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Abstract—In this paper, we address the challenging problem
of registration and change detection in very large motion
blurred images. The unreasonable demand that this task
puts on computational and memory resources precludes the
possibility of any direct attempt at solving this problem. We
address this issue by observing the fact that the camera motion
experienced by a sufficiently large sub-image is approximately
the same as that of the entire image itself. We devise an
algorithm for judicious sub-image selection so that the camera
motion can be deciphered correctly, irrespective of the presence
or absence of occluder. We follow a reblur-difference frame-
work to detect changes as this is an artifact-free pipeline unlike
the traditional deblur-difference approach. We demonstrate the
results of our algorithm on both synthetic and real data.

Keywords-very large images; motion blur; change detection;

I. INTRODUCTION

Feature-based approach is commonly used in image reg-

istration. There are several methods for feature extraction

such as SIFT, SURF, ORB and MSER (Lowe et al. [1],

Bay et al. [2], Rublee et al. [3], Matas et al. [4]).

These algorithms are primarily designed to work on small to

medium-sized images. Memory requirement is an important

factor to consider when employing these approaches for

high resolution images. Huo et al. [5] showed that SIFT

features require a prohibitively huge amount of memory

for very large images. Another drawback of feature-based

approaches while working on large images is incorrect

feature matching due to the occurrence of multiple instances

of similar objects across the image (Carleer et al. [6]).

Coarse-to-fine strategies for feature matching are followed

by Yu et al. [7] and Huo et al. [5] to enable matching.

Within the scope of the problem tackled in this paper,

there is yet another deterrent in adopting feature-based ap-

proach and that is blur. Motion blur is a common occurrence

in aerial imagery where the imaging vehicle is always on

the move. In addition to geometric matching, photometric

matching becomes essential in such a scenario. Feature-

based approaches are not designed to handle the presence

of blur and fail to reliably detect features in the presence

of blur. A traditional approach to handle this situation is to

first deblur the observation, and then pass on the resultant

image to the change detection pipeline where it is compared

with a clean reference image after feature-based registration.

A number of approaches already exist in the literature to

perform deblurring. Blind deconvolution methods recover

a sharp image from the blurred image with an unknown

blur kernel under the assumption of space-invariant blur.

Fergus et al. [8] and Xu et al. [9] estimate space-invariant

kernels and deblur the image. Space-variant blur based

approaches include that of Gupta et al. [10] who model

a motion density function to represent the time spent in

each camera pose and to generate spatially varying blur

kernels and eventually restore the deblurred image using

a gradient-based optimisation. Whyte et al. [11] define a

global representation for space-variant blur similar to the

point spread function for space-invariant blur to restore the

motion blurred image using MAP approach. Hu et al.

[12] estimate weights for each camera pose in a restricted

pose space using a backprojection model while deblurring is

carried out by employing a gradient-based prior. Paramanand

et al. [13] estimate a transformation spread function to

determine the depth map, which is used to deblur the image.

Leveraging gradient sparsity, Xu et al. [14] proposed a

unified framework to perform both uniform and non-uniform

image deblurring.

An issue with such a deblur-difference framework is that

it must deal with the annoying problem of artifacts that tend

to get introduced during the course of deblurring. A more

serious issue within the context of this paper is that none

of the deblurring methods are designed to handle very large

images. Furthermore, the deblurring methods would fail if

the occluder was not static since the image will then be

governed by two independent motions.

In the problem of change detection, the goal is to detect

the difference between a reference image with no artifacts

and an observed image which is blurred and has viewpoint

changes as well. We develop a unified framework to register

the reference image with the blurred image and also to detect

occlusions simultaneously. The occluder is not constrained

to be static. To address the issue of image size, we reveal

that the camera motion can be elegantly extracted from

only a part of the observation. For reasons discussed earlier,

we follow a reblur-difference pipeline instead of a deblur-

difference pipeline. While Punnappurath et al. [15] also

followed a reblur-difference strategy, our work is more

general and, in fact, subsumes their work. Specifically, we
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use an optimisation framework with partial non-negative

constraint which can handle occlusions of any polarity, and

we efficiently tackle the issue of large image dimension.

