Efficient CCA-secure Threshold Public-Key Encryption Scheme

Xi-Jun Lin *and Lin Sun [†]

November 13, 2013

Abstract: In threshold public-key encryption, the decryption key is divided into n shares, each one of which is given to a different decryption user in order to avoid single points of failure. In this study, we propose a simple and efficient non-interactive threshold public-key encryption scheme by using the hashed Diffie-Hellman assumption in bilinear groups. Compared with the other related constructions, the proposed scheme is more efficient.

Key words: Threshold public-key encryption; Chosen-ciphertext security; Hashed Diffie-Hellman assumption; CCA-secure

1 Introduction

In a threshold public-key encryption scheme, the private key corresponding to a public key is shared among a set of n decryption users. In such a scheme, a message is encrypted and sent to a group of decryption users, in such a way that the cooperation of at least t of them (where t is the threshold) is necessary in order to recover the original message. Moreover, no information about the message is leaked, even if the number of the corrupted users is up to t - 1. Such schemes have many applications in situations where one cannot fully trust a unique person, but possibly a pool of individuals, such as electronic voting, electronic auctions, key-escrow, etc.

In a non-interactive threshold public-key encryption scheme, no communication is needed amongst the decryption users performing the partial decryptions. Furthermore, such schemes are often required to be robust in that if threshold decryption of a valid ciphertext fails, the combiner can identify the decryption users who supply invalid partial decryption shares. Recently, we have seen many studies of such schemes in the crypto/security community [1, 3, 5, 7, 8].

In this study, we propose a more efficient non-interactive threshold public-key encryption scheme than the other related constructions, and the proposed scheme is proved to be CCA-secure under the hashed Diffie-Hellman (HDH) assumption in bilinear groups [2, 5].

In the proposed scheme, the decryption user needs to verify the ciphertext C before attempting to generate its partial decryption share. This validity check which is performed using two exponentiations in group \mathcal{G} is more efficient than that in the other related construc-

^{*}X.J.Lin is with the Department of Computer Sciences and Technology, Ocean University of China. Qingdao 266100, P.R.China. email: linxj77@163.com

 $^{^{\}dagger}\text{L.}$ Sun is with the College of Liberal Arts, Qingdao University. Qingdao 266071, P.R.China. email: sunlin9@126.com

tions in which the pairing computation is employed. Moreover, each of partial decryption share will be verified before running *Combine* algorithm.

The rest of this paper is organized as follows: After recalling the relevant technical definitions in the next section, the definitions and the security models of the threshold public-key encryption scheme are given in Section 3. In Section 4 and Section 5, we propose a more efficient non-interactive threshold public-key encryption scheme based on HDH assumption in bilinear groups, and then prove its security. Furthermore, the comparisons with the related constructions are given in Section 6 which is followed by the last section to conclude our works.

2 Preliminaries

2.1 Bilinear Pairing

Let \mathcal{G} be an additive group of prime order p, \mathcal{F} be a multiplicative group of the same order. Bilinear pairing is a map $\hat{e}: \mathcal{G} \times \mathcal{G} \to \mathcal{F}$ which satisfies the following properties:

- Bilinearity: given any $g,h \in \mathcal{G}$ and $a,b \in \mathbb{Z}_p^*$, we have $\hat{e}(g^a,g^b) = \hat{e}(g,g)^{ab} = \hat{e}(g^{ab},g), etc.$
- Non-Degeneracy: There exists a $g \in \mathcal{G}$ such that $\hat{e}(g,g) \neq 1$.
- Computability: $\hat{e}(g,h)$ can be computed in polynomial time.

2.2 HDH Assumption

Let \mathcal{G} be a group of prime order p and g be a generator of \mathcal{G} . Let H be a one-way hash function $H: \mathcal{G} \to \{0,1\}^l$. Let \mathcal{A} be an adversary. We define HDH advantage of \mathcal{A} against \mathcal{G} at a security parameter λ as

$$Adv_{\mathcal{A},\mathcal{G}}^{HDH}(\lambda) = |Pr[\mathcal{A}(g, g^{a}, g^{b}, H(g^{ab})) = 1] - Pr[\mathcal{A}(g, g^{a}, g^{b}, T \in_{R} \{0, 1\}^{l}) = 1]|.$$

The HDH assumption is that for every polynomial-time adversary \mathcal{A} , the function $Adv_{\mathcal{A}\mathcal{G}}^{HDH}(\lambda)$ is negligible.

