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ABSTRACT

Recently, a lot of researches focused on identity-based encryption (IBE). The advantage of this scheme is that it can reduce

the cost of the public key infrastructure by simplifying certificate management. Although IBE has its own innovations,

one of its weaknesses is the key escrow problem. That is, the private key generator in IBE knows decryption keys for

all identities and consequently can decrypt any ciphertexts. The certificate-based encryption (CBE) scheme proposed in

EUROCRYPT 2003 provides a solution for the key escrow problem by allowing the certification authority to possess a

partial decryption key that comprises the full decryption key together with the user-generated private key. In this paper,

we propose new CBE schemes without pairing and prove them to be Indistinguishability under Chosen Ciphertext Attack

secure in the random oracle model based on the hardness of the computational Diffie–Hellman problem. When compared

with other CBE schemes, our schemes are significantly efficient in terms of performance, which makes our schemes

suitable for computation-limited node (e.g., sensor, wearable device) networks. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cryptography initially started with the concept of sym-

metric key cryptography. In this method, a sender and

a receiver share the same key for both encryption and

decryption. It requires a secure channel to share the private

key. In practice, the secure channel is not easy to achieve.

In order to resolve the drawback of symmetric key cryp-

tography, Diffie and Hellman [1] introduced a new concept

of public key cryptography (PKC).

In PKC, each user has a pair of keys: public key and

private key. The private key is kept secretly by the user

and the public key is published so that any one who wants

to encrypt a message for this user can obtain it. The two

keys are mathematically related, but it is difficult to find

the corresponding private key when only the public key is

given. If Alice wants to encrypt a message and send it to

Bob, she uses Bob’s public key for encryption. When Bob

receives the encrypted message, he uses his private key to

decrypt it. Nevertheless, the problem of authenticating the

public keys still remains: How does Alice make sure that

the public key she uses for encryption belongs to Bob? To

overcome this problem, the public key infrastructure (PKI)

is usually deployed.

In PKI, there is a trusted party called Certificate Author-

ity (CA) to generate a certificate corresponding to the

user’s public key. If Alice wants to make encryption to

Bob, she needs to obtain Bob’s certificate and then extract

the public key from this. It seems to be a good solution, but

in the other side, it raises another issue: the PKI practically

requires a huge cost and high complexity for management

of certificates, and this becomes one of barriers that hinder

PKC from being widely deployed in the real world.

To resolve the issue of certificate management, identity-

based encryption (IBE) was invented by Shamir [2] in

1984, and the first practical IBE scheme was proposed by

Boneh and Franklin in 2001 [3]. After that, a lot of IBEs

have been published [4–8] .The idea of IBE is to use the

identity (ID) of a user as his or her public key. The ID

is obviously certified by out-of-band method that all users

5376 Copyright © 2016 John Wiley & Sons, Ltd.
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can trust. In IBE, there is a private key generator (PKG)

that generates the private key for users corresponding to

their IDs. The security of IBE is based on the assump-

tion that the PKG is fully trusted. This point becomes a

weakness of IBE, the so-called key escrow problem—the

PKG can decrypt any encrypted messages of users without

their permissions.

The concept of certificate-based encryption (CBE) was

introduced by Gentry [9] that combined the ideas of PKC

and IBE. In CBE, each user generates his own private

and public keys. The public key together with identity

information is given to the CA, which in turn generates

a certificate based on these parameters. The certificate is

sent to the users over an open channel. A user encrypts a

message using a receiver’s public key and does not need

to query the certificate’s status corresponding to the pub-

lic key. Decryption is performed using both the private key

and the certificate. The point is that the CA does not know

the full decryption key so that the key escrow problem is

resolved, and the PKI can be maintained in a more efficient

way because it eliminates third-party query.

In parallel with CBE, the certificateless public key

encryption (CL-PKE) is another solution for key escrow

problem [10]. In CL-PKE, the PKG generates a partial

private key for each user. Users generate their public and

private keys for themselves, but to obtain the full decryp-

tion keys, they need to combine their private keys and the

partial private keys from the PKG. CL-PKE also lessens

the certificate management problem in a traditional PKC.

CL-PKE does not require certificates, but it requires secure

channels to distribute partial private keys of the PKG to

the users.

1.1. Related work

The first CBE scheme was proposed in 2003 by Gen-

try [9]. The idea of the first CBE scheme is based on

the IBE scheme of Boneh-Franklin [3], where the authors

used the Fujisaki–Okamoto transform to obtain full secu-

rity in the random oracle model. Yum [11] and Dodis [12]

constructed a generic construction of CBE from IBE,

respectively. Later, Yum’s construction was broken by

Galindo [13]. Many researchers have investigated the rela-

tionship between CBE and CL-PKE. In 2005, Al-Riyami

and Pterson [14] proposed a generic construction of CBE

from CL-PKE but its security was controversial. Kang and

Park [15] found out a flaw in the security proof in [14].

Following this direction, Wu et al. [16] proposed a secure

construction of CBE from CL-PKC, which is proved in

the random oracle model, but it still involves collision

hash functions. An important version in terms of security

for generic construction of CBE from CL-PKC is revis-

ited in [17]. In 2006, Morillo et al. introduced a concrete

construction of CBE in the standard model [18]. Later,

Galindo, Morillo, and Rafols [19] proposed an improved

scheme from [18]. Another CBE scheme in the standard

model was proposed by Lu and Li [20] against key replace-

ment attack. Recently, many applications of CBE have

been proposed. Hyla and Pejas [21] proposed a certificate-

based group-oriented encryption scheme with an effec-

tive secret-sharing based on general access structure. Sur

et al. [22] proposed a certificate-based proxy re-encryption

for public cloud storage, which has the advantages of CBE

while providing the functionalities of proxy re-encryption.

Fan et al. [23] proposed anonymous multi-receiver CBE

that is CPA secure. Liu [24] and Lu [25] proposed effi-

cient pairing-based CBE schemes, respectively. Lu and

Li [26] proposed a pairing-free certificate-based proxy re-

encryption scheme for secure data sharing in public clouds.

Yu et al. [27,28] proposed CBE schemes that are resilient

to key leakage. Li et al. [29] discussed continuous leakage-

resilient security model of CBE where the adversary con-

tinuously obtains partial information about the secret states

through the continuous leakage attacks. Recently, Yao [30]

and Lu [31] proposed new CBE schemes without pair-

ing, respectively. Currently, there are three CBE schemes

that are not based on pairing, [30–32]. Unfortunately, Lu

and Zhang in [32] pointed out a security law in [30] so

that there remained only two legitimate CBE schemes

without pairing.

1.2. Our contribution

Our goal is to construct efficient CBE schemes without

pairing, which was raised as an open problem in the paper

[33]. We solve this problem in the positive direction by

proposing new CBE schemes without pairing under IND-

CCA security. Our CBE scheme is one of the most efficient

CBE schemes that we know at the moment.

1.3. Organization

The rest of paper is organized as follows. In Section 2,

we give some preliminaries of the CDH problem, CBE

scheme, and its security model. In Section 3, we give

the constructions and security analysis of our scheme. In

Section 4, we compare our scheme with other proposed

CBE schemes in terms of performance. Finally, we give

conclusions in Section 5.

2. PRELIMINARIES

In this section, we first briefly introduce the bilinear pairing

map and the computational Diffie–Hellman (CDH) prob-

lem. Then we introduce the syntax of CBE scheme and its

security model.