In addition, our algorithm can also deal with dynamic

occluders. In our approach, the estimated camera motion

is used to reblur the reference image to photometrically

match it with the observed image, and thereby detecting the

changes.

Our main contributions in this paper are as follows.

• We develop a scheme to automatically select good sub-

images from the given observation to enable reliable

estimation of the camera motion.

• We propose a memory efficient and computationally

tractable registration scheme to estimate the camera

motion from the selected sub-image, irrespective of the

presence or absence of occlusions in the sub-image.

• We advocate a reblur-difference pipeline for geometric

as well as photometric registration of the reference

image and the blurred observation for robust change

detection.

In Section II we briefly discuss the motion blur model and

develop an optimisation framework to simultaneously solve

for camera motion and detect occlusions. In Section III, we

discuss an efficient algorithm for registration of very large

images. Section IV demonstrates our experimental results

and we conclude in Section V.

II. BLUR, REGISTRATION AND OCCLUSION

In this section, we briefly discuss motion blur model in

a camera. We then show how to invoke an optimisation

framework to simultaneously register the reference image

with the blurred image as well as detect occlusions, if any.

A. Motion Blur Model

Each pixel in a digital camera embeds a sensor which

collects photons from the scene. A digital circuit provides

the intensity value based on the number of photons received.

All the pixels are exposed for a finite amount of period

Te which is the exposure time of the image. The resultant

intensity at each pixel is the average of all intensities that

the pixel sees during the exposure period. Let us denote the

camera path during the image exposure period by p(t) for

0 ≤ t ≤ Te. The camera motion has six degrees of freedom,

three for rotations and three for translations. Let f represent

the image observed by the camera during an infinitesimal

amount of time. Let g be the image observed by the camera

with an exposure time Te. Let the number of pixels in the

image be N , so that f , g ∈ R
N×1. Then, we have

g =
1

Te

∫ Te

0

fp(t) dt. (1)

where fp(t) is the image observed by the camera due to the

pose p(t) at a particular time t.

When there is no motion, the camera observes the same

scene during the entire exposure time, and hence a clean

image without any blur is observed. In this case, p(t) = 0

for all 0 ≤ t ≤ Te, and g = f . Thus f represents also

the image seen by the camera with no motion during the

exposure time Te. In the presence of camera motion, the

sensor array records different scenes at every instant during

the exposure time. The resultant image thus embodies blur

in it, and we have g 6= f .

We discretise the continuous model in (1) with respect to

a finite camera pose space P . We assume that the camera

can undergo only a finite set of poses during the exposure

time. Let us define P = {p}
|P|
i=1 as the set of possible

camera poses, where | · | denotes cardinality. We can write

(1) equivalently as

g =
∑

pk∈P

ωpk
fpk

(2)

where fpk
is the warped reference image f due to the camera

pose pk. Each scalar ωpk
represents the fraction of exposure

time that the camera stayed in the pose pk. Thus we have∑
pk

ωpk
= 1 if the camera takes only the poses from the

defined pose set P . The weights of all poses are stacked in

the pose weight vector ω. Since the averaging effect removes

the time dependency of the continuous camera path p(t), this

discretisation model is valid. We assume that the scene is far

enough from the camera such that planarity can be assumed.

We follow a homography-based approach to generate the

warps for different camera poses.

B. Joint Registration and Occlusion Detection

We now consider the problem of estimation of camera

poses during exposure. Given a reference image f which

is captured with no camera motion, and a blurred image

g arising from an unknown camera motion, the following

problem can be posed to solve for the camera motion.

ω̃ = argmin
ω
‖g − Fω‖22 + λ‖ω‖1 subject to ω � 0 (3)

Here F is the matrix which contains the warped copies of the

reference image f in its columns for the camera poses in P .

