
Efficient CCA-secure Threshold Public-Key Encryption

Scheme

Xi-Jun Lin ∗and Lin Sun †

November 13, 2013

Abstract: In threshold public-key encryption, the decryption key is divided into n
shares, each one of which is given to a different decryption user in order to avoid single points
of failure. In this study, we propose a simple and efficient non-interactive threshold public-
key encryption scheme by using the hashed Diffie-Hellman assumption in bilinear groups.
Compared with the other related constructions, the proposed scheme is more efficient.

Key words: Threshold public-key encryption; Chosen-ciphertext security; Hashed
Diffie-Hellman assumption; CCA-secure

1 Introduction

In a threshold public-key encryption scheme, the private key corresponding to a public
key is shared among a set of n decryption users. In such a scheme, a message is encrypted
and sent to a group of decryption users, in such a way that the cooperation of at least t
of them (where t is the threshold) is necessary in order to recover the original message.
Moreover, no information about the message is leaked, even if the number of the corrupted
users is up to t − 1. Such schemes have many applications in situations where one cannot
fully trust a unique person, but possibly a pool of individuals, such as electronic voting,
electronic auctions, key-escrow, etc.

In a non-interactive threshold public-key encryption scheme, no communication is need-
ed amongst the decryption users performing the partial decryptions. Furthermore, such
schemes are often required to be robust in that if threshold decryption of a valid ciphertext
fails, the combiner can identify the decryption users who supply invalid partial decryp-
tion shares. Recently, we have seen many studies of such schemes in the crypto/security
community [1, 3, 5, 7, 8].

In this study, we propose a more efficient non-interactive threshold public-key encryption
scheme than the other related constructions, and the proposed scheme is proved to be CCA-
secure under the hashed Diffie-Hellman (HDH) assumption in bilinear groups [2, 5].

In the proposed scheme, the decryption user needs to verify the ciphertext C before
attempting to generate its partial decryption share. This validity check which is performed
using two exponentiations in group G is more efficient than that in the other related construc-

∗X.J.Lin is with the Department of Computer Sciences and Technology, Ocean University of China.
Qingdao 266100, P.R.China. email: linxj77@163.com

†L. Sun is with the College of Liberal Arts, Qingdao University. Qingdao 266071, P.R.China. email:
sunlin9@126.com

1

tions in which the pairing computation is employed. Moreover, each of partial decryption
share will be verified before running Combine algorithm.

The rest of this paper is organized as follows: After recalling the relevant technical
definitions in the next section, the definitions and the security models of the threshold
public-key encryption scheme are given in Section 3. In Section 4 and Section 5, we propose
a more efficient non-interactive threshold public-key encryption scheme based on HDH
assumption in bilinear groups, and then prove its security. Furthermore, the comparisons
with the related constructions are given in Section 6 which is followed by the last section
to conclude our works.

2 Preliminaries

2.1 Bilinear Pairing

Let G be an additive group of prime order p, F be a multiplicative group of the same
order. Bilinear pairing is a map ê : G × G → F which satisfies the following properties:

• Bilinearity: given any g, h ∈ G and a, b ∈ Z∗
p, we have ê(ga, gb) = ê(g, g)ab =

ê(gab, g), etc.

• Non-Degeneracy: There exists a g ∈ G such that ê(g, g) ̸= 1.

• Computability: ê(g, h) can be computed in polynomial time.

2.2 HDH Assumption

Let G be a group of prime order p and g be a generator of G. Let H be a one-way hash
function H : G → {0, 1}l. Let A be an adversary. We define HDH advantage of A against
G at a security parameter λ as

AdvHDH
A,G (λ) = |Pr[A(g, ga, gb, H(gab)) = 1]− Pr[A(g, ga, gb, T ∈R {0, 1}l) = 1]|.

The HDH assumption is that for every polynomial-time adversary A, the function
AdvHDH

A,G (λ) is negligible.

2.3 Lagrange Interpolation

Let f(x) =
∑t−1

j=0 ajx
j be a polynomial over Zp with degree t− 1 where p is a prime, and

let (x1, f(x1)), (x2, f(x2)), · · · , (xt, f(xt)) be t distinct points over f(x).

Then, given (x1, f(x1)), (x2, f(x2)), · · · , (xt, f(xt)), f(x) can be reconstructed as follows

f(x) = f(x1)λ
x
x1

+ f(x2)λ
x
x2

+ · · ·+ f(xt)λ
x
xt
,

where

λx
xj

=
(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xt)

(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xt)
,

2

for any 1 ≤ j ≤ t.