2.1. Pairing

We first define bilinear pairing groups (q, G, GT , g, gT , e),

where q is a prime, G and GT are cyclic groups of order

q, g and gT are the generators of G and GT , gT := e(g, g),

and e : G � G ! GT is a non-degenerate bilinear pairing

map such that for a, b 2 Zq:

Security Comm. Networks 2016; 9:5376–5391 © 2016 John Wiley & Sons, Ltd. 5377
DOI: 10.1002/sec



Efficient certificate-based encryption schemes without pairing M. H. Le, I. Kim and S. O. Hwang

- e(ga, gb) = e(g, g)ab (bilinearity)

- e(g, g) ¤ 1 (non-degeneracy)

- e(g, g) is efficiently computable in a polynomial

time.

2.2. Computational Diffie–Hellman problem

Let p1 and p2 be primes such that p2 | p1 – 1. Let g be

a generator of Z
*
p1

. The CDH problem can be formulated

as follows:

Given (g, ga, gb) for uniformly chosen a, b 2 Z
*
p2

,

compute T = gab

Let AdvCDH
Z*

p2

(A) be the advantage of adversary A in

solving the CDH problem. We say that A solves the CDH

problem if and only if the advantage of A is greater than �

within running time t. The CDH problem is said to be (t, �)-

intractable if there is no attacker A that solves the CDH

problem with (t, �).

2.3. Certificate-based encryption scheme

A CBE scheme generally consists of five algorithms as

follows:

� Setup:

The algorithm takes as input the security parameter

1k and return the CA’s master key msk and the system

parameters params.
� SetKeyPair:

It takes as input ID and params and outputs the

public key pk and the private key sk for a user.
� Certification:

It takes as input ID, msk, params, and pk, and out-

puts the certificate Cert and new pk, which are sent to

the user over an open channel.
� Encryption:

It takes as input ID, params, pk, and plaintext M,

and returns a ciphertext C.
� Decryption:

It takes as input ID, params, Cert, sk, and cipher-

text C, and outputs the plaintext M.

2.4. Security models of certificate-based

encryption

We define two different types of adversaries for CBE

scheme: adversary Type I (AI) and Type II (AII ). AI is

a kind of an uncertified entity that has no access to the

master secret key msk. Essentially, AI can make queries

for a user’s private keys, public keys, public key replace-

ments, and certifications of any user that it chooses except

the challenge identity ID*. AI can freely replace the pub-

lic keys of any user but is not allowed to query the target

user’s certificate. The adversary AII is a kind of certifi-

cate entity that is given the master secret key msk. AII is

capable of producing certificates. We note that AII is not

allowed to replace the public key.

Security against type I adversary:

A CBE scheme is Indistinguishability under Chosen

Ciphertext Attack secure against type I adversary if no

probabilistic polynomial time adversary AI has non-

negligible advantage in the following game:

� Setup phase:

The challenger B is given the security parame-

ter 1k, runs the setup algorithm and returns public

parameters (params) and master secret key (msk).

It then gives params to AI and keeps the msk

for itself.

� Phase I:

In phase I, the adversary AI makes queries,

and B answers as follows:

PublicKey-Queries: On receiving an identity

ID, the challenger responds public key pk for

ID.

PrivateKey-Queries: On receiving an identity

ID, the challenger checks whether the corre-

sponding public key is correct or not. If the

public key is correct, then it responds pri-

vate key sk for ID. Otherwise, the query will

be aborted.

PublicKeyReplace-Queries: On receiving an

identity ID and its public key pk0, the chal-

lenger replaces the user’s original public key

pk with pk0.

Certification-Queries: On receiving a tuple

(ID, pk), the challenger checks whether the

corresponding public key is correct or not.

If the public key is correct, then it responds

Cert for ID. Otherwise, the query will

be aborted.

Decryption-Queries: On receiving a tuple

(ID, pk, C), the challenger checks whether the

corresponding public key is correct or not.

If the public key is correct, then it responds

plaintext massage M. If the public key is

not correct, the challenger will find a tuple

in the list of random oracles to collect the

parameters and calculate the plaintext M. If

the challenger cannot find enough param-

eters in the random oracles, it will abort

the queries.

� Challenge phase:

In this phase, AI outputs two equal-length

messages M0 and M1. The challenger chooses a

bit  2 {0, 1} at random and computes the cipher-

text C* with input of (params, ID*, pk*, M ).

� Phase II:

AI continues to query the oracles as in

phase I. But it is restricted to make certifica-

tion query of hID*, pk*i and decryption query of

hID*, pk*, C*i.

5378 Security Comm. Networks 2016; 9:5376–5391 © 2016 John Wiley & Sons, Ltd.
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� Guess phase:

Finally, AI terminates the game by outputting

a guess  0 for  . The advantage of AI in the game

is defined to be

AdvAI
= 2 | Pr[ =  0] – 1/2 | .

Security against type II adversary: A CBE scheme
is IND-CCA secure against type II adversary if no

probabilistic polynomial time adversary AII has non-

negligible advantage in the following game:

� Setup phase:

The challenger B is given the security parame-

ter 1k. It takes this parameter as input and runs the

setup algorithm. The public parameters (params)

and master secret key (msk) are generated and

returned to AII .
� Phase I: In phase I, the adversary AII makes

queries and B answers as follow:

PublicKey-Queries: On receiving an identity

ID, the challenger responds public key pk for

ID.

PrivateKey-Queries: On receiving an identity

ID, the challenger checks whether the corre-

sponding public key is correct or not. If the

public key is correct, then it responds private

key sk for ID. Otherwise, the query will be

aborted.

Decryption-Queries: On receiving a tuple

(ID, pk, C), the challenger checks whether the

corresponding public key is correct or not.

If the public key is correct, then it responds

plaintext massage M. If the public key is not

correct, the challenger will find a tuple in the

list of random oracles to collect the parameters

and calculate the plaintext M. If the challenger

cannot find enough parameters in the random

oracles, it will abort the queries.

� Challenge phase:

In this phase, AII outputs two equal-length

messages M0 and M1. The challenger chooses a

bit  2 {0, 1} at random and computes the cipher-

text C* with input of (params, ID*, pk*, M ).
� Phase II:

AII continues to query the oracles as in phase

I. But it is restricted to make decryption query of

hID*, pk*, C*i.
� Guess phase:

Finally, AII terminates the game by out-

putting a guess  0 for  . The advantage of AII

in the game is defined to be

AdvAII
= 2 | Pr[ =  0] – 1/2 | .

3. THE PROPOSED SCHEMES

There have been a lot of CBE schemes proposed so far,

but most of them are based on pairing. Our scheme is CBE

without pairing. First, we will give the constructions of the

scheme and then security analysis.

3.1. Outline

In order to achieve the goal in the contribution section,

we use Schnorr signature [34], which is one of the best

signature schemes in terms of performance for authentica-

tion purpose. Taking the advantage of Schnorr signature,

our CBE scheme is built by non-trivially combining the

signature scheme with ElGamal encryption [35], which

was modified by Fujisaki–Okamoto’s transformation [36].

More specifically, we design the setup and certification

algorithms by using key generation and signature gener-

ation algorithms of Schnorr signature, respectively. Also,

by using key generation algorithm of ElGamal encryp-

tion, we design SetKeyPair algorithm. The encryption and

decryption algorithms are constructed by combining the

verification algorithm of Schnorr signature and the encryp-

tion and decryption algorithms of the ElGamal’s scheme.

Note that additional public key is generated when the CA

performs the certification algorithm. We consider this mod-

ification as an advantage of our scheme where the CA

can enhance the trust of a user’s public key by attaching

another means to verify the user’s public key.

3.2. First construction

In this section, we construct two efficient CBE schemes

that are IND-CCA secure without pairing based on the

CDH assumption.

