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ABSTRACT The problem of minimum distance calculation between line-segments/capsules, in 3D space,

is an important subject in many engineering applications, spanning CAD design, computer graphics,

simulation, and robotics. In the latter, the human–robot minimum distance is the main input for collision

avoidance/detection algorithms to measure collision imminence. Capsules can be used to represent humans

and objects, including robots, in a given dynamic environment. In this scenario, it is important to calculate the

minimum distance between capsules efficiently, especially for scenes (situations) that include a high number

of capsules. This paper investigates the utilization of QR factorization for performing efficient minimum

distance calculation between capsules. The problem is reformulated as a bounded variable optimization in

which an affine transformation, deduced fromQR factorization, is applied on the region of feasible solutions.

A geometrical approach is proposed to calculate the solution, which is achieved by computing the point

closest to the origin from the transferred region of feasible solutions. This paper is concluded with numerical

tests, showing that the proposed method compares favorably with the most efficient method reported in the

literature.

INDEX TERMS Minimum distance, line-segments, capsules, robotics.

I. INTRODUCTION

The subject of minimum distance calculation between line-

segments/capsules is important in many areas, for example

in CAD design, computer graphics/games and in simulation.

In such cases, minimum distance calculations are used to

detect any overlap or collision between elements. This sub-

ject is also important in robotics for the problem of path

planning and safety in human-robot interaction, where the

minimum distance is used as a measure of collision immi-

nence. In this scenario, calculating the minimum distance

on-line is required for time critical applications such as

human-robot collision avoidance and the path planning of

robots navigating obstacles towards a goal. Most of collision

avoidance methods require the calculation of the minimum

distance between robot and surrounding environment (includ-

ing humans), which are commonly represented by geometric

primitives (capsules and/or spheres). By using higher num-

ber of geometric primitives the accuracy of representation

increases. In such a case, the acquisition of more data from

sensors is required, resulting in higher computational cost

associated with sensor data processing and minimum dis-

tance calculation between the robot and the surrounding

humans/objects. Outside computer graphics science the num-

ber of studies approaching human and object representation

in real environment from real sensor data is very limited.

In this context, quite a few methods had been proposed in

literature. Ellipses have been utilized to represent the links

of a robot while obstacles are represented by spheres [1].

A computationally efficient solution is based on the repre-

sentation of the robot and obstacles by segments of lines with

spheres swept onto them [2]. In [3] and [4] a humanoid robot

is represented by capsules, while in [5] robot and human

are represented by a collection of spheres. In [6], an indus-

trial manipulator and a human are represented by capsules.

A novelmethod for evaluating the distances between dynamic

obstacles using multiple depth cameras is presented in [7].
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A depth space oriented discretization of the Cartesian space is

introduced, including occluded points. Robot and surround-

ing environment can be precisely described using mesh rep-

resentation [8]. This method has the disadvantage of being

costly for performing robot-obstacle minimum distance cal-

culations. To speed up the computation, researchers have

utilized the power of parallel processing, and GPU proces-

sors, to carry out the calculations [8]. A collision avoidance

framework for mechanisms with complex geometries was

demonstrated in simulation environment [9]. Diverse geome-

tries/shapes have been reported in literature for accurate

representation of humans and objects, namely in computer

graphics science [10]. However, concerning the application

in real environment using real sensors, capsules and spheres

continue to be the most common geometry applied. Previ-

ous studies in human-robot collision avoidance showed that

the error derived from the representation of humans using

capsules is relatively small compared to the human-robot

minimum distance dimension, so that it can be considered not

problematic for the collision avoidance process [11].

In this study, the human and the robot are represented by

capsules. Capsules are considered a good geometric primitive

to represent a human, as in Figure 1 (A), in which L’Uomo

Vitruviano from Leonardo da Vinci is represented by 10 cap-

sules. The human body can be represented roughly by a single

capsule, Figure 1 (B). In this scenario the arms can extend out

of the capsule volume for some configurations. Figure 1 (C)

shows a human represented by 3 capsules. In Figure 1 (D)

the human is represented by 5 capsules, 2 capsules in each

arm and 1 single capsule for the torso and head. A relatively

precise representation of the human hand and forearm by

21 capsules is shown in Figure 1 (G).