3 Definitions

We follow the notation of CCA-secure threshold public-key encryption scheme from [5].
A threshold public-key encryption scheme consists of six algorithms.

1. Setup(n, t, λ): Takes as input the number of decryption users n, a threshold t ,
where 1 ≤ t ≤ n, a security parameter λ ∈ Z. It outputs a triple (PK,SK, V K),
where PK is the public key, SK = (SK1, · · · , SKn) is a vector of n secret keys
and V K = (V K1, · · · , V Kn) is the corresponding vector of verification keys. The
verification key V Ki is used to check the validity of partial decryption shares generated
by using SKi. The secret key SKi is secretly given to the ith user, for i = 1, · · · , n.

2. Encrypt(PK,M): Takes as input the public key PK and a message M to be en-
crypted. It outputs ciphertext C.

3. ValidateCT(PK,C): Takes as input the public key PK, and ciphertext C. It checks
whether C is a valid ciphertext with respect to PK.

4. ShareDecrypt(PK, i, SKi, C): Takes as input the public key PK, ciphertext C,
a decryption user i and its secret key SKi. It outputs a partial decryption share
σi = (i, ϑi), or a special symbol (i,⊥) if C is invalid.

5. ShareVerify(PK, V Ki, C, σi): Takes as input the public key PK, the verification
key V Ki, as well as ciphertext C and partial decryption share σi. It checks whether
σi is a valid partial decryption share with respect to V Ki and C.

6. Combine(PK, V K,C,Ω): Takes as input the public key PK, the verification key
V K, as well as ciphertext C, and Ω = (σ1, · · · , σt) a list of t partial decryption
shares. It outputs plaintext M or ⊥.

We require, for all ciphertext C, ShareVerify(PK, V Ki, C,ShareDecrypt(PK, i, SKi,
C)) = valid. In addition, let Ω = (σ1, · · · , σt) be t distinct valid decryption shares of C,
where C = Encrypt(PK,M), then we require Combine(PK, V K,C,Ω) = M .

Security against chosen ciphertext attack is defined using the following game between an
adversary A and a challenger R, and both of them are given as input the system parameters
n, t, λ ∈ N with t ≤ n.

• Init: The adversary A outputs a set S ⊂ {1, · · · , n} of t − 1 decryption users to
corrupt.

• Setup: The challengerR runs Setup(n, t, λ) algorithm to obtain a triple (PK,SK, V K),
where SK = (SK1, · · · , SKn) and V K = (V K1, · · · , V Kn). It gives PK, V K and all
(j, SKj) (where j ∈ S) to adversary A.

• Phase 1: Adversary A adaptively issues ShareDecrypt queries with (i, C), where
i ∈ {1, · · · , n} and C ∈ {0, 1}∗.
Challenger R runs the ShareDecrypt algorithm using C, SKi to get σi , and gives
σi to adversary A.

3

• Challenge: Adversary A outputs two equal length messages M0 and M1. Challenger
R picks a random bit δ ∈ {0, 1}, and sends C∗ = Encrypt(PK,Mδ) to adversary A.

• Phase 2: Adversary A makes further queries as in Phase 1 but is not allowed to
make ShareDecrypt queries on C∗.

• Guess: Finally, adversary A outputs a guess δ′ ∈ {0, 1} and wins the game if δ = δ′.

4 The Proposed Scheme

4.1 Construction

• Setup(n, t, λ): The trust center generates the system parameters (p,G,F , ê) by run-
ning the group generator algorithm. It then does the following:

1. Pick two generators g,X ∈R G.
2. Pick two hash functions H1 and H2, where H1 : {0, 1}l ×G ×G → Z∗

p is a secure

hash function and H2 : G → {0, 1}l is a random instance of a hash function such
that the HDH assumption holds in bilinear groups.

3. Pick a random polynomial f(x) = a +
∑t−1

j=1 ajx
j with degree t − 1 (where

a, a1, · · · , at−1 ∈R Z∗
p , t is the value of threshold).

4. Compute SKi = f(i) and V Ki = Xf(i), for i = 1, · · · , n.
5. Let g1 = ga.

6. Publish system parameters PK = (p,G,F , ê, g, g1, X,H1,H2) and verification
key V K = (V K1, · · · , V Kn). Secret key SKi is given to user i privately, for
i = 1, · · · , n.