3.2.1. Construction of CBE1.

We define our first CBE construction as follows. The

scheme consists of five algorithms:

Setup: On input of a security parameter k 2 Z+, the

CA does the following steps:

(1) Generate two large primes p1 and p2 such that

p1 = 2p2 + 1. Choose a generator g of Z
*
p1

.

(2) Select a random element ˛ 2 Z
*
p2

and compute

g1 = g˛ .

(3) Pick hash functions

H1 : {0, 1}* � Z
*
p1

� Z
*
p1

! Z
*
p2

;

H2 : Z
*
p2

� Z
*
p1

! Z
*
p2

;

H3 : {0, 1}n0 � {0, 1}n1 ! Z
*
p2

;

H4 : Z
*
p1

� Z
*
p1

! {0, 1}n, where n0 is length

of plaintext, n is length of ciphertext, and n1 is

length of padding in H3 and n0 + n1 = n;

H5 : Z
*
p2

� Z
*
p1

� Z
*
p1

� Z
*
p1

! Z
*
p2

.

The system parameters are params =

(p1, p2, g, g1, H1, H2, H3, H4, H5), and master

secret key is msk = ˛.

Security Comm. Networks 2016; 9:5376–5391 © 2016 John Wiley & Sons, Ltd. 5379
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SetKeyPair: On input of ID and params, this algo-

rithm selects a random element xID 2 Z
*
p2

. The user’s

private key is xID. Compute UID = gxID . The user’s

public key is PKID = UID. Set key pair as (xID, UID).

Certification: On input of an identity information ID

and public key UID of the user, the certifier selects ran-

dom ˇID 2 Z
*
p2

, and then calculates PID = gˇID . The

public key of user is updated as PKID = (UID, PID).

Set QID = H1(ID, UID, PID). This algorithm outputs

CertID = ˇID + ˛H2(QID, PID) and PKID.

Encryption: On input of plaintext M, public parame-

ters params, identity ID, and public key PKID of the

receiver, the sender performs the following steps:

(1) Select random � 2 {0, 1}n1 and compute

r = H3(M, � )

QID = H1(ID, UID, PID)

HID = H5(QID, UID, PID, g1)

k1 =
�

U
HID
ID

�r

k2 =
�

PIDg
H2(QID,PID)
1

�r

(2) Compute C0 = gr

(3) Compute C1 = H4(k1, k2) ˚ (M || � )

The sender outputs C = (C0, C1)

Decryption: On input of ciphertext C = (C0, C1), the

private key xID, public key PKID, and certificate CertID
of the user, the receiver does the following steps:

(1) Compute

QID = H1(ID, UID, PID)

HID = H5(QID, UID, PID, g1)

(2) Compute the concatenation of message M and

� :

M || � = H4

�

C
xIDHID
0

, C
CertID
0

�

˚ C1

(3) If gH3(M,� ) = C0, then return M by removing

� from M || � . Else return ?.

3.2.2. Correctness.

We show that

H4

�

C
xIDHID
0

, C
CertID
0

�

= H4

�

(gr)xIDH5(QID,UID,PID,g1), (gr)ˇID+˛H2(QID,PID)
�

= H4

�

grxIDH5(QID,UID,PID,g1), gr(ˇID+˛H2(QID,PID))
�

= H4

��

gxIDH5(QID,UID,PID,g1)
�r

,
�

gˇID (g˛)H2(QID,PID)
�r�

= H4

��

U
H5(QID,UID,PID,g1)
ID

�r
,
�

PIDg
H2(QID,PID)
1

�r�

= H4(k1, k2).

Hence

H4

�

C
xIDHID
0

, C
CertID
0

�

= H4(k1, k2)

Now, from decryption, we have

H4

�

C
xIDHID
0

, C
CertID
0

�

˚ C1

= H4(k1, k2) ˚ H4(k1, k2) ˚ (M || � )

= M || � .

The aforementioned equation shows that our decryption

is correct.

3.2.3. Security analysis of CBE1.

In this section, we give the security proof for the first

construction under the CDH assumption. The two theo-

rems that follow show that our scheme is IND-CCA secure

in the random oracle model.

Theorem 1. If there exists a polynomial time IND-CCA

adversary AI who can win the security game with an

advantage � in random oracle, by making at most qHi

queries to oracle Hi(i = 1, 2, 3, 4, 5), qpub public key

queries, qprv private key queries, qcer certification queries,

and qD decryption queries, then there exists a probabilis-

tic polynomial time algorithm B that can solve the CDH

problem with an advantage at least

�0 >
1

qH3

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

Here, e is the base of natural logarithm.

Proof. Let AI be an IND-CCA adversary Type I attacker.

We construct an algorithm B that solves the CDH problem

by using AI . Suppose that H1, H2, H3, H4, and H5 are ran-

dom oracles and AI can win the game with advantage �.

Then B can have advantage �0.

B is given an instance of the CDH problem:

p1, p2, g, ga, gb. B simulates a challenger and answers

queries from AI as follows:

� Setup:

B set g1 = gb. The params are set as (p1, p2, g, g1,

H1, H2, H3, H4, H5). Then the params are given

to AI .

AI can query to all succeeding oracles at any time

during its attack. B answers the queries as follows:

- H1 – queries: On receiving query (ID, UID,

PID) to H1: If H1List contains hID, UID,

PID, h1i, then it returns h1 to AI . Else, pick

random h1 2 Z
*
p2

, return h1 to AI , and add

hID, UID, PID, h1i to H1List.

- H2 – queries: On receiving query (QID, PID)

to H2: If H2List contains hQID, PID, h2i, then
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it returns h2 to AI . Else, pick random h2 2

Z
*
p2

, return h2 to AI , and add hQID, PID, h2i

to H2List.

- H3 – queries: On receiving query (M, � )

to H3: If H3List contains hM, � , h3i, then it

returns h3 to AI . Else, pick random h3 2 Z
*
p2

,

return h3 to AI , and add hM, � , h3i to H3List.

- H4 – queries : On receiving query (k1, k2) to

H4: If H4List contains hk1, k2, h4i, then it

returns h4 to AI . Else, pick random h4 2

{0, 1}n, return h4 to AI , and add hk1, k2, h4i

to H4List.

- H5 – queries : On receiving query

(QID, UID, PID, g1) to H5: If H5 – List con-

tains hQID, UID, PID, g1, h5i, then it returns

h5 to AI . Else, pick random h5 2 Z
*
p2

, return

h5 to AI , and add hQID, UID, PID, g1, h5i to

H5List.

� Phase I:

- PublicKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists,

then B returns PKID to AI . Otherwise, choose

a random coin 2 {0, 1}. Let ı be a probability

that coin = 0, that is, Pr[coin = 0] = ı. B

chooses a random elements xID, ˇID 2 Z
*
p2

and computes UID = gxID , PID = gˇID , adds

tuple hID, xID, ˇID, PKID, coini to KeyList,

and sends PKID to AI .

- PrivateKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists

and the coin = 0, then B returns xID to AI .

Otherwise, abort the simulation and terminate.

- PublicKeyReplace-Queries: On receiving

user’s identity ID and a new public key

PK0

ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. B set coin = 1

and updates this tuple as hID, xID, ˇID, PK0

ID,

coini.

- Certification-Queries: On receiving the

tuple hID, PKIDi, B searches on CertList

the tuple hID, CertIDi. If the tuple exists,

then B returns CertID to AI . Otherwise,

run PublicKey-Queries to obtain the tuple

hID, xID, ˇID, PKID, coini. If challenger finds

that the PKID is not correct, it will set coin = 1

and update to the KeyList.