A robot can roughly be represented by 2 capsules,

Figure 1 (E), or by 3 capsules representing the main robot

links (KUKA iiwa with 7 DOF), Figure 1 (F). The pose of

the capsules covering the robot is obtained from forward

kinematics calculation using the measured robot joint angles.

In [12], it is proposed an algebraic method for minimum

distance computation between two capsules. Another method

for computing the minimum distance between cylinders with

flat ends was proposed in [13]. Nevertheless, the aforemen-

tioned methods are lengthy because they consider the differ-

ent configurations in which two capsules might collide with

each other. A method to determine the minimum distance

between multiple known (geometry, position, orientation and

configuration) andmultiple unknown objects within a camera

image is presented in [14]. The distance is estimated by

searching for the largest expansion radius where the pro-

jected model does not intersect the object areas classified

as unknown. A novel approach to approximate the mini-

mum distance between robot links and obstacles is proposed

in [15]. Obstacles are represented by a bounding box, mod-

eled as cylinders and boxes. Each part of the robot arm is

subdivided into an optimal number of spheres that encompass

the initial volume. The minimum distance between the robot

and the objects is approximated by the minimum distance

FIGURE 1. (A) L’Uomo Vitruviano from Leonardo da Vinci and its
representation by 10 capsules, (B) human represented by 1 capsule,
(C) human represented by 3 capsules, (D) human represented by
5 capsules, (E) robot represented by 2 capsules, (F) robot represented by
3 capsules and (G) human hand and forearm are represented by
21 capsules.

between the obstacle bounding box and the spheres. An algo-

rithm for computing the minimum translational distance

based on the Gilbert-Johnson-Keerthi algorithm between two

spherically extended polytopes is introduced in [16]. A well-

known methodology for efficiently computing the segment

to segment (capsules) distance which is considered the most

efficient method in literature concerning computational effi-

ciency is detailed in [17, pp. 417–418].

In this study, Section II presents the proposed QR-based

capsule-capsule minimum distance method. Experiments and

results are reported in Section III, both qualitative and quan-

titative. Finally, the conclusion is in Section IV. The Media

materials contain the detailed deduction of the proposed QR

method and running code.
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FIGURE 2. Minimum distance between two capsules.

II. MINIMUM DISTANCE: CAPSULE-CAPSULE

A. FORMULATION

Owing to their geometry, calculating the minimum distance

between two capsules can be reduced to the calculation of the

minimum distance between two line-segments at the capsules

axes. In Figure 2 it is shown two line-segments representing

the axes of two capsules and their associated common normal.

Each capsule can be defined by two vectors (at the beginning

and end of the capsule’s axis-segment) and a radius ρ. Let’s

designate the position vectors defining the end points of the

axis-segment of a capsule by p1 and u1 (capsule 1), and p2 and

u2 (capsule 2). Then, we can define two vectors s1 = u1−p1
and s2 = u2 − p2.

Two points of interest, one in each axis segment of a

capsule, are considered. Those points are represented relative

to the base frame by two vectors, r1 and r2:

r1 = p1 + s1λ1 (1)

r2 = p2 + s2λ2 (2)

where λ1 and λ2 are scalar parameters. Each parameter has

a value in the range from zero to one when the point it

represents is confined in between the two ends of the axis-

segment of the capsule.

The problem of calculating the minimum distance between

the two capsules renders to a minimization problem:

min(8) = min(|p2 + s2λ2 − (p1 + s1λ1)| − ρ1 − ρ2) (3)

where ρ1 and ρ2 are the radii of the capsules. Giving that ρ1
and ρ2 are constants, then the minimization problem can be

reformulated:

min(|△r|) = min(|p2 + s2λ2 − (p1 + s1λ1)|) (4)

where △r = r2 − r1. We can rewrite the optimization

function in the following equivalent quadratic form:

min(f ) = min((Ax+ y)T(Ax+ y)) (5)

FIGURE 3. Region of feasible solutions of optimization problem (5).

FIGURE 4. Modified optimization problem (7).

where matrix A =
[

s2 −s1
]

and vector y = p2 − p1.