• Encrypt(PK,M): To encrypt M ∈ {0, 1}l , this algorithm picks k, r ∈R Z∗
p, and

computes

C0 = M ⊕H2(g
k
1),

C1 = gk, C2 = gr,

β = kH1(C0, C1, C2) + r (mod p− 1).

The output is C = (C0, C1, C2, β).

• ValidateCT(PK,C): To validate ciphertext C = (C0, C1, C2, β), this algorithm
checks whether

gβ = C2 · CH1(C0,C1,C2)
1 .

• ShareDecrypt(PK, i, SKi, C): Decryption user i uses its secret key SKi = f(i) to
partially decrypt ciphertext C = (C0, C1, C2, β) as follows:

1. Run ValidateCT(PK,C) algorithm to check whether or not C is a valid ci-
phertext. If the verification fails, it outputs σi = (i,⊥);

2. Otherwise, compute ϑi = C
f(i)
1 and output partial decryption share σi = (i, ϑi).

4

• ShareVerify(PK, V Ki, C, σi): To verify a partial decryption share σi with respect
to ciphertext C = (C0, C1, C2, β) under verification key V Ki, this algorithm firstly
runs ValidateCT(PK, C) to check whether C is a valid ciphertext. If C and σi are
well formed, it checks whether the following equation holds:

ê(ϑi, X) = ê(C1, V Ki).

• Combine(PK, V K,C, {σ1, · · · , σt}): To decrypt ciphertext C = (C0, C1, C2, β) using
the partial decryption shares {σ1, · · · , σt}, this algorithm firstly checks whether σi =
(i, ϑi) is valid by running ShareVerify(PK, V Ki, C, σi), for i = 1, · · · , t. Then, it
performs as follows:

1. Determine the Lagrange coefficients (λ0
1, λ

0
2, · · · , λ0

t) ∈ Zt
q, and then compute

µ =

t∏
i=1

(ϑi)
λ0
i .

2. Compute and output M = C0 ⊕H2(µ) to decrypt C = (C0, C1, C2, β) with µ.

4.2 Correctness

If the ciphertext C = (C0, C1, C2, β) and partial decryptions {σ1, · · · , σt} are valid, the
Combine algorithm will output the correct plaintext.

µ =
∏t

i=1(ϑi)
λ0
i

=
∏t

i=1(C
f(i)
1)λ

0
i

= C
∑t

i=1 f(i)λ
0
i

1

= C
f(0)
1

= Ca
1 ,

C0 ⊕H2(µ) = C0 ⊕H2(C
a
1)

= C0 ⊕H2((g
k)a)

= C0 ⊕H2(g
k
1)

= (M ⊕H2(g
k
1))⊕H2(g

k
1)

= M.

5 Security

Theorem 1 Assume that H1 is a random oracle and H2 is a random instance of a hash
function such that the HDH assumption holds in bilinear groups. Suppose that there exists a
polynomial time adversary A that breaks chosen-ciphertext security of the proposed scheme
with non-negligible advantage. We show that there exists an algorithm B that runs in poly-
nomial time and runs adversary A as a subroutine to break the HDH assumption in bilinear
groups.

Proof: The algorithm B is given group parameters (p, g,G,F , ê) and a random HDH
instance tuple (g, ga, gb, T,H2), where T is equal to H2(g

ab) or a random element in {0, 1}l.

5

If T is equal to H2(g
ab), B outputs 1; otherwise, it outputs 0. Set g1 = ga. B performs by

interacting with the adversary A in the following game:

• Init: The adversary A chooses a set S of t − 1 decryption users that it wants to
corrupt. Without loss of generality, we let S = {1, · · · , t− 1} ⊂ {1, · · · , n}.

• Setup: B does as follows:

1. Pick x ∈R Z∗
p and compute X = gx, and then give (p,G,F , ê, g, g1, X) to A as

the system parameters. Two lists H1-list and H2-list are maintained by B to
answer H1 oracle queries and H2 oracle queries, respectively.

2. Pick integers ai ∈R Z∗
p where i = 1, · · · , t − 1. Note that there exists an inter-

polation polynomial f(x) with degree t − 1, such that f(0) = a and f(i) = ai.
However, B does not know f(x) since it does not know a. B gives the t−1 secret
keys SKi = f(i) = ai to A.