2.3 Lagrange Interpolation

Let $f(x) = \sum_{j=0}^{t-1} a_j x^j$ be a polynomial over \mathbb{Z}_p with degree t-1 where p is a prime, and let $(x_1, f(x_1)), (x_2, f(x_2)), \cdots, (x_t, f(x_t))$ be t distinct points over f(x).

Then, given $(x_1, f(x_1)), (x_2, f(x_2)), \dots, (x_t, f(x_t)), f(x)$ can be reconstructed as follows

$$f(x) = f(x_1)\lambda_{x_1}^x + f(x_2)\lambda_{x_2}^x + \dots + f(x_t)\lambda_{x_t}^x,$$

where

$$\lambda_{x_j}^x = \frac{(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_t)}{(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_t)},$$

for any $1 \leq j \leq t$.

3 Definitions

We follow the notation of CCA-secure threshold public-key encryption scheme from [5]. A threshold public-key encryption scheme consists of six algorithms.

- 1. Setup (n, t, λ) : Takes as input the number of decryption users n, a threshold t, where $1 \leq t \leq n$, a security parameter $\lambda \in \mathbb{Z}$. It outputs a triple (PK, SK, VK), where PK is the public key, $SK = (SK_1, \dots, SK_n)$ is a vector of n secret keys and $VK = (VK_1, \dots, VK_n)$ is the corresponding vector of verification keys. The verification key VK_i is used to check the validity of partial decryption shares generated by using SK_i . The secret key SK_i is secretly given to the *i*th user, for $i = 1, \dots, n$.
- 2. Encrypt(PK, M): Takes as input the public key PK and a message M to be encrypted. It outputs ciphertext C.
- 3. ValidateCT(PK, C): Takes as input the public key PK, and ciphertext C. It checks whether C is a valid ciphertext with respect to PK.
- 4. ShareDecrypt(PK, i, SK_i, C): Takes as input the public key PK, ciphertext C, a decryption user i and its secret key SK_i . It outputs a partial decryption share $\sigma_i = (i, \vartheta_i)$, or a special symbol (i, \bot) if C is invalid.
- 5. ShareVerify (PK, VK_i, C, σ_i) : Takes as input the public key PK, the verification key VK_i , as well as ciphertext C and partial decryption share σ_i . It checks whether σ_i is a valid partial decryption share with respect to VK_i and C.
- 6. Combine (PK, VK, C, Ω) : Takes as input the public key PK, the verification key VK, as well as ciphertext C, and $\Omega = (\sigma_1, \dots, \sigma_t)$ a list of t partial decryption shares. It outputs plaintext M or \perp .

We require, for all ciphertext C, **ShareVerify** $(PK, VK_i, C,$ **ShareDecrypt** (PK, i, SK_i, C)) = valid. In addition, let $\Omega = (\sigma_1, \dots, \sigma_t)$ be t distinct valid decryption shares of C, where C =**Encrypt**(PK, M), then we require **Combine** $(PK, VK, C, \Omega) = M$.

Security against chosen ciphertext attack is defined using the following game between an adversary \mathcal{A} and a challenger \mathcal{R} , and both of them are given as input the system parameters $n, t, \lambda \in \mathbb{N}$ with $t \leq n$.

- Init: The adversary \mathcal{A} outputs a set $S \subset \{1, \dots, n\}$ of t-1 decryption users to corrupt.
- Setup: The challenger \mathcal{R} runs Setup (n, t, λ) algorithm to obtain a triple (PK, SK, VK), where $SK = (SK_1, \dots, SK_n)$ and $VK = (VK_1, \dots, VK_n)$. It gives PK, VK and all (j, SK_j) (where $j \in S$) to adversary \mathcal{A} .
- Phase 1: Adversary \mathcal{A} adaptively issues ShareDecrypt queries with (i, C), where $i \in \{1, \dots, n\}$ and $C \in \{0, 1\}^*$.