In the whole pose space, the camera can be moved through

only a small set of poses. This is prioritised as the ℓ1 norm

in (3) which promotes sparsity of the pose weight vector.

The above problem seeks the sparsest non-negative pose

weight vector which satisfies the relation between reference

and blurred images. Matrix-vector multiplication Fω is an

equivalent form of (2).

This model, however, does not accommodate occluding

objects in the observation g although this is quite often the

case in aerial surveillance systems. To handle this, let gocc be

the observed image captured with blur and occlusions. We

model the occlusion as an additive term to g to give gocc =
g + χ. The occluded image χ can take both positive and

negative values since the occluded pixels can have intensities
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(a) (b) (c) (d)

Figure 1. Detected changes using [15] (c) and our algorithm (d), between
the reference image (a) and blurred and occluded observation (b).

greater or lesser than the intensities purely explained by blur.

This model can then be written as

gocc =
[
F IN

] [ω
χ

]
= Aξ. (4)

Here A is a combined dictionary of warped reference

images to represent blur and the N ×N identity matrix to

represent occlusions, where ξ is the combined weight vector,

the first |P| elements of which represent the pose weight ω

and the remaining N elements represent the occlusion vector

χ. To solve this under-determined system, we leverage the

prior information about the camera motion and occlusion,

viz. the sparsity of the camera motion in the pose space and

the sparsity of the occlusion in the spatial domain. Thus

we impose ℓ1 norm prior on ξ. We estimate the combined

weight vector by solving the following optimisation prob-

lem.

ξ̃ = argmin
ξ
‖gocc−Aξ‖22 + λ‖ξ‖1 subject to Cξ � 0, (5)

where C =

[
I|P| 0

0 0

]
. As mentioned earlier, the occlusion

vector can take both positive and negative values. To take

care of this, Punnappurath et al. [15] modify the signs of the

ones of the identity matrix based on the minimum and max-

imum elements in each row of F. Our method is hands-off,

and we neatly impose non-negativity constraint only on the

elements of the pose weight vector. Fig. 1 demonstrates how

our method works well even if the occluder intensity is close

to that of background, unlike [15].

III. REGISTRATION OF VERY LARGE IMAGES

Building the matrix A in (4) is a crucial step in our

problem. The occlusion part of the matrix IN can be stored

and processed efficiently since it is a diagonal matrix. The

first part of the matrix F contains the warped versions of f

for all the poses in P . Though the reference image f operates

in the intensity range [0-255] and requires only an unsigned

8-bit integer for each pixel, this is not the case for the storage

of the warped versions. The pixel values of the warped

image fpk
can take floating-point values due to bilinear

interpolation during its generation. A round-off during the

interpolation makes the equality in (2) only approximate, and

hence it might lead to a wrong solution. A single warped

image needs Nd bits of storage memory for operation, where

d is the number of bits required to store a floating-point

Figure 2. Shown are some of the reference (top row) and blurred (bottom
row) images used in our experiments in Section III.

number. For even a 25 mega-pixel image with 5000 rows

and 5000 columns and with d = 32 bits, a warped image

requires 5000×5000×32 bits, that is 95.3 megabytes. If all

three colour channels are used, this value will triple. Storing

all warps for the pose space as the matrix F thus warrants

a huge amount of memory allocation which is infeasible in

practical situations.

A. Pose Weight Estimation from Sub-images

Our solution to the large image problem stems from the

interesting observation that all the pixels in an image observe

the same camera motion during the exposure period. We

leverage this fact to estimate the pose weight vector from a

subset of pixels in the image. Let f (S) and g(S) represent

a portion of the reference and blurred images, respectively.