* If coin = 0, compute QID =

H1(ID, UID, PID) and CertID =

ˇID + ˛H2(QID, PID). Then add

hID, CertIDi to the CertList and

return CertID to AI .

* If coin = 1, add hID, *i to CertList.

(Note: * can be any value).

- Decryption-Queries: On receiving tuple

hID, PKID, Ci from adversary AI , B searches

CertList for tuple hID, CertIDi. Query to

the PublicKey-Queries oracle for tuple

hID, xID, ˇID, PKID, coini. If challenger finds

that the ID and PKID given by adversary do

not match, it will set coin = 1 and update to

the KeyList.

* If coin = 0: Compute HID = H5(QID,

UID, PID, g1) and run the decryption:

M || � = H4

�

C
xIDHID
0

, C
CertID
0

�

˚C1.

Return message M to AI .

* If coin = 1: Run H1 – queries:

to obtain the tuple hID, UID, PID, h1i

and H2 – queries: to obtain the

tuple hQID, PID, h2i. If there exist

hM, � , h3i in H3List, hk1, k2, h4i in

H4List and hQID, UID, PID, g1, h5i in

H5List, such that C0 = gr, C1 = h3 ˚

(M || � ), and k1 =
�

U
h5
ID

�h3
, k2 =

�

PIDg
h2
1

�h3
, then return message M

to AI .

* Reject otherwise.

� Challenge:

AI outputs two messages (M0, M1) together with

challenge identity ID*. On receiving the challenge

query, B answers as follows: Run the aforementioned

simulation for PublicKey-Queries with input ID*

to obtain the tuple hID*, x*
ID, ˇ*, PK*

ID, coini from

KeyList. If coin = 0, B aborts the simulation and

returns “Abort.” Otherwise, B does the following:

- Pick random values:

�* 2 {0, 1}n1 , C*
1 2 {0, 1}n,  2 {0, 1}

- Set:

C*
0 = ga

Q*
ID = H1

�

ID*, U*
ID, P*

ID

�

h*
2 = H2

�

Q*
ID, P*

ID

�

h*
5 = H5

�

Q*
ID, U*

ID, P*
ID, g1

�

- Define: a = H3(M , �*) and H4(k1, k2) =

C*
1

˚ (M , �*), where k1 =

�

U
*h*

5
ID

�a

, k2 =

�

P*
IDg

h*
2

1

�a

.

- Return: C* =
�

C*
0
, C*

1

�

.
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Note: By the construction earlier, we have

C*
1 = H4(k1, k2) ˚ (M || �*)

= H4

 

gax*
IDHID , g

a

�

ˇ*+bH2

�

Q*
ID,gˇ*

��

!

˚ (M || �*)

= H4

 

(ga)x*
IDHID , (ga)ˇ

*
(gab)

H2

�

Q*
ID,gˇ*

�

!

˚(M || �*)

where HID = H5(Q*
ID, gx*

ID , gˇ*
, gb).

� Phase II:

B repeats the same simulations as Phase I, except:

- Issue (ID*, PK*
ID) as certification query.

- Issue (ID*, PK*
ID, C*) as decryption query.

� Guess:

Adversary AI outputs a guess  0 of  and then

sends it to the challenger B. Now B chooses a tuple

hk1, k2, h4i from the H4List and returns (
k2

(ga)ˇ
* )1/h*

2

as the solution for the CDH problem. From the con-

struction of H1, H2, and H5, it is clear that H1, H2,

and H5 are perfect. As long as AI does not query

hM , �*i to H3 and h(U
*h*

5
ID )a, (PIDg

h*
2

1
)ai to H4, the

simulation of H3 and H4 is perfect. We denote

– Q*
H3

is the event that hM , �*i has been

queried to H3.

– Q
H*

4
is the event that h(U

*h*
5

ID )a, (PIDg
h*

2
1

)ai has

been queried to H4.

If Q
H*

4
happens, then B will be able to solve the

CDH problem by choosing a tuple hk1, k2, h4i from

the H4List and compute (
k2

(ga)ˇ
* )1/h*

2 with probability

as least 1/qH4
. Hence, we have

�0 �
1

qH4

Pr

�

Q
H*

4

�

(1)

Next, it is noticed that if B does not abort, then sim-

ulation of PublicKey-Queries, PrivateKey-Queries,

Certification-Queries, and target ciphertext is identi-

cally distributed as the real one from the construction.

Now we evaluate the construction of the decryp-

tion oracle. If PKID has been produced as coin =

0, the simulation is perfect as B knows the corre-

sponding private key xID of UID. Otherwise, an error

simulation may occur. We denote this event is Derr

and find probability of this event. Suppose that the

input hID, PKID, Ci of Decryption-Queries oracle is

valid, where C = (C0, C1). Let Cvalid is the event that

C is valid. Let QH3
and QH4

respectively be events

that hM , �i has been queried to H3 and hk1, k2i has

been queried to H4 with respect to C = (C0, C1) =

(gr, H4(k1, k2)), k1 = (U
h5
ID)r, k2 = (PIDg

h2
1

)r, where

h5 = H5(QID, PID, UID, g1) and h3 = H3(M, � ). Even

if C is valid, there is a possibility that C can be pro-

duced without querying to H4. We have Pr[Derr] =

qDPr[Cvalid | :QH4
]. But

Pr[Cvalid | :QH4
] � Pr[Cvalid \ QH3

|

:QH4
] + Pr[Cvalid \ :QH3

| :QH4
]

� Pr[QH3
| :QH4

] + Pr[Cvalid | :QH3
\

:QH4
]

�
qH3

2n1
+

1

p2

So Pr[Derr] �
qDqH3

2n1 +
qD
p2

.

Now, we define an event E: (Q*
H4

[ (Q*
H3

|

:QH4
) [ Derr | :Abort), where Abort denotes B

aborts during simulation. Pr[:Abort] = ıqprv (1 – ı),

which is maximized at ı = 1 – 1\(qprv + 1). So,

Pr[:Abort] � 1
e(pprv+1)

, where e denotes the base of

the natural logarithm.

We have

Pr[E] =
�

Pr
h

Q*
H4

i

+ Pr
h

Q*
H3

| :Q*
H4

i

+

Pr[Derr])
1

Pr[:Abort]

So that Pr[Q*
H4

] = Pr[E]Pr[:Abort] – Pr[Q*
H3

|

:Q*
H4

] – Pr[Derr]

Since Pr[Q*
H3

| :Q*
H4

] �
qH3
2n1

we obtain

Pr
h

Q*
H4

i

�
Pr[E]

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2
(2)

Meanwhile

� �| Pr[ 0 =  ] –
1

2
|

=| Pr[ 0 =  | :E]Pr[:E]

+ Pr[ 0 =  | E]Pr[E] –
1

2

�|
1

2
Pr[:E] + Pr[E] –

1

2
|=

1

2
Pr[E]

So

Pr[E] � 2� (3)

From (2) and (3), we have

Pr
h

Q*
H4

i

�
2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2
(4)
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From (1) and (4), we have

�0 >
1

qH4

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

Theorem 2. If there exists a polynomial time IND-CCA

adversary AII who can win the security game with

an advantage � in random oracle, by making at most

qHi queries to oracle Hi (i = 1, 2, 3, 4, 5), qpub public

key queries, qprv private key queries, and qD decryp-

tion queries, then there exists a probabilistic polynomial

time algorithm B that can solve the CDH problem with

advantage at least

�0 >
1

qH3

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

Here, e is the base of natural logarithm.

Proof. Let AII be an IND-CCA adversary Type II

attacker. We construct an algorithm B that solve the CDH

problem by using AII . Suppose that H1, H2, H3, H4, and

H5 are random oracles and AII can win the game with

advantage �. Then B can have advantage �0.