Challenger \mathcal{R} runs the **ShareDecrypt** algorithm using C, SK_i to get σ_i , and gives σ_i to adversary \mathcal{A} .

- Challenge: Adversary \mathcal{A} outputs two equal length messages M_0 and M_1 . Challenger \mathcal{R} picks a random bit $\delta \in \{0, 1\}$, and sends $C^* = \text{Encrypt}(PK, M_{\delta})$ to adversary \mathcal{A} .
- Phase 2: Adversary \mathcal{A} makes further queries as in Phase 1 but is not allowed to make ShareDecrypt queries on C^* .
- Guess: Finally, adversary \mathcal{A} outputs a guess $\delta' \in \{0, 1\}$ and wins the game if $\delta = \delta'$.

4 The Proposed Scheme

4.1 Construction

- Setup(n, t, λ): The trust center generates the system parameters (p, G, F, ê) by running the group generator algorithm. It then does the following:
 - 1. Pick two generators $g, X \in_R \mathcal{G}$.
 - 2. Pick two hash functions H_1 and H_2 , where $H_1 : \{0,1\}^l \times \mathcal{G} \times \mathcal{G} \to \mathbb{Z}_p^*$ is a secure hash function and $H_2 : \mathcal{G} \to \{0,1\}^l$ is a random instance of a hash function such that the HDH assumption holds in bilinear groups.
 - 3. Pick a random polynomial $f(x) = a + \sum_{j=1}^{t-1} a_j x^j$ with degree t-1 (where $a, a_1, \dots, a_{t-1} \in_R \mathbb{Z}_p^*$, t is the value of threshold).
 - 4. Compute $SK_i = f(i)$ and $VK_i = X^{f(i)}$, for $i = 1, \dots, n$.
 - 5. Let $g_1 = g^a$.
 - 6. Publish system parameters $PK = (p, \mathcal{G}, \mathcal{F}, \hat{e}, g, g_1, X, H_1, H_2)$ and verification key $VK = (VK_1, \cdots, VK_n)$. Secret key SK_i is given to user *i* privately, for $i = 1, \cdots, n$.
- Encrypt(*PK*, *M*): To encrypt $M \in \{0, 1\}^l$, this algorithm picks $k, r \in_R \mathbb{Z}_p^*$, and computes

$$C_0 = M \oplus H_2(g_1^k),$$

 $C_1 = g^k, C_2 = g^r,$
 $\beta = kH_1(C_0, C_1, C_2) + r \pmod{p-1}.$

The output is $C = (C_0, C_1, C_2, \beta)$.

• ValidateCT(PK, C): To validate ciphertext $C = (C_0, C_1, C_2, \beta)$, this algorithm checks whether

$$g^{\beta} = C_2 \cdot C_1^{H_1(C_0, C_1, C_2)}$$

- ShareDecrypt(PK, i, SK_i, C): Decryption user *i* uses its secret key $SK_i = f(i)$ to partially decrypt ciphertext $C = (C_0, C_1, C_2, \beta)$ as follows:
 - 1. Run ValidateCT(*PK*, *C*) algorithm to check whether or not *C* is a valid ciphertext. If the verification fails, it outputs $\sigma_i = (i, \bot)$;
 - 2. Otherwise, compute $\vartheta_i = C_1^{f(i)}$ and output partial decryption share $\sigma_i = (i, \vartheta_i)$.