The sub-image size is S × S, and f (S),g(S) ∈ R
S2×1. We

call these, respectively, as reference sub-image and blurred

sub-image. We will ignore the presence of occlusion in this

discussion for clarity. The relation in (2) holds for f (S) and

g(S) as well i.e.

g(S) =
∑

pk∈P

ωpk
f (S)
pk

(6)

The estimated pose weight vector ω will be the same

irrespective of whether we use f and g or f (S) and g(S) in

(3). We propose to estimate the camera motion using only

the sub-images thus effectively circumventing the issue of

memory storage.

To verify our proposition, we now perform experiments to

estimate camera motion from sub-images of large syntheti-

cally blurred images. We simulate five different continuous

camera paths for a predefined set of discrete translation

and rotation ranges. We use a set of five images for this

experiment. We thus have a set of five reference images

f and 25 blurred images g. Some of the reference and

blurred images are shown in Fig. 2. We pick a pair of f

and g, and for a given S we pick the sub-images f (S) and

317



0 200 400 600 800
15

20

25

30

35

Sub−image size S

P
S

N
R

 (
d
B

)

 

 

1000x1000
2000x2000

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Sub−image size S

C
o
rr

e
la

ti
o
n
 m

e
a
s
u
re

 m

 

 

1000x1000
2000x2000

(a) (b)

Figure 3. (a) PSNR in dB, and (b) correlation measure (for different sub-
image sizes S). Original image sizes are 1000× 1000 pixels (blue circle)
and 2000× 2000 pixels (red square).

g(S). Using these two images, we estimate the pose weight

vector ω using (3). Since the motion involves combinations

of rotations and translations, direct comparison of original

and estimated motion vectors may not lead to a correct

measure of error. Hence we measure the success of our

estimation by reblurring. We warp f using the poses in

P , and perform a weighted average using the estimated

weights ω̃, resulting in a reblurred reference image. We then

calculate the reconstruction PSNR of the reblurred reference

image with respect to the original blurred image g. If the

motion estimation from the sub-image is correct, then the

reblurred image will be close in appearance to the original

blurred image resulting in a high PSNR. We repeat this

experiment for different values of S. The variation of PSNR

with respect to S is shown in Fig. 3(a) for image sizes of

1000× 1000 pixels and 2000× 2000 pixels.

For small values of S, the variation of motion blur within

the sub-image will be small and will approximately tend

to mimic space-invariant blur. Hence solving (3) results

in a wrong pose weight estimate which results in a poor

PSNR between the reblurred and blurred images. The PSNR

increases as S increases since the blur variation inside the

sub-image also increases. We observe that the PSNR value

stabilises after a particular value of S. Beyond this point,

any further increase in S results only in marginal benefits

in terms of correct estimation of pose weights. The size

of the sub-image is an important factor in estimating the

true camera motion. Too small an S renders the notion of

space-variant blur inside the sub-image invalid, and results

in a wrong pose weight estimate. Too large an S will

kindle storage and processing problems. In the following

subsection, we formulate a method to automatically choose

good sub-images for reliably estimating the camera motion.

B. Choosing a Good Sub-image

It is important to devise an automatic method to select a

sub-image of a particular size at a particular location from

the given large blurred observation. We develop a measure

that would indicate the quality of the selected sub-image for

estimating the camera motion. Given a pair of reference and

blurred sub-images f (S) and g(S) of size S, we randomly

select γ scattered locations across the image. We crop small

patches, f
(S)
k and g

(S)
k , from f (S) and g(S) respectively, for

k = 1 to γ. We approximate the blur to be space-invariant in

these patches, and estimate blur kernels using (3) allowing

the pose space to contain only in-plane translations. Let us

denote these blur kernels by hk for k = 1 to γ.