The problem can be viewed as minimizing (5), subject to the

constrains 0 < x1 < 1 and 0 < x2 < 1 (x1 and x2 are

the components of the vector x). Figure 3 shows the level

sets and the region of feasible solutions of the optimization

problem (5).

B. QR FACTORIZATION

The function f can be reformulated by performing QR fac-

torization on matrix A and fixing. Then, the optimization

problem in (5) is equivalent to:

min(f1) = min((Rx+QTy)T(Rx+QTy)) (6)

where Q is a 3 × 2 matrix whose column vectors are of unit

length and mutually orthogonal, and matrixR is a 2×2 upper

triangular. By performing a variable change the optimization

problem becomes:

min(f1) = min(uTu) (7)

where u is given by:

u = (Rx+QTy) (8)

The modified optimization problem (7) is shown

in Figure 4. We notice that after performing the transfor-

mation described in (8) the elliptical level sets of the cost

function are transformed into circles and the rectangular
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Algorithm 1: Minimum distance calculation

Input : R region of feasible solutions

(Q,R) facorization matrices of A

Output : umin vector of coefficients

01 : Transform R using the function f (x) = (Rx+QTy)

02 : If Origin is inside R then

03 : umin← [0, 0]T

04 : else

05 : for each boundary segment of R do

06 : c← point of segment closest to origin

07 : If first iteration then

08 : umin← c

09 : else

10 : If norm(umin) > norm(c) then

11 : umin← c

12 : end if

13 : end if

14 : end for

15 : end if

region of feasible solutions is transformed into a parallelo-

gram. The solution to the modified optimization problem (7)

is reduced to finding that point of the parallelogram region

closest to the origin, umin, efficiently calculated in 2D space,

Algorithm 1. Finally, the minimum distance between two

capsules is calculated from:

dmin =

√

uTminumin + y
Ty− yTQQTy− ρ1 − ρ2 (9)

For a set of n line-segments/capsules it can be noticed that:

1) Minimum distance calculations shall be performed

mutually between any two capsules of the set, resulting

in O
(

n2
)

complexity;

2) QR factorization of matrix Ai associated with a subset

i of two capsules can be enhanced for efficiency since

different Ai have shared columns in their structure;

3) The vector umin is calculated in two dimensional space,

while other algorithms calculate xmin in the three

dimensional space;

4) Vector operations in ℜ2 are less costly than operations

in ℜ3;

5) We propose umin in ℜ2 and take advantage of the fact

that the area of feasible solutions is a parallelogram.

A document with the full detail of the proposed QR

method, including comparison with the method in [17] and

C++ running code is in Media materials.

III. EXPERIMENTS AND RESULTS

Performance was evaluated by comparing the proposed QR

method with the method in [17] to compute the segment

to segment minimum distance. Three comparison criteria

were considered: (1) computational complexity, (2) execution

time using C++ and (3) numerical precision. The results for

the computational complexity of the algorithms (number of

floating point operations – addition, multiplication, division

FIGURE 5. Execution time comparison for the proposed QR method,
the method in [17] and the modified method in [17] as a function of
number of line-segments/capsules of the set. Algorithms implemented in
C++.

FIGURE 6. Execution time ratio (Method [17]/QR), (Modified method
[17]/QR) and (Method [17]/Modified
method [17]) as a function of number of line-segments/capsules of the
set. Algorithms implemented in C++.

and square root for QR) are in Table 1. For the second

comparison criteria, a set of line-segments was randomly gen-

erated and the minimum distance (squared) between each two

line-segments of the set was calculated using the proposed

QR method and the method in [17]. By implementing the

algorithms in C++, results indicate that in terms of execution

time the proposed QR method performed about 10% faster

than the method in [17], Figure 5 and Figure 6.

We noticed that method [17] can be modified by promoting

some of the operations from O(n2) to O(n). The results of

those operations can be stored in memory and used later in

theO(n2) part of the algorithm. In such a case, theO(n2) com-

putational complexity of method [17] is reduced as shown

in Table 1. Nevertheless, the proposed QR method is still

more efficient in terms of execution time as shown in Figure 5

and Figure 6. The modified method in [17] is detailed in the

Media materials.