• ShareVerify (PK, VK_i, C, σ_i) : To verify a partial decryption share σ_i with respect to ciphertext $C = (C_0, C_1, C_2, \beta)$ under verification key VK_i , this algorithm firstly runs ValidateCT(PK, C) to check whether C is a valid ciphertext. If C and σ_i are well formed, it checks whether the following equation holds:

$$\hat{e}(\vartheta_i, X) = \hat{e}(C_1, VK_i).$$

- **Combine** $(PK, VK, C, \{\sigma_1, \dots, \sigma_t\})$: To decrypt ciphertext $C = (C_0, C_1, C_2, \beta)$ using the partial decryption shares $\{\sigma_1, \dots, \sigma_t\}$, this algorithm firstly checks whether $\sigma_i = (i, \vartheta_i)$ is valid by running **ShareVerify** (PK, VK_i, C, σ_i) , for $i = 1, \dots, t$. Then, it performs as follows:
 - 1. Determine the Lagrange coefficients $(\lambda_1^0, \lambda_2^0, \cdots, \lambda_t^0) \in \mathbb{Z}_q^t$, and then compute

$$\mu = \prod_{i=1}^{t} (\vartheta_i)^{\lambda_i^0}.$$

2. Compute and output $M = C_0 \oplus H_2(\mu)$ to decrypt $C = (C_0, C_1, C_2, \beta)$ with μ .

4.2 Correctness

If the ciphertext $C = (C_0, C_1, C_2, \beta)$ and partial decryptions $\{\sigma_1, \dots, \sigma_t\}$ are valid, the **Combine** algorithm will output the correct plaintext.

$$\mu = \prod_{i=1}^{t} (\vartheta_i)^{\lambda_i^0} \\
= \prod_{i=1}^{t} (C_1^{f(i)})^{\lambda_i^0} \\
= C_1^{\sum_{i=1}^{t} f(i)\lambda_i^0} \\
= C_1^{f(0)} \\
= C_1^a, \\ C_0 \oplus H_2(\mu) = C_0 \oplus H_2(C_1^a) \\
= C_0 \oplus H_2((g^k)^a) \\
= C_0 \oplus H_2(g_1^k) \\
= (M \oplus H_2(g_1^k)) \oplus H_2(g_1^k) \\
= M.$$

5 Security

Theorem 1 Assume that H_1 is a random oracle and H_2 is a random instance of a hash function such that the HDH assumption holds in bilinear groups. Suppose that there exists a polynomial time adversary \mathcal{A} that breaks chosen-ciphertext security of the proposed scheme with non-negligible advantage. We show that there exists an algorithm \mathcal{B} that runs in polynomial time and runs adversary \mathcal{A} as a subroutine to break the HDH assumption in bilinear groups.

Proof: The algorithm \mathcal{B} is given group parameters $(p, g, \mathcal{G}, \mathcal{F}, \hat{e})$ and a random HDH instance tuple (g, g^a, g^b, T, H_2) , where T is equal to $H_2(g^{ab})$ or a random element in $\{0, 1\}^l$.

If T is equal to $H_2(g^{ab})$, \mathcal{B} outputs 1; otherwise, it outputs 0. Set $g_1 = g^a$. \mathcal{B} performs by interacting with the adversary \mathcal{A} in the following game:

- Init: The adversary \mathcal{A} chooses a set S of t-1 decryption users that it wants to corrupt. Without loss of generality, we let $S = \{1, \dots, t-1\} \subset \{1, \dots, n\}$.
- Setup: \mathcal{B} does as follows:
 - 1. Pick $x \in_R \mathbb{Z}_p^*$ and compute $X = g^x$, and then give $(p, \mathcal{G}, \mathcal{F}, \hat{e}, g, g_1, X)$ to \mathcal{A} as the system parameters. Two lists H_1 -list and H_2 -list are maintained by \mathcal{B} to answer H_1 oracle queries and H_2 oracle queries, respectively.
 - 2. Pick integers $a_i \in_R \mathbb{Z}_p^*$ where $i = 1, \dots, t-1$. Note that there exists an interpolation polynomial f(x) with degree t-1, such that f(0) = a and $f(i) = a_i$. However, \mathcal{B} does not know f(x) since it does not know a. \mathcal{B} gives the t-1 secret keys $SK_i = f(i) = a_i$ to \mathcal{A} .
 - 3. Construct the verification key $VK = (VK_1, \dots, VK_n)$ as follows:
 - (a) For $i \in S$, $VK_i = X^{a_i}$ since $f(i) = a_i$ which is known to \mathcal{B} .
 - (b) For $i \notin S$, \mathcal{B} computes the Lagrange coefficients $\lambda_0^i, \lambda_1^i, \dots, \lambda_{t-1}^i \in \mathbb{Z}_p$, and sets $VK_i = g_1^{x\lambda_0^i} X^{a_1\lambda_1^i} \cdots X^{a_{t-1}\lambda_{t-1}^i}$. We claim that VK_i is a valid verification key of the decryption user *i*. To verify the correctness, we have that