If the selected sub-image has sufficient variations in blur

across it, then each of these blur kernels will be different

as they are quite spread out spatially. Hence a comparison

of these estimated kernels is a good way to decide the suit-

ability of the sub-image for motion estimation. We advocate

the use of normalised cross-correlation of the kernels for

this decision. Normalised cross-correlation between two 2D

kernels hi and hj is given by

NCC(hi,hj) =
corr(hi,hj)

‖hi‖2‖hj‖2
. (7)

Values of the matrix NCC lie in [0, 1]. We use the maximum

value of this matrix as our measure to compare the blur

kernels, i.e.,

Correlation measure m(hi,hj) = max NCC(hi,hj) (8)

Note that m(hi,hj) attains a peak value of 1 if the two

blur kernels are same. If the sub-image size is small, then

there will not be sufficient blur variations across it, and our

measure value will be close to 1. If the kernels are dissimilar,

then m takes values close to 0.

Fig. 4 shows four blur kernels of the patches that are

extracted randomly from sub-images of sizes S = 100, 300
and 600. The patch size used is 41 × 41 and γ = 4. Blur

kernels corresponding to space-invariant blur will appear

the same irrespective of the spatial point. For a small sub-

image of size S = 100, it can be clearly observed that the

four kernels are similar. Hence the camera motion cannot

be correctly explained by this sub-image. For S = 300,

the blur kernels are more dissimilar, and for S = 600,

they look completely different. Thus, higher values of S
describe the motion better. From these four blur kernels,(
4
2

)
(six) measure values m are estimated for every pair.

Fig. 3 (b) shows the plot of mean m of these six values

with respect to the sub-image size. The curve falls with

increase in sub-image size as expected due to continuous

decrease in kernel similarity. A synonymity can be observed

between the plots in Figs. 3 (a) and (b). Correlation measure

(Fig. 3 (b)) decreases initially with increasing S and stays

almost constant after a certain value of S. Similarly, the

reconstruction PSNR (Fig. 3 (a)) stabilises after it reaches

a particular sub-image size. Based on these observations,

we define a threshold Tm = 0.6 m100, where m100 is the

correlation measure for S = 100, to accept or reject a sub-

image for motion estimation. If mS0
for a sub-image of a

specific size S0 is less than this threshold, we decide that
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S = 100

S = 300

S = 600

Figure 4. Estimated blur kernels for different sub-image sizes S. The
blur kernels are displayed as binary images with non-zero values shown in
white colour.
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Figure 5. (a) PSNR in dB for S = 600 and different occlusion sizes K.

the quality of the selected sub-image of size S0 is good, and

that the camera motion can be estimated from it.

C. Presence of Occlusion

A natural question to ask is how well our algorithm

fares when there is occlusion in the selected sub-image

itself. We add a random occlusion patch of size K × K
to the reference image f . We blur this image using the

generated camera motion path, the resultant image being

gocc. We slice the sub-images f (S) and g
(S)
occ , from f and gocc

respectively. We do not restrict the position of the sub-image

with respect to the occlusion. Therefore, the sub-image can

either include the full occlusion or a part of the occlusion

or be devoid of the occlusion completely. Our combined

dictionary A in (4) tackles both the presence of blur and

occlusion simultaneously. If occlusion is present either fully

or partially, it would be accommodated by the weights of the

identity matrix in A. If there is no occlusion present, then the

occlusion weight vector will be zero. Thus, irrespective of

the absence or presence (complete or partial) of the occluder

in the sub-image, our formulation can elegantly handle it.

We next discuss the effect of the size of the occlusion

for a chosen sub-image size S. We consider the worst case

of the occlusion being present completely inside the chosen

sub-image.

We solve the optimisation problem in (5) with f (S) and

g
(S)
occ to arrive at the combined pose weight and occlusion

Algorithm 1:

Inputs: Reference image f , blurred and occluded image

g.

Init: Pick β sub-images f (100) based on Hu et al. [16].

Extract γ blur kernels from each sub-image, calculate

m for
(
γ
2

)
pairs, and find the mean m. Average the β

correlation values to get m100.

Let S = 200. leftmargin=*

1) Pick a sub-image of size S. Extract γ blur kernels.