Considering the third comparison criteria, numerical pre-

cision, a group of 5000 line-segments/capsules has been

generated randomly in 3D space. The (x, y, z) coordinates

of the start and end point of each segment are in the
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TABLE 1. Computational complexity for the method in [17], the modified method in [17] and the proposed QR method.

FIGURE 7. Average relative error between the method in [17] and the
proposed QR method as a function of the number of
line-segments/capsules of the set.

range [−100, 100]. The proposed QRmethod and the method

in [17] are used to calculate the minimum distance between

each couple of segments from the set. For each couple of

segments, the relative error is defined as the ratio of the

absolute value of difference between calculations using the

two methods:

e =
2|d

qr
min − d

s
min|

d
qr
min + d

s
min

(10)

where d
qr
min is the minimum distance calculated using the

proposed QR method and d smin is the minimum distance cal-

culated using the method in [17]. Experimental tests resulted

in a maximum value of the relative error of 1.059e−8, a min-

imum value of the relative error of 1.11e−16 and an average

error of 4.87e−10. These values demonstrate that the error

is negligible. The same test has been repeated for different

groups of line-segments/capsules with different number of

elements, Figure 7.

IV. CONCLUSION

In this study we proposed a novel method based on QR

factorization for performing minimum distance calculations

for a set of line-segments/capsules. Capsules demonstrated

to be good solution to represent humans and objects in real

environment having data from real sensors as input. Exper-

imental results indicate that the proposed solution is more

efficient than the existing most efficient method in literature.

Such efficiency was measured in computationally complex-

ity (reduced number of floating point operations), execution

time (about 10% better) and numerical precision (the error is

negligible).

REFERENCES

[1] S. I. Choi and B. K. Kim, ‘‘Obstacle avoidance control for redun-

dant manipulators using collidability measure,’’ Robotica, vol. 18, no. 2,

pp. 143–151, 2000.

[2] P. Bosscher and D. Hedman, ‘‘Real-time collision avoidance algorithm for

robotic manipulators,’’ Ind. Robot, Int. J., vol. 38, no. 2, pp. 186–197, 2011.

[3] A. De Santis, A. Albu-Schaffer, C. Ott, B. Siciliano, andG.Hirzinger, ‘‘The

skeleton algorithm for self-collision avoidance of a humanoid manipula-

tor,’’ in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Sep. 2007,

pp. 1–6.

[4] C. Fang, A. Rocchi, E. M. Hoffman, N. G. Tsagarakis, and

D. G. Caldwell, ‘‘Efficient self-collision avoidance based on focus

of interest for humanoid robots,’’ in Proc. IEEE-RAS 15th Int. Conf.

Humanoid Robots (Humanoids), Nov. 2015, pp. 1060–1066.

[5] L. Balan and G. M. Bone, ‘‘Real-time 3D collision avoidance method for

safe human and robot coexistence,’’ in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., Oct. 2006, pp. 276–282.

[6] C. Liu and M. Tomizuka, ‘‘Algorithmic safety measures for intelligent

industrial co-robots,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

May 2016, pp. 3095–3102.

[7] F. Fabrizio and A. De Luca, ‘‘Real-time computation of distance to

dynamic obstacles with multiple depth sensors,’’ IEEE Robot. Autom. Lett.,

vol. 2, no. 1, pp. 56–63, Jan. 2017.

[8] K. B. Kaldestad, S. Haddadin, R. Belder, G. Hovland, and D. A. Anisi,

‘‘Collision avoidance with potential fields based on parallel processing of

3D-point cloud data on the GPU,’’ in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), May 2014, pp. 3250–3257.

[9] M. Sagardia, A. M. Turrillas, and T. Hulin, ‘‘Realtime collision avoidance

for mechanisms with complex geometries,’’ in Proc. IEEE Conf. Virtual

Reality 3D User Inter. (VR), Mar. 2018, p. 1.

[10] R. Hu, M. Savva, and O. van Kaick, ‘‘Functionality representations and

applications for shape analysis,’’ Comput. Graph. Forum, vol. 37, no. 2,

pp. 603–624, 2018.