$$VK_{i} = g_{1}^{x\lambda_{0}^{i}} X^{a_{1}\lambda_{1}^{i}} \cdots X^{a_{t-1}\lambda_{t-1}^{i}}$$

$$= X^{a\lambda_{0}^{i}} X^{a_{1}\lambda_{1}^{i}} \cdots X^{a_{t-1}\lambda_{t-1}^{i}}$$

$$= X^{a\lambda_{0}^{i}+a_{1}\lambda_{1}^{i}+\dots+a_{t-1}\lambda_{t-1}^{i}}$$

$$= X^{f(0)\lambda_{0}^{i}+f(1)\lambda_{1}^{i}+\dots+f(t-1)\lambda_{t-1}^{i}}$$

$$= X^{f(i)}$$

 \mathcal{B} gives the verification key VK to the adversary \mathcal{A} .

- Phase 1: \mathcal{A} can adaptively issue the following queries:
 - H_1 -query: After receiving (C_0, C_1, C_2) from \mathcal{A}, \mathcal{B} performs as follows: If there exists an item $[C_0, C_1, C_2, h_1]$ in the H_1 -list with respect to (C_0, C_1, C_2) , \mathcal{B} responds with h_1 ; otherwise, \mathcal{B} picks $h_1 \in_R \mathbb{Z}_p^*$, stores $[C_0, C_1, C_2, h_1]$ into the H_1 -list and responds with h_1 .
 - H_2 -query: After receiving γ from \mathcal{A} , \mathcal{B} performs as follows: If there exists an item $[\gamma, h_2]$ in the H_2 -list with respect to γ , \mathcal{B} responds with h_2 ; otherwise, \mathcal{B} computes $h_2 = H_2(\gamma)$, stores $[\gamma, h_2]$ into the H_2 -list and responds with h_2 .
 - ShareDecrypt-query: \mathcal{A} issues decryption queries of the form (i, C), where $C = (C_0, C_1, C_2, \beta)$ and $i \in \{1, \dots, n\}$. For each such decryption query, \mathcal{B} performs as follows:
 - 1. Check whether $g^{\beta} = C_2 \cdot C_1^{H_1(C_0, C_1, C_2)}$. If not, respond with $\sigma_i = (i, \bot)$;
 - 2. Otherwise, perform as follows: If $i \in S$, compute $\vartheta_i = C_1^{a_i}$. Then, we have that $\vartheta_i = C_1^{f(i)}$ since $f(i) = a_i$ which is known to \mathcal{B} .

If $i \notin S$, compute the Lagrange coefficients $\lambda_0^i, \lambda_1^i, \dots, \lambda_{t-1}^i \in \mathbb{Z}_p$. Suppose $C_1 = g^k$. Since H_2 is a random oracle, the probability of computing $H_2(g_1^k)$ without issuing H_2 -query is negligible. Then, we claim that there exists an item $[\gamma = g_1^k = g^{ak}, H_2(\gamma)]$ in the H_2 -list if the equation $\hat{e}(\vartheta_i, X) = \hat{e}(C_1, VK_i)$ holds, where $\vartheta_i = \gamma^{\lambda_0^i} C_1^{\sum_{j=1}^{t-1} a_j \lambda_j^i}$. The correctness is given as follows:

For $\vartheta_i = \gamma^{\lambda_0^i} C_1^{\sum_{j=1}^{t-1} a_j \lambda_j^i}$, we have the following two equations:

$$\hat{e}(\vartheta_{i}, X) = \hat{e}(\gamma^{\lambda_{0}^{i}}C_{1}^{\sum_{j=1}^{t-1}a_{j}\lambda_{j}^{i}}, X)
\hat{e}(C_{1}, VK_{i}) = \hat{e}(C_{1}, X^{f(i)})
= \hat{e}(C_{1}^{f(i)}, X)
= \hat{e}(C_{1}^{a\lambda_{0}^{i}+\sum_{j=1}^{t-1}a_{j}\lambda_{j}^{i}}, X)
= \hat{e}(C_{1}^{a\lambda_{0}^{i}}C_{1}^{\sum_{j=1}^{t-1}a_{j}\lambda_{j}^{i}}, X)
= \hat{e}((g_{1}^{k})^{\lambda_{0}^{i}}C_{1}^{\sum_{j=1}^{t-1}a_{j}\lambda_{j}^{i}}, X)$$

Then, the equation $\gamma = g_1^k = g^{ak}$ holds.

 \mathcal{B} sends $\sigma_i = (i, \vartheta_i)$ to \mathcal{A} . We claim that σ_i is a valid partial decryption about $C = (C_0, C_1, C_2, \beta)$. To verify the correctness, we have that

$$\begin{array}{rcl} \vartheta_{i} & = & \gamma^{\lambda_{0}^{i}} C_{1}^{\sum_{j=1}^{t-1} a_{j}\lambda_{j}^{i}} \\ & = & (g_{1}^{k})^{\lambda_{0}^{i}} C_{1}^{\sum_{j=1}^{t-1} a_{j}\lambda_{j}^{i}} \\ & = & (g^{ak})^{\lambda_{0}^{i}} C_{1}^{\sum_{j=1}^{t-1} a_{j}\lambda_{j}^{i}} \\ & = & (g^{k})^{a\lambda_{0}^{i}} C_{1}^{\sum_{j=1}^{t-1} a_{j}\lambda_{j}^{i}} \\ & = & C_{1}^{a\lambda_{0}^{i} + \sum_{j=1}^{t-1} a_{j}\lambda_{j}^{i}} \\ & = & C_{1}^{f(i)} \end{array}$$

• Challenge: \mathcal{A} outputs two equal length messages M_0 and M_1 on which it wishes to be challenged. \mathcal{B} picks $\delta \in_R \{0, 1\}$ and $\beta^* \in_R \mathbb{Z}_p^*$, and computes as follows:

$$C_0^* = M_\delta \oplus T, C_1^* = g^b, C_2^* = g^{\beta^*} / (g^b)^{H_1(C_0^*, C_1^*, C_2^*)}$$

If $T = H_2(g^{ab}) = H_2((g^a)^b)$, the challenge ciphertext $C^* = (C_0^*, C_1^*, C_2^*, \beta^*)$ given to the adversary \mathcal{A} is a valid ciphertext on M_{δ} . To verify the correctness, we have that

$$\begin{array}{rcl} C_{0}^{*} & = & M_{\delta} \oplus T \\ & = & M_{\delta} \oplus H_{2}((g^{a})^{b}) \\ & = & M_{\delta} \oplus H_{2}(g^{b}) \\ C_{1}^{*} & = & g^{b} \\ C_{2}^{*} & = & g^{\beta^{*}}/(g^{b})^{H_{1}(C_{0}^{*},C_{1}^{*},C_{2}^{*})} \\ & = & g^{\beta^{*}-bH_{1}(C_{0}^{*},C_{1}^{*},C_{2}^{*})} \\ & = & g^{r} \end{array}$$

where $r = \beta^* - bH_1(C_0^*, C_1^*, C_2^*)$, i.e. $\beta^* = bH_1(C_0^*, C_1^*, C_2^*) + r$.