Calculate mS by averaging out the correlation

values found out for all kernel pairs. If mS <
0.6 m100, goto Step 4. Else, choose a different

sub-image of the same size at a different location.

2) If a particular S is chosen α times at different lo-

cations, declare this S to be unsuitable to estimate

motion. Update S ← S + 100. Goto Step 1.

3) If S > Smax, declare blur to be space-invariant.

Use one of the estimated blur kernels itself as the

camera pose weight vector. Goto Step 5.

4) Estimate pose weight vector and occlusion weight

vector for the selected sub-images f (S) and g(S)

using (5). If the number of non-zero elements in

the occlusion weight vector ‖χ‖0 > 2
3S

2, then go

to Step 1.

5) Reblur the original reference image f using the

estimated pose weight vector ω̃.

6) Detect the changes by differencing the reblurred

image and the observation g.

weight vectors. Using the estimated ω̃, we reblur the large

reference image f . We compare this reblurred image with the

large blurred image gocc ignoring the values in the occlusion

region, since this comparison is to verify the success of our

motion estimation. Fig. 5 shows how the PSNR varies with

respect to the value of K for S = 600. We note that our

algorithm tackles the presence of occlusion quite well. The

motion estimation is correct, and thus, PSNR values are good

even when the occluder occupies up to half the sub-image

area.

Algorithm 1 shows our complete framework to choose

good sub-images automatically, estimation of motion and

change detection. In our experiments, we use the following

values in Algorithm 1: α = 5, β = 6, γ = 4, Smax = 900. Eq.

(5) requires a sparse matrix-vector multiplication with order

less than O(N(S2 + |P|)) and a projection onto subspace

O(S2 + |P|). We use SLEP package [17], which has a

convergence rate of O(1/k2) for the kth iteration.

IV. EXPERIMENTS

We first evaluate the performance of our algorithm using

a synthetic example. A reference image of size 2188×1315
pixels is shown in Fig. 6(a). To simulate blur incurred due to

camera shake, we manually generated camera motion with
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a connected path in the 6D pose space and initialised the

weights. The synthesised camera motion was then applied

on the same scene taken from a different view point with

synthetically added occluders to produce the blurred and

occluded image in Fig. 6(b).

To evaluate the proposed method, we followed the steps

outlined in Algorithm 1, selected four sub-images (based on

Hu et al. [16]) of size 100 × 100 pixels, and calculated

m independently for each sub-image. The average value,

m100, was computed. Next, we picked a sub-image of size

200 × 200 pixels and calculated m200. The four kernels

computed within the sub-image bore a large degree of

similarity indicating that the space-varying nature of the blur

was not being captured at this size. This step was repeated

for five different sub-images of size 200 × 200 pixels, but

the values of m200 they yielded were approximately equal

to m100 revealing that only a bigger sized sub-image can

encapsulate the space-varying camera motion. Our algorithm

converged for a sub-image of size 500×500 pixels where the

computed m500 was less than 0.6 m100. The selected sub-

images of size 500 × 500 pixels from the focused, and the

blurred and occluded input images are shown in Figs. 6(c)

and 6(d), respectively. The position of these sub-images have

been indicated by red boxes in Figs. 6(a) and (b). Note that

the selected sub-image, incidentally, does not contain any

occlusion. To handle pose changes between the two images,

we first coarsely aligned the reference image and the blurred

and occluded image at a lower resolution using a multiscale

implementation similar to [15]. As noted by Gupta et al.

[10] and Whyte et al. [11], 6D camera motion with small

out-of-plane rotations can be explained by a 3D pose space

itself. Hence, we use the following ranges while estimating

the motion: in-plane translations: [−12:1:12] pixels, in-plane

rotations: [−3◦:0.5◦:3◦]. Fig. 6(e) shows the reference image

reblurred using the estimated ω̃. The detected occlusions

shown in Fig. 6(f) are found by comparing the blurred and

occluded observation (Fig. 6(b)) with the reblurred reference

image (Fig. 6(e)).