B is given an instance of the CDH problem:

p1, p2, g, ga, gb. B simulates a challenger and answers

queries from AII as follows:

� Setup: B selects random element ˛ 2 Z
*
p2

and

calculates g1 = g˛ . The params are set as

(p1, p2, g, g1, H1, H2, H3, H4, H5) and msk is ˛ . Then

the params and msk are given to AII .

In this proof, we assume that H1, H2, H3, H4, and

H5 are random oracles and adversary AII can query

to all these oracles at any time during its attack. B

answers the queries as follows:

- H1 – queries: On receiving query

(ID, UID, PID) to H1: If H1List contains

hID, UID, PID, h1i, then it returns h1 to AII .

Else, pick random h1 2 Z
*
p2

, return h1 to

AII , and add hID, UID, PID, h1i to H1List.

- H2 – queries: On receiving query (QID, PID)

to H2: If H2List contains hQID, PID, h2i, then

it returns h2 to AII . Else, pick random h2 2

Z
*
p2

, return h2 to AII , and add hQID, PID, h2i

to H2List.

- H3 – queries: On receiving query (M, � ) to

H3: If H3List contains hM, � , h3i, then it

returns h3 to AII . Else, pick random h3 2

Z
*
p2

, return h3 to AII , and add hM, � , h3i to

H3List.

- H4 – queries : On receiving query (k1, k2) to

H4: If H4List contains hk1, k2, h4i, then it

returns h4 to AII . Else, pick random h4 2

{0, 1}n, return h4 to AII , and add hk1, k2, h4i

to H4List.

- H5 – queries : On receiving query (QID, UID,

PID, g1) to H5: If H5 – List contains

hQID, UID, PID, g1, h5i, then it returns h5 to

AII . Else, pick random h5 2 Z
*
p2

, return

h5 to AII , and add hQID, UID, PID, g1, h5i to

H5List.

� Phase I:

- PublicKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists,

then B returns PKID to AII . Otherwise,

choose a random coin 2 {0, 1}, let ı be a prob-

ability that coin = 0, that is, Pr[coin = 0] = ı.

B chooses random element xID, ˇID 2 Z
*
p2

and computes UID = gxID , PID = gˇID , adds

tuple hID, xID, ˇID, PKID, coini to KeyList,

then sends PKID to AII .

- PrivateKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists

and the coin = 0, then B returns xID to AII .

Otherwise, abort the simulation and terminate.

- Decryption-Queries: On receiving tuple

hID, PKID, Ci from adversary AII , B queries

to the PublicKey-Queries oracle for tuple

hID, xID, ˇID, PKID, coini. If it founds that ID

and PKID given by adversary do not match, it

will set coin = 1 and update to the KeyList.

* If coin = 0, then compute HID =

H5(QID, UID, PID, g1) and run the

decryption:

M || � = H4(C
xIDHID
0

, C
CertID
0

) ˚

C1. Return message M to AII .

* If coin = 1: Run H1 – queries: to

obtain the tuple hID, UID, PID, h1i

and H2 – queries: to obtain the

tuple hQID, PID, h2i. If there exists

hM, � , h3i in H3List, hk1, k2, h4i in

H4List, and hQID, UID, PID, g1, h5i

in H5List, such that C0 = gr, C1 =

h3 ˚ (M || � ), and hk1, k2i =

h(U
h5
ID)h3 , (PIDg

h2
1

)h3i, then return

message M to AII .

* Reject otherwise.

� Challenge:

AII outputs two messages (M0, M1) together with

challenge identity ID*. On receiving the challenge

query, B answers as follows: Run the aforemen-

tioned simulation for PublicKey-Queries with input

ID* to obtain the tuple hID*, x*
ID, ˇ*, PK*

ID, coini

from KeyList. If coin = 0, B aborts the sim-

ulation and returns “Abort.” Otherwise, B does

the following:
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– Pick random values:

�* 2 {0, 1}n1 , C*
1 2 {0, 1}n,  2 {0, 1}

– Set: P*
ID = (gb)ˇ

*

– Set: C*
0

= ga

Q*
ID = H1

�

ID*, U*
ID, P*

ID

�

h*
2 = H2

�

Q*
ID, P*

ID

�

h*
5 = H5

�

Q*
ID, U*

ID, PID, g1

�

– Define: a = H3(M , �*)

H4(k1, k2) = C*
1 ˚ (M , �*)

where k1 = (U
*h*

5
ID )a, k2 = (P*

IDg
h*

2
1

)a.

– Return: C* = (C*
0
, C*

1
). Note: By the construc-

tion earlier, we have

C*
1 = H4(k1, k2) ˚ (M || �*)

= H4

 

gax*
IDHID , g

a

�

bˇ*+˛H2

�

Q*
ID,gˇ*

��

!

˚

(M || �*)

= H4

 

gax*
IDHID , (gab)ˇ

*
(ga)

˛H2

�

Q*
ID,gˇ*

�

!

˚ (M || �*)

where HID = H5

�

Q*
ID, gx*

ID , gˇ*
, gb

�

� Phase II:

B repeats the same simulations as Phase I, except

hID*, PK*
ID, C*i as decryption query.

� Guess:

Adversary AII outputs a guess  0 of  then

sends it to challenger B. Now B chooses a tuple

hk1, k2, h4i from the H4List and returns (
k2

g
˛ah*

2

)1/ˇ*

as the solution for the CDH problem.
� Analysis:

With the same method as Theorem 1, we have

�0 >
1

qH4

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

3.3. Second construction

Inspired from the construction of CL-PKE in [37], we

propose a more computation-efficient CBE scheme that is

IND-CCA secure without pairing under the CDH assump-

tion. Instead of using exponentiation for verification of

the decrypted message in the first construction, we use

hash function for this purpose in the second construction.

It makes the length of ciphertext longer but reduces the

computational cost.

3.3.1. Construction of CBE2.

We define our second CBE construction as follows. The

scheme consisting of five algorithms is almost the same

as the first scheme except Encryption and Decryption

algorithms.

Setup: On input of a security parameter k 2 Z+, the

CA does the following steps:

(1) Generate two large primes p1 and p2 such that

p1 = 2p2 + 1. Choose a generator g of Z
*
p1

.

(2) Select a random element ˛ 2 Z
*
p2

and compute

g1 = g˛ .

(3) Pick hash functions:

H1 : {0, 1}* � Z
*
p1

� Z
*
p1

! Z
*
p2

H2 : Z
*
p2

� Z
*
p1

! Z
*
p2

H3 : {0, 1}n0 � {0, 1}n1 ! Z
*
p2

H4 : Z
*
p1

! {0, 1}n, where n0 is length of

plaintext, n is length of ciphertext, and n1 is

length of padding in H3 and n0 + n1 = n and

H5 : {0, 1}n1 � Z
*
p1

! Z
*
p2

The system parameters are params =

(p1, p2, g, g1, H1, H2, H3, H4, H5) and master

secret key is msk = ˛.

SetKeyPair: On input of ID and params, this algo-

rithm selects a random element xID 2 Z
*
p2

. Calculate

UID = gxID . The key pair will be (xID, UID).

Certification: On input of an identity information ID

and public key UID of a user, the certifier selects ran-

dom ˇID 2 Z
*
p2

and then calculates PID = gˇID .

The public key is updated as PKID = (UID, PID).

Set QID = H1(ID, UID, PID) and compute CertID =

ˇID + ˛H2(QID, PID). This algorithm outputs CertID
and PKID.