[11] M. Safeea and P. Neto, ‘‘Human-robot collision avoidance for indus-

trial robots: A V-REP based solution,’’ in Proc. 25th ISPE Int. Conf.

Transdisciplinary Eng. Transdisciplinary Eng. Methods Social Innov. Ind.

Amsterdam, Netherlands: IOS Press, 2018.

[12] P. Ennen, D. Ewert, D. Schilberg, and S. Jeschke, ‘‘Efficient collision

avoidance for industrial manipulators with overlapping workspaces,’’ Pro-

cedia CIRP, vol. 20, pp. 62–66, 2014.

[13] D. Biermann, R. Joliet, and T. Michelitsch, ‘‘Fast distance computa-

tion between cylinders for the design of mold temperature control sys-

tems,’’ TU Dortmund Univ., Dortmund, Germany, Tech. Rep., 2008, doi:

10.17877/DE290R-8711.

[14] S. Kuhn and D. Henrich, ‘‘Fast vision-based minimum distance determi-

nation between known and unkown objects,’’ in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst. (IROS), Nov. 2007, pp. 2186–2191.

[15] S. Tarbouriech and W. Suleiman, ‘‘On bisection continuous collision

checking method: Spherical joints and minimum distance to obstacles,’’

in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 7613–7619.

[16] E. J. Bernabeu and J. Tornero, ‘‘Hough transform for distance computation

and collision avoidance,’’ IEEE Trans. Robot. Autom., vol. 18, no. 3,

pp. 393–398, Jun. 2002.

[17] P. J. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics.

San Francisco, CA, USA: Morgan Kaufmann, 2003, pp. 417–418.

5372 VOLUME 7, 2019

http://dx.doi.org/10.17877/DE290R-8711


M. Safeea et al.: Efficient Calculation of Minimum Distance Between Capsules and Its Use in Robotics

MOHAMMAD SAFEEA received theM.S. degree

in mechanical engineering from the University of

Coimbra, Portugal, in 2016. He is currently pursu-

ing the Ph.D. degree in robotics with theUniversity

of Coimbra and ENSAM ParisTech, Lille, France.

During his career, he has been involved in sev-

eral projects, where he developed several software

solutions for robotics, control, and interfacing with

hardware and sensors. His main research topics are

robot dynamics, robot control, and the issues of

safety for human–robot collaboration.

PEDRO NETO received the Ph.D. degree in

mechanical engineering (robotics) from the Uni-

versity of Coimbra, in 2012. He is currently a Pro-

fessor Auxiliar with theDepartment ofMechanical

Engineering, University of Coimbra. He is a super-

visor for several M.Sc. and Ph.D. students and

Postdoctoral researchers. He created the Collab-

orative Robotics Laboratory (CoRLuc), in 2016,

with an investment of more than 1 million Euros.

CoRLuc research activities focus in collaborative

robotics, human–robot interaction, and the application of robots in advanced

manufacturing activities in the context of industry 4.0. He has authored more

than 100 publications, including books, book chapters, international jour-

nal papers, conference proceedings, reports, and demonstration videos. He

coordinates several research projects at the University of Coimbra, including

flagship projects supported by the European Commission under Horizon

2020 Framework. He served on the scientific committees of several confer-

ences and has been a member of the IEEE Factory Automation technical

committee, since 2016.

RICHARD BEAREE received the M.Eng. degree

in mechanical engineering from Lille University,

in 2001, the M.S. degree in automatic control,

in 2002, and the Ph.D. degree in automatic con-

trol from the French engineering school ENSAM

ParisTech, in 2005. He is currently a Professor

in robotics with the LISPEN Laboratory, ENSAM

ParisTech. He is also the Head of the Specialized

Master Program ‘‘Expert in collaborative robotics

for Industry of the Future.’’ His current research

interests include robot localization, computer vision, trajectory planning,

trajectory generation, and vibration control with applications to industrial

robotics systems.

VOLUME 7, 2019 5373


	INTRODUCTION
	MINIMUM DISTANCE: CAPSULE-CAPSULE
	FORMULATION
	QR FACTORIZATION

	EXPERIMENTS AND RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	MOHAMMAD SAFEEA
	PEDRO NETO
	RICHARD BEAREE