Next, we demonstrate the applicability of the proposed

method on real images. The roof-top images in Figs. 7(a)

and (b) which represent the reference image and the blurred

and occluded observation, respectively, were captured using

an 18 MP Canon DSLR camera. Observe that in addition

to significant blur and change in viewpoint, the occlusion

(a cyclist in this case) has its own independent motion.

While the combined motion of camera and object would

confound blind deblurring algorithms, our joint formulation

for estimating camera motion and occlusion can elegantly

handle this challenging scenario even when the sub-image

includes the occluder. The detected occlusion is shown in

Fig. 7(c) which is correct.

For our next experiment, we use the publicly available

VIRAT database (Oh et al. [18]) which is a benchmark

for video surveillance and change detection. Two frames

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Reference image, (b) synthetically blurred and occluded
observation from a different view point, (c) sub-image from (a), (d) sub-
image from (b), (e) reference image reblurred using the estimated camera
motion, and (f) detected occlusion.

corresponding to the reference image and the occluded

image (shown in Figs. 8(a) and (b), respectively) were

manually extracted from an aerial video. The frames are

at the resolution of the original video i.e., 720× 480 pixels.

Since the resolution is low, we run our algorithm directly

on the whole image instead of a sub-image. The detected

occlusion is shown in Fig. 8(c). Although, strictly speaking,

the images are not high resolution at all, the purpose is to

demonstrate the efficiency of our method for aerial imaging.

Also, this example illustrates how the proposed method

elegantly subsumes the work in [15] for the case of low

resolution images.

A final real example is shown in Fig. 9. The two images

in Figs. 9 (a) and (b) were captured from the same view

point but with a small time lapse using a Google Nexus 4

mobile phone which has an 8 MP camera. Observe how even

small occluders with intensities close to the background are

correctly detected by our algorithm (Fig. 9(c)). This example

threw up small spurious non-connected occlusions in the

bottom half of the image due to movement of leaves, and

these were removed by simple post-processing.

To perform quantitative assessment of our method, we

computed the following metrics which are well known

in the change detection community: percentage of correct

classification (PCC), Jaccard coefficient (JC) and Yule coef-

ficient (YC) [19]. For the real experiments, the ground-truth
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(a) (b) (c)

Figure 7. (a) Reference image, (b) real blurred and occluded observation, and (c) detected dynamic occluder.

(a) (b) (c)

Figure 8. (a) Reference image, (b) real blurred and occluded observation, and (c) detected occlusion.

occlusion was assessed by asking different individuals to

locally mark out the occluded regions as per their individual

perception. The efficacy of our algorithm is further evident

from the values in Table I. A value greater than 0.5 is

considered good for JC and YC, and a value close to 100

indicates high performance for PCC.

Table I
QUANTITATIVE METRICS FOR OUR RESULTS IN FIGS. 5 TO 8.

Fig. PCC JC YC

5 99.7874 0.8508 0.9443
6 99.9409 0.7816 0.8377
7 99.7195 0.6218 0.9211
8 99.3736 0.4557 0.8729

The maximum size of the images considered in this paper

was 18 MP. Despite our best attempts, we could not find any

database containing image pairs of very large sizes (of the

order of 100M) that could be used for testing. Nevertheless,

the framework proposed here has the potential to handle

even very large images. Due to file size constraints, we have

included only the downscaled images in the pdf, and not the

original high resolution images.

V. CONCLUSIONS

We proposed a framework to detect changes in blurred

images of very large sizes. Traditional deblurring techniques

fail to cope with large image sizes, while feature-based

approaches for change detection are rendered invalid in the

presence of blur. We developed an optimisation problem

which would perform registration in the presence of blur and

detect occlusions simultaneously. We devised an algorithm

to choose good sub-images from the large observations to

estimate the camera motion thus alleviating issues related

to memory and computational resources. As future work,

it would be interesting to relax the constraints of using

images taken with the same camera with same resolution

and focus settings, by assimilating ideas from areas such as

domain adaptation. We shall also consider accommodating

illumination variations into our framework.