Encryption: On input of plaintext M, public parame-

ters params, identity ID of the receiver, UID, and a part

of CertID, the sender performs the following steps:

(1) Select random � 2 {0, 1}n1 and compute as

follows:

r = H3(M, � )

QID = H1(ID, UID, PID)

k =
�

UIDPIDg
H2(QID,PID)
1

�r
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(2) Compute C0 = gr.

(3) Compute C1 = H4(k) ˚ (M || � ).

(4) Compute C2 = H5(C0, M). The sender outputs

C = (C0, C1, C2).

Decryption: On input of ciphertext C = (C0, C1, C2),

the private key xID, public key PKID, and certificate

CertID of the user, the receiver does the following

steps:

(1) Compute the concatenation of message M

and � :

M || � = H4

�

C
xID+CertID
0

�

˚ C1

(2) If H5(C0, M) = C2, then return M by removing

� from M || � . Else return ?.

3.3.2. Correctness.

We show that

H4

�

C
xID+CertID
0

�

= H4

�

(gr)xID+ˇID+˛H2(QID,PID)
�

= H4

�

grxID+r(ˇID+˛H2(QID,PID))
�

= H4

��

gxID gˇID (g˛)H2(QID,PID)
�r�

= H4

��

UIDPIDg
H2(QID,PID)
1

�r�

= H4(k)

Hence

H4

�

C
xID+CertID
0

�

= H4(k)

Now, from decryption, we have

H4

�

C
xID+CertID
0

�

˚ C1

= H4(k) ˚ H4(k) ˚ (M || � )

= M || �

The aforementioned equation shows that our decryption

is correct.

3.3.3. Security analysis of CBE2.

In this section, we briefly describe the security proof for

the second construction under the CDH assumption. The

two theorems given in the first construction are applied

in the same way to the second scheme showing that the

second construction is also IND-CCA secure in the ran-

dom oracle model. Because the overall proof structure of

the second construction is the same as that of the first

construction, we describe major differences as follows.

The full proof of the second construction is presented in

the Appendix.

� H5 – queries in the game against Adversary Types I

and II: On receiving query (C0, M) to H5: If H5List

contains hC0, M, h5i, then it returns h5 to AI . Else,

pick random h5 2 Z
*
p2

, return h5 to AI , and add

hC0, M, h5i to H5List.
� Guess Phase in the game against Adversary Type I:

Adversary AI outputs a guess  0 of  and then sends

it to the challenger B. Then B chooses a tuple hk, h4i

from the H4List and returns

 

k

(ga)x*
ID (ga)ˇ

*

!1/h*
2

as the solution for the CDH problem, where k =

(U*
IDP*

IDg
h*

2
1

)a.
� Guess Phase in the game against Adversary Type II:

Adversary AII outputs a guess  0 of  then sends

it to challenger B. Then B chooses a tuple hk, h4i

from the H4List and returns ( k

(ga)
x*
ID (ga)

˛h*
2

)1/ˇ*
as

the solution for the CDH problem.

4. PERFORMANCE COMPARISON

Efficiency of the proposed certificate-based encryption

schemes is analyzed and compared with the previous

certificate-based encryption schemes in terms of encryp-

tion and decryption.

Table I shows the comparison results among the

schemes in terms of computation overheads. As shown

in Table I, we can see that most schemes carry out the

pairing operation except ours. So, we can expect that our

schemes are more efficient than other schemes, which will

be explained with the following figure (Figure 1).

In order to provide a practical performance comparison

in the real world, we perform simulations as follows.

Table I. Performance comparison.

Scheme Encryption Decryption

[9] 3E + 1ET + 2P 1P

[16] 3E + 1ET + 3P 4E + 4P

[19] 5E + 2ET + 2P + S 5E + 3P + V

[18] 5E + 2ET + 2P 3P

[38] 2E + 1ET + 1P 1E + 1ET + 1P

[25] 3E + 1ET + Enc 2E + 2P + Dec

[31] 3EZ 3EZ

[32] 3E 2E

CBE1 4EZ 3EZ

CBE2 3EZ 1EZ

E, exponentiation operation time in G; ET , exponentia-

tion operation time in GT ; P, pairing operation time; EZ ,

exponentiation operation time in Zp; S, signature gen-

eration time; V, signature verification time; Enc, encryp-

tion time of the symmetric encryption; Dec, decryption

time of the symmetric decryption.
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Figure 1. Comparison of the computation time.

Table II. The time of basic operations.

Operation Time (ms)

E 24.039

ET 6.464

P 80.194

EZ 7.764

S 3.389

V 5.564

Enc 0.009

Dec 0.006

In Table II, E, ET , and P are measured in the Tate pair-

ing over a supersingular curve with an embedding degree

of 2 at a 128 bit AES security level; EZ is measured in 2048

bit integer exponentiation operation; S and V are measured

in elliptic curve digital signature algorithm [39]; and Enc

and Dec are measured in AES-128.

Each value in Table II was measured using a Win-

dows 7 64-bit system with a 3.70 GHz AMD Phe-

nom II X4 980 processor. The MIRACL v7.0.1 library

(https://certivox.org/display/EXT/MIRACL) was used in

our test.

In Figure 1, we compare the encryption and decryption

time between the existing schemes and ours.

In the encryption aspect, we can see that CBE2 and [31]

are the most efficient schemes because they require only

three exponentiations. But, CBE1 is slightly inefficient

than [31], because it requires one more EZ operation than

that of [31].

In the decryption aspect, we can see that CBE2 is the

most efficient scheme because it requires only one expo-

nentiation. However, CBE1 and [31] are the second most

efficient ones, because they require three EZ operations.

From the earlier analysis, we can confirm that

our proposed schemes are significantly efficient in the

sense that encryption and decryption can be computed

without pairing.

We think that the CBE2 achieves efficiency particu-

larly in a wireless sensor network where the computation

capabilities of nodes are very limited and most frequent

computations are decryption. Although the CBE2 boasts its

computational efficiency, it increases communication over-

head due to its stretched ciphertext size when compared

with the CBE1. Therefore, the CBE1 seems appropriate in

bandwidth-critical networks as in regular key update net-

work, for example, where all of client nodes make key

update requests to the key management server at the same

time, which generates a big volume of data on the network

and may result in congestion as a result.

5. CONCLUSION

This paper proposed two certificate-based encryption

schemes that are significantly efficient in terms of compu-

tation by eliminating pairing operations. Simulation results

show that the proposed schemes are the most efficient

and practical ones compared with other schemes in terms

of computation. The proposed schemes are proved secure

against Types I and II adversaries with IND-CCA security,

which can be used efficiently in some practical applica-

tions, particularly resource-constrained node networks.

Appendix.

In this section, we give the security proof for the second

construction under the CDH assumption. The two theo-

rems that follow show that it is IND-CCA secure in the

random oracle model.
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Theorem 3. If there exists a polynomial time IND-CCA

adversary AI who can win the security game with an

advantage � in random oracle, by making at most qHi

queries to oracle Hi(i = 1, 2, 3, 4, 5), qpub public key

queries, qprv private key queries, qcer certification queries,

and qD decryption queries, then exist a PPT algorithm B

that can solve the CDH problem with an advantage at least

�0 >
1

qH3

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

Here, e is the base of natural logarithm.

Proof. Let AI be an IND-CCA adversary Type I attacker.

We construct an algorithm B that solves the CDH prob-

lem by using AI . Suppose that H1, H2, H3, H4, and H5 are

random oracles and AI can win the game with advantage

� in polynomial time, then B can have advantage �0 in

polynomial time.