- Phase 2: \mathcal{A} continues to issue further decryption queries (i, C) under the constraint that $C \neq C^*$.
- Guess: Eventually, \mathcal{A} outputs a guess bit $\delta' \in \{0, 1\}$ for δ . \mathcal{B} concludes its own game by outputting a guess as follows.

If $\delta' = \delta$, \mathcal{B} outputs 1 meaning that $T = H_2(g^{ab})$; otherwise, it outputs 0 meaning $T \neq H_2(g^{ab})$.

We can see that \mathcal{B} can break the HDH assumption in bilinear groups with non-negligible advantage in polynomial time if \mathcal{A} wins the game.

6 Comparisons

The comparison with other related constructions [1, 3, 5, 7, 8] is given in Table 1, where AT09₁ and AT09₂ denote two constructions, TPKE1 and TPKE2 in [1], respectively. Let e_N denote the pairing with composite order $N = p_1 p_2 p_3$, which is about 50 times of that for computing e_p which denotes the pairing with prime order p [4]. Let E denote the exponentiation over finite fields which is more efficient than the pairing computation. The time of executing the *ValidateCT* algorithm in the *ShareVerify* algorithm is not counted, since the time of checking the validity of ciphertext is included in the *ShareDecrypt* algorithm.

With the comparison, we claim that the proposed scheme is more efficient than the other related constructions, especially in *Encrypt* and *ShareDecrypt*.

Table 1: Efficiency comparisons					
Scheme	Setup	Encrypt	ShareDecrypt	ShareVerify	Combine
AT09 ₁ $[1]$	(n+3)E	$1e_p + 4E$	$2e_p + 2E$	$2e_p$	$1e_p + tE$
$AT09_2$ [1]	(2n+4)E	7E	$4e_p + 3E$	$4e_p$	tE
BBH06 [3]	2nE	$1e_p + 4E$	$2e_p + 4E$	$3e_p + 1E$	$2e_p + 2tE$
LDLK10 [7]	$1e_p + (2n+1)E$	5E	$2e_p + 6E$	$3e_p + 2E$	$2e_p + 2tE$
LY11 [8]	$(n+1)e_N + nE$	4E	$4e_N + 4E$	$2e_N + 1E$	$2e_N + 2tE$
GWWPY13 [5]	nE	5E	$2e_p + 3E$	$2e_p$	tE
Ours	nE	3E	3E	$2e_p$	tE

Table 1: Efficiency comparisons

7 Conclusions

In this study, we proposed a simple and efficient non-interactive threshold public-key encryption scheme based on the HDH assumption in bilinear groups, and proved its security. Compared with the other related constructions, the proposed scheme is more efficient.

References

[1] S.Arita and K.Tsurudome. Construction of Threshold Public-Key Encryptions Through Tag-Based Encryptions. Applied Cryptography and Network Security.2009. pp: 186-200.

- [2] M.Abdalla, M.Bellare and P. Rogaway. The oracle Diffie-Hellman assumptions and an analysis of DHIES. CT-RSA'01. 2001. pp: 143-158.
- [3] D.Boneh, X.Boyen and S.Halevi. Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles. CT-RSA'06. 2006. pp: 226-243.
- [4] D.Freeman. Converting Pairing-Based Cryptosystems from Composite-order Groups to Prime-order Groups. EUROCRYPT'10. 2010. pp:44-61.
- [5] Y.Gan, L.Wang, L.Wang, P.Pan and Y.Yang. Efficient Construction of CCA-Secure Threshold PKE Based on Hashed Diffie-Hellman Assumption. The Computer Journal. 2013.56(10).pp:1249-1257.
- [6] E.Kiltz. Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. PKC'07. pp: 282-297.
- [7] J.Lai, R.Deng, S.Liu and W.Kou. Efficient CCA-Secure PKE from Identity-Based Techniques. CT-RSA'10.2010. pp: 132-147.
- [8] B.Libert and M.Yung. Adaptively Secure Noninteractive Threshold Cryptosystems. I-CALP'11.2011. pp: 588-600.
- [9] C.P.Schnorr. Efficient Identification and Signatures for Smart Cards. CRYPTO'89. pp:688-689.