ACKNOWLEDGMENTS

A part of this work was supported by a grant from

the Asian Office of Aerospace Research and Development,

AOARD/AFOSR. The support is gratefully acknowledged.

The results and interpretations presented in this paper are

that of the authors, and do not necessarily reflect the views

or priorities of the sponsor, or the US Air Force Research

Laboratory.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, vol. 60,
no. 2, pp. 91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (surf),” Computer vision and image under-
standing, vol. 110, no. 3, pp. 346–359, 2008.

321



(a) (b) (c)

Figure 9. (a) Reference image, (b) real blurred and occluded observation, and (c) multiple occluders found.

[3] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb:
an efficient alternative to sift or surf,” in Proc. ICCV. IEEE,
2011, pp. 2564–2571.

[4] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-
baseline stereo from maximally stable extremal regions,”
Image and vision computing, vol. 22, no. 10, pp. 761–767,
2004.

[5] C. Huo, C. Pan, L. Huo, and Z. Zhou, “Multilevel sift
matching for large-size vhr image registration,” Geoscience
and Remote Sensing Letters, IEEE, vol. 9, no. 2, pp. 171–
175, 2012.

[6] A. Carleer, O. Debeir, and E. Wolff, “Assessment of very high
spatial resolution satellite image segmentations,” Photogram-
metric Engineering and Remote Sensing, vol. 71, no. 11, pp.
1285–1294, 2005.

[7] L. Yu, D. Zhang, and E.-J. Holden, “A fast and fully automatic
registration approach based on point features for multi-source
remote-sensing images,” Computers & Geosciences, vol. 34,
no. 7, pp. 838–848, 2008.

[8] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and
W. T. Freeman, “Removing camera shake from a single
photograph,” in ACM Trans. Graphics, vol. 25, no. 3, 2006,
pp. 787–794.

[9] L. Xu and J. Jia, “Two-phase kernel estimation for robust
motion deblurring,” in Proc. ECCV, 2010, pp. 157–170.

[10] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless,
“Single image deblurring using motion density functions,” in
Proc. ECCV, 2010, pp. 171–184.

[11] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-
uniform deblurring for shaken images,” International journal
of computer vision, vol. 98, no. 2, pp. 168–186, 2012.

[12] Z. Hu and M.-H. Yang, “Fast non-uniform deblurring using
constrained camera pose subspace.” in Proc. BMVC, 2012,
pp. 1–11.

[13] C. Paramanand and A. N. Rajagopalan, “Non-uniform motion
deblurring for bilayer scenes,” in Proc. CVPR. IEEE, 2013,
pp. 1115–1122.

[14] L. Xu, S. Zheng, and J. Jia, “Unnatural l0 sparse representa-
tion for natural image deblurring,” in Proc. CVPR, 2013, pp.
1107–1114.

[15] A. Punnappurath, A. Rajagopalan, and G. Seetharaman, “Reg-
istration and occlusion detection in motion blur,” in Proc.
ICIP, 2013.

[16] Z. Hu and M.-H. Yang, “Good regions to deblur,” in Proc.
ECCV 2012. Springer, 2012, pp. 59–72.

[17] J. Liu, S. Ji, and J. Ye, SLEP: Sparse Learning with Efficient
Projections, Arizona State University, 2009. [Online].
Available: http://www.public.asu.edu/ jye02/Software/SLEP

[18] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-
scale benchmark dataset for event recognition in surveillance
video,” in Proc. CVPR. IEEE, 2011, pp. 3153–3160.

[19] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image
change detection algorithms: a systematic survey,” Image
Processing, IEEE Transactions on, vol. 14, no. 3, pp. 294–
307, 2005.

322