B is given an instance of the CDH problem:

p1, p2, g, ga, gb. B simulates a challenger and answers

queries from AI as follows:

� Setup:

B set g1 = gb. The params are set as (p1, p2, g, g1,

H1, H2, H3, H4, H5). Then the params are given

to AI .

AI can query to all succeeding oracles at any time

during its attack. B answers the queries as follows:

- H1 – queries: On receiving query

(ID, UID, PID) to H1: If H1List contains

hID, UID, PID, h1i, then it returns h1 to AI .

Else, pick random h1 2 Z
*
p2

, return h1 to AI ,

and add hID, UID, PID, h1i to H1List.

- H2 – queries: On receiving query (QID, PID)

to H2: If H2List contains hQID, PID, h2i, then

it returns h2 to AI . Else, pick random h2 2

Z
*
p2

, return h2 to AI , and add hQID, PID, h2i

to H2List.

- H3–queries: On receiving query (M, � ) to H3:

If H3List contains hM, � , h3i, then it returns

h3 to AI . Else, pick random h3 2 Z
*
p2

, return

h3 to AI , and add hM, � , h3i to H3List.

- H4 – queries : On receiving query k to H4: If

H4List contains hk, h4i, then it returns h4 to

AI . Else, pick random h4 2 {0, 1}n, return h4

to AI , and add hk, h4i to H4List.

- H5 – queries : On receiving query (C0, M) to

H5: If H5List contains hC0, M, h5i, then it

returns h5 to AI . Else, pick random h5 2 Z
*
p2

,

return h5 to AI , and add hC0, M, h5i to H5List.

� Phase I:

- PublicKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

(ID, xID, ˇID, PKID). If the tuple exists, then

B returns PKID to AI . Otherwise, choose a

random coin 2 {0, 1}. Let ı be a probability

that coin = 0, that is, Pr[coin = 0] = ı. B

chooses a random element xID and ˇID from

Z
*
p2

and computes UID = gxID , PID = gˇID ,

adds tuple hID, xID, ˇID, PKID, coini to

KeyList, and sends PKID to AI .

- PrivateKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists

and the coin = 0, then B returns xID to AI .

Otherwise, abort the simulation and terminate.

- PublicKeyReplace-Queries: On receiving

user’s identity ID and a new public key

PK0

ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. B set coin =

1 and updates this tuple as hID, xID, ˇID,

PK0

ID, coini.

- Certification-Queries: On receiving the tuple

hID, PKIDi, B searches on CertList the tuple

hID, CertIDi. If the tuple exists, then B returns

CertID to AII .

Otherwise, run PublicKey – Queries to

obtain the tuple hID, xID, ˇID, PKID, coini. If

challenger finds that the PKID is not cor-

rect, it will set coin = 1 and update to

the KeyList.

* If coin = 0, compute QID =

H1(ID, UID, PID) and CertID =

ˇID + ˛H2( QID, PID). Then, add

hID, CertIDi to the CertList and

return CertID to AII .

* If coin = 1 , add hID, *i to CertList

(Note: * can be any value).

- Decryption-Queries: On receiving tuple

hID, PKID, Ci from adversary AI , B queries

to the PublicKey-Queries oracle for tuple

hID, xID, ˇID, PKID, coini. If challenger finds

that the ID and PKID given by adversary do

not match, it will set coin = 1 and update to

the KeyList.

* If coin = 0: Run the decryption: M ||

� = H4(C
xID+CertID
0

) ˚ C1. Return

message M to AI .

* If coin = 1: Run H1 – queries: to

obtain the tuple hID, UID, PID, h1i

and H2 – queries: to obtain the

tuple hQID, PID, h2i . If there exists

hM, � , h3i in H3List, hk, h4i in

H4List, and hC0, M, h5i in H5List,

such that C0 = gr, C1 = h4 ˚ (M || � ),

and k = (UIDPIDg
h2
1

)h3 . Return

message M to AI .

* Reject otherwise.
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� Challenge:

AI outputs two messages (M0, M1) together with

challenge identity ID*. On receiving the challenge

query, B answers as follows: Run the earlier simula-

tion for PublicKey-Queries with input ID* to obtain

the tuple hID*, x*
ID, ˇ*, PK*

ID, coini from KeyList. If

coin = 0, B aborts the simulation and returns “Abort.”

Otherwise, B does the following:

- Pick random values: �* 2 {0, 1}n1 , C*
1

2

{0, 1}n,  2 {0, 1}

- Set: C*
0

= ga, Q*
ID = H1(ID*, U*

ID, P*
ID), h*

2
=

H2(Q*
ID, P*

ID)

- Define: a = H3(M , �*) and H4(k) = C*
1

˚

(M , �*), where k = (UIDP*
IDg

h*
2

1
)a

- Set: C*
2

= H5(C*
0
, M )

- Return: C* = (C*
0
, C*

1
, C*

2
)

Note: By the construction earlier, we have

C*
1 = H4(k) ˚ (M || �*)

= H4((gx*
ID gˇ*

gbh*
2 )a) ˚ (M || �*)

= H4((ga)x*
ID (ga)ˇ

*
(gab)h*

2 ) ˚ (M || �*)

� Phase II:

B repeats the same simulations as Phase I, except:

- Issue hID*, PK*
IDi as certification query.

- Issue hID*, PK*
ID, C*i as decryption query.

� Guess:

Adversary AI outputs a guess  0 of  and then

sends it to the challenger B. Now B chooses a tuple

hk, h4i from the H4List and returns

 

k

(ga)x*
ID (ga)ˇ

*

!1/h*
2

as the solution for the CDH problem.

From the construction of H1, H2, and H5, it is clear

that H1, H2, and H5 are perfect. As long as AI does

not query hM, �*i to H3 and k = (UIDP*
IDg

h*
2

1
)a to H4,

the simulation of H3 and H4 are perfect. We denote

– Q*
H3

is the event that hM , �i has been queried

to H3

– Q
H*

4
is the event that k = (UIDP*

IDg
h*

2
1

)a has

been queried to H4

If Q
H*

4
happens, then B will be able to solve the CDH

problem by choosing a tuple hk, h4i from the H4List

and compute ( k

(ga)
x*
ID (ga)ˇ

*
)1/h*

2 with probability as

least 1/qH4
. Hence, we have

�0 �
1

qH4

Pr

�

Q
H*

4

�

(5)

Next, it is noticed that if B does not abort, then sim-

ulation of PublicKey-Queries, PrivateKey-Queries,

Certification-Queries, and target ciphertext is identi-

cally distributed as the real one from the construction.

Now we evaluate the construction of the decryp-

tion oracle. If UID has been produced as coin = 0, the

simulation is perfect as B knows the corresponding

private key xID of UID. Otherwise, an error simu-

lation may occur. We denote this event is Derr and

find probability of this event. Suppose that the input

hID, PKID, Ci of Decryption-Queries oracle is valid,

where C = (C0, C1, C2). Let Cvalid is the event that

C is valid. Let QH3
and QH4

respectively be events

that hM , �i has been queried to H3 and hki has been

queried to H4 with respect to C = (C0, C1, C2) =

(gr, H4(k), H5(C0, M)), where r = H3(M, � ), k =

(UIDPIDg
h2
1

)r. Even if C is valid, there is a possibility

that C can be produced without querying to H4. We

have Pr[Derr] = qDPr[Cvalid | :QH4
]. But

Pr[Cvalid | :QH4
] � Pr[Cvalid \ QH3

| :QH4
] + Pr[Cvalid \ :QH3

| :QH4
]

� Pr[QH3
| :QH4

] + Pr[Cvalid | :QH3
\

:QH4
]

�
qH3

2n1
+

1

p2

So Pr[Derr] �
qDqH3

2n1 +
qD
p2

.