3. Construct the verification key V K = (V K1, · · · , V Kn) as follows:

(a) For i ∈ S, V Ki = Xai since f(i) = ai which is known to B.
(b) For i /∈ S, B computes the Lagrange coefficients λi

0, λ
i
1, · · · , λi

t−1 ∈ Zp, and

sets V Ki = g
xλi

0
1 Xa1λi

1 · · ·Xat−1λi
t−1 . We claim that V Ki is a valid verifica-

tion key of the decryption user i. To verify the correctness, we have that

V Ki = g
xλi

0
1 Xa1λi

1 · · ·Xat−1λi
t−1

= Xaλi
0Xa1λi

1 · · ·Xat−1λi
t−1

= Xaλi
0+a1λi

1+···+at−1λi
t−1

= Xf(0)λi
0+f(1)λi

1+···+f(t−1)λi
t−1

= Xf(i)

B gives the verification key V K to the adversary A.

• Phase 1: A can adaptively issue the following queries:

– H1-query: After receiving (C0, C1, C2) from A, B performs as follows:

If there exists an item [C0, C1, C2, h1] in the H1-list with respect to (C0, C1, C2),
B responds with h1; otherwise, B picks h1 ∈R Z∗

p, stores [C0, C1, C2, h1] into the
H1-list and responds with h1.

– H2-query: After receiving γ from A, B performs as follows:

If there exists an item [γ, h2] in the H2-list with respect to γ, B responds with h2;
otherwise, B computes h2 = H2(γ), stores [γ, h2] into the H2-list and responds
with h2.

– ShareDecrypt-query: A issues decryption queries of the form (i, C), where C =
(C0, C1, C2, β) and i ∈ {1, · · · , n}. For each such decryption query, B performs
as follows:

1. Check whether gβ = C2 · CH1(C0,C1,C2)
1 . If not, respond with σi = (i,⊥);

2. Otherwise, perform as follows:

If i ∈ S, compute ϑi = Cai
1 . Then, we have that ϑi = C

f(i)
1 since f(i) = ai

which is known to B.

6

If i /∈ S, compute the Lagrange coefficients λi
0, λ

i
1, · · · , λi

t−1 ∈ Zp. Suppose
C1 = gk. Since H2 is a random oracle, the probability of computing H2(g

k
1)

without issuing H2-query is negligible. Then, we claim that there exists
an item [γ = gk1 = gak,H2(γ)] in the H2-list if the equation ê(ϑi, X) =

ê(C1, V Ki) holds, where ϑi = γλ
i
0C

∑t−1
j=1 ajλ

i
j

1 . The correctness is given as
follows:

For ϑi = γλ
i
0C

∑t−1
j=1 ajλ

i
j

1 , we have the following two equations:

ê(ϑi, X) = ê(γλ
i
0C

∑t−1
j=1 ajλ

i
j

1 , X)

ê(C1, V Ki) = ê(C1, X
f(i))

= ê(C
f(i)
1 , X)

= ê(C
aλi

0+
∑t−1

j=1 ajλ
i
j

1 , X)

= ê(C
aλi

0
1 C

∑t−1
j=1 ajλ

i
j

1 , X)

= ê((gk1)
λi
0C

∑t−1
j=1 ajλ

i
j

1 , X)

Then, the equation γ = gk1 = gak holds.
B sends σi = (i, ϑi) to A. We claim that σi is a valid partial decryption
about C = (C0, C1, C2, β). To verify the correctness, we have that

ϑi = γλ
i
0C

∑t−1
j=1 ajλ

i
j

1

= (gk1)
λi
0C

∑t−1
j=1 ajλ

i
j

1

= (gak)λ
i
0C

∑t−1
j=1 ajλ

i
j

1

= (gk)aλ
i
0C

∑t−1
j=1 ajλ

i
j

1

= C
aλi

0+
∑t−1

j=1 ajλ
i
j

1

= C
f(i)
1

• Challenge: A outputs two equal length messages M0 and M1 on which it wishes to
be challenged. B picks δ ∈R {0, 1} and β∗ ∈R Z∗

p, and computes as follows:

C∗
0 = Mδ ⊕ T,C∗

1 = gb, C∗
2 = gβ

∗
/(gb)H1(C∗

0 ,C
∗
1 ,C

∗
2).

