pollack et al., 2002). Specifically, amplifications in 1q, 8q, 17q, and 20q and deletions in 1p,
3p, 8p, and 13q were identified, as well as numerous additional smaller alterations. Some of these regions
contain known oncogenes (e.g., MYC (8q24), ERBB2 (17q12), CCND1 (11q13), and ZNF217 (20q13)) and
tumor suppressor genes (e.g., RB (13q14), TP53 (17p13), BRCA1 (17q21), and BRCA2 (13q13)). Figure 2
depicts two significant common alterations that were identified in 8p (deletion) and 11q (amplification).
An interesting aspect of the problem, which we did not attempt to address here, is the separation and
visualization of different located aberrations, many of which contain significant intersections.

APPENDIX A. PROOF OF THEOREM 1

Let f : R→ R be a strictly concave function (that is, tf (x)+ (1− t)f (y) < f (tx + (1− t)y) for all
0 < t < 1). We define the score of an interval I with respect to f , denoted Sf (I ), to be the sum of I ’s
entries divided by f (|I |). In particular, for f (x) = √x, S(I) coincides with the interval score function
we use throughout this paper.

For a given vector of real numbers of length n, let m > 0 denote the maximal interval score obtained
(among all

(
n
2

)
intervals). We call an interval optimal if its score equals m. The following theorem bounds

the number of optimal intervals:

Theorem 4. There can be at most n optimal intervals.

Claim. For all x, y > z > 0, the following inequality holds: f (x)+ f (y) > f (z)+ f (x + y − z).

Proof. Define t = (x − z)/(x + y − 2z). Note that

x = t (x + y − z)+ (1− t)z, and y = tz+ (1− t)(x + y − z).

As f is strictly concave and 0 < t < 1,

tf (x + y − z)+ (1− t)f (z) < f (t (x + y − z)+ (1− t)(z)) = f (x), and

tf (z)+ (1− t)f (x + y − z) < f (t (z)+ (1− t)(x + y − z)) = f (y)

Summing the above two inequalities, we get

f (x + y + z)+ f (z) < f (x)+ f (y).

Claim A. If two optimal intervals I and J intersect each other, then either I properly contains J or
vice versa.

Claim. If two optimal intervals I and J are disjoint, there must be at least one point between them
which is not included in either. Otherwise, consider the interval K = I ; J representing their union.

Let I be a collection of optimal intervals. For each x ∈ {1, . . . , n}, we denote by I(x) the set of optimal
intervals that contains x.

Claim. All intervals in I(x) have different sizes.

Proof. Any two optimal intervals that contains x intersect. By Claim A, one of them properly contains
the other. Thus, they have different size.

We define for each x the smallest interval that contains x, denoted by T (x). Note that by the previous
claim, there can be only one minimal interval that contains x. To complete the upper bound proof, we
show now that the mapping T : {1, . . . , n} ← I is onto.
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Lemma 3. For each optimal interval I , there exists a point x such that T (x) = I .

Proof. Let I be an optimal interval, I = [i,←, j ]. We consider two cases:

Case 1. The left-most point i, of I , is not included in any interval J ⊂ I . By Claim A, all the intervals that
contains i must contain I , and thus I is the smallest interval that contains i. Therefore T (i) = I .

Case 2. Otherwise, let J denote the largest interval that is properly contained in I and i ∈ J . Let k denote
the right-most point in J . We show now that T (k + 1) = I .

First note that since J is properly contained in I and J contains the left-most point of I , J

cannot contain the right-most point of I . Therefore k + 1 ∈ I . Assume, towards contradiction,
that there exists a shorter interval I ′ that contains k+ 1. As I ′ intersect I and it is shorter, it must
be (Claim A) properly contained in I . Let i′ ≥ i denote the left-most point of I ′. We consider
three cases:
• i′ = i. In this case, i ∈ I ′, and J ⊂ I ′, a contradiction to the definition of J .
• i < i′ ≤ k. In this, we contradict Claim A as

k ∈ J ∩ I ′, i ∈ J \ I ′, k + 1 ∈ I ′ \ J.

• i′ = k + 1. In this case, k + 1 is the left-most point of I ′, while k is the left-most point of J ,
a contradiction to Claim A.

Therefore, there I is the smallest interval containing k + 1, and thus T (k + 1) = I .

We conclude with the following theorem.

Theorem 5. There can be at most n optimal intervals.

This bound is, in fact, tight as can be seen by considering any prefix of v1 = 1, . . . vi = f (i) −
f (i − 1), . . . .

APPENDIX B. ALGORITHM FOR COMPUTING opt(I)

For a matrix W and an interval I , the following algorithm efficiently computes opt(I ). Note that we
assume that for each s and j , sums([1, j ]) is already known. This can be done in a preprocessing phase,
for all s and j in O(n|S|).

Algorithm 4. Computing opt(I )

Input: Matrix W = {ws,i }, Interval I = [x, y].
Output: opt(I ).

Foreach s ∈ S compute sums(I ) = sums([1, y])− sums([1, x − 1])
Sort the values of sums(I ) in decreasing order. Let s1, . . . , sm be the order of the s’s.
sum(0) = 0
for � = 1 to m do

sum(�) = sum(�− 1)+ sum(I)s�
Output opt(I ) = max�{sum(�)/

√
�}
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