Now, we define an event E: (Q*
H4

[ (Q*
H3

|

:QH4
) [ Derr | :Abort), where Abort denotes B

aborts during simulation. Pr[:Abort] = ıqprv (1 – ı)

which is maximized at ı = 1 – 1\(qprv + 1). So,

Pr[:Abort] � 1
e(pprv+1)

, where e denotes the base of

the natural logarithm.

We have

Pr[E] =
�

Pr[Q*
H4

] + Pr[Q*
H3

| :Q*
H4

]+

Pr[Derr])
1

Pr[:Abort]

So that Pr[Q*
H4

] = Pr[E]Pr[:Abort] – Pr[Q*
H3

|

:Q*
H4

] – Pr[Derr]

Since Pr
h

Q*
H3

| :Q*
H4

i

�
qH3
2n1

we obtain

Pr
h

Q*
H4

i

�
Pr[E]

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2
(6)
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Meanwhile

� �| Pr[ 0 =  ] –
1

2
|

=| Pr[ 0 =  | :E]Pr[:E]

+ Pr[ 0 =  | E]Pr[E] –
1

2

�|
1

2
Pr[:E] + Pr[E] –

1

2
|=

1

2
Pr[E]

So that

Pr[E] � 2�. (7)

From (2) and (3), we have

Pr[Q*
H4

] �
2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2
(8)

From (1) and (4), we have �0 > 1
qH4

( 2�
e(qprv+1)

–
qH2
2n1 –

qDqH2
2n1 –

qD
p2

)

Theorem 4. If there exists a polynomial time IND-CCA

adversary AII who can win the security game with

an advantage � in random oracle, by making at most

qHi queries to oracle Hi (i = 1, 2, 3, 4, 5), qpub public

key queries, qprv private key queries, and qD decryption

queries, then there exists a PPT algorithm B that can solve

the CDH problem with an advantage at least

�0 >
1

qH3

�

2�

e(qprv + 1)
–

qH2

2n1
–

qDqH2

2n1
–

qD

p2

�

Here, e is the base of natural logarithm.

Proof. Let AII be an IND-CCA adversary Type II

attacker. We construct an algorithm B that solve the CDH

problem by using AII . Suppose that H1, H2, H3, H4, and

H5 are random oracles and AII can win the game with

advantage � in polynomial time, then B can have advantage

�0 in polynomial time.

B is given an instance of the CDH problem:

p1, p2, g, ga, gb. B simulates a challenger and answers

queries from AII as follows:

� Setup:

B selects random element ˛ 2 Z
*
p2

and

calculates g1 = g˛ . The params are set as

(p1, p2, g, g1, H1, H2, H3, H4, H5) and msk is ˛ . Then

the params and msk are given to AII .

In this proof, we assume that H1, H2, H3, H4, and

H5 are random oracles and adversary AII can query

to all these oracles at any time during its attack. B

answers the queries as follows:

- H1 – queries: On receiving query

(ID, UID, PID) to H1: If H1List contains

hID, UID, PID, h1i, then it returns h1 to AII .

Else, pick random h1 2 Z
*
p2

, return h1 to

AII , and add hID, UID, PID, h1i to H1List.

- H2 – queries: On receiving query (QID, PID)

to H2: If H2List contains hQID, PID, h2i, then

it returns h2 to AII . Else, pick random h2 2

Z
*
p2

, return h2 to AII , and add hQID, PID, h2i

to H2List.

- H3 – queries: On receiving query (M, � ) to

H3: If H3List contains hM, � , h3i, then it

returns h3 to AII . Else, pick random h3 2

Z
*
p2

, return h3 to AII , and add hM, � , h3i to

H3List.

- H4 – queries : On receiving query k to H4: If

H4List contains hk, h4i, then it returns h4 to

AII . Else, pick random h4 2 {0, 1}n, return

h4 to AII , and add hk, h4i to H4List.

- H5 – queries : On receiving query (C0, M) to

H5: If H5List contains hC0, M, h5i, then it

returns h5 to AII . Else, pick random h5 2

Z
*
p2

, return h5 to AII , and add hC0, M, h5i to

H5List.

� Phase I:

- PublicKey – Queries : On receiving user’s

identity ID, B searches on KeyList the tuple

(ID, xID, ˇID, PKID). If the tuple exists, then

B returns PKID to AII . Otherwise, choose a

random coin 2 {0, 1}, let ı be a probability

that coin = 0, that is, Pr[coin = 0] = ı. B

chooses random element xID, ˇID from Z
*
p2

and computes UID = gxID , PID = gˇID , adds

tuple hID, xID, ˇID, PKID, coini to KeyList,

then sends PKID to AII .

- PrivateKey-Queries: On receiving user’s

identity ID, B searches on KeyList the tuple

hID, xID, ˇID, PKID, coini. If the tuple exists

and the coin = 0, then B returns xID to AII .

Otherwise, abort the simulation and terminate.

- Decryption-Queries: On receiving tuple

hID, PKID, Ci from adversary AII , B queries

to the PublicKey-Queries oracle for tuple

hID, xID, ˇID, PKID, coini. If it founds that ID

and PKID given by adversary do not match, it

will set coin = 1 and update to the KeyList.

* If coin = 0, then run the decryp-

tion M || � = H4(C
xID+CertID
0

) ˚ C1.

Return message M to AII .

* If coin = 1: Run H1 – queries: to

obtain the tuple hID, UID, PID, h1i

and H2 – queries: to obtain the

tuple hQID, PID, h2i. If there exists

hM, � , h3i in H3List, hk, h4i in

H4List, and hC0, M, h5i in H5List,

such that C0 = gr, C1 = h4 ˚ (M ||

� ), C2 = h5, and k = (UIDPIDg
h2
1

)h3 .

Return message M to AII .

* Reject otherwise.
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� Challenge:

AII outputs two messages (M0, M1) together with

challenge identity ID*. On receiving the challenge

query, B answers as follows: Run the aforementioned

simulation for PublicKey-Queries with input ID*

to obtain the tuple hID*, x*
ID, ˇ*, PK*

ID, coini from

KeyList. If coin = 0, B aborts the simulation and

returns “Abort.” Otherwise, B does following:

- Pick random values: �* 2 {0, 1}n1 , C*
1

2

{0, 1}n,  2 {0, 1}

- Set: P*
ID = (gb)ˇ

*

- Set: C*
0

= ga, Q*
ID = H1(ID*, U*

ID, P*
ID), h*

2
=

H2(Q*
ID, P*

ID)

- Define: a = H3(M , �*) and H4(k) = C*
1

˚

(M , �*), where k = (U*
IDP*

IDg
h*

2
1

)a

- Set: C*
2

= H5(C0, M )

- Return: C* = (C*
0
, C*

1
, C*

2
). Note: By the

construction earlier, we have

C*
1 = H4(k) ˚ (M || �*)

= H4((gx*
ID (gb)ˇ

*
g˛h*

2 )a) ˚ (M || �*)

= H4((ga)x*
ID (gab)ˇ

*
(ga)˛h*

2 ) ˚ (M || �*)

� Phase II:

B repeats the same simulations as Phase I, except

hID*, PK*
ID, C*i as decryption query.

� Guess:

Adversary AII outputs a guess  0 of  then sends

it to challenger B. Now B chooses a tuple hk, h4i

from the H4List and returns ( k

(ga)
x*
ID (ga)

˛h*
2

)1/ˇ*
as

the solution for the CDH problem.

With the same method as Theorem 1, we have �0 >
1

qH4
( 2�

e(qprv+1)
–

qH2
2n1 –

qDqH2
2n1 –

qD
p2

)
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