If T = H2(g
ab) = H2((g

a)b), the challenge ciphertext C∗ = (C∗
0 , C

∗
1 , C

∗
2 , β

∗) given to
the adversary A is a valid ciphertext on Mδ. To verify the correctness, we have that

C∗
0 = Mδ ⊕ T

= Mδ ⊕H2((g
a)b)

= Mδ ⊕H2(g
b
1)

C∗
1 = gb

C∗
2 = gβ

∗
/(gb)H1(C∗

0 ,C
∗
1 ,C

∗
2)

= gβ
∗−bH1(C∗

0 ,C
∗
1 ,C

∗
2)

= gr

7

where r = β∗ − bH1(C
∗
0 , C

∗
1 , C

∗
2) , i.e. β

∗ = bH1(C
∗
0 , C

∗
1 , C

∗
2) + r.

• Phase 2: A continues to issue further decryption queries (i, C) under the constraint
that C ̸= C∗.

• Guess: Eventually, A outputs a guess bit δ′ ∈ {0, 1} for δ. B concludes its own game
by outputting a guess as follows.

If δ′ = δ, B outputs 1 meaning that T = H2(g
ab); otherwise, it outputs 0 meaning

T ̸= H2(g
ab).

We can see that B can break the HDH assumption in bilinear groups with non-
negligible advantage in polynomial time if A wins the game. 2

6 Comparisons

The comparison with other related constructions [1, 3, 5, 7, 8] is given in Table 1, where
AT091 and AT092 denote two constructions, TPKE1 and TPKE2 in [1], respectively. Let
eN denote the pairing with composite order N = p1p2p3, which is about 50 times of that
for computing ep which denotes the pairing with prime order p [4]. Let E denote the expo-
nentiation over finite fields which is more efficient than the pairing computation. The time
of executing the ValidateCT algorithm in the ShareVerify algorithm is not counted, since
the time of checking the validity of ciphertext is included in the ShareDecrypt algorithm.

With the comparison, we claim that the proposed scheme is more efficient than the other
related constructions, especially in Encrypt and ShareDecrypt.

Table 1: Efficiency comparisons
Scheme Setup Encrypt ShareDecrypt ShareVerify Combine

AT091 [1] (n+ 3)E 1ep + 4E 2ep + 2E 2ep 1ep + tE
AT092 [1] (2n+ 4)E 7E 4ep + 3E 4ep tE
BBH06 [3] 2nE 1ep + 4E 2ep + 4E 3ep + 1E 2ep + 2tE
LDLK10 [7] 1ep + (2n+ 1)E 5E 2ep + 6E 3ep + 2E 2ep + 2tE
LY11 [8] (n+ 1)eN + nE 4E 4eN + 4E 2eN + 1E 2eN + 2tE
GWWPY13 [5] nE 5E 2ep + 3E 2ep tE
Ours nE 3E 3E 2ep tE

7 Conclusions

In this study, we proposed a simple and efficient non-interactive threshold public-key
encryption scheme based on the HDH assumption in bilinear groups, and proved its security.
Compared with the other related constructions, the proposed scheme is more efficient.

References

[1] S.Arita and K.Tsurudome. Construction of Threshold Public-Key Encryptions Through
Tag-Based Encryptions. Applied Cryptography and Network Security.2009. pp: 186-200.

8

[2] M.Abdalla, M.Bellare and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. CT-RSA’01. 2001. pp: 143-158.

[3] D.Boneh, X.Boyen and S.Halevi. Chosen Ciphertext Secure Public Key Threshold En-
cryption Without Random Oracles. CT-RSA’06. 2006. pp: 226-243.

[4] D.Freeman. Converting Pairing-Based Cryptosystems from Composite-order Groups to
Prime-order Groups. EUROCRYPT’10. 2010. pp:44-61.

[5] Y.Gan, L.Wang, L.Wang, P.Pan and Y.Yang. Efficient Construction of CCA-Secure
Threshold PKE Based on Hashed Diffie-Hellman Assumption. The Computer Journal.
2013.56(10).pp:1249-1257.

[6] E.Kiltz. Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-
Hellman. PKC’07. pp: 282-297.

[7] J.Lai, R.Deng, S.Liu and W.Kou. Efficient CCA-Secure PKE from Identity-Based Tech-
niques. CT-RSA’10.2010. pp: 132-147.

[8] B.Libert and M.Yung. Adaptively Secure Noninteractive Threshold Cryptosystems. I-
CALP’11.2011. pp: 588-600.

[9] C.P.Schnorr. Efficient Identification and Signatures for Smart Cards. CRYPTO’89.
pp:688-689.

9

